Table of Contents

1. General remarks S2
2. Experimental section S2
3. NMR spectra S6
4. X-ray crystallographic structure determination S14
5. Optical characterization S15
6. CV and DPV curves S16
7. Theoretical calculations S17
8. References S24

1. General Remarks

All reagents and solvents were commercially available and were used without further purification unless otherwise noted. For thin layer chromatography Silica gel 60 F254 plates from Merck were used and examined under UV-light irradiation (254 nm and 365 nm). Flash column chromatography was performed on silica gel (particle size: 200-300 mesh). IR-Spectra were recorded as KBr -pellets on a Bruker VERTEX 80V spectrometer. NMR spectra were taken on Bruker AVANCE III HD $(600 \mathrm{MHz})$ and AVANCE NEO $(400 \mathrm{MHz})$. Chemical shifts (δ) are reported in parts per million (ppm) relative to traces of CHCl_{3}, benzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMSO in the corresponding deuterated solvent. HRMS experiments were carried out on a ThermoFisher LTQ Orbitrap XL. Absorption spectra were recorded on a Shimadzu UV2600. Emission spectra, absolute quantum yields, as well as fluorescence lifetimes were measured on FluoroMax-4 spectrometer equipped with an integral sphere and a timecorrelated single photon counting system with a NanoLED laser. Electrochemical data were obtained in dichloromethane solution of tetrabutylammonium hexafluorophosphate $(0.1 \mathrm{M})$ and ferrocene was used as an internal standard. CV and DPV were measured using a glassy carbon working electrode, a platinum counter electrode, and a Ag reference electrode tested on CHI660E station. Crystal structure analysis was accomplished with a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer at 150 K. 2-Bromo-4-tert-butylaniline ${ }^{[S 1]}$ and 2-bromo-4-tert-butylpyridine ${ }^{[S 2]}$ were synthesized according to the reported method.

2. Experimental part

Method a: A 38 mL screw capped glass vial was charged with 1,3,5tribromobenzene ($629 \mathrm{mg}, 2 \mathrm{mmol}$), 2-chloroaniline ($918 \mathrm{mg}, 7.2 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(110 \mathrm{mg}, 0.12 \mathrm{mmol})$ and ${ }^{t} \mathrm{BuONa}(769 \mathrm{mg}, 8 \mathrm{mmol})$. Under the protection of argon, dry toluene (2 mL) and ${ }^{t} \mathrm{Bu}_{3} \mathrm{PHBF}_{4}(110 \mathrm{mg}, 0.38$ $\mathrm{mmol})$ were added to the vial and the mixture was bubbled with argon for 2 minute. The vial was quickly sealed and heated in an oil bath at $120^{\circ} \mathrm{C}$ for 12 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether $1: 2$) to give the product $\mathbf{2 a C l}$ as colourless solid ($260 \mathrm{mg}, 0.57 \mathrm{mmol}, 29 \%$).
Method b: 2-Chloroaniline ($2.55 \mathrm{~g}, 20 \mathrm{mmol}$), phloroglucinol ($631 \mathrm{mg}, 5 \mathrm{mmol}$) and hydrochloric acid $(37 \%, 0.4 \mathrm{~mL})$ were added in a 100 mL flask. The flask was heated in an oil bath at $120^{\circ} \mathrm{C}$ for 5 hours. After cooling down to room temperature, ethanol (50 mL) was added to the flask and the solid was crashed. The suspension was filter off and the solid was further washed with ethanol (100 mL) to give compound 2 aCl as colourless powder ($1.85 \mathrm{~g}, 4.07 \mathrm{mmol}, 81 \%$). m.p. $170^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm})=7.49(\mathrm{~s}, 3 \mathrm{H}), 7.39(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}$, 3 H), $7.21(\mathrm{td}, J=8.1,7.7,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.88(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm})=144.45,140.12,129.82,127.54,123.43,121.59,119.96,100.49$. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3405,1589,1513,1479,1311,1171,1126,1042,825,742,686$. HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{Cl}_{3}, 454.0645$; found, 454.0650 .

2-Bromoaniline ($10.91 \mathrm{~g}, 63.4 \mathrm{mmol}$), phloroglucinol ($2 \mathrm{~g}, 15.8 \mathrm{mmol}$) and hydrochloric acid ($37 \%, 0.8 \mathrm{~mL}$) were added in a 100 mL flask. The flask was heated in an oil bath at $120^{\circ} \mathrm{C}$ for 4 hours. After cooling down to room temperature, ethanol $(50 \mathrm{~mL})$ was added to the flask and the solid was crashed. The suspension was filter off and the solid was further washed with ethanol $(100 \mathrm{~mL})$ to give compound $\mathbf{2 a B r}$ as grayish powder ($7.21 \mathrm{~g}, 12.3 \mathrm{mmol}, 77 \%$). m.p. $180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $(\mathrm{ppm})=7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $3 \mathrm{H}), 6.83(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm})=144.84,141.37$, $133.13,128.25,122.53,120.91,114.81,99.74$. IR $(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right)=3395,3063,1586,1511,1476$, 1307, 1170, 1120, 1023, 824, 742, 663. HRMS (ESI) $(\mathrm{m} / z):[\mathrm{M}+\mathrm{H}]^{+}$calculated. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{Br}_{3}$, 585.9129; found, 585.9128.
 ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm})=145.53,145.35,138.67,129.53,125.09,121.56,115.34$, 97.60, 33.96, 31.03. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3397$, 2962, 2903, 2867, 1597, 1512, 1491, 1389, 1362, 1307, 1266, 1176, 1117, 1041, 876, 855, 816, 731, 690, 599, 421. HRMS (ESI) (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated. for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{Br}_{3}, 754.1007$; found, 754.1005.

Method a: A 38 mL screw capped glass vial was charged with compound $\mathbf{2 a C l}(114 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(3.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(69 \mathrm{mg}, 0.5 \mathrm{mmol})$. Under the protection of argon, dry DMAc (2 mL) and ${ }^{t} \mathrm{Bu}_{3} \mathrm{PHBF}_{4}(9 \mathrm{mg}, 0.03 \mathrm{mmol})$ were added to the vial and the mixture was bubbled with argon for 2 minute. The vial was quickly sealed and heated in an oil bath at $130^{\circ} \mathrm{C}$ for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether 1:4) to give the product $\mathbf{3 a}$ as grayish yellow powder ($63 \mathrm{mg}, 0.18 \mathrm{mmol}, 73 \%$).
Method b: A 120 mL screw capped glass vial was charged with compound $\mathbf{2 a B r}(2.00 \mathrm{~g}, 3.4 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(22 \mathrm{mg}, 0.1 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.94 \mathrm{~g}, 6.80 \mathrm{mmol})$. Under the protection of argon, dry DMAc (15 mL) and $\mathrm{Cy}_{3} \mathrm{PHBF}_{4}(74 \mathrm{mg}, 0.2 \mathrm{mmol})$ were added to the vial and the mixture was bubbled with argon for 2 minute. The vial was quickly sealed and heated in an oil bath at $130^{\circ} \mathrm{C}$ for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (250 mL) and washed with water (200 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether 1:4) to give the product $\mathbf{3 a}$ as grayish yellow powder $(0.97 \mathrm{~g}, 2.8 \mathrm{mmol}, 83 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm})=11.87(\mathrm{~s}, 3 \mathrm{H}), 8.68(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 3 \mathrm{H}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. The characterization matches well with the reported data. ${ }^{[53]}$

A 120 mL screw capped glass vial was charged with compound $\mathbf{2 b}$ $(3.03 \mathrm{~g}, 4.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(90 \mathrm{mg}, 0.4 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.66 \mathrm{~g}, 12.0 \mathrm{mmol})$. Under the protection of argon, dry DMAc (20 mL) and $\mathrm{Cy}_{3} \mathrm{PHBF}_{4}(295 \mathrm{mg}, 0.8 \mathrm{mmol})$ were added to the vial and the mixture was bubbled with argon for 2 minute. The vial was quickly sealed and heated in an oil bath at $130^{\circ} \mathrm{C}$ for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (250 mL) and washed with water (200 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether $1: 10$) to give the product $\mathbf{3 b}$ as colourless powder ($1.68 \mathrm{~g}, 3.3 \mathrm{mmol}, 82 \%$). m.p. $>400^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm})=11.64(\mathrm{~s}, 3 \mathrm{H}), 8.58(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $3 \mathrm{H}), 7.44(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 27 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm})=141.81$, $136.74,134.15,122.39,119.79,116.45,110.00,100.71,34.79,32.31$. IR $(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right)=3479$, 3057, 2960, 2902, 2864, 1639, 1616, 1485, 1461, 1391, 1368, 1303, 1283, 1256, 1202, 1107, 1067, 935, 858, 635, 435. HRMS (ESI) (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated. for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{Na}, 536.3042$; found, 536.3026.

In a glovebox, $[\operatorname{Ir}(\mathrm{COD}) \mathrm{OMe}]_{2}(30 \mathrm{mg}, 0.09 \mathrm{mmol}$ Ir $)$, dtbpy ($24 \mathrm{mg}, 0.09 \mathrm{mmol}$) and a small amount of $\mathrm{B}_{2} \mathrm{pin}_{2}(69 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ were mixed in THF $(2 \mathrm{~mL})$ and the mixture was stirred vigorously until the solution became brownish-red. The catalyst solution was then added to a 38 mL vial containing a suspension of triazatruxene $\mathbf{3 b}$ ($514 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{B}_{2} \mathrm{pin}_{2}(1.07 \mathrm{mg}$, 4.2 mmol) in THF (4 mL). The vial was sealed and heated in an oil bath at $80^{\circ} \mathrm{C}$ for 24 hours. After cooling to room temperature, solvent was removed by rotary evaporation and the crude product was washed with methanol ($2 \times 15 \mathrm{~mL}$) to give boronic ester $4(872 \mathrm{mg}, 0.98 \mathrm{mmol}, 98 \%)$ as a colorless powder. m.p. $>400^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(\mathrm{ppm})=10.34$ (s, $3 \mathrm{H}), 8.61(\mathrm{~s}, 3 \mathrm{H}), 8.49(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 27 \mathrm{H}), 1.29(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$
NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(\mathrm{ppm})=143.52,142.00,135.46,122.89,119.99,102.05,84.03,67.83$, 35.07, 32.51, 25.30. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3453,2959,1635,1601,1477,1433,1411,1386,1368$, 1290, 1266, 1246, 1231, 1201, 1176, 1140, 1023, 978, 903, 871, 852, 781, 760, 681, 644, 594, 503. HRMS (ESI) $(\mathrm{m} / \mathrm{z}): \quad[\mathrm{M}+\mathrm{H}]^{+}$calculated. for $\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{~N}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}, 892.5779$; found, 892.5789.

An 8 mL screw capped glass vial was charged with bromobenzene $(275 \mathrm{mg}, 1.75 \mathrm{mmol})$, boronic ester $(446 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(23 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}, 1.5 \mathrm{mmol})$. Under the protection of argon, THF (4 mL) and water (1 mL) were added to the vial and the mixture was bubbled with argon for 2 minutes, followed by adding $t \mathrm{Bu}_{3} \mathrm{PHBF}_{4}$ ($23 \mathrm{mg}, 0.079 \mathrm{mmol}$). The vial was quickly sealed and heated in a heating mantel at $80^{\circ} \mathrm{C}$ for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water $(200 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether 1:3) to give the product 5 as colourless solid ($335 \mathrm{mg}, 0.45 \mathrm{mmol}, 90 \%$). m.p. $310^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm})=9.09(\mathrm{~s}, 3 \mathrm{H}), 8.13(\mathrm{~s}, 3 \mathrm{H}), 7.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.74(\mathrm{~s}, 3 \mathrm{H}), 7.40(\mathrm{t}$,
$J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 27 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm})=143.99$, 140.30, 135.46, 134.93, 129.57, 128.83, 125.40, 123.89, 121.53, 115.40, 103.28, 34.96, 32.15. IR $(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right)=3477,3062,2956,1636,1482,1401,1365,1326,1274,1150,1073,1031,853,766$, 703, 644, 595, 452. HRMS (ESI) $(\mathrm{m} / \mathrm{z}): \quad[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{~N}_{3}, 742.4161$; found, 742.4169.

An 8 mL screw capped glass vial was charged with 2-bromo-4-tert-butylpyridine $6(75 \mathrm{mg}, 0.35 \mathrm{mmol})$, boronic ester ($89 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg}, 0.6 \mathrm{mmol})$. Under the protection of argon, toluene (1 mL), ethanol (0.1 $\mathrm{mL})$ and water $(0.1 \mathrm{~mL})$ were added to the vial and the mixture was bubbled with argon for 3 minutes, followed by adding $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12 \mathrm{mg}, 0.01 \mathrm{mmol})$. The vial was quickly sealed and heated in a heating mantel at $100^{\circ} \mathrm{C}$ for 40 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether 1:2) to give the product 7 as light yellow solid ($68 \mathrm{mg}, 0.075$ $\mathrm{mmol}, 75 \%$). m.p. $320^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm})=12.49(\mathrm{~s}, 3 \mathrm{H}), 8.90(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 3 \mathrm{H}), 8.49(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.23-8.20(\mathrm{~m}, 3 \mathrm{H}), 8.13(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{dd}, J=5.2$, $1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 27 \mathrm{H}), 1.50(\mathrm{~s}, 27 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm})=161.29,158.39$, $148.92,142.94,136.13,135.23,124.55,120.25,119.52,118.10,117.49,117.28,101.53,35.41$, 35.31, 32.38, 30.81. IR $(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right)=3435,2961,2868,1637,1603,1543,1481,1396,1365$, 1324, 1283, 1267, 1248, 1111, 1072, 914, 858, 833, 642, 583, 546. HRMS (ESI) (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calculated. for $\mathrm{C}_{63} \mathrm{H}_{73} \mathrm{~N}_{6}, 913.5897$; found, 913.5897.

A 38 mL screw capped glass vial was charged with compound 7 ($31 \mathrm{mg}, 0.034 \mathrm{mmol}$). Under the protection of argon, dry toluene (2.5 mL), dry $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ were added to the vial. The vial was quickly sealed and heated in an oil bath at $120^{\circ} \mathrm{C}$ for 40 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether 2:1) to give the product $\mathbf{8}$ as orange solid ($7 \mathrm{mg}, 0.007 \mathrm{mmol}, 20 \%$). m.p. $>400^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm})=9.82(\mathrm{~s}, 3 \mathrm{H})$, $8.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 8.43(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 8.18(\mathrm{~s}, 3 \mathrm{H}), 7.66(\mathrm{dd}, J=6.6,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}$, $27 \mathrm{H}), 1.55(\mathrm{~s}, 27 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm})=166.84,150.64,141.95(\mathrm{~d}, J=5.1 \mathrm{~Hz})$, $140.15,137.88,128.38,125.55,120.42,116.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 110.19,108.08,36.32,35.78,32.29$, 30.30. ${ }^{11} \mathrm{~B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm})=3.53 .{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm})=-$ 123.90.IR $(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right)=2961,1629,1393,1272,1059$. HRMS (ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calculated. for $\mathrm{C}_{63} \mathrm{H}_{70} \mathrm{~B}_{3} \mathrm{~F}_{6} \mathrm{~N}_{6}, 1057.5845$; found, 1057.5847.

3. NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}, 400 \mathrm{MHz}$) of compound $\mathbf{2 a C l}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}, 100 \mathrm{MHz}$) of compound $\mathbf{2 a C l}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}, 400 \mathrm{MHz}$) of compound 2aBr.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}, 100 \mathrm{MHz}$) of compound $\mathbf{2 a B r}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}, 600 \mathrm{MHz}$) of compound $\mathbf{2 b}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}, 150 \mathrm{MHz}$) of compound $\mathbf{2 b}$.

Figure S7．${ }^{1} \mathrm{H}$ NMR spectrum（DMSO－$d_{6}, 600 \mathrm{MHz}$ ）of compound $\mathbf{3 b}$ ．

$\bar{\infty}$	N ¢	かヵロハ	8
$\bar{\square}$	$\stackrel{(0)}{\sim}$	$\stackrel{\sim}{\sim}{ }_{\sim}^{\circ}$	앋
｜	｜｜	111	

Figure S8．${ }^{13} \mathrm{C}$ NMR spectrum（DMSO－$d_{6}, 150 \mathrm{MHz}$ ）of compound $\mathbf{3 b}$ ．

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$ of compound 4 .

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right)$ of compound 4 .

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$ of compound 5 .

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{5}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right)$ of compound 7 .

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right)$ of compound 7 .

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right)$ of compound 8 .

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right)$ of compound $\mathbf{8}$.

4. X-ray crystallographic structure determination

Table S1. Crystal data and structure refinement for compound 4.

Empirical formula	$\mathrm{C}_{57} \mathrm{H}_{72} \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{6}$
Formula weight	1119.96
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	11.2571(3)
b/Å	23.3294(7)
c/Å	23.0523(6)
$\alpha /^{\circ}$	90
$\beta /{ }^{\circ}$	96.593(3)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	6014.0(3)
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.237
μ / mm^{-1}	2.491
$\mathrm{F}(000)$	2376.0
Crystal size/ mm^{3}	$0.15 \times 0.1 \times 0.08$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	5.408 to 143.268
Index ranges	$-13 \leq \mathrm{h} \leq 10,-28 \leq \mathrm{k} \leq 27,-28 \leq 1 \leq 28$
Reflections collected	31856
Independent reflections	$11485\left[\mathrm{R}_{\mathrm{int}}=0.0351, \mathrm{R}_{\text {sigma }}=0.0397\right]$
Data/restraints/parameters	11485/216/790
Goodness-of-fit on F^{2}	1.060
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.1059, \mathrm{wR}_{2}=0.3013$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1199, \mathrm{wR}_{2}=0.3094$
Largest diff. peak/hole /e \AA^{-3}	1.00/-0.85

Figure S17. Crystal structure of $\mathbf{4}$ with an ellipsoid contour at the 50% probability level.

5. Optical characterization

Figure S18. UV/vis absorption spectra of $\mathbf{8}$ in different solvents.

Figure S19. Fluorescence emission spectra of $\mathbf{8}$ in different solvents.

Figure S20. Lippert-Mataga plot, Onsager cavity radius and the calculated difference of dipole moment of the ground and excited states of $\mathbf{8}$.

6. CV and DPV curves

Figure S21. CV and DPV curves of $\mathbf{8}$ measured in dichloromethane at room temperature.

7. The theoretical calculations

All the theoretical calculations were carried out using a Gaussian 16 software. ${ }^{[54]}$ All the calculations were based on the optimized geometries at B3LYP/6-31G(d,p) level of theory. The frontier molecular orbitals are calculated at the B3LYP/6-311+G(d,p) level of theory. The calculations of excited state properties were performed using time-depended DFT methods at B3LYP $/ 6-311+G(d, p)$ level of theory in the solvent dichloromethane.

Figure S22. UV/Vis absorption spectrum of compound $\mathbf{8}$ and TD-DFT calculated oscillator strength (blue column) in dichloromethane at B3LYP/6-311+G(d,p) level.

Figure S23. Comparison the dihedral angles of peripheral benzene rings of triazatruxene $\mathbf{8}$ with its all-carbon congener.

Table S2. TD-DFT calculated first-ten electron transitions of compound $\mathbf{8}$ in dichloromethane at B3LYP / 6-311+G(d,p) level.

Excited State 1:	Singlet-A	$2.5656 \mathrm{eV} 483.25 \mathrm{~nm} \mathrm{f}=0.1355<\mathrm{S}^{*} * 2>=0.000$
278 -> 280	2%	
278 -> 281	2\%	
279 -> 280	87\%	
279 -> 281	6\%	
Excited State 2:	Singlet-A	$2.5847 \mathrm{eV} 479.69 \mathrm{~nm} \mathrm{f}=0.1194\left\langle\mathrm{~S}^{* * 2}\right.$ > $=0.000$
278 -> 280	7\%	
279 -> 280	7\%	
279 -> 281	81\%	
279 -> 282	3\%	
Excited State 3:	Singlet-A	$2.6237 \mathrm{eV} 472.56 \mathrm{~nm} \mathrm{f}=0.3614\left\langle\mathrm{~S}^{* * 2}\right.$ > $=0.000$
278 -> 280	67\%	
278 -> 282	3\%	
279 -> 281	3\%	
279 -> 282	24\%	
Excited State 4:	Singlet-A	$2.6404 \mathrm{eV} 469.56 \mathrm{~nm} \mathrm{f}=0.2219$ < ${ }^{*} * 2>=0.000$
278 -> 281	75\%	
278 -> 282	6\%	
279 -> 282	14\%	
Excited State 5:	Singlet-A	$2.6725 \mathrm{eV} 463.93 \mathrm{~nm} \mathrm{f}=0.0970<\mathrm{S}^{* *} 2>=0.000$
278 -> 280	20\%	
278 -> 281	14\%	
279 -> 281	6\%	
279 -> 282	57\%	
Excited State 6:	Singlet-A	$2.7205 \mathrm{eV} 455.74 \mathrm{~nm} \mathrm{f}=0.0049$ <S**2>=0.000
278 -> 281	6\%	
278 -> 282	88\%	
279 -> 280	2\%	
Excited State 7:	Singlet-A	$3.1373 \mathrm{eV} 395.20 \mathrm{~nm} \mathrm{f}=0.0235<\mathrm{S}^{* * 2}$ > $=0.000$
278 -> 283	9\%	
278 -> 285	4\%	
279 -> 283	16\%	
279 -> 284	61\%	

```
279 -> 285 6%
Excited State 8: Singlet-A 3.1508 eV 393.51 nm f=0.0643 <S**2>=0.000
278 -> 283 4%
279 -> 283 54%
279 -> 284 9%
279 -> 285 31%
Excited State 9: Singlet-A 3.1651 eV 391.72 nm f=0.0255 <S**2>=0.000
278 -> 284 6%
278 -> 285 7%
279 -> 283 16%
279 -> 284 13%
279 -> 285 54%
Excited State 10: Singlet-A \(3.1994 \mathrm{eV} 387.52 \mathrm{~nm} \mathrm{f}=0.0333<S^{*} * 2>=0.000\)
278 -> 283 83%
279 -> 283 9%
279 -> 284 4%
```

279 HOMO, 280 LUMO

Cartesian coordinates for theoretically optimized structures
Ground state $\mathbf{8}$ opt B3LYP/6-31G(d,p) Imaginary Frequency 0

C	1.34788900	-0.23364000	-0.33204500
C	0.48765800	-1.34611600	-0.07693900
C	-0.91873700	-1.17748600	0.02629300
C	-1.43503100	0.14921800	0.10645800
C	-0.56897600	1.27467800	0.13119300
C	0.80921700	1.07603100	-0.18900700
C	-0.72587400	2.68938300	0.42154500
C	0.53866000	3.27322700	0.17130900
N	1.45891200	2.32605500	-0.20441000
C	-2.07199700	-2.06343300	-0.02482300
C	-3.20892900	-1.21653400	0.02062200
N	-2.84017900	0.10142100	0.10532000
C	2.67077000	-0.79570400	-0.57107500
C	2.55145100	-2.18278300	-0.30551600
N	1.25564200	-2.52256500	-0.01504300

C	3.90060700	-0.32697400	-1.02519400
C	5.02284400	-1.17274600	-1.13432500
C	4.89641600	-2.50626500	-0.75308700
C	3.66579700	-3.04205900	-0.31855200
C	-2.28106200	-3.43098200	-0.17613600
C	-3.57718700	-3.98154900	-0.22287100
C	-4.67132200	-3.12131900	-0.18435700
C	-4.51761600	-1.72147000	-0.09427000
C	-1.73701700	3.49397800	0.95438600
C	-1.54560600	4.87221000	1.15187000
C	-0.30311700	5.42659900	0.83512900
C	0.76587900	4.65168800	0.35156700
C	-2.65599900	5.77468100	1.72949900
C	-3.71682800	-5.51359500	-0.30926600
C	-5.18264900	-5.96522200	-0.44395000
C	-3.13144100	-6.13870100	0.98069100
C	-2.93461300	-6.04615000	-1.53419200
C	-2.23908000	6.26826300	3.13490400
C	-4.00067800	5.03204700	1.85011800
C	-2.87864300	6.99581600	0.80592600
C	6.35349600	-0.56422100	-1.61808700
C	7.44381800	-1.63008100	-1.83508200
C	6.85733900	0.44108700	-0.55351300
C	6.13815000	0.17699200	-2.95949000
C	2.07086000	5.20524100	0.05060100
C	3.52714000	-4.37947500	0.22096000
C	-5.62467500	-0.79697900	-0.23551900
C	2.38784900	6.57403200	0.14270600
C	3.65096800	7.06919600	-0.15909000
C	4.61696200	6.12913300	-0.57255100
C	4.27498500	4.79880000	-0.65671200
N	3.03997000	4.33757800	-0.35520500
C	-6.95884400	-1.19097900	-0.45415600
C	-7.98363100	-0.27426100	-0.65836300

C	-7.62434200	1.08907000	-0.65488300
C	-6.31264900	1.44334400	-0.43420500
N	-5.33580200	0.53615400	-0.21173300
C	4.60417900	-5.26155100	0.42957300
C	4.44461100	-6.50273400	1.03541300
C	3.14218400	-6.83940800	1.45759600
C	2.10812600	-5.95783800	1.23629000
N	2.28065100	-4.76759600	0.62007600
B	2.89179000	2.73187000	-0.51148700
B	-3.90840600	1.18094300	0.19908100
B	0.91430800	-3.98010000	0.26251800
F	3.25951600	2.47791700	-1.83725300
F	3.82394800	2.19433000	0.36960600
F	0.07507500	-4.15014700	1.35483300
F	0.41594900	-4.64875900	-0.86237900
F	-4.09892800	1.63851400	1.50809800
F	-3.70703900	2.23745900	-0.67530700
H	3.99869000	0.69793700	-1.32768800
H	5.76153900	-3.15437000	-0.79887400
H	-1.44284900	-4.09264000	-0.28316900
H	-5.66885200	-3.53494300	-0.24701300
H	-2.66750800	3.04560400	1.25041400
H	-0.15237000	6.48774700	0.99367100
H	-5.78625200	-5.65877200	0.41737600
H	-5.64966500	-5.56628400	-1.35130100
H	-5.22937400	-7.05753700	-0.50280300
H	-3.70353900	-5.82231400	1.85964000
H	-3.16617400	-7.23357400	0.92820700
H	-2.09321500	-5.83328200	1.13586400
H	-1.86887300	-5.81190600	-1.47487100
H	-3.03411300	-7.13599400	-1.60058900
H	-3.32280600	-5.61404200	-2.46274600
H	-2.08865700	5.42381900	3.81508000
H	-1.30499600	6.83879900	3.10174700

H	-3.01260700	6.91672800	3.56312600
H	-4.32671700	4.64419500	0.88041000
H	-3.95037400	4.18742400	2.54225900
H	-4.76797200	5.72087400	2.21988900
H	-3.16809100	6.67649300	-0.20041800
H	-1.98239100	7.61712800	0.71385100
H	-3.67700100	7.63246800	1.20417700
H	7.13826800	-2.37914800	-2.57383000
H	7.70113300	-2.14900500	-0.90530600
H	8.35866900	-1.15443900	-2.20351100
H	7.08584300	-0.07337400	0.38628400
H	6.10447100	1.20256400	-0.33395700
H	7.77126600	0.94102000	-0.89696500
H	5.77126600	-0.50848900	-3.73075200
H	5.41698400	0.99335000	-2.86778100
H	7.08437000	0.60585300	-3.30972000
H	1.60717100	7.25335900	0.45529800
H	5.62556800	6.42144100	-0.83039700
H	4.98286500	4.04545900	-0.97613300
H	-7.17666200	-2.24977000	-0.47127800
H	-8.35117400	1.87227800	-0.82095700
H	-5.98760600	2.47531100	-0.42633300
H	5.58804800	-4.93914400	0.11779600
H	2.92649100	-7.77568600	1.95367500
H	1.09225400	-6.16958200	1.54255400
C	5.65279700	-7.43163000	1.23453400
C	6.28128100	-7.74929800	-0.14330000
C	6.69761900	-6.72192000	2.12870400
C	5.25791600	-8.75978800	1.90715100
H	5.56250000	-8.25222100	-0.79792300
H	6.62494400	-6.84578600	-0.65466300
H	7.14559100	-8.40977700	-0.01678300
H	6.27805100	-6.48180900	3.11076200
H	7.56466400	-7.37361700	2.27990800

H	7.05508200	-5.79072800	1.68028800
H	6.14504400	-9.39008900	2.02041900
H	4.83728000	-8.60354500	2.90574700
H	4.53074200	-9.31960900	1.31016900
C	3.94532500	8.57311200	-0.04275400
C	3.00643800	9.34890600	-0.99745800
C	3.69340500	9.02896500	1.41442200
C	5.40223000	8.90887100	-0.41288400
H	3.16195100	9.04409100	-2.03716500
H	1.95221200	9.18788500	-0.75520700
H	3.20475500	10.42347900	-0.92521700
H	4.34432000	8.49398300	2.11314500
H	3.89836800	10.10029000	1.51166400
H	2.65830300	8.85892300	1.72364600
H	5.56572900	9.98604000	-0.31281300
H	6.11762600	8.40549000	0.24545400
H	5.63449500	8.63649800	-1.44748900
C	-9.42482100	-0.75708400	-0.88664000
C	-9.46968300	-1.63939400	-2.15719100
C	-9.88241700	-1.58742600	0.33627800
C	-10.40594200	0.41554900	-1.07291100
H	-9.14721900	-1.07713500	-3.03924000
H	-8.82655100	-2.51929900	-2.06712700
H	-10.49212700	-1.99013700	-2.33307000
H	-9.85845000	-0.98745100	1.25146300
H	-10.90895700	-1.93838900	0.18688500
H	-9.25047500	-2.46575400	0.49484900
H	-11.41706200	0.02578200	-1.22397800
H	-10.43309000	1.06884400	-0.19481400
H	-10.15505700	1.02384500	-1.94788300

8. References

[S1] A. John, S. Kirschner, M. K. Fengel, M. Bolte, H.-W. Lerner, M. Wagner, Dalton Trans. 2019, 48, 1871-1877.
[S2] M. Peters, R. Breinbauer, Tetrahedron Lett. 2010, 51, 6622-6625.
[S3] L. Yang, Y. Ma, Y. Xu, G. Chang, Chem. Commun. 2019, 55, 11227-11230.
[S4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.

