Supporting Information for

Boosting the Catalytic Performance of Metalloporphyrin-Based Covalent Organic Frameworks via Coordination Engineering for CO₂ and O₂ Reduction

Zhixin Ren, Ke Gong, Bo Zhao, Shi-Lu Chen, Jing Xie*

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic / Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

E-mail: jingxie@bit.edu.cn

Contents

Contents		S2
Supplementary N	Note 1. Additional details for Machine Learning	S 3
Figure S1	Optimized structures of Fe/Co/Ni-NxOySz-Por-COFs	S4
Figure S2	Total energy and temperature evolutions vs. the time of AIMD simulation	S5
Figure S3	Density of states of the Fe/Co/Ni-NxOySz-Por-COFs	S 6
Figure S4	Stable configurations for *CO2 adsorbed on Fe/Co/Ni-NxOySz-Por-COFs	S 7
Figure S5	Percentage change in the angle ($\angle OCO$) of absorbed *CO ₂	S 8
Figure S6	Free-energy diagram for CO2RR-to-CO on Fe/Co/Ni-NxOySz-Por-COFs	S9
Figure S7-S8	Optimized configurations of the *COOH and *CO intermediates	S10-S11
Figure S9	Free-energy diagram for HER on Fe/Co/Ni-NxOySz-Por-COFs	S12
Figure S10	Optimized configurations of the *H intermediates	S13
Figure S11	Spin population of *COOH@Co-N2O2-Por-COF intermediate	S14
Figure S12	CO ₂ RR catalytic activity comparison between the designed Por-COFs and	S15
	the experimentally synthesized Co-Por-COFs	
Figure S13-S15	Adsorption configurations of *O2 on Fe/Co/Ni-NxOySz-Por-COFs	S16-S18
Figure S16	Percentage change in the bond length (d_{O-O}) of absorbed *O ₂	S19
Figure S17	Free energy diagram for 4e ⁻ ORR on Fe/Co/Ni-N _x O _y S _z -Por-COFs	S20
Figure S18	Free energy diagrams that computed at $pH = 7$	S21
Figure S19-S21	Optimized configurations of the *OOH, *O and *OH intermediates	S22-S24
Figure S22	Projected electronic densities of states and charge density difference	S25
Figure S23	Free-energy diagrams for Cu-N ₃ S-Por-COF and Pt-N ₂ S ₂ -Por-COF	S26
Table S1	The values of U-J parameters for DFT/PBE+U calculations	S27
Table S2-S4	Relative free energies (eV) with different magnetic moments $M(\mu_B)$ for the	S28-S30
	intermediates adsorbed on Fe-, Co and Ni-Por-COFs at 298.15 K	
Table S5-S6	Calculated zero-point energy (ZPE, eV) and entropic correction (TS, eV) of	S31-S32
	*OOH, *O, *OH, *COOH, *CO and *H for Fe/Co/Ni-NxOySz-Por-COFs at	
	T = 298.15K	
Table S7	Hyperparameters of three machine learning algorithms	S33
Table S8-S9	Calculated adsorption energy, bond lengths and bond angle of *CO2 and	S34-S35
	*O2 absorbed on Fe/Co/Ni-NxOySz-Por-COFs	
Table S10	The feature values of Por-COFs	S36-S37
Table S11-S12	The comparison of the training/test RMSE and R ² scores of three algorithms	S38-S39
	at four different loops for $U_{\rm L}^{\rm CO2RR}$ and $\eta^{\rm ORR}$	
Table S13	Comparison of the ML-predicted and DFT-calculated $U_{\rm L}^{\rm CO2RR}$ and $\eta^{\rm ORR}$	S40
Table S14	Feature importance analysis of optimal GBR model for $U_{\rm L}^{\rm CO2RR}$ and $\eta^{\rm ORR}$	S41
Table S15	The ML-predicted or DFT-calculated $U_{\rm L}^{\rm CO2RR}$ and $\eta^{\rm ORR}$ values for Cu-	S42
	/Pt/Co-embedded Por-COFs	
References		S43

Supplementary Note 1. Additional details for Machine Learning

We tested the predictive ability of the trained ML models for Por-COFs with other central metals, Cu for CO₂RR and Pt for ORR.¹⁻⁴ For each metal, the values of U_L^{CO2RR} and η^{ORR} were predicted for six types of coordination environment, i.e. N₄, N₃O, N₃S, N₂O₂, N₂S₂, N₂OS (Table S15). Among them, Cu-N₃S-Por-COF exhibits the optimal CO₂RR activity ($U_L^{CO2RR} = -0.81$ V); and the Pt-N₂S₂-Por-COF exhibits the optimal ORR activity ($\eta^{ORR} = 0.64$ V). It turns out these two ML-predicted values differ with the DFT calculated values by -0.67 and 0.97 V (Figure S21). We further used the trained GBR-ML model to predict the U_L^{CO2RR} value of Co-N₃C₁ and Co-N₂C₂-Por-COF system.⁵ Note that the coordinated carbon-atom was not in the training set. Inspiringly, it correctly predicted the catalytic order of Co-N₂C₂ > Co-N₃C₁, albeit the match between ML-predicted and DFT calculated U_L^{CO2RR} value is mediocre (error is 0.38 V). Above tests suggest that the trained model is immature to predict properties of systems that are out of the training set, which is usually the case. A direction to improve the accuracy of the model is to increase the sample size and type.

Supplementary Figures

Figure S1. Optimized structures of Fe/Co/Ni-N_xO_y-Por-COFs. Color code: C, grey; N, blue; O, red; S, yellow; H, white; Fe, cyan; Co, purple; Ni, pink.

Figure S2. Total energy and temperature evolutions versus the time of AIMD simulation for a) $Co-N_2O_2$ -, b) Ni-N_2S_2- and c) Fe-N_2OS-Por-COFs. Snapshots of the equilibrium structures are inserted.

Figure S3. Density of states of the Fe/Co/Ni- $N_xO_yS_z$ -Por-COFs. The Fermi energy is referenced at 0 eV.

Figure S4. Stable configurations for $*CO_2$ adsorbed on Fe/Co/Ni-N_xO_yS_z-Por-COFs. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of M-N_xO_yS_z-Por-COFs are not shown.

Figure S5. Percentage change in the angle ($\angle OCO$) of absorbed *CO₂ compared to linear CO₂ molecule in the gas phase. Refer to Table S8 for the values of the angle.

Figure S6. Free-energy diagram for CO₂RR-to-CO on Fe/Co/Ni-N_xO_yS_z-Por-COFs.

Figure S7. Optimized configurations of the *COOH intermediate on Fe/Co/Ni- $N_xO_yS_z$ -Por-COFs. The M–C bond lengths (in Å) are present. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of M- $N_xO_yS_z$ -Por-COFs are not shown.

Figure S8. Optimized configurations of the *CO intermediate on Fe/Co/Ni- $N_xO_yS_z$ -Por-COFs. The M–C bond lengths (in Å) are present. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of M- $N_xO_yS_z$ -Por-COFs are not shown.

Figure S9. Free-energy diagram for HER on Fe/Co/Ni-N_xO_yS_z-Por-COFs.

Figure S10. Optimized configurations of the *H intermediate on Fe/Co/Ni- $N_xO_yS_z$ -Por-COFs. The M–H bond lengths (in Å) are present. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of M- $N_xO_yS_z$ -Por-COFs are not shown.

Figure S11. Spin population of COOH@Co-N₂O₂-Por-COF intermediate. Orange and green colors indicate α or β spin electron density, respectively. Isosurfaces of charge density are set to 0.001 e Å ⁻³. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of Co-N₂O₂-Por-COF are not shown.

Figure S12. Electrocatalytic CO₂RR performance comparison between the designed Co-N₂O₂-, Fe-N₂OS-, Fe-N₂O₂- and Co-N₃O-Por-COFs (this work) and experimentally synthesized Co-Por-COFs for CO₂-to-CO reduction. The calculated limiting potentials $U_{\rm L}$ in this work (stars) are compared with experimental onset potentials $U^{\rm onset}$ (solid points) and/or calculated $U_{\rm L}$ (hollow points) in literatures. ⁶⁻¹⁵

Figure S13. Side-on and end-on type adsorption configurations of $*O_2$ on Fe-N_xO_yS_z-Por-COFs. The Fe–O bond lengths (in Å) and relative energies (E_{rel} , in eV) are present. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of Fe-N_xO_yS_z-Por-COFs are not shown.

Figure S14. Side-on and end-on type adsorption configurations of $*O_2$ on Co-N_xO_yS_z-Por-COFs. The Co–O bond lengths (in Å) and relative energies (E_{rel} , in eV) are present. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of Co-N_xO_yS_z-Por-COFs are not shown.

Figure S15. Side-on and end-on type adsorption configurations of $*O_2$ on Ni-N_xO_yS_z-Por-COFs. The Co–O bond lengths (in Å) and relative energies (E_{rel} , in eV) are present. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of Ni-N_xO_yS_z-Por-COFs are not shown.

		N_4	N ₃ O	N_3S	N_2O_2	N_2S_2	N ₂ OS
(%) ^{0–(}	Fe	9.09	18.18	18.18	17.36	14.05	17.36
nge of $d_{\rm c}$	Со	2.48	10.74	10.74	10.74	9.92	14.05
age Cha	Ni	2.48	9.09	8.26	9.09	7.44	8.26
cent		Ĺ					
Perc		8.0	11		14	17	20

Figure S16. Percentage change in the bond length (d_{O-O}) of absorbed *O₂ compared to linear O₂ molecule in the gas phase. Refer to Table S9 for the values of the bond length.

Figure S17. Free energy diagram for $4e^-$ ORR R on Fe/Co/Ni-N_xO_yS_z-Por-COFs (U = 0 V, pH = 0). The colored shadows specify the potential limiting step (PDS).

Figure S18. Free energy diagrams that computed at pH = 7 of a) CO₂RR on Co-N₄-and Co-N₂O₂-Por-COFs and b) ORR on Ni-N₄-and Ni-N₂S₂-Por-COFs.

Figure S19. Optimized configurations of the *OOH intermediate on Fe/Co/Ni- $N_xO_yS_z$ -Por-COFs. The M–O bond lengths (in Å) are present. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of M- $N_xO_yS_z$ -Por-COFs are not shown.

Figure S20. Optimized configurations of the *O intermediate on Fe/Co/Ni- $N_xO_yS_z$ -Por-COFs. The M–O bond lengths (in Å) are present. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of M- $N_xO_yS_z$ -Por-COFs are not shown.

Figure S21. Optimized configurations of the *OH intermediate on Fe/Co/Ni- $N_xO_yS_z$ -Por-COFs. The M–O bond lengths (in Å) are present. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of M- $N_xO_yS_z$ -Por-COFs are not shown.

Figure S22. Projected electronic densities of states (PDOS) and charge density difference (CDD) of a-d) *O and e-h) *OH intermediates absorbed on Ni-N₄-, Ni-N₂S₂-Por-COFs. The cyan/yellow colors indicate the regions of electron loss/gain. Isosurfaces of charge density are set to 0.005 e Å ⁻³. For clarity, the tetraphenyl and the p-phenylenediamine (PPDA) moieties of M-N_xO_yS_z-Por-COFs are not shown.

Figure S23. Free-energy diagram for a) CO_2RR -to-CO on Cu-N₃S-Por-COF and for b) ORR-to-H₂O on Pt-N₂S₂-Por-COF.

Supplementary Tables

	Fe	Со	Ni	Cu	Pt
U-J	3.29	3.42	3.40	3.87	3.00

Table S1. The values of U-J parameters for DFT/PBE+U calculations.

		Fe-N4-Po	or-COF			Fe-N ₃ O-l	Por-COF		Fe-N ₃ S-Por-COF			
	default	3	5	$M_{ m opt}$	default	3	5	$M_{ m opt}$	default	3	5	$M_{\rm opt}$
G (*)	0.01	0.09	0.00	/	1.15	0.00	0.79	/	0.15	0.01	0.00	/
G (*COOH)	0.00	0.01	0.04	-1.15	0.06	0.00	0.06	/	0.00	0.13	0.01	0.01
G(*CO)	0.01	0.01	0.00	/	0.58	0.58	0.00	/	0.54	0.01	0.00	/
G (*H)	0.00	0.01	0.01	1.19	0.00	0.03	0.03	-0.01	0.00	0.02	0.04	-0.01
G(*OOH)	0.01	0.00	0.01	/	1.15	0.03	0.00	/	0.78	0.02	0.00	/
G(*O)	0.03	0.01	0.00	/	0.69	0.03	0.00	/	0.43	0.00	0.01	/
G(*OH)	0.01	0.01	0.00	/	1.40	0.01	0.00	/	0.96	0.00	0.01	/

Table S2. Relative free energies (eV) with different magnetic moments $M(\mu_B)$ for the intermediates adsorbed on Fe-Por-COFs at 298.15 K. For each species, the most stable spin state is highlighted in bold. The optimized value of default-M is reported as M_{opt} .

	Fe-N2O2-Por-COF]	Fe-N ₂ S ₂ -Por-COF				Fe-N ₂ OS-Por-COF			
	default	3	5	$M_{ m opt}$	default	3	5	$M_{ m opt}$	default	3	5	$M_{ m opt}$	
G (*)	0.01	0.01	0.00	/	0.00	0.01	0.04	1.62	0.98	0.33	0.00	/	
G (*COOH)	0.55	0.55	0.00	/	0.29	0.00	0.01	/	0.59	0.01	0.00	/	
G(*CO)	0.80	0.80	0.00	/	0.47	0.01	0.00	/	0.66	0.66	0.00	/	
G (*H)	0.00	0.48	0.09	1.74	0.00	0.08	0.04	1.00	0.13	0.13	0.00	/	
G(*OOH)	0.00	0.02	0.06	1.36	0.82	0.69	0.00	/	0.75	0.01	0.00	/	
G(*O)	0.35	0.00	0.36	/	0.38	0.01	0.00	/	0.34	0.00	0.02	/	
G(*OH)	1.70	0.01	0.00	/	0.00	0.03	0.03	3.00	1.57	0.01	0.00	/	

		Co-N4-Por-COF				Co-N ₃ O-Por-COF				Co-N ₃ S-Por-COF			
	default	2	4	$M_{ m opt}$	default	2	4	$M_{ m opt}$	default	2	4	$M_{\rm opt}$	
G (*)	0.00	1.20	0.16	-1.05	0.12	0.12	0.00	/	0.01	0.19	0.00	/	
G (*COOH)	0.00	0.02	0.01	0.01	0.01	0.00	0.01	/	0.01	0.00	0.01	/	
G(*CO)	0.01	0.05	0.00	/	0.01	0.79	0.00	/	0.01	0.48	0.00	/	
G (*H)	0.01	0.00	0.01	/	0.16	0.13	0.00	/	0.01	0.01	0.00	/	
G(*OOH)	0.29	0.00	0.17	/	0.56	0.51	0.00	/	0.00	0.72	0.01	4.77	
G(*O)	0.28	0.00	0.11	/	0.62	0.63	0.00	/	0.02	0.83	0.00	/	
G(*OH)	0.25	0.01	0.00	/	0.74	0.81	0.00	/	0.02	0.74	0.00	/	

Table S3. Relative free energies (eV) with different magnetic moments $M(\mu_B)$ for the intermediates adsorbed on Co-Por-COFs at 298.15 K. For each species, the most stable spin state is highlighted in bold. The optimized value of default-M is reported as M_{opt} .

	Co-N2O2-Por-COF					Co-N2S2-Por-COF				Co-N2OS-Por-COF			
	default	2	4	$M_{\rm opt}$	default	2	4	default	2	4	$M_{ m opt}$	4	
G (*)	0.47	0.89	0.00	/	0.00	0.01	0.01	1.00	0.00	0.01	0.01	1.08	
G (*COOH)	0.01	0.00	0.01	/	0.01	0.01	0.00	/	0.01	0.01	0.00	/	
G(*CO)	0.01	0.00	0.01	/	0.01	0.00	0.01	/	0.40	0.00	0.01	/	
G (*H)	0.00	0.01	0.01	1.99	0.00	0.01	0.01	0.00	0.00	0.01	0.01	0.00	
G(*OOH)	0.02	0.76	0.00	/	0.01	0.01	0.00	/	0.00	0.68	0.64	-0.01	
G(*O)	0.00	0.23	1.19	-2.04	0.03	0.06	0.00	/	0.01	0.01	0.00	/	
G(*OH)	0.01	0.81	0.00	/	0.01	0.01	0.00	/	0.03	0.73	0.00	/	

Table S4. Relative free energies (eV) with different magnetic moments M (μ_B) for the intermediates adsorbed on Ni-Por-COFs at 298.15 K. For each species, the most stable spin state is highlighted in bold. The optimized value of default-M is reported as M_{opt} .

	Ni-N	4-Por-C	OF	Ni-N ₃	O-Por-O	COF	Ni-N ₃ S	S-Por-C	OF
	default	3	$M_{ m opt}$	default	3	$M_{ m opt}$	default	3	$M_{\rm opt}$
G (*)	0.00	0.01	0.01	0.00	0.01	3.49	0.01	0.00	/
G (*COOH)	0.01	0.00	/	0.00	0.01	-0.01	0.00	0.46	2.00
G (*CO)	0.00	0.01	0.01	0.01	0.00	/	0.01	0.00	/
G (*H)	0.01	0.00	/	0.00	0.32	-2.00	0.00	0.45	2.00
G(*OOH)	0.01	0.00	/	0.00	0.40	0.01	0.00	0.34	2.00
G(*O)	0.00	0.33	-4.05	0.45	0.00	/	0.00	0.47	3.00
G(*OH)	0.00	0.01	1.00	0.01	0.00	/	0.00	0.41	2.00
	Ni-N ₂ (D2-Por-	COF	Ni-N ₂ S	S2-Por-	COF	Ni-N ₂ O	S-Por-	COF
	default	3	$M_{ m opt}$	default	3	$M_{ m opt}$	default	3	$M_{\rm opt}$
G (*)	0.01	0.00	/	0.01	0.00	/	0.00	0.01	0.27
G (*COOH)	0.00	0.30	3.00	0.01	0.00	/	0.01	0.00	/
G (*CO)	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.00	/
G (*H)	0.00	0.14	1.00	0.00	0.01	1.00	0.01	0.00	/
G(*OOH)	0.00	0.01	2.14	0.00	0.01	1.00	0.04	0.00	/
G(*O)	0.01	0.00	/	0.29	0.00	/	0.33	0.00	/
G(*OH)	0.00	0.12	3.00	0.00	0.01	1.00	0.22	0.00	/

Sugton	*00	H	*0)	*0]	H
System	ZPE *оон	ТЅ*оон	ZPE*0	TS*o	ZPE *он	ТЅ*он
Fe-N ₄	0.43	0.16	0.07	0.06	0.33	0.12
Fe-N ₃ O	0.42	0.21	0.06	0.08	0.33	0.13
Fe-N ₃ S	0.43	0.22	0.06	0.08	0.32	0.14
Fe-N ₂ O ₂	0.43	0.22	0.06	0.08	0.33	0.14
$Fe-N_2S_2$	0.43	0.20	0.06	0.08	0.32	0.14
Fe-N ₂ OS	0.42	0.17	0.05	0.10	0.33	0.13
Co-N ₄	0.45	0.13	0.06	0.08	0.35	0.09
Co-N ₃ O	0.40	0.13	0.06	0.07	0.32	0.15
Co-N ₃ S	0.41	0.24	0.06	0.08	0.33	0.13
Co-N ₂ O ₂	0.42	0.21	0.06	0.07	0.34	0.11
$Co-N_2S_2$	0.42	0.23	0.04	0.11	0.33	0.13
Co-N ₂ OS	0.42	0.24	0.06	0.09	0.33	0.14
Ni-N ₄	0.43	0.21	0.05	0.08	0.32	0.09
Ni-N ₃ O	0.42	0.21	0.05	0.08	0.33	0.11
Ni-N ₃ S	0.42	0.18	0.05	0.08	0.33	0.12
Ni-N ₂ O ₂	0.43	0.20	0.05	0.09	0.33	0.12
$Ni-N_2S_2$	0.42	0.21	0.04	0.11	0.33	0.13
Ni-N ₂ OS	0.42	0.16	0.06	0.08	0.34	0.12

Table S5. Calculated zero-point energy (ZPE, eV) and entropic correction (TS, eV) of $*O_2$,*OOH, *O and *OH for Fe/Co/Ni-NxOySz-Por-COFs at T = 298.15K.

Crustone	*CO	НС	*C	0	*H	[
System	ZPE *соон	ТЅ*соон	ZPE*co	TS*co	ZPE*H	TS*H
Fe-N ₄	0.61	0.23	0.19	0.10	0.18	0.02
Fe-N ₃ O	0.58	0.19	0.19	0.16	0.19	0.01
Fe-N ₃ S	0.62	0.19	0.18	0.11	0.18	0.01
Fe-N ₂ O ₂	0.59	0.25	0.18	0.10	0.13	0.03
$Fe-N_2S_2$	0.59	0.18	0.19	0.15	0.14	0.04
Fe-N ₂ OS	0.58	0.27	0.18	0.18	0.18	0.01
Co-N ₄	0.62	0.22	0.18	0.18	0.20	0.01
Co-N ₃ O	0.68	0.13	0.19	0.15	0.18	0.01
Co-N ₃ S	0.62	0.22	0.19	0.16	0.20	0.01
$Co-N_2O_2$	0.61	0.23	0.20	0.13	0.17	0.02
$Co-N_2S_2$	0.60	0.23	0.18	0.17	0.21	0.01
Co-N ₂ OS	0.62	0.15	0.19	0.10	0.18	0.01
Ni-N ₄	0.62	0.22	0.22	0.16	0.17	0.03
Ni-N ₃ O	0.59	0.13	0.19	0.16	0.16	0.01
Ni-N ₃ S	0.59	0.23	0.18	0.12	0.16	0.02
Ni-N ₂ O ₂	0.59	0.18	0.20	0.15	0.16	0.02
$Ni-N_2S_2$	0.60	0.23	0.19	0.15	0.16	0.01
Ni-N ₂ OS	0.60	0.23	0.19	0.10	0.17	0.02

Table S6. Calculated zero-point energy (ZPE, eV) and entropic correction (TS, eV) of $*CO_2$,*COOH, *CO and *H for Fe/Co/Ni-N_xO_yS_z-Por-COFs at T = 298.15K.

Target Value	Algorithm	Hyperparameter
	RFR	n_estimators=1000
U _I CO2RR	GBR	n_estimators=1000, learning_rate=0.002,
	XGBoost	n_estimators=1000, learning_rate=0.005, colsample_bytree=1, max_depth=10
	RFR	n_estimitors=1000
nORR	GBR	n_estimators=1000, learning_rate=0.004
η	XGBoost	n_estimators=500, learning_rate=0.009, colsample_bytree=1, max_depth=5

Table S7. Hyperparameters of three machine learning algorithms.

Cotolyat	ΔE (aV)		Bond Le	ngth		Bond A	ngle
Catalyst	ΔE_{ads}_{CO2} (eV)	$d_{\mathrm{C-O1}}(\mathrm{\AA})$	Δ_1	$d_{\mathrm{C-O2}}(\mathrm{\AA})$	Δ_2	∠0-c-0 (°)	Δ_3
Fe-N ₄	-0.22	1.18	1.72%	1.17	0.86%	179.32	0.38%
Fe-N ₃ O	-0.12	1.24	6.90%	1.22	5.17%	141.72	21.27%
Fe-N ₃ S	-0.11	1.18	1.72%	1.17	0.86%	179.82	0.10%
Fe-N ₂ O ₂	-0.14	1.25	7.76%	1.25	7.76%	133.58	25.79%
$Fe-N_2S_2$	-0.19	1.17	0.86%	1.18	1.72%	179.40	0.33%
Fe-N ₂ OS	0.00	1.22	5.17%	1.26	8.62%	141.67	21.29%
Co-N ₄	-0.25	1.18	1.72%	1.17	0.86%	179.63	0.21%
Co-N ₃ O	-0.34	1.24	6.90%	1.23	6.03%	138.94	22.81%
Co-N ₃ S	-0.12	1.18	1.72%	1.17	0.86%	179.64	0.20 %
Co-N ₂ O ₂	-0.25	1.23	6.03%	1.21	4.31%	145.92	18.93%
$Co-N_2S_2$	0.02	1.18	1.72%	1.18	1.72%	179.85	0.08%
Co-N ₂ OS	-0.24	1.22	5.17%	1.21	4.31%	148.92	17.27%
Ni-N ₄	-0.23	1.18	1.72%	1.18	1.72%	179.88	0.07%
Ni-N ₃ O	-0.12	1.21	4.31%	1.21	4.31%	148.64	17.42%
Ni-N ₃ S	-0.27	1.18	1.72%	1.18	1.72%	179.51	0.27%
Ni-N ₂ O ₂	-0.18	1.21	4.31%	1.21	4.31%	148.45	17.53%
$Ni-N_2S_2$	-0.26	1.18	1.72%	1.18	1.72%	179.83	0.09%
Ni-N ₂ OS	-0.10	1.21	4.31%	1.21	4.31%	150.99	16.12%

Table S8. Calculated adsorption energy $\Delta E_{ads_CO2}(CO_2)$, bond lengths and bond angle of *CO₂ absorbed on Fe/Co/Ni-N_xO_yS_z-Por-COFs.

Note:

 Δ_{1-2} is the degree to which the C-O bond length of the adsorbed *CO₂-moiety changes with respect to the C-O bond length (1.16 Å) of the gas CO₂ molecule; Δ_3 is the degree to which the $\angle_{\text{O-C-O}}$ of the adsorbed *CO₂-moiety changes with respect to the $\angle_{\text{O-C-O}}$ (180°) of the gas CO₂ molecule.

$$\Delta_{1-2} = \left| \frac{d_{C-O}(*CO_2) - 1.16}{1.16} \right|$$
$$\Delta_3 = \left| \frac{\angle O - C - O(*CO_2) - 180}{180} \right|$$

Catalust	٨E	Bond Length			
Catalyst	ΔL ads-O2	<i>d</i> о-о (Å)	Δ		
Fe-N ₄	-0.42	1.33	9.92%		
Fe-N ₃ O	-1.41	1.43	18.18%		
Fe-N ₃ S	-1.47	1.43	18.18%		
Fe-N ₂ O ₂	-1.58	1.42	17.36%		
$Fe-N_2S_2$	-1.25	1.38	14.05%		
Fe-N ₂ OS	-1.58	1.42	17.36%		
Co-N ₄	-0.22	1.24	2.48%		
Co-N ₃ O	-1.57	1.34	10.74%		
Co-N ₃ S	-1.14	1.34	10.74%		
Co-N ₂ O ₂	-1.28	1.34	10.74%		
Co-N ₂ S ₂	-0.77	1.33	9.92%		
Co-N ₂ OS	-1.22	1.38	14.05%		
Ni-N ₄	-0.25	1.24	2.48%		
Ni-N ₃ O	-0.82	1.32	9.09%		
Ni-N ₃ S	-0.74	1.31	8.26%		
Ni-N ₂ O ₂	-0.74	1.32	9.09%		
$Ni-N_2S_2$	-0.18	1.3	7.44%		
Ni-N ₂ OS	-0.81	1.31	8.26%		

Table S9. Calculated adsorption energy, ΔE_{ads-O2} , and bond lengths of *O₂ absorbed on Fe/Co/Ni-N_xO_yS_z-Por-COFs.

Note:

 Δ is the degree to which the O–O bond length of the adsorbed *O₂-moiety changes with respect to the O–O bond length (1.21 Å) of the gas O₂ molecule.

$$\Delta = |\frac{d_{C-O}(*O_2) - 1.21}{1.21}|$$

Table S10. The feature values of each Por-COF. The features include the atomic number (N^{atom}), the number of valence electron (n_e), the number of *d* electron (n_d), the covalent radius (r^{atom} , Å), the van der Waals radius (r^{vdw} , Å), the relative mass (*m*), the Pauling electronegativity (EN), the electron affinity (EA, eV), the first ionization energy (IE, eV) of the central metal atoms (n_N); the number of coordinated N atoms, the sum of valence electron count ($\sum n_e$), the sum of *p* electron ($\sum n_p$), the sum of covalent radius ($\sum r^{\text{atom}}$, Å), the sum of van der Waals radius ($\sum r^{\text{vdw}}$, Å), the sum of valence electron count ($\sum n_e$), the sum of *p* electron ($\sum n_p$), the sum of covalent radius ($\sum r^{\text{atom}}$, Å), the sum of van der Waals radius ($\sum r^{\text{vdw}}$, Å), the sum of Pauling electronegativity ($\sum EN$), the sum of electron affinity ($\sum EA$, eV) of the coordination structures; the bond lengths of M–X₁ (d_{M-X1} , Å), M–X₂ (d_{M-X2} , Å), M–N₁ (d_{M-N1} , Å) and M–N₂ (d_{M-N2} , Å).

System	N ^{atom}	ne	nd	r ^{atom}	r ^{vdw}	m	EN	EA	IE	n _N	$\sum n_e$	$\sum n_p$	$\sum r^{atom}$	$\sum r^{vdw}$	$\sum EN$	EA	dM-X1	dM-X2	d _{M-N2}	d _{M-N2}
Fe-N ₄	26.00	8.00	6.00	1.32	2.44	55.85	1.83	15.70	7.90	4.00	20.00	12.00	2.84	6.64	12.16	28.00	2.00	2.00	2.01	2.01
Fe-N ₃ O	26.00	8.00	6.00	1.32	2.44	55.85	1.83	15.70	7.90	3.00	21.00	13.00	2.79	6.48	12.56	162.00	2.23	2.00	2.03	2.03
Fe-N ₃ S	26.00	8.00	6.00	1.32	2.44	55.85	1.83	15.70	7.90	3.00	21.00	13.00	3.18	6.87	11.70	221.00	2.40	1.99	2.09	2.08
Fe-N ₂ O ₂	26.00	8.00	6.00	1.32	2.44	55.85	1.83	15.70	7.90	2.00	22.00	14.00	2.74	6.32	12.96	296.00	2.18	2.18	2.01	2.01
Fe-N ₂ S ₂	26.00	8.00	6.00	1.32	2.44	55.85	1.83	15.70	7.90	2.00	22.00	14.00	3.52	7.10	11.24	414.00	2.20	2.20	2.05	2.05
Fe-N ₂ OS	26.00	8.00	6.00	1.32	2.44	55.85	1.83	15.70	7.90	2.00	22.00	14.00	3.13	6.71	12.10	355.00	2.39	2.16	2.04	2.04
Co-N ₄	27.00	9.00	7.00	1.26	2.40	58.93	1.88	63.70	7.88	4.00	20.00	12.00	2.84	6.64	12.16	28.00	1.98	1.98	1.99	1.99
Co-N ₃ O	27.00	9.00	7.00	1.26	2.40	58.93	1.88	63.70	7.88	3.00	21.00	13.00	2.79	6.48	12.56	162.00	2.17	1.95	1.96	1.96

Co-N ₃ S	27.00	9.00	7.00	1.26	2.40	58.93	1.88	63.70	7.88	3.00	21.00	13.00	3.18	6.87	11.70	221.00	2.15	1.94	2.02	2.02
Co-N ₂ O ₂	27.00	9.00	7.00	1.26	2.40	58.93	1.88	63.70	7.88	2.00	22.00	14.00	2.74	6.32	12.96	296.00	2.16	2.16	1.95	1.95
Co-N ₂ S ₂	27.00	9.00	7.00	1.26	2.40	58.93	1.88	63.70	7.88	2.00	22.00	14.00	3.52	7.10	11.24	414.00	2.17	2.17	2.04	2.04
Co-N ₂ OS	27.00	9.00	7.00	1.26	2.40	58.93	1.88	63.70	7.88	2.00	22.00	14.00	3.13	6.71	12.10	355.00	2.16	2.12	2.02	2.02
Ni-N ₄	28.00	10.00	8.00	1.24	2.40	58.69	1.91	112.00	7.63	4.00	20.00	12.00	2.84	6.64	12.16	28.00	1.96	1.96	1.98	1.98
Ni-N ₃ O	28.00	10.00	8.00	1.24	2.40	58.69	1.91	112.00	7.63	3.00	21.00	13.00	2.79	6.48	12.56	162.00	2.25	1.97	1.98	1.97
Ni-N ₃ S	28.00	10.00	8.00	1.24	2.40	58.69	1.91	112.00	7.63	3.00	21.00	13.00	3.18	6.87	11.70	221.00	2.12	1.94	2.05	2.05
Ni-N ₂ O ₂	28.00	10.00	8.00	1.24	2.40	58.69	1.91	112.00	7.63	2.00	22.00	14.00	2.74	6.32	12.96	296.00	2.17	2.16	1.95	1.95
Ni-N ₂ S ₂	28.00	10.00	8.00	1.24	2.40	58.69	1.91	112.00	7.63	2.00	22.00	14.00	3.52	7.10	11.24	414.00	2.14	2.14	2.03	2.03
Ni-N ₂ OS	28.00	10.00	8.00	1.24	2.40	58.69	1.91	112.00	7.63	2.00	22.00	14.00	3.13	6.71	12.10	355.00	2.13	2.13	2.01	2.01

Table S11. The comparison of the training/test RMSE and R^2 scores of three algorithms in fourfold cross-validation for U_L^{CO2RR} . The ML model yielding a maximum accuracy is highlighted in bold.

Algorithm	Loop	Training RMSE(V)	Training R ²	Test RMSE(V)	Test R ²
	1	0.09	0.88	0.19	0.35
	2	0.09	0.87	0.24	0.35
RFR	3	0.08	0.92	0.22	0.18
	4	0.09	0.90	0.18	0.51
	Mean Value	0.09	0.89	0.20	0.35
	1	0.06	0.95	0.22	0.34
	2	0.05	0.98	0.09	0.61
GBR	3	0.03	0.98	0.27	0.49
	4	0.05	0.96	0.12	0.81
	Mean Value	0.05	0.97	0.18	0.56
	1	0.03	0.98	0.23	0.43
	2	0.05	0.97	0.21	0.23
XGBoost	3	0.04	0.97	0.17	0.38
	4	0.04	0.97	0.13	0.71
	Mean Value	0.04	0.97	0.18	0.43

Algorithm	Loop	Training RMSE(V)	Training R ²	Test RMSE(V)	Test R ²
	1	0.12	0.93	0.28	0.60
	2	0.16	0.88	0.29	0.41
RFR	3	0.12	0.93	0.18	0.84
	4	0.14	0.90	0.29	0.57
	Mean Value	0.14	0.91	0.26	0.61
	1	0.02	0.99	0.24	0.55
	2	0.02	0.99	0.23	0.70
GBR	3	0.03	0.99	0.21	0.85
	4	0.01	0.99	0.33	0.50
	Mean Value	0.02	0.99	0.25	0.65
	1	0.03	0.99	0.29	0.56
	2	0.04	0.99	0.26	0.53
XGBoost	3	0.04	0.99	0.07	0.98
	4	0.04	0.99	0.15	0.92
	Mean Value	0.04	0.99	0.19	0.74

Table S12. The comparison of the training/test RMSE and R^2 scores of three algorithms in fourfold cross-validation for η^{ORR} . The ML model yielding a maximum accuracy is highlighted in bold.

Sugton	$U_{ m L}$	CO2RR	η ^{ORR}				
System	ML-predicted	DFT-calculated	ML-predicted	DFT-calculated			
Fe-N ₄	-1.25	-1.26	0.66	0.65			
Fe-N ₃ O	-1.24	-1.20	1.50	1.48			
Fe-N ₃ S	-1.18	-1.13	1.60	1.58			
Fe-N ₂ O ₂	-0.66	-0.70	1.63	1.60			
$Fe-N_2S_2$	-0.91	-0.86	1.46	1.39			
Fe-N ₂ OS	-0.64	-0.70	1.62	1.58			
Co-N ₄	-0.89	-0.89	0.43	0.44			
Co-N ₃ O	-0.67	-0.83	1.76	1.64			
Co-N ₃ S	-0.74	-0.78	1.32	1.30			
$Co-N_2O_2$	-0.58	-0.66	1.48	1.45			
$Co-N_2S_2$	-0.88	-0.89	0.94	0.96			
Co-N ₂ OS	-0.76	-0.78	1.32	1.36			
Ni-N ₄	-1.52	-1.43	0.78	0.75			
Ni-N ₃ O	-1.35	-1.18	0.74	0.72			
Ni-N ₃ S	-1.08	-1.10	0.51	0.63			
Ni-N ₂ O ₂	-0.98	-0.96	0.72	0.73			
$Ni-N_2S_2$	-1.25	-1.16	0.46	0.46			
Ni-N ₂ OS	-1.05	-1.09	0.63	0.63			

Table S13. Comparison of the ML-predicted and DFT-calculated $U_{\rm L}^{\rm CO2RR}$ and $\eta^{\rm ORR}$ values.

	$U_{\rm L}^{\rm CO2RR}$	η ^{ORR}					
Feature	Importance (%)	Feature	Importance (%)				
m	33.53	$d_{ m M-X1}$	56.01				
$d_{ m M-X2}$	28.26	N ^{atom}	27.47				
\sum EA	12.80	n _N	4.51				
$d_{ m M-X1}$	3.54	m	4.41				
$d_{ m M-N2}$	3.45	$\sum EA$	3.70				
$d_{ m M-N1}$	2.88	$\sum r^{\mathrm{atom}}$	2.54				
$\sum EN$	1.96	$d_{ m M-X2}$	0.70				
$\sum r^{ m vdw}$	1.73	$d_{ m M-N2}$	0.65				
$\sum r^{atom}$	1.69	$d_{\mathrm{M-N1}}$	< 0.01				
r ^{atom}	1.61	$\sum EN$	< 0.01				
IE	1.50	$\sum r^{ m vdw}$	< 0.01				
EN	1.47	r ^{atom}	< 0.01				
ne	1.41	IE	< 0.01				
nd	1.29	EN	< 0.01				
EA	1.25	ne	< 0.01				
N ^{atom}	1.22	n _d	< 0.01				
r^{vdw}	0.17	EA	< 0.01				
$\sum n_e$	0.10	$r^{ m vdw}$	< 0.01				
n _N	0.08	$\sum n_e$	< 0.01				
$\sum n_p$	0.06	$\sum n_p$	< 0.01				
Total	100	Total	100				

Table S14. Feature importance analysis of optimal GBR model for U_L^{CO2RR} and XGBoost model for η^{ORR} .

	ML-pred	icted	a ,	DFT-calculated			
System	$U_{ m L}^{ m CO2RR}$	η^{ORR}	System	$U_{\rm L}^{\rm CO2RR}$	η^{ORR}		
Cu-N ₄	-0.88	0.75					
Cu-N ₃ O	-0.85	0.74					
Cu-N ₃ S	-0.81	0.64	Cu-N ₃ S	-0.67	/		
Cu-N ₂ O ₂	-0.91	0.74					
$Cu-N_2S_2$	-0.96	0.64					
Cu-N ₂ OS	-0.91	0.65					
Pt-N ₄	-0.88	0.75					
Pt-N ₃ O	-0.83	0.74					
Pt-N ₃ S	-0.82	0.64					
Pt-N ₂ O ₂	-0.82	0.73					
Pt-N ₂ S ₂	-0.95	0.64	Pt-N ₂ S ₂	/	0.97		
Pt-N ₂ OS	-0.88	0.64					
Co-N ₃ C ₁	-1.00	/	Co-N ₃ C ₁	-0.76	/		
$Co-N_2C_2$	-0.98	/	$Co-N_2C_2$	-0.60	/		

Table S15. The ML-predicted or DFT-calculated U_L^{CO2RR} and η^{ORR} values for Cu-/Pt/Coembedded Por-COFs.

Reference

- 1 A. Peterson and J. K. Nørskov, Activity Descriptors for CO₂ Electroreduction to Methane on Transition-Metal Catalysts, *J. Phys. Chem. Lett.*, 2012, **3**, 251–258.
- 2 Z. Ni, H. Liang, Z. Yi, R. Guo, C. Liu, Y. Liu, H. Sun and X. Liu, Research progress of electrochemical CO₂ reduction for copper-based catalysts to multicarbon products, *Coord. Chem. Rev.*, 2021, **441**, 213983.
- 3 M. Liu, Z. Zhao, X. Duan and Y. Huang, Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts, *Adv. Mater.*, 2019, **31**, 1802234.
- 4 K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi and Y. Morimoto, Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles, *Nat. Nanotechnol.*, 2021, **16**, 140–147.
- Z. Ren, B. Zhao and J. Xie, Designing N-Confused Metalloporphyrin-Based Covalent Organic Frameworks for Enhanced Electrocatalytic Carbon Dioxide Reduction, *Small*, 2023, 19,2301818.
- 6 S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi and C. J. Chang, Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water, *Science*, 2015, **349**, 1208–1213.
- 7 S. An, C. Lu, Q. Xu, C. Lian, C. Peng, J. Hu, X. Zhuang and H. Liu, Constructing Catalytic Crown Ether-Based Covalent Organic Frameworks for Electroreduction of CO₂, ACS Energy Lett., 2021, 6, 3496–3502.
- 8 S. Diercks, S. Lin, N. Kornienko, E. A. Kapustin, E. M. Nichols, C. Zhu, Y. Zhao, C. J. Chang and O. M. Yaghi, Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction, *J. Am. Chem. Soc.*, 2018, 140, 1116–1122.
- 9 H.-J. Zhu, M. Lu, Y.-R. Wang, S.-J. Yao, M. Zhang, Y.-H. Kan, J. Liu, Y. Chen, S.-L. Li and Y.-Q. Lan, Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction, *Nat. Commun.*, 2020, **11**, 497.
- 10 Q. Wu, M.-J. Mao, Q.-J. Wu, J. Liang, Y.-B. Huang and R. Cao, Construction of Donor– Acceptor Heterojunctions in Covalent Organic Framework for Enhanced CO2 Electroreduction, *Small*, 2021, **17**, 2004933.
- 11 Q. Wu, R.-K. Xie, M.-J. Mao, G.-L. Chai, J.-D. Yi, S.-S. Zhao, Y.-B. Huang and R. Cao, Integration of Strong Electron Transporter Tetrathiafulvalene into Metalloporphyrin-Based Covalent Organic Framework for Highly Efficient Electroreduction of CO₂, ACS Energy Lett., 2020, 5, 1005–1012.
- 12 Y. Lu, J. Zhang, W. Wei, D. Ma, X. Wu and Q. Zhu, Efficient Carbon Dioxide Electroreduction over Ultrathin Covalent Organic Framework Nanolayers with Isolated Cobalt Porphyrin Units, *ACS Appl. Mater. Interfaces*, 2020, **12**, 37986–37992.

- 13 M. Fang, L. Xu, H. Zhang, Y. Zhu and W.-Y. Wong, Metalloporphyrin-Linked Mercurated Graphynes for Ultrastable CO₂ Electroreduction to CO with Nearly 100% Selectivity at a Current Density of 1.2 A cm⁻², *J. Am. Chem. Soc.*, 2022, **144**, 15143–15154.
- 14 T. He, C. Yang, Y. Chen, N. Huang, S. Duan, Z. Zhang, W. Hu and D. Jiang, Bottom-Up Interfacial Design of Covalent Organic Frameworks for Highly Efficient and Selective Electrocatalysis of CO₂, *Adv. Mater.*, 2022, **34**, 2205186.
- 15 H. Dong, M. Lu, Y. Wang, H.-L. Tang, D. Wu, X. Sun and F.-M. Zhang, Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO₂ reduction, *Appl. Catal. B Environ.*, 2022, **303**, 120897.