Indocyanine green-loaded porphyrin covalent organic framework for photothermal cancer therapy

Simiao Tong^a, Cheng Li^a, Kai Wang,^b Fengshou Wu^{a,*}

^a Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, P. R. China. E-mail: wfs42@126.com.
^b Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, People's Republic of China.

Figures and Captions

Figure S1. Synthesis route of 5,10,15,20-tetra(4-aminophenyl) porphyrin

Figure S2. Synthesis route of COF-OH.

Figure S3. (a) FT-IR spectrum of TAPP;(b) FT-IR spectrum of COF-OH;(c) absorption spectra of TAPP and COF-OH.

Figure S4. (a) Nitrogen adsorption and desorption isotherms of COF-OH; (b) Pore size distribution of COF-OH by DFT modeling.

Figure S5. absorption spectra of COF-OH + DPBF before and after irradiation (660 nm, 0.05 W/cm², 3 min).

Figure S6. Fluorescence spectra of ICG@COF NPs; experimental conditions: $\lambda_{ex} = 460$ nm, collection range: 500-900 nm.

Figure S7. (a) Photothermal effects of 20 μ g/mL ICG@COF under 808 nm laser irradiation (1.0 W/cm²) and cooled for 10 min without irradiation; (b) Linear relationship between the cooling period of time and the negative natural logarithm of temperature.