Supplementary Information for: Bottle Brush Star Block Copolymer Nanoreactor for Efficient Photooxidation Catalysts: Effects of Chain Softness

Jin Young Seo ^{a,1,*}, Hyeon Ji Oh ^{a,b,1}, Youngjong Kang ^b, and Kyung-Youl Baek ^{a,c,*,†}

 ^a Materials Architecturing Research Center, Korea Institute of Science Technology, Seoul 02792, Republic of Korea
^b Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
^c Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.

¹ These authors contributed equally to this work.

[†] Decreased 10.03.2023

Corresponding Author E-mail: wlsdud780@kist.re.kr (J. Y. Seo) and baek@kist.re.kr (K. -Y.

<u>Baek)</u>

Keywords: Bottle brush star polymers, ring opening metathesis polymerization, nanoreactor, polymer catalysts, and photooxidation.

Figure S1. (A) Synthesis scheme of NB-Br and (B) ¹H NMR spectra of NB-OH and NB-Br.

Figure S2. (A) ¹H NMR spectra and (B) GPC spectra of NB-PMMA and NB-PPEGMA.

Figure S3. (A) Synthesis scheme of TCPP(Pd)-NB, (B) ¹H NMR spectra of TCPP and TCPP-NB, and (C) UV-Vis spectra of TCPP and P(Pd)-NB.

Time (min)	Conversion (%)	$\ln([\mathbf{M}]_o/[\mathbf{M}]_t)$	M _n ^a (g/mol)	Đª
1	39.3	0.499	44k	1.09
2	48.7	0.667	51 k	1.09
3	55.8	0.816	55 k	1.10
5	65.3	1.058	58 k	1.12
10	75.6	1.410	63 k	1.13
12	81	1.660	66 k	1.14
15	100	-	72 k	1.15

Table S1. Summarized profiles for synthesis of P(Pd)-P(NB-PMMA) by ROMP

^a Molecular weight and Đ index of star polymers were characterized by SEC using PMMA standard.

Entry	Sample name	M ₁ : M ₂ ^a (wt%)	M _{n,RI} / Đ ^b (g/mol)
1	1a	100 : 0	72 k / 1.15
2	1b	63.1 : 36.9	68 k / 1.26
3	1c	27.8 : 72.2	70 k / 1.35
4	1d	0:100	61 k / 1.23

Table S2. Summarized profiles for amphiphilic bottle brush star block copolymers

^a The relative ratios between M1 and M2 are calculated by ¹H NMR, ^b Molecular weight and Đ index of star polymers were characterized by SEC using PMMA standard.

Figure S4. ¹H NMR spectra of 1a, 1b, 1c, and 1d.

Figure S5. (A) Synthesis scheme of P(Pd)-PMMA-b-PPEGMA by ATRP, (B) Chemical structure of P(Pd) for photocatalytic reaction.

Figure S6. (A) 2,5-dimethyl furan oxidation scheme, (B) Oxidation kinetics of 2,5-dimethyl furfural using various catalysts

Entry	Structure	Architecture	T ₁ ^a (ms)	T ₁ ^b (ms)	T_1^c (ms)
1	b an	Star	137.0	46.4	46.6
2	of o	Bottle brush star	103.1	35.1	35.2
		0	=======	· -•	

Table S3. Spin-Lattice relaxation (T_1) measurements for the PMMA polymer with linear or star structure

Figure S7. Linear plots ($\ln(C_t/C_o)$ vs., time) of the furfural oxidation using catalysts.