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1. Experimental conditions for the reported tetrazine-based labels with/toward 

near-infrared emissions 

 

Fig. S1 Molecular structures of different dienophiles. 

 

 

Fig. S2 Molecular structures of post-reacted labels upon inverse electron-demand Diels–Alder (iEDDA) 

reactions. 
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Table S1 Experimental conditions for four sets of labels. 

Set Reacted with Medium Reference 

1 D1 DMF/PBS = 1:1, v/v Xu et al.1 

2 D2 DMF/PBS = 1:1, v/v Yang et al.2 

3 D3 CHCl3 Wu and O’Shea3 

4 D4 In vivo Sadeghi et al.4 

 

Table S2 Photophysical properties of different post-reacted labels. 

Molecule Maximum molar extinction coefficient (εmax; cm-1×M-1) Quantum yield (φ) Reference 

3a-Pz 92,000 0.33 

Wu and O’Shea3 3b-Pz 90,000 0.34 

3c-Pz 91,000 0.34 

4-Pz 150,133 0.014 Sadeghi et al.4 

 

2. Computational methods and additional results 

The density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed in the 

Gaussian 16.5-7 All the calculations were performed using BHandHLYP functional and 6-31G** basis set.8-10 

Solvation effects were considered by deploying the Solvation Model Based on the Density (SMD) solvent model 

and corrected linear-response (cLR) solvent formalism.11, 12 All the optimized molecular structures at the ground 

and excited states were validated at the local minimums (with positive frequencies) of the potential energy 

surfaces. The analyses of hole-electron distributions and frontier orbitals were conducted and visualized using 

Multiwfn and VMD. 13, 14 
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Fig. S3 Energy levels and oscillator strength (f) of key states with corresponding hole-electron distributions and 

charge transfer distance (dCT) of 1-Pz during the excitation and emission processes in DMSO. Electron: 

highlighted in green; Hole: highlighted in pink. 

 

 

Fig. S4 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of 2a during the 

excitation and deexcitation processes in DMSO. LE: locally excited; ICT: intramolecular charge transfer; ET: 

electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 

 



S5 

 

 

Fig. S5 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of 2b during the 

excitation and deexcitation processes in DMSO. LE: locally excited; ICT: intramolecular charge transfer; ET: 

electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 
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Fig. S6 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of 2c during the 

excitation and deexcitation processes in DMSO. LE: locally excited; ICT: intramolecular charge transfer; ET: 

electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 



S7 

 

 

Fig. S7 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of 2e during the 

excitation and deexcitation processes in DMSO. LE: locally excited; ICT: intramolecular charge transfer; ET: 

electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 

 



S8 

 

 

Fig. S8 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of 2e during the 

excitation and deexcitation processes in DMSO. LE: locally excited; ICT: intramolecular charge transfer; ET: 

electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 
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Fig. S9 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of (a) 3a, (b) 3b, 

and (c) 3c during the excitation and deexcitation processes in water. LE: locally excited; ICT: intramolecular 

charge transfer; ET: electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 
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Fig. S10 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of 4 during the 

excitation and deexcitation processes in DMSO. LE: locally excited; ET: electron transfer; Electron: highlighted 

in green; Hole: highlighted in pink. 

 

 

Fig. S11 Energy levels and f of key states with corresponding hole-electron distributions and dCT of (a) 2a-Pz, 

(b) 2b-Pz, and (c) 2c-Pz during the excitation and emission processes in DMSO. Electron: highlighted in green; 

Hole: highlighted in pink. 
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Fig. S12 Energy levels and f of key states with corresponding hole-electron distributions and dCT of (a) 2d-Pz 

and (b) 2e-Pz-Pz during the excitation and emission processes in DMSO. Electron: highlighted in green; Hole: 

highlighted in pink. 

 

 

Fig. S13 Energy levels and f of key states with corresponding hole-electron distributions and dCT of (a) 3a-Pz, 

(b) 3b-Pz, and (c) 3c-Pz during the excitation and emission processes in water. Electron: highlighted in green; 

Hole: highlighted in pink. 

 

 

Fig. S14 Energy levels and f of key states with corresponding hole-electron distributions and dCT of 4-Pz during 

the excitation and emission processes in DMSO. Electron: highlighted in green; Hole: highlighted in pink. 
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Fig. S15 Molecular structures of 14 tetrazine-based/merged fluorogenic labels with the fluorescence emissions 

in the visible region. 
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Fig. S16 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of (a) 5a and (b) 

5b during the excitation and deexcitation processes in water. LE: locally excited; ICT: intramolecular charge 

transfer; ET: electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 
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Fig. S17 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of (a) 6a and (b) 

6b during the excitation and deexcitation processes in water. LE: locally excited; ICT: intramolecular charge 

transfer; ET: electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 

 

 

Fig. S18 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of (a) 6c and (b) 

6d during the excitation and deexcitation processes in water. LE: locally excited; ICT: intramolecular charge 

transfer; ET: electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 
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Fig. S19 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of (a) 6e and (b) 

6f during the excitation and deexcitation processes in water. LE: locally excited; ICT: intramolecular charge 

transfer; ET: electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 

 

 

Fig. S20 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of (a) 6g and (b) 

6h during the excitation and deexcitation processes in water. LE: locally excited; ICT: intramolecular charge 

transfer; ET: electron transfer; Electron: highlighted in green; Hole: highlighted in pink. 
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Fig. S21 Calculated electronic energies of different frontier orbitals of (a) 5a and (b) 5b during the vertical 

excitation in water. 

 

 

Fig. S22 Calculated electronic energies of different frontier orbitals of (a) 6a, (b) 6b, (c) 6c, and (d) 6d during 

the vertical excitation in water. 
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Fig. S23 Calculated electronic energies of different frontier orbitals of (a) 6e, (b) 6f, (c) 6g, and (d) 6h during 

the vertical excitation in water. 

 

 

Fig. S24 Molecular structures of Coumarin-SNO-1 (left) and Coumarin-SNO-2 (right). 
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Fig. S25 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of (a) Coumarin-

SNO-1 and (b) Coumarin-SNO-2 during the excitation and deexcitation processes in DMSO. LE: locally 

excited; ICT: intramolecular charge transfer; ET: electron transfer; Electron: highlighted in green; Hole: 

highlighted in pink. 

 

 

Fig. S26 Calculated electronic energies of different frontier orbitals of (a) Coumarin-SNO-1 and (b) 

Coumarin-SNO-2 during the vertical excitation in DMSO. 
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Fig. S27 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of (a) 7b and (b) 

7c during the excitation and deexcitation processes in water. LE: locally excited; ICT: intramolecular charge 

transfer; CC: charge centralization; Electron: highlighted in green; Hole: highlighted in pink. 

 

 

Fig. S28 Energy levels of key states with corresponding hole-electron distributions, dCT, and f of 7d during the 

excitation and deexcitation processes in water. LE: locally excited; ICT: intramolecular charge transfer; CC: 

charge centralization; Electron: highlighted in green; Hole: highlighted in pink. 
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Table S3 Fragment contributions (ηF, %) induced by tetrazine to the CC states in 7a-d. 

Molecule Process Hole Electron Overlap 

7a 
Excitation 10.11 54.04 23.38 

Deexcitation 10.38 98.36 31.95 

7b 
Excitation 10.40 54.44 23.79 

Deexcitation 10.32 98.43 31.87 

7c 
Excitation 11.31 66.20 27.36 

Deexcitation 12.64 97.29 35.07 

7d 
Excitation 14.83 98.87 38.29 

Deexcitation 13.06 98.99 35.96 

 

 

Fig. S29 Calculated electronic energies of different frontier orbitals of (a) 7a, (b) 7b, (c) 7c, and (d) 7d during 

the vertical excitation in water. 
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Fig. S30 Calculated electronic energies of different frontier orbitals of 1 during the vertical excitation in DMSO. 

 

 

Fig. S31 Calculated electronic energies of different frontier orbitals of (a) 2a, (b) 2b, and (c) 2c during the 

vertical excitation in DMSO. 
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Fig. S32 Calculated electronic energies of different frontier orbitals of (a) 2d and (b) 2e during the vertical 

excitation in DMSO. 

 

 

Fig. S33 Calculated electronic energies of different frontier orbitals of (a) 3a, (b) 3b, and (c) 3c during the 

vertical excitation in water. 

 



S23 

 

 

Fig. S34 Calculated electronic energies of different frontier orbitals of 4 during the vertical excitation in DMSO. 
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Fig. S35 Calculated electronic energies of different frontier orbitals of (a) 8a, (b) 8b, (c) 8c, and (d) 8d during 

the vertical excitation in DMSO. 
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