Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

# **Table of Contents**

| 1. General remarks                                | S2  |
|---------------------------------------------------|-----|
| 2. Experimental section                           | S2  |
| 3. NMR spectra                                    | S6  |
| 4. X-ray crystallographic structure determination | S14 |
| 5. Optical characterization                       | S15 |
| 6. CV and DPV curves                              | S16 |
| 7. Theoretical calculations                       | S17 |
| 8. References                                     | S24 |

#### **1. General Remarks**

All reagents and solvents were commercially available and were used without further purification unless otherwise noted. For thin layer chromatography Silica gel 60 F254 plates from Merck were used and examined under UV-light irradiation (254 nm and 365 nm). Flash column chromatography was performed on silica gel (particle size: 200-300 mesh). IR-Spectra were recorded as KBr-pellets on a Bruker VERTEX 80V spectrometer. NMR spectra were taken on Bruker AVANCE III HD (600MHz) and AVANCE NEO (400MHz). Chemical shifts ( $\delta$ ) are reported in parts per million (ppm) relative to traces of CHCl<sub>3</sub>, benzene, CH<sub>2</sub>Cl<sub>2</sub> and DMSO in the corresponding deuterated solvent. HRMS experiments were carried out on a ThermoFisher LTQ Orbitrap XL. Absorption spectra were recorded on a Shimadzu UV2600. Emission spectra, absolute quantum yields, as well as fluorescence lifetimes were measured on FluoroMax-4 spectrometer equipped with an integral sphere and a timecorrelated single photon counting system with a NanoLED laser. Electrochemical data were obtained in dichloromethane solution of tetrabutylammonium hexafluorophosphate (0.1 M) and ferrocene was used as an internal standard. CV and DPV were measured using a glassy carbon working electrode, a platinum counter electrode, and a Ag reference electrode tested on CHI660E station. Crystal structure analysis was accomplished with a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer at 150 K. 2-Bromo-4-*tert*-butylaniline<sup>[S1]</sup> and 2-bromo-4-*tert*-butylpyridine<sup>[S2]</sup> were synthesized according to the reported method.

### 2. Experimental part



*Method a*: A 38 mL screw capped glass vial was charged with 1,3,5tribromobenzene (629 mg, 2 mmol), 2-chloroaniline (918 mg, 7.2 mmol),  $Pd_2(dba)_3$  (110 mg, 0.12 mmol) and <sup>*t*</sup>BuONa (769 mg, 8 mmol). Under the protection of argon, dry toluene (2 mL) and <sup>*t*</sup>Bu<sub>3</sub>PHBF<sub>4</sub> (110 mg, 0.38 mmol) were added to the vial and the mixture was bubbled with argon for 2 minute. The vial was quickly sealed and heated in an oil bath at 120 °C for 12 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with

water (200 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether 1:2) to give the product **2aCl** as colourless solid (260 mg, 0.57 mmol, 29%).

*Method b*: 2-Chloroaniline (2.55 g, 20 mmol), phloroglucinol (631 mg, 5 mmol) and hydrochloric acid (37%, 0.4 mL) were added in a 100 mL flask. The flask was heated in an oil bath at 120°C for 5 hours. After cooling down to room temperature, ethanol (50 mL) was added to the flask and the solid was crashed. The suspension was filter off and the solid was further washed with ethanol (100 mL) to give compound **2aCl** as colourless powder (1.85 g, 4.07 mmol, 81%). m.p. 170°C. <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) = 7.49 (s, 3H), 7.39 (dd, *J* = 7.9, 1.5 Hz, 3H), 7.34 (dd, *J* = 8.2, 1.5 Hz, 3H), 7.21 (td, *J* = 8.1, 7.7, 1.5 Hz, 3H), 6.88 (td, *J* = 7.6, 1.5 Hz, 3H), 6.34 (s, 3H). <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) =144.45, 140.12, 129.82, 127.54, 123.43, 121.59, 119.96, 100.49. IR (KBr)  $\tilde{\nu}$  (cm<sup>-1</sup>) = 3405, 1589, 1513, 1479, 1311, 1171, 1126, 1042, 825, 742, 686. HRMS (ESI) (*m*/*z*): [M+H]<sup>+</sup> calculated for C<sub>24</sub>H<sub>19</sub>N<sub>3</sub>Cl<sub>3</sub>, 454.0645; found, 454.0650.



2-Bromoaniline (10.91 g, 63.4 mmol), phloroglucinol (2 g, 15.8 mmol) and hydrochloric acid (37%, 0.8 mL) were added in a 100 mL flask. The flask was heated in an oil bath at 120°C for 4 hours. After cooling down to room temperature, ethanol (50 mL) was added to the flask and the solid was crashed. The suspension was filter off and the solid was further washed with ethanol (100 mL) to give compound **2aBr** as grayish powder (7.21 g, 12.3 mmol, 77%). m.p. 180°C. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) = 7.56 (d, *J* = 8.0 Hz, 3H), 7.40–7.30 (m, 6H), 7.26 (t, *J* = 7.8 Hz,

3H), 6.83 (t, J = 7.7 Hz, 3H), 6.27 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  (ppm) =144.84, 141.37, 133.13, 128.25, 122.53, 120.91, 114.81, 99.74. IR (KBr)  $\tilde{v}$  (cm<sup>-1</sup>) = 3395, 3063, 1586, 1511, 1476, 1307, 1170, 1120, 1023, 824, 742, 663. HRMS (ESI) (m/z): [M+H]<sup>+</sup> calculated. for C<sub>24</sub>H<sub>19</sub>N<sub>3</sub>Br<sub>3</sub>, 585.9129; found, 585.9128.



2-Bromo-4-*tert*-butylaniline (7.41 g, 32.5 mmol), phloroglucinol (1.07 g, 8.5 mmol) and hydrochloric acid (37%, 0.5 mL) were added in a 100 mL flask. The flask was heated in an oil bath at 120°C for 4 hours. After cooling down to room temperature, ethanol (20 mL) was added to the flask and the solid was crashed. The suspension was filter off and the solid was further washed with ethanol (40 mL) to give compound **2b** as colourless powder (5.46 g, 7.2 mmol, 85%). m.p. 230°C. <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) = 7.50 (d, *J* = 2.2 Hz, 3H), 7.30 (dd, *J* = 8.5, 2.2 Hz, 3H), 7.26 (d, *J* = 8.5 Hz, 3H), 7.22 (s, 3H), 6.12 (s, 3H), 1.24 (s, 27H).

<sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) =145.53, 145.35, 138.67, 129.53, 125.09, 121.56, 115.34, 97.60, 33.96, 31.03. IR (KBr)  $\tilde{v}$  (cm<sup>-1</sup>) = 3397, 2962, 2903, 2867, 1597, 1512, 1491, 1389, 1362, 1307, 1266, 1176, 1117, 1041, 876, 855, 816, 731, 690, 599, 421. HRMS (ESI) (*m*/*z*): [M+H]<sup>+</sup>calculated. for C<sub>36</sub>H<sub>43</sub>N<sub>3</sub>Br<sub>3</sub>, 754.1007; found, 754.1005.



*Method a*: A 38 mL screw capped glass vial was charged with compound **2aCl** (114 mg, 0.25 mmol),  $Pd(OAc)_2$  (3.5 mg, 0.015 mmol), anhydrous  $K_2CO_3$  (69 mg, 0.5 mmol). Under the protection of argon, dry DMAc (2 mL) and  ${}^{t}Bu_3PHBF_4$  (9 mg, 0.03 mmol) were added to the vial and the mixture was bubbled with argon for 2 minute. The vial was quickly sealed and heated in an oil bath at 130 °C for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was

removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether 1:4) to give the product **3a** as grayish yellow powder (63 mg, 0.18 mmol, 73%).

*Method b*: A 120 mL screw capped glass vial was charged with compound **2aBr** (2.00 g, 3.4 mmol), Pd(OAc)<sub>2</sub> (22 mg, 0.1 mmol), anhydrous K<sub>2</sub>CO<sub>3</sub> (0.94 g, 6.80 mmol). Under the protection of argon, dry DMAc (15 mL) and Cy<sub>3</sub>PHBF<sub>4</sub> (74 mg, 0.2 mmol) were added to the vial and the mixture was bubbled with argon for 2 minute. The vial was quickly sealed and heated in an oil bath at 130 °C for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (250 mL) and washed with water (200 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether 1:4) to give the product **3a** as grayish yellow powder (0.97 g, 2.8 mmol, 83%). <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm) = 11.87 (s, 3H), 8.68 (d, *J* = 7.7 Hz, 3H), 7.74 (d, *J* = 7.9 Hz, 3H), 7.40 (t, *J* = 7.4 Hz, 3H), 7.34 (t, *J* = 7.3 Hz, 3H). The characterization matches well with the reported data.<sup>[S3]</sup>



A 120 mL screw capped glass vial was charged with compound **2b** (3.03 g, 4.0 mmol),  $Pd(OAc)_2$  (90 mg, 0.4 mmol), anhydrous  $K_2CO_3$  (1.66 g, 12.0 mmol). Under the protection of argon, dry DMAc (20 mL) and Cy<sub>3</sub>PHBF<sub>4</sub> (295 mg, 0.8 mmol) were added to the vial and the mixture was bubbled with argon for 2 minute. The vial was quickly sealed and heated in an oil bath at 130 °C for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (250 mL) and washed with water (200 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed by rotatory evaporation and

the crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether 1:10) to give the product **3b** as colourless powder (1.68 g, 3.3 mmol, 82%). m.p. >400°C (dec.). <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  (ppm) = 11.64 (s, 3H), 8.58 (d, J = 1.8 Hz, 3H), 7.66 (d, J = 8.4 Hz, 3H), 7.44 (dd, J = 8.4, 1.8 Hz, 3H), 1.54 (s, 27H). <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ )  $\delta$  (ppm) = 141.81, 136.74, 134.15, 122.39, 119.79, 116.45, 110.00, 100.71, 34.79, 32.31. IR (KBr)  $\tilde{v}$  (cm<sup>-1</sup>) = 3479, 3057, 2960, 2902, 2864, 1639, 1616, 1485, 1461, 1391, 1368, 1303, 1283, 1256, 1202, 1107, 1067, 935, 858, 635, 435. HRMS (ESI) (*m*/*z*): [M+Na]<sup>+</sup>calculated. for C<sub>36</sub>H<sub>39</sub>N<sub>3</sub>Na, 536.3042; found, 536.3026.



In a glovebox, [Ir(COD)OMe]<sub>2</sub> (30 mg, 0.09 mmol Ir), dtbpy (24 mg, 0.09 mmol) and a small amount of B<sub>2</sub>pin<sub>2</sub> (69 mg, 0.3 mmol) were mixed in THF (2 mL) and the mixture was stirred vigorously until the solution became brownish-red. The catalyst solution was then added to a 38 mL vial containing a suspension of triazatruxene **3b** (514 mg, 1.0 mmol) and B<sub>2</sub>pin<sub>2</sub> (1.07 mg, 4.2 mmol) in THF (4 mL). The vial was sealed and heated in an oil bath at 80 °C for 24 hours. After cooling to room temperature, solvent was removed by rotary evaporation and the crude product was washed with methanol (2x15 mL) to give boronic ester **4** (872 mg, 0.98 mmol, 98%) as a colorless powder. m.p. >400°C (dec.). <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  (ppm) = 10.34 (s, 3H), 8.61 (s, 3H), 8.49 (s, 3H), 1.64 (s, 27H), 1.29 (s, 36H). <sup>13</sup>C

NMR (100 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  (ppm) =143.52, 142.00, 135.46, 122.89, 119.99, 102.05, 84.03, 67.83, 35.07, 32.51, 25.30. IR (KBr)  $\tilde{v}$  (cm<sup>-1</sup>) = 3453, 2959, 1635, 1601, 1477, 1433, 1411, 1386, 1368, 1290, 1266, 1246, 1231, 1201, 1176, 1140, 1023, 978, 903, 871, 852, 781, 760, 681, 644, 594, 503. HRMS (ESI) (*m*/*z*): [M+H]<sup>+</sup>calculated. for C<sub>54</sub>H<sub>73</sub>N<sub>3</sub>B<sub>3</sub>O<sub>6</sub>, 892.5779; found, 892.5789.



An 8 mL screw capped glass vial was charged with bromobenzene (275 mg, 1.75 mmol), boronic ester (446 mg, 0.5 mmol),  $Pd_2(dba)_3$  (23 mg, 0.025 mmol) and  $K_2CO_3$  (207 mg, 1.5 mmol). Under the protection of argon, THF (4 mL) and water (1 mL) were added to the vial and the mixture was bubbled with argon for 2 minutes, followed by adding *t*Bu<sub>3</sub>PHBF<sub>4</sub> (23 mg, 0.079 mmol). The vial was quickly sealed and heated in a heating mantel at 80 °C for 16 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether 1:3)

to give the product **5** as colourless solid (335 mg, 0.45 mmol, 90%). m.p. 310°C (dec.). <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  (ppm) = 9.09 (s, 3H), 8.13 (s, 3H), 7.78 (d, *J* = 7.5 Hz, 6H), 7.74 (s, 3H), 7.40 (t,

J = 7.5 Hz, 6H), 7.27 (t, J = 7.5 Hz, 3H), 1.54 (s, 27H). <sup>13</sup>C NMR (100 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  (ppm) =143.99, 140.30, 135.46, 134.93, 129.57, 128.83, 125.40, 123.89, 121.53, 115.40, 103.28, 34.96, 32.15. IR  $(\text{KBr}) \tilde{v} (\text{cm}^{-1}) = 3477, 3062, 2956, 1636, 1482, 1401, 1365, 1326, 1274, 1150, 1073, 1031, 853, 766,$ 703, 644, 595, 452. HRMS (ESI) (m/z):  $[M+H]^+$  calcd. for C<sub>54</sub>H<sub>52</sub>N<sub>3</sub>, 742.4161; found, 742.4169.



An 8 mL screw capped glass vial was charged with 2bromo-4-tert-butylpyridine 6 (75 mg, 0.35 mmol), boronic ester (89 mg, 0.1 mmol) and K<sub>2</sub>CO<sub>3</sub> (83 mg, 0.6 mmol). Under the protection of argon, toluene (1 mL), ethanol (0.1 mL) and water (0.1 mL) were added to the vial and the mixture was bubbled with argon for 3 minutes, followed by adding Pd(PPh<sub>3</sub>)<sub>4</sub> (12 mg, 0.01 mmol). The vial was quickly sealed and heated in a heating mantel at 100 °C for 40 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography

(dichloromethane/petroleum ether 1:2) to give the product 7 as light yellow solid (68 mg, 0.075 mmol, 75%). m.p. 320°C (dec.). <sup>1</sup>H NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 12.49 (s, 3H), 8.90 (d, J = 5.2 Hz, 3H), 8.49 (d, J = 1.6 Hz, 3H), 8.23–8.20 (m, 3H), 8.13 (d, J = 1.6 Hz, 3H), 7.42 (dd, J = 5.2, 1.7 Hz, 3H), 1.71 (s, 27H), 1.50 (s, 27H). <sup>13</sup>C NMR (150 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 161.29, 158.39, 148.92, 142.94, 136.13, 135.23, 124.55, 120.25, 119.52, 118.10, 117.49, 117.28, 101.53, 35.41, 35.31, 32.38, 30.81. IR (KBr)  $\tilde{v}$  (cm<sup>-1</sup>) = 3435, 2961, 2868, 1637, 1603, 1543, 1481, 1396, 1365, 1324, 1283, 1267, 1248, 1111, 1072, 914, 858, 833, 642, 583, 546. HRMS (ESI) (m/z): [M+H]<sup>+</sup>calculated. for C<sub>63</sub>H<sub>73</sub>N<sub>6</sub>, 913.5897; found, 913.5897.



A 38 mL screw capped glass vial was charged with compound 7 (31 mg, 0.034 mmol). Under the protection of argon, dry toluene (2.5 mL), dry Et<sub>3</sub>N (0.2 mL) and BF<sub>3</sub>•Et<sub>2</sub>O (0.2 mL) were added to the vial. The vial was quickly sealed and heated in an oil bath at 120 °C for 40 hours. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane (150 mL) and washed with water (200 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/petroleum ether 2:1) to give the product 8 as orange solid (7 mg, 0.007 mmol, 20%). m.p. >400°C (dec.); <sup>1</sup>H NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 9.82 (s, 3H),

8.95 (d, J = 6.5 Hz, 3H), 8.43 (d, J = 1.9 Hz, 3H), 8.18 (s, 3H), 7.66 (dd, J = 6.6, 1.9 Hz, 3H), 1.69 (s, 27H), 1.55 (s, 27H). <sup>13</sup>C NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 166.84, 150.64, 141.95 (d, J = 5.1 Hz), 140.15, 137.88, 128.38, 125.55, 120.42, 116.21 (d, *J* = 7.3 Hz), 110.19, 108.08, 36.32, 35.78, 32.29, 30.30. <sup>11</sup>B NMR (128 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = 3.53. <sup>19</sup>F NMR (377 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  (ppm) = -123.90.IR (KBr)  $\tilde{v}$  (cm<sup>-1</sup>) = 2961, 1629, 1393, 1272, 1059. HRMS (ESI) (*m/z*): [M+H]<sup>+</sup>calculated. for C<sub>63</sub>H<sub>70</sub>B<sub>3</sub>F<sub>6</sub>N<sub>6</sub>, 1057.5845; found, 1057.5847.



, 140 . 150 . 110 . 70 . 30 ppm

Figure S2. <sup>13</sup>C NMR spectrum (DMSO-*d*<sub>6</sub>, 100 MHz) of compound 2aCl.







Figure S4. <sup>13</sup>C NMR spectrum (DMSO- $d_6$ , 100 MHz) of compound **2aBr**.



Figure S6. <sup>13</sup>C NMR spectrum (DMSO- $d_6$ , 150 MHz) of compound 2b.



Figure S7. <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>, 600 MHz) of compound **3b**.





Figure S9. <sup>1</sup>H NMR spectrum ( $C_6D_6$ , 400 MHz) of compound 4.



Figure S10. <sup>13</sup>C NMR spectrum ( $C_6D_6$ , 100 MHz) of compound 4.



Figure S11. <sup>1</sup>H NMR spectrum ( $C_6D_6$ , 400 MHz) of compound 5.



Figure S12. <sup>13</sup>C NMR spectrum ( $C_6D_6$ , 100 MHz) of compound 5.



Figure S13. <sup>1</sup>H NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, 600 MHz) of compound 7.



**Figure S14.** <sup>13</sup>C NMR spectrum ( $CD_2Cl_2$ , 150 MHz) of compound 7.



Figure S15. <sup>1</sup>H NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, 600 MHz) of compound 8.



Figure S16. <sup>13</sup>C NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, 150 MHz) of compound 8.

# 4. X-ray crystallographic structure determination

| Table SI. Crystal data and structure renne  | ement for compound 4.                                  |
|---------------------------------------------|--------------------------------------------------------|
| Empirical formula                           | $C_{57}H_{72}B_3N_3O_6S_6$                             |
| Formula weight                              | 1119.96                                                |
| Temperature/K                               | 150.00(10)                                             |
| Crystal system                              | monoclinic                                             |
| Space group                                 | P2 <sub>1</sub> /c                                     |
| a/Å                                         | 11.2571(3)                                             |
| b/Å                                         | 23.3294(7)                                             |
| c/Å                                         | 23.0523(6)                                             |
| α/°                                         | 90                                                     |
| β/°                                         | 96.593(3)                                              |
| $\gamma^{/\circ}$                           | 90                                                     |
| Volume/Å <sup>3</sup>                       | 6014.0(3)                                              |
| Z                                           | 4                                                      |
| $\rho_{calc}g/cm^3$                         | 1.237                                                  |
| $\mu/\text{mm}^{-1}$                        | 2.491                                                  |
| F(000)                                      | 2376.0                                                 |
| Crystal size/mm <sup>3</sup>                | 0.15 	imes 0.1 	imes 0.08                              |
| Radiation                                   | Cu Ka ( $\lambda = 1.54184$ )                          |
| $2\Theta$ range for data collection/°       | 5.408 to 143.268                                       |
| Index ranges                                | $-13 \le h \le 10, -28 \le k \le 27, -28 \le l \le 28$ |
| Reflections collected                       | 31856                                                  |
| Independent reflections                     | 11485 [ $R_{int} = 0.0351$ , $R_{sigma} = 0.0397$ ]    |
| Data/restraints/parameters                  | 11485/216/790                                          |
| Goodness-of-fit on F <sup>2</sup>           | 1.060                                                  |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.1059, wR_2 = 0.3013$                          |
| Final R indexes [all data]                  | $R_1 = 0.1199, wR_2 = 0.3094$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.00/-0.85                                             |

Table S1. Crystal data and structure refinement for compound 4



Figure S17. Crystal structure of 4 with an ellipsoid contour at the 50% probability level.

## 5. Optical characterization



Figure S18. UV/vis absorption spectra of 8 in different solvents.



Figure S19. Fluorescence emission spectra of 8 in different solvents.



Figure S20. Lippert–Mataga plot, Onsager cavity radius and the calculated difference of dipole moment of the ground and excited states of 8.

### 6. CV and DPV curves



Figure S21. CV and DPV curves of 8 measured in dichloromethane at room temperature.

#### 7. The theoretical calculations

All the theoretical calculations were carried out using a *Gaussian 16* software.<sup>[S4]</sup> All the calculations were based on the optimized geometries at B3LYP/6-31G(d,p) level of theory. The frontier molecular orbitals are calculated at the B3LYP/6-311+G(d,p) level of theory. The calculations of excited state properties were performed using time-depended DFT methods at B3LYP /6-311+G(d,p) level of theory in the solvent dichloromethane.



**Figure S22.** UV/Vis absorption spectrum of compound **8** and TD-DFT calculated oscillator strength (blue column) in dichloromethane at B3LYP/6-311+G(d,p) level.



Figure S23. Comparison the dihedral angles of peripheral benzene rings of triazatruxene 8 with its all-carbon congener.

|               | · _ ·        |                                                  |
|---------------|--------------|--------------------------------------------------|
| Excited State | 1: Singlet-A | 2.5656 eV 483.25 nm f=0.1355 <s**2>=0.000</s**2> |
| 278 -> 280    | 2%           |                                                  |
| 278 -> 281    | 2%           |                                                  |
| 279 -> 280    | 87%          |                                                  |
| 279 -> 281    | 6%           |                                                  |
| Excited State | 2: Singlet-A | 2.5847 eV 479.69 nm f=0.1194 <s**2>=0.000</s**2> |
| 278 -> 280    | 7%           |                                                  |
| 279 -> 280    | 7%           |                                                  |
| 279 -> 281    | 81%          |                                                  |
| 279 -> 282    | 3%           |                                                  |
| Excited State | 3: Singlet-A | 2.6237 eV 472.56 nm f=0.3614 <s**2>=0.000</s**2> |
| 278 -> 280    | 67%          |                                                  |
| 278 -> 282    | 3%           |                                                  |
| 279 -> 281    | 3%           |                                                  |
| 279 -> 282    | 24%          |                                                  |
| Excited State | 4: Singlet-A | 2.6404 eV 469.56 nm f=0.2219 <s**2>=0.000</s**2> |
| 278 -> 281    | 75%          |                                                  |
| 278 -> 282    | 6%           |                                                  |
| 279 -> 282    | 14%          |                                                  |
| Excited State | 5: Singlet-A | 2.6725 eV 463.93 nm f=0.0970 <s**2>=0.000</s**2> |
| 278 -> 280    | 20%          |                                                  |
| 278 -> 281    | 14%          |                                                  |
| 279 -> 281    | 6%           |                                                  |
| 279 -> 282    | 57%          |                                                  |
| Excited State | 6: Singlet-A | 2.7205 eV 455.74 nm f=0.0049 <s**2>=0.000</s**2> |
| 278 -> 281    | 6%           |                                                  |
| 278 -> 282    | 88%          |                                                  |
| 279 -> 280    | 2%           |                                                  |
| Excited State | 7: Singlet-A | 3.1373 eV 395.20 nm f=0.0235 <s**2>=0.000</s**2> |
| 278 -> 283    | 9%           |                                                  |
| 278 -> 285    | 4%           |                                                  |
| 279 -> 283    | 16%          |                                                  |
| 279 -> 284    | 61%          |                                                  |

**Table S2.** TD-DFT calculated first-ten electron transitions of compound **8** in dichloromethane at B3LYP / 6-311+G(d,p) level.

| 279 -> 285    |     | 6%        |                                                  |
|---------------|-----|-----------|--------------------------------------------------|
| Excited State | 8:  | Singlet-A | 3.1508 eV 393.51 nm f=0.0643 <s**2>=0.000</s**2> |
| 278 -> 283    |     | 4%        |                                                  |
| 279 -> 283    |     | 54%       |                                                  |
| 279 -> 284    |     | 9%        |                                                  |
| 279 -> 285    |     | 31%       |                                                  |
| Excited State | 9:  | Singlet-A | 3.1651 eV 391.72 nm f=0.0255 <s**2>=0.000</s**2> |
| 278 -> 284    |     | 6%        |                                                  |
| 278 -> 285    |     | 7%        |                                                  |
| 279 -> 283    |     | 16%       |                                                  |
| 279 -> 284    |     | 13%       |                                                  |
| 279 -> 285    |     | 54%       |                                                  |
| Excited State | 10: | Singlet-A | 3.1994 eV 387.52 nm f=0.0333 <s**2>=0.000</s**2> |
| 278 -> 283    |     | 83%       |                                                  |
| 279 -> 283    |     | 9%        |                                                  |
| 279 -> 284    |     | 4%        |                                                  |

279 **HOMO,** 280 **LUMO** 

## Cartesian coordinates for theoretically optimized structures

| Ground st | ate 8 opt B3LYF | P/6-31G(d,p) Ir | naginary Frequency | 0 |  |
|-----------|-----------------|-----------------|--------------------|---|--|
| С         | 1.34788900      | -0.23364000     | -0.33204500        |   |  |
| С         | 0.48765800      | -1.34611600     | -0.07693900        |   |  |
| С         | -0.91873700     | -1.17748600     | 0.02629300         |   |  |
| С         | -1.43503100     | 0.14921800      | 0.10645800         |   |  |
| С         | -0.56897600     | 1.27467800      | 0.13119300         |   |  |
| С         | 0.80921700      | 1.07603100      | -0.18900700        |   |  |
| С         | -0.72587400     | 2.68938300      | 0.42154500         |   |  |
| С         | 0.53866000      | 3.27322700      | 0.17130900         |   |  |
| Ν         | 1.45891200      | 2.32605500      | -0.20441000        |   |  |
| С         | -2.07199700     | -2.06343300     | -0.02482300        |   |  |
| С         | -3.20892900     | -1.21653400     | 0.02062200         |   |  |
| Ν         | -2.84017900     | 0.10142100      | 0.10532000         |   |  |
| С         | 2.67077000      | -0.79570400     | -0.57107500        |   |  |
| С         | 2.55145100      | -2.18278300     | -0.30551600        |   |  |
| Ν         | 1.25564200      | -2.52256500     | -0.01504300        |   |  |

| С | 3,90060700  | -0.32697400 | -1.02519400 |
|---|-------------|-------------|-------------|
| C | 5.02284400  | -1.17274600 | -1.13432500 |
| С | 4.89641600  | -2.50626500 | -0.75308700 |
| С | 3.66579700  | -3.04205900 | -0.31855200 |
| С | -2.28106200 | -3.43098200 | -0.17613600 |
| С | -3.57718700 | -3.98154900 | -0.22287100 |
| С | -4.67132200 | -3.12131900 | -0.18435700 |
| С | -4.51761600 | -1.72147000 | -0.09427000 |
| С | -1.73701700 | 3.49397800  | 0.95438600  |
| С | -1.54560600 | 4.87221000  | 1.15187000  |
| С | -0.30311700 | 5.42659900  | 0.83512900  |
| С | 0.76587900  | 4.65168800  | 0.35156700  |
| С | -2.65599900 | 5.77468100  | 1.72949900  |
| С | -3.71682800 | -5.51359500 | -0.30926600 |
| С | -5.18264900 | -5.96522200 | -0.44395000 |
| С | -3.13144100 | -6.13870100 | 0.98069100  |
| С | -2.93461300 | -6.04615000 | -1.53419200 |
| С | -2.23908000 | 6.26826300  | 3.13490400  |
| С | -4.00067800 | 5.03204700  | 1.85011800  |
| С | -2.87864300 | 6.99581600  | 0.80592600  |
| С | 6.35349600  | -0.56422100 | -1.61808700 |
| С | 7.44381800  | -1.63008100 | -1.83508200 |
| С | 6.85733900  | 0.44108700  | -0.55351300 |
| С | 6.13815000  | 0.17699200  | -2.95949000 |
| С | 2.07086000  | 5.20524100  | 0.05060100  |
| С | 3.52714000  | -4.37947500 | 0.22096000  |
| С | -5.62467500 | -0.79697900 | -0.23551900 |
| С | 2.38784900  | 6.57403200  | 0.14270600  |
| С | 3.65096800  | 7.06919600  | -0.15909000 |
| С | 4.61696200  | 6.12913300  | -0.57255100 |
| С | 4.27498500  | 4.79880000  | -0.65671200 |
| Ν | 3.03997000  | 4.33757800  | -0.35520500 |
| С | -6.95884400 | -1.19097900 | -0.45415600 |
| С | -7.98363100 | -0.27426100 | -0.65836300 |

-

| С                | -7.62434200                                              | 1.08907000                                             | -0.65488300                                            |
|------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| С                | -6.31264900                                              | 1.44334400                                             | -0.43420500                                            |
| Ν                | -5.33580200                                              | 0.53615400                                             | -0.21173300                                            |
| С                | 4.60417900                                               | -5.26155100                                            | 0.42957300                                             |
| С                | 4.44461100                                               | -6.50273400                                            | 1.03541300                                             |
| С                | 3.14218400                                               | -6.83940800                                            | 1.45759600                                             |
| С                | 2.10812600                                               | -5.95783800                                            | 1.23629000                                             |
| Ν                | 2.28065100                                               | -4.76759600                                            | 0.62007600                                             |
| В                | 2.89179000                                               | 2.73187000                                             | -0.51148700                                            |
| В                | -3.90840600                                              | 1.18094300                                             | 0.19908100                                             |
| В                | 0.91430800                                               | -3.98010000                                            | 0.26251800                                             |
| F                | 3.25951600                                               | 2.47791700                                             | -1.83725300                                            |
| F                | 3.82394800                                               | 2.19433000                                             | 0.36960600                                             |
| F                | 0.07507500                                               | -4.15014700                                            | 1.35483300                                             |
| F                | 0.41594900                                               | -4.64875900                                            | -0.86237900                                            |
| F                | -4.09892800                                              | 1.63851400                                             | 1.50809800                                             |
| F                | -3.70703900                                              | 2.23745900                                             | -0.67530700                                            |
| Н                | 3.99869000                                               | 0.69793700                                             | -1.32768800                                            |
| Н                | 5.76153900                                               | -3.15437000                                            | -0.79887400                                            |
| Н                | -1.44284900                                              | -4.09264000                                            | -0.28316900                                            |
| Н                | -5.66885200                                              | -3.53494300                                            | -0.24701300                                            |
| Н                | -2.66750800                                              | 3.04560400                                             | 1.25041400                                             |
| Н                | -0.15237000                                              | 6.48774700                                             | 0.99367100                                             |
| Н                | -5.78625200                                              | -5.65877200                                            | 0.41737600                                             |
| Н                | -5.64966500                                              | -5.56628400                                            | -1.35130100                                            |
| Н                | -5.22937400                                              | -7.05753700                                            | -0.50280300                                            |
| Н                | -3.70353900                                              | -5.82231400                                            | 1.85964000                                             |
| Н                | -3.16617400                                              | -7.23357400                                            | 0.92820700                                             |
| Н                | -2.09321500                                              | -5.83328200                                            | 1.13586400                                             |
| Н                | -1.86887300                                              | -5.81190600                                            | -1.47487100                                            |
| Н                | -3.03411300                                              | -7.13599400                                            | -1.60058900                                            |
| Н                | -3.32280600                                              | -5.61404200                                            | -2.46274600                                            |
| Н                | -2.08865700                                              | 5.42381900                                             | 3.81508000                                             |
| Н                | -1.30499600                                              | 6.83879900                                             | 3.10174700                                             |
| Н<br>Н<br>Н<br>Н | -3.03411300<br>-3.32280600<br>-2.08865700<br>-1.30499600 | -7.13599400<br>-5.61404200<br>5.42381900<br>6.83879900 | -1.60058900<br>-2.46274600<br>3.81508000<br>3.10174700 |

-

| -3.01260700 | 6.91672800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.56312600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -4.32671700 | 4.64419500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.88041000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -3.95037400 | 4.18742400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.54225900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -4.76797200 | 5.72087400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.21988900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -3.16809100 | 6.67649300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.20041800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -1.98239100 | 7.61712800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.71385100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -3.67700100 | 7.63246800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.20417700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.13826800  | -2.37914800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.57383000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.70113300  | -2.14900500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.90530600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.35866900  | -1.15443900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.20351100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.08584300  | -0.07337400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.38628400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.10447100  | 1.20256400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.33395700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.77126600  | 0.94102000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.89696500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.77126600  | -0.50848900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.73075200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.41698400  | 0.99335000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.86778100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.08437000  | 0.60585300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.30972000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.60717100  | 7.25335900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.45529800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.62556800  | 6.42144100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.83039700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.98286500  | 4.04545900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.97613300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -7.17666200 | -2.24977000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.47127800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -8.35117400 | 1.87227800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.82095700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -5.98760600 | 2.47531100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.42633300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.58804800  | -4.93914400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11779600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.92649100  | -7.77568600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.95367500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.09225400  | -6.16958200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.54255400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.65279700  | -7.43163000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.23453400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.28128100  | -7.74929800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.14330000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.69761900  | -6.72192000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.12870400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.25791600  | -8.75978800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.90715100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.56250000  | -8.25222100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.79792300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.62494400  | -6.84578600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.65466300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.14559100  | -8.40977700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.01678300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.27805100  | -6.48180900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.11076200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.56466400  | -7.37361700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.27990800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | -3.01260700<br>-4.32671700<br>-3.95037400<br>-4.76797200<br>-3.16809100<br>-1.98239100<br>-3.67700100<br>7.13826800<br>7.70113300<br>8.35866900<br>7.08584300<br>6.10447100<br>7.77126600<br>5.77126600<br>5.77126600<br>5.41698400<br>7.08437000<br>1.60717100<br>5.62556800<br>4.98286500<br>-7.17666200<br>-8.35117400<br>5.62556800<br>4.98286500<br>-7.17666200<br>5.58804800<br>2.92649100<br>1.09225400<br>5.55279700<br>6.28128100<br>6.69761900<br>5.25791600<br>5.56250000<br>6.62494400<br>7.14559100<br>6.27805100 | -3.01260700 6.91672800   -4.32671700 4.64419500   -3.95037400 4.18742400   -4.76797200 5.72087400   -3.16809100 6.67649300   -1.98239100 7.61712800   -3.67700100 7.63246800   7.13826800 -2.37914800   7.70113300 -2.14900500   8.35866900 -1.15443900   7.08584300 -0.07337400   6.10447100 1.20256400   7.77126600 0.94102000   5.77126600 0.9335000   7.08437000 0.60585300   1.60717100 7.25335900   5.62556800 6.42144100   4.98286500 4.04545900   -7.17666200 -2.24977000   -8.35117400 1.87227800   -5.98760600 2.47531100   5.58804800 -4.93914400   2.92649100 -7.77568600   1.09225400 -6.16958200   5.65279700 -7.43163000   6.69761900 -6.72192000   5.25791600 -8.25222100 |

-

| Н | 7.05508200   | -5.79072800   | 1.68028800  |
|---|--------------|---------------|-------------|
| Н | 6.14504400   | -9.39008900   | 2.02041900  |
| Н | 4.83728000   | -8.60354500   | 2.90574700  |
| Н | 4.53074200   | -9.31960900   | 1.31016900  |
| С | 3.94532500   | 8.57311200 -  | -0.04275400 |
| С | 3.00643800   | 9.34890600 -  | -0.99745800 |
| С | 3.69340500   | 9.02896500    | 1.41442200  |
| С | 5.40223000   | 8.90887100 -  | -0.41288400 |
| Н | 3.16195100   | 9.04409100 -  | -2.03716500 |
| Н | 1.95221200   | 9.18788500 -  | -0.75520700 |
| Н | 3.20475500   | 10.42347900   | -0.92521700 |
| Н | 4.34432000   | 8.49398300    | 2.11314500  |
| Н | 3.89836800   | 10.10029000   | 1.51166400  |
| Н | 2.65830300   | 8.85892300    | 1.72364600  |
| Н | 5.56572900   | 9.98604000 -  | -0.31281300 |
| Н | 6.11762600   | 8.40549000    | 0.24545400  |
| Н | 5.63449500   | 8.63649800 -  | -1.44748900 |
| С | -9.42482100  | -0.75708400 - | -0.88664000 |
| С | -9.46968300  | -1.63939400 - | -2.15719100 |
| С | -9.88241700  | -1.58742600   | 0.33627800  |
| С | -10.40594200 | 0.41554900    | -1.07291100 |
| Н | -9.14721900  | -1.07713500 - | -3.03924000 |
| Н | -8.82655100  | -2.51929900 - | -2.06712700 |
| Н | -10.49212700 | -1.99013700   | -2.33307000 |
| Н | -9.85845000  | -0.98745100   | 1.25146300  |
| Н | -10.90895700 | -1.93838900   | 0.18688500  |
| Н | -9.25047500  | -2.46575400   | 0.49484900  |
| Н | -11.41706200 | 0.02578200    | -1.22397800 |
| Н | -10.43309000 | 1.06884400    | -0.19481400 |
| Η | -10.15505700 | 1.02384500    | -1.94788300 |

### 8. References

[S1] A. John, S. Kirschner, M. K. Fengel, M. Bolte, H.-W. Lerner, M. Wagner, *Dalton Trans.* **2019**, *48*, 1871-1877.

[S2] M. Peters, R. Breinbauer, Tetrahedron Lett. 2010, 51, 6622-6625.

[S3] L. Yang, Y. Ma, Y. Xu, G. Chang, Chem. Commun. 2019, 55, 11227-11230.

[S4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, **2016**.