Electronic Supplementary Information for

Integration of CO₂ Capture, Activation, and Conversion in a Ternary Acetylglucosyl 2-Methyl-imidazolium Modified Pd Catalyst

Zhong-Gao Zhou,*†^a Peng He,†^a Jing Li,†^{a,b} Jia Zhang,^b Guo-Hai Xu,^a Shi-Yong Zhang,^a Xiao-Xiao Deng,^b Zi-Yi Du,^b Guo-Tian Luo,^a Hong-Yu Zhen,^c Yi-Wang Chen^{a,b,d} and Chun-Ting He*^b

^{a.} College of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi University for Functional Materials Chemistry, Gannan Normal University, Ganzhou, Jiangxi, 341000, R.P. China. Email: <u>zhgzhou@foxmail.com</u>.

- ^{b.} Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, 330022, R.P. China. Email: <u>hct@jxnu.edu.cn</u>.
- ^{c.} College of Chemistry and Chemical Engineering College of Materials Science and Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian, 350007, R.P. China.
- ^{d.} Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, Jiangxi, 330031, R.P. China.

† Z. Zhou, P. He, and J. Li contributed equally to this work.

Table of Contents

1. Experimental Section ······2
1.1 General
1.2 Synthesis and Characterization of Imidazolium Salts
1.3 Synthesis and Characterization of Propargyl Amines10
2. Catalytic Section 13
2.1 Optimization of the Reaction Conditions
2.2 Comparison of Turnover Frequency with Other Reported Catalysts15
2.3 General Procedure for Pd-catalyzed Carboxylative Cyclization of CO2 with Propargyl
Amines 16
2.4 NMR Data of 2-oxazolidinones 14a-14p·····18
2.5 NMR, FT-IR and HR-MS Spectra of Imidazolium Salts21
2.6 NMR Spectra of Mechanisms·····41
2.7 NMR Spectra of Propargyl Amines and 2-oxazolidinones
3. Notes and references

1. Experimental Section

1.1 General

All NMR spectra were tested with Bruker Advance III 400 NMR spectrometer. Chemical shifts were given in ppm. Melting points were determined on X-5 melting point instrument. FT-IR spectra were tested on an Avatar Nicholet FT-IR spectrometer in neat with the smart OMNI-transmission accessories or KBr pellets by standard method, and frequencies were reported as cm⁻¹. HPLC/HR-MS (ESI) spectra were acquired using a Waters G2-XS QTOF mass spectrometer, and the samples were dissolved in methanol.

All reagents were supplied commercially from Sinopharm Chemical Reagent Limited Corporation or Shanghai Aladdin Biochemical Technology Co., Ltd., and were used as received unless otherwise noted. Nitrogen gas (N_2 , 99.999%) and dilute CO₂ (CO₂/ N_2 , Vol/Vol = 15:85) were purchased from Ganzhou Shengda Gas Co., Ltd. Flash column chromatography was performed over silica gel (300-400 mesh).

1.2 Synthesis and Characterization of Imidazolium Salts

Scheme S1. The synthesis and structures of imidazolium salts 1-14.

Synthesis of R-Im-Br 1-7.

 β -Penta-acetyl-glucose (PAG, 12.00 g, 30 mmol) and bromoethanol (4.2 g, 34 mmol) were dissolved in DCM (100 mL) and treated with BF₃·OEt₂ (6.6 g, 46 mmol). The reaction was stirred at R.T. for 6 h and washed with a solution of NaHCO₃ and saturated salt water. The organic layer was dried over MgSO₄ and then concentrated. The solid was crystallized from ethanol to give colorless crystals 2-bromoethyl glucoside (7.8 g, 56%). The 2-bromoethyl glucoside (1.0 equivalent) and *N*-alkylated imidazole (3.0 equivalent) were dissolved in dry acetonitrile, and the resulting solution was heated at 110 °C for 48 h. After cooling, acetonitrile was removed by rotary evaporation. Purification by column chromatography on silica with dichloromethane/methanol (V:V = 20:1 to 10:1) afforded products R-Im-Br 1-7 (84-96 %) as pale yellow solids.¹

Synthesis of Im-PdCl₄ 8-14.

In a 100 mL round-bottom flask, R-Im-Br 1 (0.17 g, 0.30 mmol) were dissolved in 50.0 mL of dichloromethane, and aqueous solution of potassium tetrachloropalladate (0.1 g·mL⁻¹, 7.6 mL) was added in the flask and the mixture was stirred at room temperature overnight. The

solution was washed twice with ultrapure water, then removed by rotary evaporation and dried under vacuum to get the product Im-PdCl₄ 8 (0.17 g, 99%) as a reddish brown solid. R-Im-PdCl₄ 9-14 were prepared in a similar method of that for R-Im-PdCl₄ 8. The R-Im

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-ethyl]-2,3-dimethyl-imidazolium bromide (1)

Pale yellow solid, 89%, M_p : 105 – 107 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 1.9 Hz, 1H), 7.55 (d, J = 1.9 Hz, 1H), 5.13 (dd, J = 11.0, 8.0 Hz, 1H), 4.98 (t, J = 9.7 Hz, 1H), 4.83 (dd, J = 9.5, 8.1 Hz, 1H), 4.68 (dd, J = 15.0, 3.0 Hz, 1H), 4.52 (d, J = 8.0 Hz, 2H), 4.22 (dd, J = 12.4, 4.8 Hz, 2H), 4.14 – 4.00 (m, 2H), 3.91 (s, 3H), 3.72 (ddd, J = 10.1, 4.7, 2.0 Hz, 1H), 2.70 (s, 3H), 2.07 (s, 3H), 2.01 – 1.88 (m, 9H);¹³C NMR (101 MHz, CDCl₃): δ 170.1, 169.3, 168.9, 168.8, 144.5, 122.0, 120.9, 99.5, 77.3, 77.0, 76.7, 71.8, 70.8, 70.4, 67.6, 67.5, 61.0, 53.2, 47.8, 35.3, 20.2, 20.2, 19.9, 19.9, 10.1.FT-IR (KBr): 3417, 2958, 1748, 1632, 1592, 1541, 1429, 1375, 1228, 1039, 909, 697, 601, 431 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-Br]⁺ calcd for C₂₁H₃₁N₂O₁₀, 471.1973; found, 471.1980.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-ethyl]-2-methyl-3-butyl-

imidazolium bromide (2)

Pale yellow solid, 91%, M_p : 123 – 128 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 2.1 Hz, 1H), 7.43 (d, J = 2.1 Hz, 1H), 5.09 (t, J = 9.5 Hz, 1H), 4.92 (t, J = 9.7 Hz, 1H), 4.78 (dd, J = 9.7, 8.0 Hz, 1H), 4.66 (ddd, J = 14.6, 5.3, 2.9 Hz, 1H), 4.95 (dd, J = 7.8, 3.1 Hz, 1H), 4.51 (d, J = 8.0 Hz, 1H), 4.19 (ddd, J = 12.3, 7.0, 4.1 Hz, 2H), 4.14 – 4.04 (m, 3H), 4.01 (dd, J = 12.4, 2.2 Hz, 1H), 3.70 (ddd, J = 10.1, 4.9, 2.2 Hz, 1H), 2.67 (s, 3H), 2.02 (s, 3H), 1.94 (s, 3H), 1.89 (d, J = 6.6 Hz, 6H), 1.76 (dt, J = 20.9, 7.5 Hz, 2H), 1.43 – 1.27 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 170.5, 169.8, 169.5, 169.4, 144.3, 122.6, 121.8, 100.2, 77.3, 77.0, 76.7, 72.5, 71.8, 71.0, 68.1, 67.7, 61.6, 53.4, 49.4, 49.3, 31.4, 20.9, 20.5, 20.5, 19.7, 13.5, 11.5. FT-IR (KBr): 3408, 2961, 2937, 2876, 1749, 1634, 1586, 1533, 1431, 1376, 1231, 1167, 1040, 909, 752, 675, 600, 557, 490 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-Br]⁺ calcd for C₂₄H₃₇N₂O₁₀, 513.2443; found, 513.2446.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-ethyl]-2-methyl-3-[4-

(methoxycarbonyl)phenyl]-imidazolium bromide (3)

Pale yellow solid, 86%, M_p : 100 – 102 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.3 Hz, 2H), 7.78 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 1.8 Hz, 1H), 7.29 (d, J = 8.3 Hz, 2H), 5.53 (dd, J = 43.3, 15.7 Hz, 2H), 5.02 (t, J = 9.5 Hz, 1H), 4.83 (t, J = 9.7 Hz, 1H), 4.66 (dd, J = 9.6, 8.1 Hz, 1H), 4.47 (d, J = 8.0 Hz, 1H), 4.08 (dt, J = 12.4, 6.2 Hz, 2H), 3.98 – 3.89 (m, 2H), 3.75 (s, 3H), 3.64 (ddd, J = 10.1, 4.5, 2.2 Hz, 1H), 2.57 (s, 3H), 1.90 (s, 3H), 1.90 (s, 3H), 1.85 (s, 3H), 1.83 (s, 3H), 1.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 170.0, 169.3, 168.91, 168.9, 165.6, 144.6, 137.5, 130.0, 129.8, 127.5, 121.7, 121.4, 99.5, 77.3, 77.0, 76.7, 71.8, 71.1, 70.4, 67.6, 67.3, 61.1, 51.7, 51.1, 48.1, 20.2, 20.2, 19.9, 19.9, 10.5. FT-IR (KBr): 3416, 2957, 2929, 2858, 1753, 1723, 1615, 1584, 1531, 1434, 1374, 1283, 1226, 1111, 1039, 963, 909, 746, 672, 600, 539 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-Br]⁺ calcd for C₂₉H₃₇N₂O₁₂, 605.2346; found, 605.2349.

1-(*n*-octyl)-2-methyl-3-[4-(methoxycarbonyl)phenyl]-imidazolium bromide (4)

Pale yellow solid, 84%, M_p : 86 – 88 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 2.0 Hz, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 2.0 Hz, 1H), 7.52 (d, J = 8.3 Hz, 2H), 5.86 (s, 2H), 4.28 (t, J = 7.4 Hz, 2H), 3.89 (s, 3H), 2.80 (s, 3H), 1.86 – 1.76 (m, 2H), 1.32 – 1.20 (m, 10H), 0.85 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 165.4, 142.9, 137.7, 129.5, 129.4, 127.3, 121.7, 120.9, 77.3, 77.00, 76.7, 53.0, 51.4, 50.8, 48.8, 48.1, 30.7, 28.9, 28.1, 28.1, 25.4, 21.6, 13.1, 10.4. FT-IR (KBr): 3425, 3089, 3039, 2929, 2857, 1724, 1613, 1579, 1525, 1436, 1380, 1279, 1186, 1109, 1020, 964, 739, 540 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-Br]⁺ calcd for C₂₁H₃₁N₂O₂, 343.2380; found, 343.2383.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-ethyl]-2-bromo-3-[4-

(methoxycarbonyl)phenyl]-imidazolium bromide (5)

Pale yellow solid, 96%, M_p : 112 – 116 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 1.7 Hz, 1H), 7.90 (d, J = 1.8 Hz, 1H), 7.83 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 5.51 (q, J = 15.1 Hz, 2H), 5.00 (t, J = 9.5 Hz, 1H), 4.81 (t, J = 9.7 Hz, 1H), 4.72 – 4.64 (m, 1H), 4.52 (d, J = 8.0 Hz, 1H), 4.44 (s, 2H), 4.13 – 3.99 (m, 2H), 3.94 (d, J = 11.8 Hz, 2H), 3.71 (s, 3H), 3.68 – 3.63 (m, 1H), 1.88 (s, 3H), 1.84 – 1.73 (m, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 170.2, 169.5, 169.0, 169.0, 165.7, 136.7, 130.5, 130.0, 129.9, 128.3, 124.8, 123.9, 122.9, 99.6, 77.3,

77.0, 76.7, 72.0, 71.3, 70.5, 67.7, 66.2, 61.2, 53.0, 51.9, 50.3, 49.5, 20.4, 20.4, 20.1, 20.1. FT-IR (KBr): 3421, 2955, 1752, 1616, 1571, 1514, 1436, 1374, 1286, 1277, 1111, 1039, 908, 741, 675, 601, 538 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-Br]⁺ calcd for C₂₈H₃₄BrN₂O₁₂, 669.1295; found, 669.1297.

$1-[2-(2,3,4,6-tetra-O-acetyl-\beta-D-glucopyranosyloxy)-ethyl]-3-propyl-imidazolium$

bromide (6)

Pale yellow solid, 88%, M_p : 86 – 88 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.34 (s, 1H), 7.36 (d, J = 13.4 Hz, 2H), 4.85 (t, J = 9.5 Hz, 1H), 4.67 (t, J = 9.7 Hz, 1H), 4.60 – 4.52 (m, 1H), 4.43 (d, J = 8.0 Hz, 1H), 4.39 – 4.28 (m, 2H), 3.97 (t, J = 7.2 Hz, 2H), 3.90 (dd, J = 12.1, 4.4 Hz, 2H), 3.85 – 3.72 (m, 2H), 3.60 – 3.53 (m, 1H), 1.73 (s, 3H), 1.68 (s, 3H), 1.67 – 1.61 (m, 8H), 0.64 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.8, 169.0, 168.8, 168.6, 135.7, 122.6, 121.2, 99.4, 77.3, 77.0, 76.7, 71.5, 70.9, 70.3, 67.3, 66.9, 60.9, 50.6, 48.9, 22.7, 20.0, 20.0, 19.7, 19.7, 9.9. FT-IR (KBr): 3420, 2968, 2887, 1750, 1632, 1565, 1435, 1375, 1229, 1169, 1040, 909, 600, 540 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-Br]⁺ calcd for C₂₂H₃₃N₂O₁₀, 485.2130; found, 485.2137.

3-(2-butoxyethyl)-1-(4-(methoxycarbonyl)benzyl)-2-methyl-1H-imidazol-3-ium bromide (7)

Pale yellow solid, 89%. ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 8.3 Hz, 2H), 7.85 (d, J = 2.0 Hz, 1H), 7.81 (d, J = 2.0 Hz, 1H), 7.36 (d, J = 8.3 Hz, 2H), 4.52 – 4.47 (m, 2H), 3.91 (s, 3H), 3.78 – 3.73 (m, 2H), 3.36 (t, J = 6.5 Hz, 2H), 2.71 (s, 3H), 1.44 – 1.36 (m, 3H), 1.33 – 1.26 (m, 1H), 1.19 (dt, J = 22.1, 7.4 Hz, 3H), 0.82 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 166.1, 144.7, 138.4, 130.3, 130.2, 127.6, 122.3, 122.0, 119.7, 77.3, 77.0, 76.7, 52.1, 51.5, 48.9, 31.3, 19.0, 13.6, 10.8. FT-IR (KBr): 3487, 3415, 3130, 3070, 2955, 2870, 1735, 1631, 1586, 1424, 1292, 1191, 1111, 1020, 834, 776, 745, 687, 557, 420 cm⁻¹.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-ethyl]-2,3-dimethyl-imidazolium tetratetrachloropalladate (8)

Reddish brown solid, 99%, M_p : 96 – 98 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 2.1 Hz, 1H), 7.57 (d, J = 2.0 Hz, 1H), 5.19 (t, J = 9.5 Hz, 1H), 5.03 (t, J = 9.7 Hz, 1H), 4.92 (dd, J = 9.6, 8.0 Hz, 1H), 4.81 – 4.64 (m, 3H), 4.37 (dt, J = 8.7, 4.2 Hz, 1H), 4.27 (dd, J = 12.5, 4.6 Hz, 1H), 4.22 – 4.10 (m, 2H), 4.06 (s, 3H), 3.80 (ddd, J = 10.0, 4.5, 2.2 Hz, 1H), 2.93 (s,

3H), 2.10 (s, 3H), 2.02 – 1.96 (m, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ 170.6, 169.9, 169.5, 145.1, 128.5, 123.0, 122.2, 121.1, 100.3, 77.3, 77.0, 76.7, 72.5, 71.8, 71.1, 68.1, 67.8, 61.6, 49.3, 36.4, 20.9, 20.5, 20.5, 11.6. FT-IR (KBr): 3436, 3139, 2961, 2360, 1747, 1589, 1537, 1513, 1429, 1369, 1223, 1169, 1120, 1037, 957, 800, 748, 697 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-PdCl₄]⁺ calcd for C₂₁H₃₁N₂O₁₀, 471.1973; found, 471.1980.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-ethyl]-2-methyl-3-butylimidazolium tetratetrachloropalladate (9)

Reddish brown solid, 98%, M_p : 120 – 122 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 2.0 Hz, 1H), 7.52 (d, J = 2.0 Hz, 1H), 5.16 (d, J = 9.5 Hz, 1H), 5.00 (t, J = 9.7 Hz, 1H), 4.89 (dd, J = 9.5, 8.1 Hz, 1H), 4.73 (dd, J = 18.8, 5.8 Hz, 3H), 4.39 (s, 1H), 4.34 – 4.28 (m, 2H), 4.28 – 4.22 (m, 2H), 4.12 (dd, J = 12.4, 1.9 Hz, 1H), 3.81 (dd, J = 10.1, 2.3 Hz, 1H), 2.91 (s, 3H), 2.07 (s, 3H), 2.00 – 1.94 (m, 9H), 1.93 – 1.87 (m, 2H), 1.45 (dq, J = 14.7, 7.3 Hz, 2H), 0.99 (t, J = 7.3 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ 170.6, 169.9, 169.5, 144.4, 122.7, 121.9, 100.3, 77.3, 77.0, 76.7, 72.5, 71.9, 71.1, 68.1, 67.6, 61.7, 49.6, 49.4, 31.5, 20.9, 20.5, 20.5, 19.8, 13.6, 11.5. FT-IR (KBr): 3597, 3513, 3177, 3134, 2960, 2936, 2874, 1753, 1626, 1585, 1530, 1433, 1375, 1227, 1169, 1126, 1037, 908, 749, 698 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-PdCl₄]⁺ calcd for C₂₄H₃₇N₂O₁₀, 513.2443; found, 513.2446.

1-[2-(2,3,4,6-tetra-O-acetyl-\$\beta-D-glucopyranosyloxy)-ethyl]-2-methyl-3-[4-

(methoxycarbonyl)phenyl]-imidazolium tetratetrachloropalladate (10)

Reddish brown solid, 98%, M_p : 93 – 95 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 2.2 Hz, 1H), 7.49 (d, J = 2.2 Hz, 1H), 7.47 (d, J = 8.4 Hz, 2H), 5.74 (d, J = 2.7 Hz, 2H), 5.22 (t, J = 9.5 Hz, 1H), 5.08 – 5.00 (m, 1H), 4.93 (dd, J = 9.7, 8.0 Hz, 1H), 4.83 (t, J = 4.9 Hz, 2H), 4.70 (d, J = 8.0 Hz, 1H), 4.42 (dt, J = 10.6, 4.4 Hz, 1H), 4.30 – 4.22 (m, 2H), 4.16 (dd, J = 12.5, 2.2 Hz, 1H), 3.94 (s, 3H), 3.79 (ddd, J = 10.1, 4.6, 2.2 Hz, 1H), 3.00 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 170.5, 169.9, 169.5, 169.4, 166.2, 145.2, 137.3, 131.0, 130.6, 128.4, 122.8, 122.3, 100.2, 77.3, 77.0, 76.7, 72.4, 71.9, 71.0, 68.1, 67.3, 61.6, 52.7, 52.3, 49.5, 20.9, 20.8, 20.5, 20.5, 11.8. FT-IR (KBr): 3452, 3141, 2954, 1752, 1615, 1585, 1529, 1434, 1376, 1285, 1227, 1111, 1038, 908, 744, 699 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-PdCl₄]⁺ calcd for

C₂₉H₃₇N₂O₁₂, 605.2346; found, 605.2349.

1-(n-octyl)-2-methyl-3-[4-(methoxycarbonyl)phenyl[-imidazolium

tetratetrachloropalladate (11)

Reddish brown solid, 99%, M_p : 104 – 106 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 1.6 Hz, 1H), 7.41 (d, J = 8.3 Hz, 3H), 5.78 (s, 2H), 4.32 (t, J = 7.5 Hz, 2H), 3.90 (s, 3H), 2.95 (s, 3H), 1.91 – 1.78 (m, 2H), 1.39 – 1.15 (m, 11H), 0.86 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 166.2, 144.0, 138.3, 130.5, 130.4, 128.1, 122.5, 121.7, 77.3, 77.0, 76.7, 52.7, 52.2, 49.5, 31.5, 29.4, 28.9, 28.9, 26.4, 22.5, 13.9, 11.9. FT-IR (KBr): 3440, 3158, 3115, 3093, 2953, 2934, 2853, 2382, 1953, 1728, 1656, 1613, 1580, 1530, 1465, 1439, 1379, 1358, 1352, 1278, 1186, 1165, 1109, 1020, 965, 871,838, 805, 782, 751, 733, 703 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-PdCl₄]⁺ calcd for C₂₁H₃₁N₂O₂, 343.2380; found, 343.2383.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-ethyl]-2-bromo-3-[4-

(methoxycarbonyl)phenyl]-imidazolium tetratetrachloropalladate (12)

Reddish brown solid, 99%, M_p : 94 – 97 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.13 – 8.09 (m, 3H), 7.75 (d, J = 2.2 Hz, 1H), 7.55 (d, J = 8.2 Hz, 2H), 5.81 (s, 2H), 5.20 (t, J = 9.5 Hz, 1H), 5.03 (t, J = 9.8 Hz, 1H), 4.94 (dd, J = 9.5, 8.1 Hz, 1H), 4.86 (t, J = 4.8 Hz, 2H), 4.76 (d, J =8.0 Hz, 1H), 4.49 (dd, J = 10.6, 5.6 Hz, 1H), 4.38 – 4.30 (m, 1H), 4.25 (dd, J = 12.5, 4.4 Hz, 1H), 4.18 (dd, J = 12.4, 2.0 Hz, 1H), 3.92 (s, 3H), 3.85 – 3.79 (m, 1H), 2.07 (s, 3H), 2.00 (s, 3H), 1.98 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 170.6, 170.0, 169.6, 169.5, 166.2, 136.4, 131.4, 130.7, 129.0, 126.2, 124.9, 121.8, 100.3, 77.3, 77.0, 76.7, 72.5, 72.0, 71.0, 68.1, 66.4, 61.6, 54.9, 52.4, 51.8, 20.9, 20.5. FT-IR (KBr): 3449, 3104, 2958, 2851, 1752, 1720, 1642, 1614, 1570, 1507, 1434, 1371, 1285, 1258, 1225, 1185, 1038, 964, 911, 873, 841, 801, 735, 697 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-PdCl₄]⁺ calcd for C₂₈H₃₄BrN₂O₁₂, 669.1295; found, 669.1297.

1-[2-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-ethyl]-3-propyl-imidazolium tetratetrachloropalladate (13)

Reddish brown solid, 99%, M_p : 94 – 97 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.20 (s, 1H), 7.54 (s, 1H), 7.32 (s, 1H), 5.21 (t, J = 9.5 Hz, 1H), 5.05 (t, J = 9.7 Hz, 2H), 4.97 (dd, J = 9.5, 8.1 Hz, 1H), 4.85 (dd, J = 13.1, 6.4 Hz, 1H), 4.70 (d, J = 8.0 Hz, 1H), 4.40 (ddd, J = 17.7, 12.0, 5.3 Hz, 4H), 4.33 – 4.26 (m, 1H), 4.16 (dd, J = 12.3, 1.6 Hz, 1H), 3.87 – 3.78 (m, 1H), 2.10 (s, 3H), 2.04 (s, 3H), 2.02 (t, J = 6.6 Hz, 8H), 1.02 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.5, 169.9, 169.7, 169.4, 137.1, 123.6, 121.0, 100.4, 77.3, 77.0, 76.7, 72.4, 71.7, 71.1, 68.6, 68.1, 61.6, 51.7, 50.2, 23.5, 20.8, 20.8, 20.5, 10.8. FT-IR (KBr): 3484, 3136, 3098, 3055, 2967, 2881, 1752, 1628, 1564, 1523, 1440, 1375, 1227, 1167, 1062, 1039, 957, 909, 842, 799, 755, 697 cm⁻¹. LC–HR/MS (ESI-QTOF) m/z: [M-PdCl₄]⁺ calcd for $C_{22}H_{33}N_2O_{10}$, 485.2130; found, 485.2137.

3-(2-butoxyethyl)-1-(4-(methoxycarbonyl)benzyl)-2-methyl-1H-imidazol-3-ium tetratetrachloropalladate (14)

Reddish brown solid, 99%. ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 8.0 Hz, 2H), 7.50 (s, 1H), 7.33 (d, J = 7.9 Hz, 3H), 4.56 (s, 2H), 3.90 (s, 3H), 3.79 (s, 2H), 3.40 (t, J = 6.4 Hz, 2H), 2.91 (s, 3H), 1.48 – 1.35 (m, 3H), 1.27 – 1.22 (m, 4H), 0.83 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 166.3, 145.4, 138.6, 130.5, 130.4, 127.8, 122.1, 122.1, 77.3, 77.0, 76.7, 71.1, 68.4, 52.5, 52.2, 49.5, 31.6, 31.5, 29.6, 19.2, 13.8, 11.9. FT-IR (KBr): 3439, 3114, 3089, 2959, 2932, 2872, 1723, 1615, 1583, 1521, 1454, 1420, 1283, 1185, 1121, 1106, 1018, 833, 796, 750, 543, 417.

1.3 Synthesis and Characterization of Propargyl Amines

Scheme S2. The synthesis and structures of propargyl amines 15a-15q.

Synthesis of propargyl amines **15a-15q**.² For the preparation of propargyl amines, propargyl halide (1.0 mmol) was added dropwise to the corresponding amine (3.0 mmol) at 0 °C in dark and warm up to room temperature slowly, the reaction was stirred for 12-24 h. Then, NaOH and dichloromethane were added. After extraction of the aqueous layer with dichloromethane, washed with saturate brine, dried with MgSO₄ and the solvent was removed. The crude was purified by flash column chromatography (silica gel, $V_{PE}/V_{EA} = 20:1$).

N-(4-(trifluoromethyl)benzyl)prop-2-yn-1-amine (**15a**), ¹H NMR (400 MHz, CDCl₃) δ : 7.58 (d, *J* = 8.1 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 3.95 (s, 2H), 3.42 (d, *J* = 2.4 Hz, 2H), 2.27 (t, *J* = 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 143.52, 128.57, 125.58, 125.34, 122.88, 81.69, 71.84, 51.60, 37.32.³ *N*-(cyclohexylmethyl)prop-2-yn-1-amine (**15b**), ¹H NMR (400 MHz, CDCl₃) δ : 3.40 – 3.34 (m, 2H), 2.49 (d, J = 6.7 Hz, 2H), 2.18 (t, J = 2.1 Hz, 1H), 1.76 – 1.61 (m, 5H), 1.41 (dtd, J = 14.0, 7.0, 3.5 Hz, 1H), 1.30 – 1.09 (m, 4H), 0.97 – 0.85 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 82.45, 71.01, 55.51, 38.41, 37.89, 31.37, 26.61, 26.00.⁴

N-(2,6-difluorobenzyl)prop-2-yn-1-amine (**15c**). ¹H NMR (400 MHz, CDCl₃) δ : 7.22 (ddd, J = 13.1, 7.5, 4.2 Hz, 1H), 6.92 – 6.84 (m, 2H), 3.96 (s, 2H), 3.44 (d, J = 2.4 Hz, 2H), 2.23 (t, J = 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 163.04, 160.58, 129.07, 115.29, 111.45 – 110.99, 81.66, 71.50, 39.65, 37.65.²

N-(4-chlorobenzyl)prop-2-yn-1-amine (**15d**). ¹H NMR (400 MHz, CDCl₃) δ : 7.28 (s, 4H), 3.84 (s, 2H), 3.40 (d, J = 2.4 Hz, 2H), 2.26 (t, J = 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 137.79, 132.80, 129.68, 128.48, 81.78, 71.69, 51.37, 37.17.⁵

N-(3-methoxybenzyl)prop-2-yn-1-amine (**15e**). ¹H NMR (400 MHz, CDCl₃) δ : 7.26 (t, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 7.1 Hz, 2H), 6.86 – 6.80 (m, 1H), 3.88 (s, 2H), 3.83 (s, 3H), 3.45 (d, *J* = 2.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ : 159.80, 141.05, 129.42, 120.69, 81.97, 71.70, 55.19, 52.24, 37.29.²

N-(4-bromobenzyl)prop-2-yn-1-amine (**15f**). ¹H NMR (400 MHz, CDCl₃) δ: 7.49 – 7.44 (m, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 3.86 (s, 2H), 3.43 (d, *J* = 2.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ: 138.39, 131.52, 130.12, 120.98, 81.82, 71.76, 51.49, 37.25.⁶

(R)-*N*-(1-phenylethyl)prop-2-yn-1-amine (**15g**). ¹H NMR (400 MHz, CDCl₃) δ : 7.46 – 7.16 (m, 5H), 4.05 (q, *J* = 6.6 Hz, 1H), 3.39 (dd, *J* = 17.1, 2.4 Hz, 1H), 3.19 (dd, *J* = 17.1, 2.4 Hz, 1H), 2.30 – 2.09 (m, 1H), 1.40 (t, *J* = 5.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 144.47, 128.52, 127.22, 126.90,82.31, 71.30, 56.36, 35.91, 23.93.⁷

(S)-*N*-(1-phenylethyl)prop-2-yn-1-amine (**15h**). ¹H NMR (400 MHz, CDCl₃) δ : 7.44 – 7.20 (m, 5H), 4.05 (q, *J* = 6.6 Hz, 1H), 3.39 (dd, *J* = 17.1, 2.5Hz, 1H), 3.19 (dd, *J* = 17.1, 2.4Hz, 1H), 2.20 (dd, *J* = 37.3, 34.9 Hz, 1H), 1.40 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 144.51, 128.54, 127.23, 126.92, 82.35, 71.36, 56.36, 35.91, 23.96.⁸

N-(prop-2-yn-1-yl)butan-1-amine (**15i**). ¹H NMR (400 MHz, CDCl₃) δ : 3.38 (d, *J* = 2.4 Hz, 2H), 2.72 – 2.58 (m, 2H), 2.16 (t, *J* = 2.4 Hz, 1H), 1.44 (qd, *J* = 6.9, 2.7 Hz, 2H), 1.32 (dq, *J* = 14.1, 7.0 Hz, 2H), 0.88 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 82.30, 71.11, 48.35, 38.13, 31.90, 20.38, 13.91.⁶

N-(4-fluorobenzyl)prop-2-yn-1-amine (**15j**). ¹H NMR (400 MHz, CDCl₃) δ: 7.34 – 7.27 (m, 2H), 7.04 – 6.96 (m, 2H), 3.84 (s, 2H), 3.40 (d, *J* = 2.4 Hz, 2H), 2.25 (t, *J* = 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ: 163.28, 160.84, 135.13, 135.10, 130.01, 129.93, 115.31, 115.10, 81.93, 71.65, 51.42, 37.19.³

N-benzylprop-2-yn-1-amine (**15k**). ¹H NMR (400 MHz, CDCl₃) δ : 7.36 – 7.29 (m, 4H), 7.28 – 7.22 (m, 1H), 3.87 (s, 2H), 3.42 (d, *J* = 2.4 Hz, 2H), 2.26 (t, *J* = 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 139.43, 128.45, 127.19, 82.11, 71.62, 52.29, 37.35.²

N-(4-methoxybenzyl)prop-2-yn-1-amine (**151**). ¹H NMR (400 MHz, CDCl₃) δ : 7.31 – 7.26 (m, 2H), 6.91 – 6.86 (m, 2H), 3.83 (s, 2H), 3.81 (s, 3H), 3.42 (d, *J* = 2.4 Hz, 2H), 2.28 (t, *J* = 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 158.82, 131.45, 129.64, 113.85, 82.11, 71.56, 55.26, 51.62, 37.14.⁶

N-butylbut-2-yn-1-amine (**15m**). ¹H NMR (400 MHz, CDCl₃) δ: 2.96 (dd, *J* = 4.6, 2.2 Hz, 2H), 2.27 (t, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 2.4 Hz, 3H), 1.14 (s, 1H), 1.12 – 1.02 (m, 2H), 1.02 – 0.89 (m, 2H), 0.55 (t, *J* = 7.3 Hz, 3H).²

N-(4-(trifluoromethyl)benzyl)but-2-yn-1-amine (**15n**). ¹H NMR (400 MHz, CDCl₃) δ : 7.58 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.1 Hz, 2H), 3.92 (s, 2H), 3.37 (q, *J* = 2.3 Hz, 2H), 1.84 (t, *J* = 2.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 143.84, 128.51, 125.59, 125.26, 79.50, 77.34, 77.02, 76.75, 51.86, 37.85, 3.42.²

N-(4-fluorobenzyl)but-2-yn-1-amine (**150**). ¹H NMR (400 MHz, CDCl₃) δ : 7.30 (d, *J* = 8.5, 5.6 Hz, 2H), 7.00 (t, *J* = 8.7 Hz, 2H), 3.82 (s, 2H), 3.35 (q, *J* = 2.3 Hz, 2H), 1.84 (t, *J* = 2.3 Hz, 3H), 1.62 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 163.16, 160.72, 135.38, 135.34, 129.90, 129.82, 115.19, 114.98, 79.24, 76.97, 51.66, 37.69, 3.44.²

N-(4-methoxybenzyl)but-2-yn-1-amine (**15p**). ¹H NMR (400 MHz, CDCl₃) δ: 7.15 (d, *J* = 8.5 Hz, 2H), 6.75 (d, *J* = 8.6 Hz, 2H), 3.67 (s, 2H), 3.63 (d, *J* = 0.7 Hz, 3H), 3.27 – 3.19 (m, 2H), 1.73 (t, *J* = 2.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ: 158.72, 131.81, 129.58, 113.78, 79.13, 77.19, 55.22, 51.89, 37.69, 3.52.⁹

N-(2-phenylpropan-2-yl)prop-2-yn-1-amine (**15q**). ¹H NMR (400 MHz, CDCl₃) δ : 7.46 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.37 (dd, *J* = 10.4, 5.0 Hz, 2H), 7.29 – 7.23 (m, 1H), 3.13 (d, *J* = 2.5 Hz, 2H), 2.20 (t, *J* = 2.5 Hz, 1H), 1.51 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 146.5, 128.3, 126.5, 125.7, 83.1, 70.7, 56.2, 32.6, 29.4.

2 Catalytic Section

2.1 Optimization of the Reaction Conditions

Entry	Base	Solvent	T (°C)/t (h)	Yields $(\%)^b$	TOF (h ⁻¹)
1	NaO'Bu	DMF	70/1 (2)	60 (100)	60 (100)
2	NaO'Bu	MeCN	70/6	45	7.5
3	NaO'Bu	MeOH	70/6	56	9.5
4	NaO'Bu	EtOH	70/1 (2)	96 (100)	96 (100)
5	NaO'Bu	Dioxane	70/6	15	2.5
6	NaO'Bu	THF	70/6	33	5.5
7	NaO'Bu	DMSO	70/1	100 (93 ^c)	100 (930)
8	КОН	DMSO	70/2	65 ^c	325
9	NaOH	DMSO	70/2	52 ^c	260
10	NaOAc	DMSO	70/2	57 ^c	285
11	Na ₃ PO ₄ ·12H ₂ O	DMSO	70/2	49 ^c	245
12	Na ₂ CO ₃	DMSO	70/2	63 ^c	315
13	NaHCO ₃	DMSO	70/2	38°	190
14	K ₂ CO ₃	DMSO	70/2	83 ^c	415
15	Et ₃ N	DMSO	70/2	$N.R.^d$	/
16	Base-free	DMSO	70/2	N.R.	/
17	NaO'Bu	DMSO	60/1	43 ^c	860

Table S1 Optimization of bases in reactions ^a

^aThe reactions were carried out with **13a** (0.1 mmol), Cat. **10** (1.0 mol %), dilute CO₂ (bubbling), NaO'Bu (0.15 mmol), DMSO (2.0 mL) and stirred at 70 °C, unless noted otherwise. ^bDetermined by ¹H NMR. ^cCatalyst (0.1 mol %). ^dN.R. = no reaction. ^eCatalyst (0.05 mol %) at 60 °C for 1 h.

Entry	T (°C)/t (h)	Yields $(\%)^b$	TOF (h ⁻¹)
1	RT	74	74
2	30	85	85
3	40	89	89
4	50	97	97
5	60	100	100
6	70	100	100
7	80	86	86
8	90	74	74

Table S2 Screening of the reaction temperatures ^{*a*}

^aThe reactions were carried out with **13a** (0.1 mmol), Cat. **9** (1.0 mol %), dilute CO_2 (bubbling), NaO'Bu (0.15 mmol), DMSO (2.0 mL) and stirred at different temperatures for 1.0 hour, unless noted otherwise. ^bDetermined by ¹H NMR.

2.2 Comparison of Turnover Frequency with Other Reported Catalysts

Entry	Catalyst	T (°C)/t (h)	$P(\operatorname{atm})^b$	TOF (h ⁻¹)	Ref.
1	AcGlu-Im-PdCl ₄ 10	60/0.5	0.15	1440	Herein
2	CuI/DBU	50/4	1.0	2	10
3	AgOAc	25/7	1.0	7	11
4	AgNO ₃ /DBU	60/2	1.0	94	12
5	CoBr ₂ /TBD	80/9	1.0	1	13
6	ZnCl ₂ (TBD) ₂	60/12	1.0	2	14
7	Ag ₂₇ -MOF	25/6	1.0	16	15
8	TOS-Ag ₄	25/24	1.0	4	16
9	Zn ₁₁₆	70/12	1.0	31	17
10	PdSCS	50/0.33	1.0	60	18
11	Ag@TpPa-1	60/18	1.0	17	19
12	Ag@2,6-FPP-TAPT	50/2	1.0	964	20
13	Cu ₂ O@ZIF-8	40/6	1.0	3.3	21
14	Cu ^I /Cu ^{II} -MOF	30/0.17	1.0	230	22
15	Pd@BBA-2	40/2	1.0	43.68	23
15	AuCl(IPr)	40/15	1.0	3.03	24
16	AgCl(IPr)	40/15	1.0	3.03	25
17	[Au]	RT/24	air	5.33	26
18	Ag-HMP-2	60/20	1.0	10.6	27
19	Ag-MOF-1	RT/24	1.0	0.56	28
20	2Gn[TEG][Au]	RT/24	1.0	1.77	29

Table S3 Comparison with the TOFs of previously catalytic systems ^a

^{*a*}TOF is calculated directly using the optimal conditions given in the literature.

2.3 General Procedure for Pd-catalyzed Carboxylative Cyclization of CO₂ with Propargyl Amines.

The carboxylative cyclization of dilute CO₂ with *N*-(4-(trifluoromethyl)benzyl)prop-2-yn-1amine (**15a**) into 5-methylene-3-(4-(trifluoromethyl)benzyl)oxazolidin-2-one (**16a**) was carried out in DMSO. AcGlu-Im-PdCl₄ (1.0 mol%), **15a** (13.5 mg, 0.05 mmol), and NaO'Bu (3.6 mg, 0.075 mmol) were added to DMSO (2.0 mL) in the reaction tube (10 mL). dilute CO₂ (bubbling, CO₂/N₂, Vol/Vol = 15:85) was introduced into the reaction mixture with stirring using a long hollow needle (φ 0.7 × 200 mm). The reaction mixture was stirred in a preheated 60 °C oil bath for 1.0 h. After the reaction stopped, the mixture was transferred to ethyl acetate solution (10 mL) and water (5.0 mL), the mixture was stirred for 10 min, then extracted with ethyl acetate (3 × 5.0 mL). The combined organic layers were dried over Mg₂SO₄ and filtered, the organic solution was concentrated in vacuo to give the crude product, and the yield was determined by ¹H NMR, the pure **16a** was purified by flash chromatograph (V_{PE}: V_{EA} = 30:1 – 20:1).

2.4 NMR Data of 2-Oxazolidinones 16a-16q.

5-methylene-3-(4-(trifluoromethyl)benzyl)oxazolidin-2-one (16a)

¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 4.78 (dd, J = 5.8, 2.6 Hz, 1H), 4.53 (s, 2H), 4.28 (dt, J = 3.2, 2.2 Hz, 1H), 4.05 (t, J = 2.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 155.7, 148.5, 139.1, 128.4, 126.0, 87.3, 47.4.³

3-(cyclohexylmethyl)-5-methyleneoxazolidin-2-one (16b)

¹H NMR (400 MHz, CDCl₃): δ 4.74 (q, J = 2.7 Hz, 1H), 4.28 (dd, J = 5.2, 2.2 Hz, 1H), 4.17 (t, J = 2.4 Hz, 2H), 3.13 (d, J = 7.3 Hz, 2H), 1.77 – 1.65 (m, 5H), 1.59 (dtd, J = 15.0, 7.4, 3.8 Hz, 1H), 1.28 – 1.17 (m, 3H), 0.97 (td, J = 11.7, 6.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 155.9, 149.21, 86.3, 50.2, 48.7, 36.0, 30.5, 26.2, 25.6.³⁰

3-(2,6-difluorobenzyl)-5-methyleneoxazolidin-2-one (16c)

Light yellow liquid, 99%. ¹H NMR (400 MHz, CDCl₃): δ 7.34 (tt, J = 8.4, 6.5 Hz, 1H), 7.02 – 6.88 (m, 2H), 4.74 (dd, J = 5.6, 2.7 Hz, 1H), 4.63 (s, 2H), 4.27 (dd, J = 5.3, 2.2 Hz, 1H), 4.10 (t, J = 2.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 162.9, 162.8, 160.4, 160.4, 154.9, 148.8, 130.7, 130.63, 130.5, 111.8, 111.7, 111.6, 111.5, 110.7, 110.5, 86.8, 47.4, 35.2, 35.2, 35.1, 31.5, 30.1, 1.0. LC–HR/MS (ESI-QTOF) m/z: [M-H]⁺ calcd for C₁₁H₈F₂NO₂, 224.0601; found, 224.0603.

3-(4-chlorobenzyl)-5-methyleneoxazolidin-2-one (16d)

¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.27 (m, 2H), 7.24 – 7.16 (m, 2H), 4.72 (dd, J = 5.6, 2.7 Hz, 1H), 4.41 (s, 2H), 4.24 (dd, J = 5.3, 2.2 Hz, 1H), 4.01 (t, J = 2.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 155.5, 148.6, 134.0, 133.5, 129.4, 129.0, 86.9, 47.1, 47.1.³

3-(3-methoxybenzyl)-5-methyleneoxazolidin-2-one (16e)

Yellow oil, 86%. ¹H NMR (400 MHz, CDCl₃): δ 7.27 (dd, J = 10.3, 5.4 Hz, 1H), 6.91 – 6.76 (m, 3H), 4.72 (dd, J = 5.7, 2.7 Hz, 1H), 4.42 (d, J = 3.5 Hz, 2H), 4.24 (dt, J = 3.0, 2.2 Hz, 1H), 4.03 (t, J = 2.4 Hz, 2H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.1, 155.6, 149.0, 136.6, 130.0, 120.3, 113.7, 113.6, 86.7, 55.3, 47.8, 47.3. LC–HR/MS (ESI-QTOF) m/z: [M-H]⁺ calcd for C₁₂H₁₂NO₃, 218.0895; found, 218.0893.

3-(4-bromobenzyl)-5-methyleneoxazolidin-2-one (16f)

¹H NMR (400 MHz, CDCl₃): δ 7.55 – 7.43 (m, 2H), 7.21 – 7.11 (m, 2H), 4.75 (dd, J = 5.7, 2.6 Hz, 1H), 4.42 (s, 2H), 4.26 (dt, J = 3.2, 2.2 Hz, 1H), 4.03 (t, J = 2.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 155.6, 148.7, 134.1, 132.1, 129.8, 122.3, 87.0, 47.2, 47.2, 47.1.³¹

(R)-5-methylene-3-(1-phenylethyl)oxazolidin-2-one (16g)

Light yellow liquid, 100%. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (qdd, J = 6.9, 5.4, 1.8 Hz, 5H), 5.27 (q, J = 7.1 Hz, 1H), 4.72 (dd, J = 5.6, 2.7 Hz, 1H), 4.29 – 4.21 (m, 1H), 4.12 (dt, J = 14.2, 2.4 Hz, 1H), 3.79 (dt, J = 14.2, 2.4 Hz, 1H), 1.61 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 155.1, 149.3, 138.9, 128.9, 128.2, 127.0, 86.5, 51.4, 43.7, 16.4. LC–HR/MS (ESI-QTOF) m/z: [M-H]⁺ calcd for C₁₂H₁₂NO₂, 202.0946; found, 202.0948.

(S)-5-methylene-3-(1-phenylethyl)oxazolidin-2-one (16h)

Yellow oil, 100%. ¹H NMR (400 MHz, CDCl₃): δ 7.55 – 7.29 (m, 5H), 5.27 (q, J = 7.1 Hz, 1H), 4.72 (q, J = 2.7 Hz, 1H), 4.23 (dd, J = 5.3, 2.2 Hz, 1H), 4.12 (dt, J = 14.2, 2.4 Hz, 1H), 3.79 (dt, J = 14.2, 2.4 Hz, 1H), 1.61 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 155.1, 149.3, 138.9, 128.9, 128.2, 127.0, 86.5, 51.4, 43.7, 16.4. LC–HR/MS (ESI-QTOF) m/z: [M-H]⁺ calcd for C₁₂H₁₂NO₂, 202.0946; found, 202.0948.

3-butyl-5-methyleneoxazolidin-2-one (16i)

¹H NMR (400 MHz, CDCl₃): δ 4.75 (q, J = 2.7 Hz, 1H), 4.29 (dd, J = 5.2, 2.2 Hz, 1H), 4.17 (t, J = 2.4 Hz, 2H), 3.31 (t, J = 7.3 Hz, 2H), 1.60 – 1.51 (m, 2H), 1.36 (dd, J = 15.1, 7.4 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 155.6, 149.2, 86.3, 47.8, 43.5, 29.3, 19.8, 13.6.³²

3-(4-fluorobenzyl)-5-methyleneoxazolidin-2-one (16j)

¹H NMR (400 MHz, CDCl₃): δ 7.30 – 7.24 (m, 2H), 7.12 – 6.97 (m, 2H), 4.74 (dd, J = 5.7, 2.7 Hz, 1H), 4.44 (s, 2H), 4.26 (dt, J = 3.1, 2.2 Hz, 1H), 4.03 (t, J = 2.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.4, 155.6, 148.8, 130.9, 129.9, 115.9, 86.9, 47.2, 47.1.³

3-benzyl-5-methyleneoxazolidin-2-one (16k)

¹H NMR (400 MHz, CDCl₃): δ 7.44 – 7.23 (m, 5H), 4.74 (dd, J = 5.7, 2.7 Hz, 1H), 4.47 (s, 2H), 4.25 (dt, J = 3.1, 2.2 Hz, 1H), 4.03 (t, J = 2.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 155.7, 149.0, 135.0, 129.0, 128.3, 128.2, 86.8, 47.9, 47.2.³

3-(4-methoxybenzyl)-5-methyleneoxazolidin-2-one (16l)

¹H NMR (400 MHz, CDCl₃) δ : 7.26 – 7.16 (m, 2H), 6.95 – 6.85 (m, 2H), 4.73 (dd, J = 5.7, 2.7 Hz, 1H), 4.41 (s, 2H), 4.24 (dt, J = 3.0, 2.2 Hz, 1H), 4.01 (t, J = 2.4 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 159.6, 155.6, 149.1, 129.6, 127.0, 114.3, 86.6, 55.3, 47.2.³

(E)-3-butyl-5-ethylideneoxazolidin-2-one (16m)

Light yellow liquid, 100%. ¹H NMR (400 MHz, CDCl₃) δ : 4.53 (qd, J = 6.9, 4.8 Hz, 1H), 4.02 (dd, J = 4.4, 2.2 Hz, 2H), 3.22 (t, J = 7.3 Hz, 2H), 1.61 (dt, J = 6.9, 2.2 Hz, 3H), 1.51 – 1.42 (m, 2H), 1.31 – 1.22 (m, 2H), 0.87 (t, J = 7.3 Hz, 3H). LC–HR/MS (ESI-QTOF) m/z: [M-H]⁺ calcd for C₉H₁₄NO₂, 168.1103; found, 168.1101.

(E)-5-ethylidene-3-(4-(trifluoromethyl)benzyl)oxazolidin-2-one (16n)

Light yellow liquid, 83%. ¹H NMR (400 MHz, CDCl₃) δ : 7.61 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 4.78 (dd, J = 4.3, 3.2 Hz, 1H), 4.63 (s, 2H), 3.71 (dq, J = 3.7, 1.8 Hz, 2H), 1.87 (dd, J = 3.0, 1.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 156.1, 141.2, 139.3, 128.3, 126.0, 125.9, 125.9, 125.8, 98.1, 47.4, 47.2, 9.9. LC–HR/MS (ESI-QTOF) m/z: [M-H]⁺ calcd for C₁₃H₁₁F₃NO₂, 271.0820; found, 271.0822.³³

(E)-5-ethylidene-3-(4-fluorobenzyl)oxazolidin-2-one (16o)

Light yellow liquid, 86%. ¹H NMR (400 MHz, CDCl₃) δ : 7.26 (dt, J = 4.8, 4.1 Hz, 2H), 7.11 – 7.01 (m, 2H), 4.66 – 4.53 (m, 1H), 4.45 (s, 2H), 3.97 (p, J = 2.1 Hz, 2H), 1.68 (ddd, J = 9.6, 5.9, 3.7 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ : 163.8, 161.3, 156.0, 141.5, 131.0, 131.0, 130.0, 129.9, 116.0, 115.8, 97.8, 47.2, 47.0, 10.0. LC–HR/MS (ESI-QTOF) m/z: [M-H]⁺ calcd for C₁₂H₁₁FNO₂, 221.0852; found, 221.0850.

(E)-5-ethylidene-3-(4-methoxybenzyl)oxazolidin-2-one (16p)

Light yellow liquid, 99%. ¹H NMR (400 MHz, CDCl₃) δ : 7.21 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 4.56 (qt, J = 6.9, 2.0 Hz, 1H), 4.41 (s, 2H), 3.99 – 3.91 (m, 2H), 3.82 (s, 3H), 1.68 (dt, J = 6.9, 2.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 159.5, 156.0, 141.8, 129.6, 127.2, 114.3, 97.5, 55.3, 47.3, 46.9, 9.9. LC–HR/MS (ESI-QTOF) m/z: [M-H]⁺ calcd for C₁₃H₁₄NO₃, 232.1052; found, 232.1050.³³

5-methylene-3-(2-phenylpropan-2-yl)oxazolidin-2-one (16q)

Light yellow liquid, 100%. ¹H NMR (400 MHz, CDCl₃) δ : 7.36 (dd, J = 10.0, 3.4 Hz, 4H), 7.32 – 7.26 (m, 1H), 4.66 (dd, J = 5.3, 2.6 Hz, 1H), 4.17 (dd, J = 4.8, 2.2 Hz, 1H), 4.07 (t, J = 2.3 Hz, 2H), 1.80 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ: 154.2, 148.9, 144.7, 128.7, 127.4, 125.1, 85.6, 77.3, 77.0, 76.7, 58.9, 47.4, 27.4.

Figure S1. The ¹H and ¹³C NMR spectra of AcGlu-Im-Br 1 in CDCl₃.

Figure S2. The ¹H and ¹³C NMR spectra of AcGlu-Im-Br 2 in CDCl₃.

Figure S3. The ¹H and ¹³C NMR spectra of AcGlu-Im-Br 3 in CDCl₃.

Figure S4. The ¹H and ¹³C NMR spectra of Octyl-Im-Br 4 in CDCl₃.

Figure S5. The ¹H and ¹³C NMR spectra of AcGlu-Im-Br 5 in CDCl₃.

Figure S6. The ¹H and ¹³C NMR spectra of AcGlu-Im-Br 6 in CDCl₃.

26 / 62

Figure S7. The ¹H and ¹³C NMR spectra of BOE-Im-Br 7 in CDCl₃.

Figure S8. ¹H and ¹³C NMR spectra of AcGlu-Im-PdCl₄ 8 in CDCl₃.

Figure S9. ¹H and ¹³C NMR spectra of AcGlu-Im-PdCl₄ 9 in CDCl₃.

Figure S10. ¹H and ¹³C NMR spectra of AcGlu-Im-PdCl₄ 10 in CDCl₃.

Figure S11. ¹H and ¹³C NMR spectra of Octyl-Im-PdCl₄ 11 in CDCl₃.

 8.10

 8.10

 8.10

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

 1.12

Figure S12. ¹H and ¹³C NMR spectra of AcGlu-Im-PdCl₄ 12 in CDCl₃.

Figure S13. ¹H and ¹³C NMR spectra of AcGlu-Im-PdCl₄ 13 in CDCl₃.

Figure S14. ¹H and ¹³C NMR spectra of BOE-Im-PdCl₄ 14 in CDCl₃.

Figure S16. ¹³C NMR spectra of AcGlu-Im-Br **3** and AcGlu-Im-PdCl₄ **10** in CDCl₃.

Figure S17. FT-IR spectra of Im-Br 1-6.

Figure S18. FT-IR spectra of Im-PdCl₄ 8-13.

Figure S19. FT-IR spectra of AcGlu-Im-Br 3 and AcGlu-Im-PdCl₄ 10.

Figure S20. FT-IR spectra of BOE-Im-Br 7 and BOE-Im-PdCl₄ 14.

Figure S21. HR-MS spectra of AcGlu-Im-PdCl₄ 8.

Figure S22. HR-MS spectra of AcGlu-Im-PdCl₄ 9.

Figure S23. HR-MS spectra of AcGlu-Im-PdCl₄ 10.

Figure S24. HR-MS spectra of Octyl-Im-PdCl₄ 11.

Figure S25. HR-MS spectra of Octyl-Im-PdCl₄ 12.

Figure S26. HR-MS spectra of AcGlu-Im-PdCl₄ 13.

Figure S27. HR-MS spectra of BOE-Im-PdCl₄ 14.

2.6 NMR Spectra of Mechanisms

 $10/K_2CO_3/CO_2/Heating$ at 35 °C for 1.0 h in DMSO- d_6 .

Figure S30. ¹H NMR spectra of (a) Cat. 10/KOH/CO₂ at R.T. and (b) Cat. 10/KOH/CO₂/Heating at 35 °C for 1.0 h in DMSO-*d*₆.

Figure S31. The circular dichroism spectrum of (R)-(+)-α-phenylethylamine, (S)-(-)-α-phenylethylamine, **15g**, **15h**, **16g**, and **16h**.

Figure S32. ¹³C NMR spectrum of (a) Cat. 10 and (b) Cat. 10/Na'OBu/CO₂.

Figure S33. ¹H NMR spectra of (a) 15a and (b) D_2O exchange experiment of $15a/D_2O$ (two drops) in DMSO- d_6 .

Figure S34. ¹H NMR spectra of (a) Cat. 10 and (b) Cat. 10/Na^tOBu in DMSO-*d*₆.

Figure S35. (a) ¹H NMR spectra of Cat. 10 with internal standard durene. (b) ¹H NMR spectra of Cat. 10/NaO'Bu with internal standard durene.

Figure S36. Activation of propargylamine 15a by different systems in DMSO- d_6 .

Figure S37. The ¹³C NMR comparison spectra of ¹³C-isotope-labeling experiments for 16a.

Figure S38. The FT-IR spectra of ¹³C-isotope-labeling experiments for 16a.

f1 (ppm)

$\begin{array}{c} & -7,21\\ & -7,255\\ & -7,25$

3. Notes and references

- 1. Z.-G. Zhou, J.-B. Qiu, L.-F. Xie, F. Du, G.-H. Xu, Y.-R. Xie and Q.-D. Ling, *Catal. Lett.*, 2014, **144**, 1911-1918.
- P. García-Domínguez, L. Fehr, G. Rusconi and C. Nevado, *Chem. Sci.*, 2016, 7, 3914-3918.
- 3. S. S. Islam, S. Biswas, R. Ali Molla, N. Yasmin and S. M. Islam, *ChemNanoMat*, 2020, **6**, 1386-1397.
- 4. C. Zhang, J. Huang, L. Qiu and X. Xu, Org. Lett., 2016, 18, 6208-6211.
- 5. Y. C. Martin, W. B. Martin and J. D. Taylor, *J. Med. Chem.*, 1975, **18**, 883-888.
- F. Chen, S. Tao, Q.-Q. Deng, D. Wei, N. Liu and B. Dai, J. Org. Chem., 2020, 85, 15197-15212.
- R. Katoono, H. Kawai, K. Fujiwara and T. Suzuki, *Tetrahedron Lett.*, 2004, 45, 8455-8459.
- 8. E. Tayama and Y. Toma, *Tetrahedron*, 2015, **71**, 554-559.
- P. D. G. Greenwood and J. Waser, *Eur. J. Org. Chem.*, 2019, 2019, 5183-5186.
- 10. Y. Zhao, J. Qiu, L. Tian, Z. Li, M. Fan and J. Wang, *ACS Sustainable Chem. Eng.*, 2016, **4**, 5553-5560.
- 11. Y. Shunsuke, F. Kosuke, K. Satoshi and Y. Tohru, *Chem. Lett.*, 2009, **38**, 786-787.
- 12. M. Yoshida, T. Mizuguchi and K. Shishido, *Chem. Eur. J.*, 2012, **18**, 15578-15581.
- 13. Z.-H. Zhou, S.-M. Xia, S.-Y. Huang, Y.-Z. Huang, K.-H. Chen and L.-N. He, *J. CO*₂ *Util.*, 2019, **34**, 404-410.
- 14. X. Liu, M.-Y. Wang, S.-Y. Wang, Q. Wang and L.-N. He, *ChemSusChem*, 2017, **10**, 1210-1216.
- 15. M. Zhao, S. Huang, Q. Fu, W. Li, R. Guo, Q. Yao, F. Wang, P. Cui, C.-H. Tung and D. Sun, *Angew. Chem. Int. Ed.*, 2020, **59**, 20031-20036.
- 16. Z. Chang, X. Jing, C. He, X. Liu and C. Duan, *ACS Catal.*, 2018, **8**, 1384-1391.
- 17. C.-S. Cao, S.-M. Xia, Z.-J. Song, H. Xu, Y. Shi, L.-N. He, P. Cheng and B. Zhao, *Angew. Chem. Int. Ed.*, 2020, **59**, 8586-8593.
- P. Brunel, J. Monot, C. E. Kefalidis, L. Maron, B. Martin-Vaca and D. Bourissou, ACS Catal., 2017, 7, 2652-2660.
- S. Ghosh, R. A. Molla, U. Kayal, A. Bhaumik and S. M. Islam, *Dalton Trans.*, 2019, 48, 4657-4666.
- 20. Y. Zhang, X. Lan, F. Yan, X. He, J. Wang, L. Ricardez-Sandoval, L. Chen and G. Bai, *Green Chem.*, 2022, **24**, 930-940.
- 21. A.-L. Gu, Y.-X. Zhang, Z.-L. Wu, H.-Y. Cui, T.-D. Hu and B. Zhao, *Angew. Chem. Int. Ed.*, 2022, **61**, e202114817.
- 22. X. L. Jiang, Y. E. Jiao, S. L. Hou, L. C. Geng, H. Z. Wang and B. Zhao, *Angew. Chem. Int. Ed.*, 2021, **60**, 20417-20423.

- 23. S. Ghosh, S. Riyajuddin, S. Sarkar, K. Ghosh and S. M. Islam, *ChemNanoMat*, 2020, **6**, 160-172.
- 24. S. Hase, Y. Kayaki and T. Ikariya, ACS Catal., 2015, 5, 5135-5140.
- 25. S. Hase, Y. Kayaki and T. Ikariya, Organometallics, 2012, 32, 5285-5288.
- F. Inagaki, K. Maeda, K. Nakazawa and C. Mukai, *Eur. J. Org. Chem.*, 2018, 2018, 2972-2976.
- 27. F. Inagaki, K. Maeda, K. Nakazawa and C. Mukai, 2018, 2018, 2972-2976.
- X. Wang, Z. Chang, X. Jing, C. He and C. Duan, ACS Omega, 2019, 4, 10828-10833.
- 29. K.-i. Fujita, K. Inoue, J. Sato, T. Tsuchimoto and H. Yasuda, *Tetrahedron*, 2016, **72**, 1205-1212.
- 30. A. Cervantes-Reyes, T. Saxl, P. M. Stein, M. Rudolph, F. Rominger, A. M. Asiri and A. S. K. Hashmi, *ChemSusChem*, 2021, **14**, 2367-2374.
- 31. Z. H. Zhou, K. H. Chen and L. N. He, Chin. J. Chem . 2019, 37, 1223-1228.
- 32. H. C. Fu, F. You, H. R. Li and L. N. He, Front. Chem., 2019, 7, 525.
- 33. D. Wen, Q. Zheng, S. Yang, H. Zhu and T. Tu, J. Catal., 2023, 418, 64-69.