AgTFA as a Bifunctional Reagent for Palladium-Catalyzed

Oxidative Carbonylative [4+1] Annulation of Aromatic acids

Zhuang-Zhuang Li,^a Wan-Di Li,^a Juan Fan,^a Jun-Ting Li,^a Zhong-Wen Liu^a and Xian-Ying Shi^{*a}

Table of contents

I.	General experimental details	S 2
II.	General experimental procedure for the reaction	S2
III.	Procedure for the synthesis of 3a on 1 mmol scale	S 2
IV.	The results of unactive substrates	S 3
V.	The recovery of silver	S 3
VI.	Mechanistic studies	S 4
VII.	Experimental characterization data for compounds	S 9
VIII	I. References	S 16
IX.	Copies of NMR spectra	S17

I. General experimental details

All reagents were obtained from commercial suppliers and utilized without further purification. All work-up and purification procedures were carried out with analytical reagent solvents. ¹H NMR spectra and ¹³C NMR spectra were recorded on a 400 MHz or 600 MHz spectrometer with tetramethylsilane (TMS) as internal standard at room temperature. Chemical shifts are given in δ relative to TMS, with the coupling constants *J* given in Hz. High-resolution mass spectra (HRMS) were detected by a Bruker Compass-Maxis instrument (ESI or APCI). Melting points were determined using WRX-4 without correction. X-ray diffraction (XRD) patterns were recorded on an X-ray diffractometer (Bruker D8 Advance) equipped with Cu-K α radiation (40 kV, 40 mA). The sample was scanned from the 2 θ of 30° to 100° with a rate of 0.2 s/step. Gas chromatography (GC) were recorded on a SHIMADZU GC-2010 Plus instrument equipped with a FID detector and a DB-5 column).

II. General experimental procedure for the reaction

An reaction vessel was charged with aromatic acids (0.1 mmol), CF_3CO_2Ag (90.2 mg, 0.4 mmol), $Pd(TFA)_2$ (3.5 mg, 10 mol%, 0.01 mmol), CH_3CN (0.5 mL). The reaction vessel was sealed under air. Then, the mixture was stirred at 150 °C for 24 h. After the reaction was completed, the resulting mixture was cooled to room temperature, diluted with EtOAc, and filtered via a short silica gel pad. The solution was concentrated under vacuum, and the residue was purified by a preparative TLC to afford the desired product.

III. Procedure for the synthesis of 3a on 1 mmol scale

An 10 mL Schlenk tube was charged with 2-methylbenzoic acid (139 mg, 1 mmol), CF₃CO₂Ag (902 mg, 4 mmol), Pd(TFA)₂ (35 mg, 10 mol%, 0.1 mmol), CH₃CN (3 mL). The reaction vessel was sealed under air. Then, the mixture was reacted at 150 $^{\circ}$ C (oil bath temperature) for 15 h. After the reaction was completed, the resulting mixture was cooled to room temperature, and concentrated to give a crude product, which is purified by silica-gel column chromatography using hexane/EtOAc/HOAc (5/1/0.05) to yield compound 3a (0.099 g, 61%).

IV. The results of unactive substrates

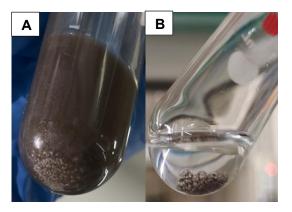
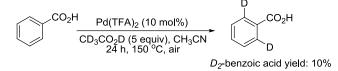
Table S1 The results of unactive substrates^a

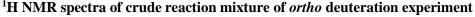
	$R \stackrel{II}{\sqcup} \qquad CO_{2}H + CF_{3}CO_{2}Ag \xrightarrow{Pd(TFA)_{2}} CH_{3}CN, 150 \ ^{\circ}C$ air	
Entry	Aromatic acids	Yield (%) ^[b]
1	4-chlorobenzoic acid	45
2	3-chlorobenzoic acid	33
3	4-bromobenzoic acid	20
4	2,4,5-trimethylbenzoic acid	46
5	2-methyl-4-methoxybenzoic acid	41
6	4-ethoxybenzoic acid	30
7	1-naphthoic acid	45
8	2-naphthoic acid	33
9	3-fluoro-2-methylbenzoic acid	42
10	4-fluoro-2-methylbenzoic acid	46
11	4-hydroxybenzoic acid	28
12	2-biphenylcarboxylic acid	49
13	2-phenoxybenzoic acid	ND
14	2-cyanobenzoic Acid	ND
15	2-nitrobenzoic acid	ND
16	4-tert-butylbenzoic acid	40
17	2-fluorobenzoic acid	23
18	2-bromobenzoic acid	ND
19	3-bromo-2-methylbenzoic acid	31
20	4-bromo-2-methylbenzoic acid	16
21	2-methyl-4-chlorobenzoic acid	45
22	3-(trifluoromethyl)benzoic acid	ND
23	3-chloro-4-methylbenzoic acid	22
24	2-acetylbenzoic acid	ND

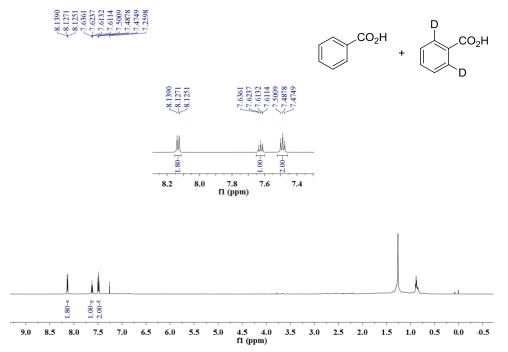
^{*a*} Reaction conditions: acids (0.1 mmol), CF₃CO₂Ag (0.4 mmol), Pd(TFA)₂ (10 mol%), CH₃CN (0.5 mL), 150 °C, 24 h, under air. ^{*b*} Determined by ¹H NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as internal standard.

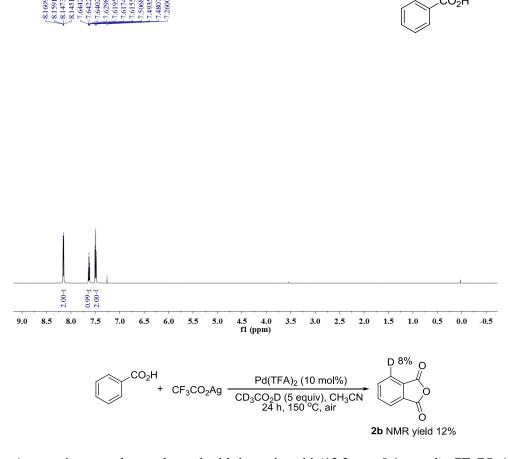
V. The recovery of silver

When the reaction was completed, bright silver particles shown as Figure S1A. were deposited on the bottom of the reaction tube. After the upper suspension was decanted, high purity silver can be acquired when the particles on the bottom was washed with ethyl acetate three times (Figure S1B).

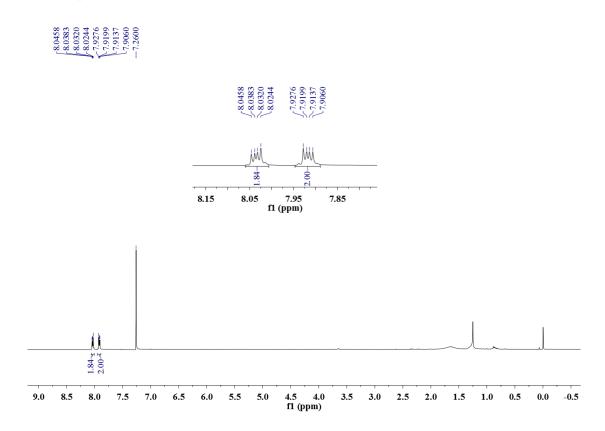



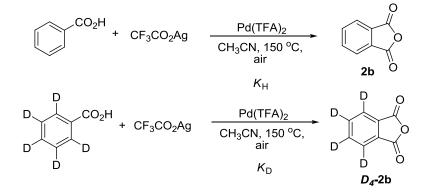

Figure S1 The picture after reaction.


VI. Mechanistic studies

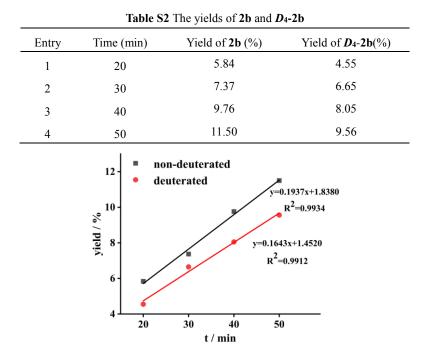

6.1 Ortho deuteration experiment

An reaction vessel was charged with benzoic acid (12.2 mg, 0.1 mmol), Pd(TFA)₂ (3.5 mg, 10 mol%, 0.01 mmol), CD₃CO₂D (0.5 mmol, 29 μ L), CH₃CN (0.5 mL), and sealed under air. Then, the mixture was stirred at 150 °C (oil bath temperature) for 24 h. After the reaction was completed, the resulting mixture was cooled to room temperature, diluted with EtOAc and filtered through a short silica gel pad. The solvent was removed under reduced pressure and the amount of *ortho*-deuterated benzoic acid was determined by integral area in ¹H NMR.

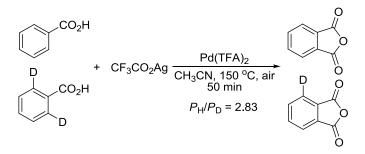


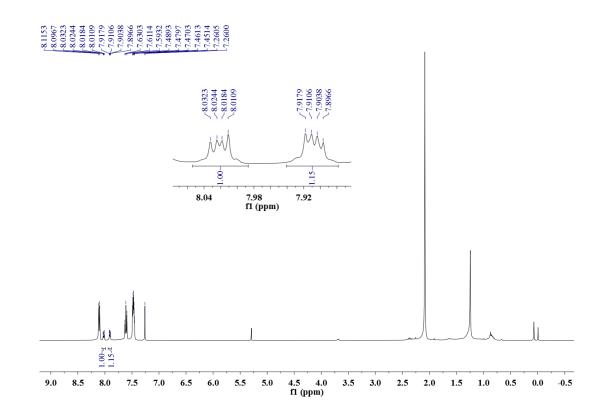

CO₂H

An reaction vessel was charged with benzoic acid (12.2 mg, 0.1 mmol), CF₃CO₂Ag (90.2 mg, 0.4 mmol), Pd(TFA)₂ (3.5 mg, 10 mol%, 0.01 mmol), CD₃CO₂D (0.5 mmol, 29 μ L), CH₃CN (0.5 mL), and sealed under air. The resulting mixture was stirred at 150 °C (oil bath temperature) for 24 h. After the reaction was completed, the mixture was cooled to room temperature, diluted with EtOAc and filtered through a short silica gel pad. The solvent was removed under reduced pressure, the yield of product 2b was determined by ¹H NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. The product 2b was purified by a preparative TLC using hexane/EtOAc/HOAc (100/1/0.05). The amount of *ortho*-deuterated 2b was determined by integral area in ¹H NMR.


¹H NMR spectra of *D*₁-2b and 2b

6.2 KIE experiment (parallel experiments)




Pd(TFA)₂ (3.5 mg, 0.01 mmol), benzoic acid (12.2 mg, 0.1 mmol), CF₃CO₂Ag (90.2 mg, 0.4 mmol), CH₃CN (0.5 mL) were successively added to a reaction vessel equipped with a stir bar. In another reaction vessel, benzoic acid was replaced by D_5 -benzoic acid (13.0 mg, 0.1 mmol). The vessel was sealed under air. The two reactions were stirred at 150 °C (oil bath temperature) for 20 min, 30 min, 40 min, and 50 min, respectively. Then the two reaction mixtures were filtered through a short silica gel pad. The solvent was then removed under reduced pressure. The KIE was determined by GC, and the yield of phthalic anhydride was determined by external standard method. Thus the KIE was found to be 1.18.

6.3 KIE experiment (intermolecular experiment)

Pd(TFA)₂ (3.5 mg, 0.01 mmol), benzoic acid (0.05 mmol, 6.1 mg), benzoic acid-2,5- d_2 (0.05 mmol, 6.2 mg), CF₃CO₂Ag (90.2 mg, 0.4 mmol), CH₃CN (0.5 mL) were successively added to a reaction vessel equipped with a stir bar. The vessel was sealed under air and stirred at 150 °C (oil bath temperature) for 6 h. Then the reaction mixture was filtered through a short column. The solvent was then removed under reduced pressure. The ratio of **2b**: *D*-**2b** = 2.83 was determined by ¹H NMR of crude reaction mixture using relative integral area.

6.4 TG analysis of AgTFA

The stability of AgTFA was investigated by thermogravimetric analysis on a Q1000DSC+LNCS+FACS Q600SDT thermal analyzer (USA). The detection was taken from 40 % to 390 % at a ramp of 10 % min⁻¹ under a constant flow of air.

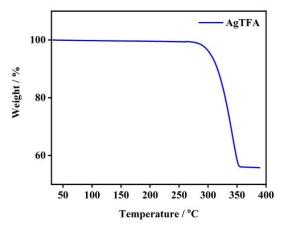


Figure S2 TG analysis of AgTFA.

6.5 Gas detection results of control experiments

The gas mixture was analyzed by gas chromatography (GC-7920, China Education Au-Light Technology Co., Ltd.) equipped with FID and TDX-01 column (injector temperature: 100 °C, column furnace temperature: 60 °C, FID temperature: 160 °C, Ar as carrier gas).

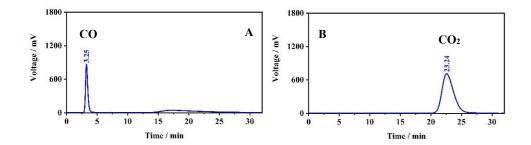


Figure S3 Retention time of CO (A) and CO₂ (B).

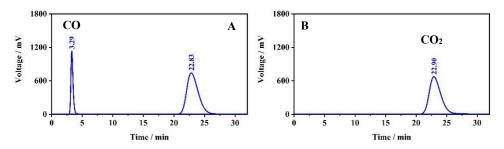


Figure S4 Gas analysis after reaction, reaction conditions: (A) CF₃CO₂Ag (0.4 mmol), Pd(TFA)₂ (0.01 mmol), CH₃CN (0.5 mL), 150 °C, 24 h, under Ar; (B) 2-methylbenzoic acid (0.1 m mol), CF₃CO₂Ag (0.4 mmol), Pd(TFA)₂ (0.01 mmol), CH₃CN (0.5 mL), 150 °C, 24 h, under Ar.



Figure S5 Gas analysis after reaction, reaction conditions: (A) CF₃CO₂Ag (0.4 mmol), CH₃CN (0.5 mL), 150 °C, 24 h, under Ar; (B) 2,2,6,6-tetramethylpiperidine-*N*-oxyl (0.2 mmol), CF₃CO₂Ag (0.4 mmol), CH₃CN (0.5 mL), 150 °C, 24 h, under Ar.

VII. Experimental characterization data for compounds

4-methylisobenzofuran-1,3-dione (2a)¹

11.3 mg, 70% (isolated yield), white solid, mp 129.9-130.9 °C, $R_f = 0.40$ (hexane/EtOAc/HOAc = 5/1/0.05). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.84 (d, J = 7.4 Hz, 1H), 7.76 (t, J = 7.5 Hz, 1H), 7.66 (d, J = 7.5 Hz, 1H), 2.74 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 163.1, 162.9, 140.5, 137.9, 135.7, 131.6, 128.5, 123.3, 17.7. HRMS (ESI) m/z calculated for C₉H₇O₃ [M+H]⁺ 163.0390, found: 163.0389.

isobenzofuran-1,3-dione (2b)²

8.9 mg, 60% (isolated yield), white solid, mp 130.3-131.9 °C, $R_f = 0.07$ (hexane/EtOAc/HOAc = 100/1/0.05). ¹H NMR (600 MHz, D_6 -DMSO): δ [ppm] = 8.09 (dd, J = 5.6, 3.1 Hz, 2H), 8.01 (dd, J = 5.6, 3.0 Hz, 2H). ¹³C{¹H} NMR (150 MHz, D_6 -DMSO): δ [ppm] = 163.3, 136.2, 131.2, 125.4. HRMS (ESI) m/z calculated for C₈H₅O₃ [M+H]⁺ 149.0233, found: 149.0238.

4-ethylisobenzofuran-1,3-dione (2c)³

11.1 mg, 63% (isolated yield), white solid, mp 99.1-100.0 °C, $R_f = 0.03$ (hexane/EtOAc/HOAc = 50/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.85 (d, J = 7.4 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 3.14 (q, J = 7.6 Hz, 2H), 1.32 (t, J = 7.6 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 163.0, 162.9, 146.8, 136.3, 135.9, 131.8, 127.9, 123.3, 24.7, 14.6. HRMS (ESI) m/z calculated for C₁₀H₉O₃ [M+H]⁺ 177.0546, found: 177.0546.

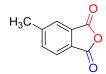
4-isopropylisobenzofuran-1,3-dione (2d)⁴

12.5 mg, 66% (isolated yield), white solid, mp 68.7-69.0 °C, $R_f = 0.54$ (hexane/EtOAc/HOAc = 4/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.86 – 7.78 (m, 3H), 4.10 – 3.84 (m, 1H), 1.34 (s, 3H), 1.33 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 163.0, 162.9, 151.6, 136.2, 133.3, 131.6, 127.1, 123.1, 28.5, 22.7. HRMS (ESI) m/z calculated for C₁₁H₁₁O₃ [M+H]⁺ 191.0703, found: 191.0699.

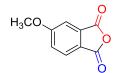
4-benzylisobenzofuran-1,3-dione (2e)⁵

16.7 mg, 70% (isolated yield), white solid, mp 176.5-177.0 °C, $R_f = 0.17$ (hexane/EtOAc/HOAc = 100/1/1). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.86 (d, J = 7.4 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.25 (d, J = 18.3 Hz, 3H), 4.49 (s, 2H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 163.1, 162.8, 143.5, 138.2, 137.3, 136.0, 131.7, 129.1, 128.9, 128.0, 126.9, 123.7, 36.7. HRMS (APCI) m/z calculated for C₁₅H₁₁O₃ [M+H]⁺ 239.0703, found: 239.0704.

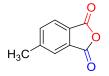
4-phenethylisobenzofuran-1,3-dione (2f)⁶


14.1 mg, 56% (isolated yield), white solid, mp 175.3-176.2 °C, $R_f = 0.17$ (hexane/EtOAc/HOAc = 100/1/1). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.86 (d, J = 7.4 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.28 (t, J = 7.4 Hz, 2H), 7.24 – 7.17 (m, 3H), 3.40 (t, 2H), 2.98 (t, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 162.9, 162.8, 144.1, 140.2, 137.2, 135.7, 131.8, 128.5, 128.5, 128.2, 126.4, 123.6, 36.8, 33.6. HRMS (APCI) m/z calculated for C₁₆H₁₃O₃ [M+H]⁺ 253.0859, found: 253.0858.

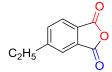
4-chloroisobenzofuran-1,3-dione (2g)⁷


9.1 mg, 50% (isolated yield), yellow solid, mp 145.9-146.3 °C, $R_f = 0.14$ (hexane/EtOAc/HOAc = 30/1/1). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.94 (t, J = 4.2 Hz, 1H), 7.84 (d, J = 4.1 Hz, 2H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 161.3, 159.8, 137.4, 137.0, 133.7, 133.2, 127.6, 124.1. HRMS (APCI) m/z calculated for C₈H₄ClO₃ [M+H]⁺ 182.9843, found: 182.9845.

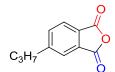
5-methylisobenzofuran-1,3-dione (2h)⁸


8.1 mg, 50% (isolated yield), white solid, mp 109.7-110.4 °C, $R_f = 0.19$ (hexane/EtOAc/HOAc = 10/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.88 (d, J = 7.1 Hz, 1H), 7.79 (s, 1H), 7.70 (d, J = 6.8 Hz, 1H), 2.58 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 162.9, 162.7, 148.0, 136.9, 131.7, 128.6, 125.9, 125.5, 22.1. HRMS (ESI) m/z calculated for C₉H₇O₃ [M+H]⁺ 163.0390, found: 163.0398.

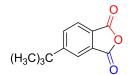
5-methoxyisobenzofuran-1,3-dione (2i)⁹


10.0 mg, 56% (isolated yield), white solid, mp 99.9-100.7 °C, $R_f = 0.31$ (hexane/EtOAc/HOAc = 5/1/0.05). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.90 (d, J = 8.5 Hz, 1H), 7.41 (d, J = 1.9 Hz, 1H), 7.35 (dd, J = 8.4, 2.0 Hz, 1H), 3.98 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 166.1, 163.0, 162.4, 134.1, 127.3, 123.2, 122.9, 108.9, 56.4. HRMS (ESI) m/z calculated for C₉H₇O₄ [M+H]⁺ 179.0339, found: 179.0336.

5-methylisobenzofuran-1,3-dione (2j)⁸


8.9 mg, 55% (isolated yield), white solid, mp 109.7-110.4 °C, $R_f = 0.19$ (hexane/EtOAc/HOAc = 10/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.88 (d, J = 7.1 Hz, 1H), 7.79 (s, 1H), 7.70 (d, J = 6.8 Hz, 1H), 2.58 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 162.9, 162.7, 147.9, 136.9, 131.7, 128.6, 125.9, 125.5, 22.1. HRMS (ESI) m/z calculated for C₉H₇O₃ [M+H]⁺ 163.0390, found: 163.0398.

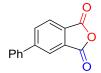
5-ethylisobenzofuran-1,3-dione (2k)¹⁰


10.7 mg, 61% (isolated yield), white solid, mp 83.5-84.2 °C, $R_f = 0.20$ (hexane/EtOAc/HOAc = 10/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.91 (d, J = 7.8 Hz, 1H), 7.83 (s, 1H), 7.72 (d, J = 7.8 Hz, 1H), 2.87 (q, J = 7.6 Hz, 2H), 1.33 (t, J = 7.6 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 163.1, 162.8, 154.1, 135.9, 131.8, 128.9, 125.6, 124.8, 29.3, 15.0. HRMS (ESI) m/z calculated for C₁₀H₉O₃ [M+H]⁺ 177.0546, found: 177.0546.

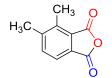
5-propylisobenzofuran-1,3-dione (2l)

11.4 mg, 60% (isolated yield), white solid, mp 129.8-130.5 °C, $R_f = 0.06$ (hexane/EtOAc/HOAc = 4/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.91 (d, J = 7.8 Hz, 1H), 7.81 (s, 1H), 7.69 (d, J = 7.8 Hz, 1H), 2.80 (t, J = 7.6 Hz, 2H), 1.77 – 1.67 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 163.1, 162.8, 152.6, 136.4, 131.7, 128.9, 125.6, 125.3, 38.2, 24.2, 13.6. HRMS (ESI) m/z calculated for C₁₁H₁₁O₃ [M+H]⁺ 191.0703, found: 191.0700.

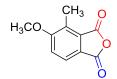
5-(tert-butyl)isobenzofuran-1,3-dione (2m)¹¹


12.9 mg, 63% (isolated yield), colourless liquid, $R_f = 0.06$ (hexane/EtOAc/HOAc = 4/1/0.05). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 8.02 (s, 1H), 7.93 (s, 2H), 1.40 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = δ 163.4, 162.8, 161.2, 133.5, 131.5, 128.5, 125.4, 122.6, 36.0, 31.0.

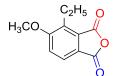
5-methoxyisobenzofuran-1,3-dione (2n)⁹


9.1 mg, 51% (isolated yield), white solid, mp 99.9-100.7 °C, $R_f = 0.31$ (hexane/EtOAc/HOAc = 5/1/0.05). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.90 (d, J = 8.5 Hz, 1H), 7.41 (d, J = 1.9 Hz, 1H), 7.35 (dd, J = 8.4, 2.0 Hz, 1H), 3.98 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 166.1, 163.0, 162.4, 134.1, 127.3, 123.2, 122.9, 108.9, 56.4. HRMS (ESI) m/z calculated for C₉H₇O₄ [M+H]⁺ 179.0339, found: 179.0336.

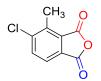
5-phenylisobenzofuran-1,3-dione (20)¹²


12.1 mg, 54% (isolated yield), white solid, mp 161.9-162.6 °C, $R_f = 0.34$ (hexane/CH₂Cl₂/HOAc = 2/1/0.05). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 8.20 (s, 1H), 8.09 (q, J = 7.9 Hz, 2H), 7.65 (d, J = 7.1 Hz, 2H), 7.58 – 7.46 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 162.9, 162.7, 149.7, 138.1, 134.7, 132.2, 129.6, 129.5, 129.4, 127.5, 126.1, 124.0. HRMS (ESI) m/z calculated for C₁₄H₉O₃ [M+H]⁺ 225.0546, found: 225.0547.

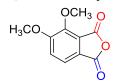
4,5-dimethylisobenzofuran-1,3-dione (2p)¹³


12.3 mg, 70% (isolated yield), white solid, mp 119.7-120.5 °C, $R_f = 0.16$ (hexane/EtOAc/HOAc = 50/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.73 (d, J = 7.6 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 2.66 (s, 3H), 2.46 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 163.6, 162.9, 147.2, 139.3, 136.9, 129.2, 128.6, 122.9, 20.1, 14.2. HRMS (ESI) m/z calculated for C₁₀H₉O₃ [M+H]⁺ 177.0546, found: 177.0550.

5-methoxy-4-methylisobenzofuran-1,3-dione (2q)¹⁴


11.3 mg, 59% (isolated yield), white solid, mp 128.2-129.0 °C, $R_f = 0.06$ (hexane/EtOAc/HOAc = 100/1/0. 5). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.82 (d, J = 8.3 Hz, 1H), 7.21 (d, J = 8.3 Hz, 1H), 3.99 (s, 3H), 2.55 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 164.1, 163.3, 162.7, 129.9, 129.6, 125.1, 122.2, 115.8, 56.6, 10.8. HRMS (ESI) m/z calculated for C₁₀H₉O₄ [M+H]⁺ 193.0495, found: 193.0496.

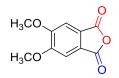
4-ethyl-5-methoxyisobenzofuran-1,3-dione (2r)


12.8 mg, 62% (isolated yield), yellow solid, mp 118.2-119.0 °C, $R_f = 0.09$ (hexane/EtOAc/HOAc = 100/1/0.5). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.82 (d, J = 8.4 Hz, 1H), 7.23 (d, J = 8.3 Hz, 1H), 3.99 (s, 3H), 3.09 (q, J = 7.5 Hz, 2H), 1.18 (t, J = 7.5 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 163.7, 163.0, 162.7, 135.7, 129.4, 125.2, 122.4, 116.3, 56.6, 18.4, 13.7. HRMS (APCI) m/z calculated for C₁₁H₁₁O₄ [M+H]⁺ 207.0652, found: 207.0649.

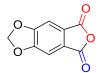
5-chloro-4-methylisobenzofuran-1,3-dione (2s)

12.9 mg, 66% (isolated yield), white solid, mp 129.7-130.4 °C, $R_f = 0.46$ (hexane/CH₂Cl₂/HOAc = 2/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.85 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 2.78 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 162.2, 161.8, 143.8, 138.8, 136.4, 130.0, 129.6, 123.8, 14.8. HRMS (APCI) m/z calculated for C₉H₆ClO₃ [M+H]⁺ 197.0000, found: 197.0001.

4,5-dimethoxyisobenzofuran-1,3-dione (2t)¹⁵


11.4 mg, 55% (isolated yield), yellow solid, mp 170.0-170.9 °C, $R_f = 0.09$ (hexane/EtOAc/HOAc = 50/1/1). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.68 (d, J = 8.2 Hz, 1H), 7.28 (d, J = 8.2 Hz, 1H), 4.22 (s, 3H), 4.00 (s, 3H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 162.4, 160.7, 158.6, 148.6, 123.1, 121.5, 120.5, 118.2, 62.7, 56.9. HRMS (ESI) m/z calculated for C₁₀H₉O₅ [M+H]⁺ 209.0444, found: 209.0449.

4,6-dimethylisobenzofuran-1,3-dione (2u)¹⁶


9.7 mg, 55% (isolated yield), white solid, mp 129.8-130.6 °C, $R_f = 0.19$ (hexane/EtOAc/HOAc = 50/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.61 (s, 1H), 7.44 (s, 1H), 2.67 (s, 3H), 2.52 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 163.3, 163.1, 147.5, 140.1, 138.6, 132.0, 125.9, 123.7, 22.0, 17.6. HRMS (ESI) m/z calculated for C₁₀H₉O₃ [M+H]⁺ 177.0546, found: 177.0542.

5,6-dimethoxyisobenzofuran-1,3-dione (2v)¹⁵


12.3 mg, 59% (isolated yield), white solid, mp 193.3-194.5 °C, $R_f = 0.07$ (hexane/EtOAc/HOAc = 50/1/1). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.36 (s, 2H), 4.03 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 163.1, 155.8, 124.9, 106.1, 56.9. HRMS (ESI) m/z calculated for C₁₀H₉O₅ [M+H]⁺ 209.0444, found: 209.0444.

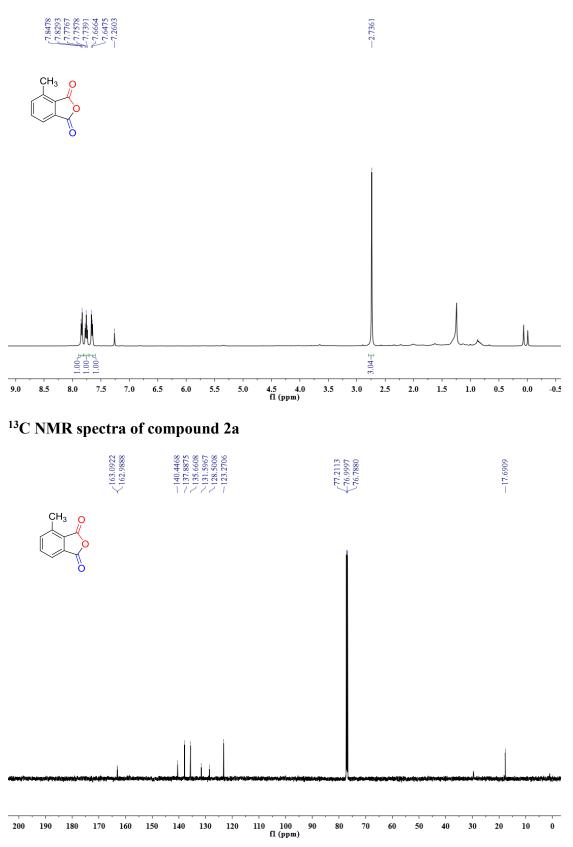
[1,3]dioxolo[4,5-f]isobenzofuran-5,7-dione (2w)¹⁷

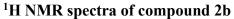
15.4 mg, 80% (isolated yield), white solid, mp 186.3-187.1 °C, $R_f = 0.12$ (hexane/EtOAc/HOAc = 50/1/0.5). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.28 (s, 2H), 6.26 (s, 2H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 162.3, 154.7, 127.1, 104.7, 103.9. HRMS (ESI) m/z calculated for C₉H₅O₅ [M+H]⁺ 193.0131, found: 193.0126.

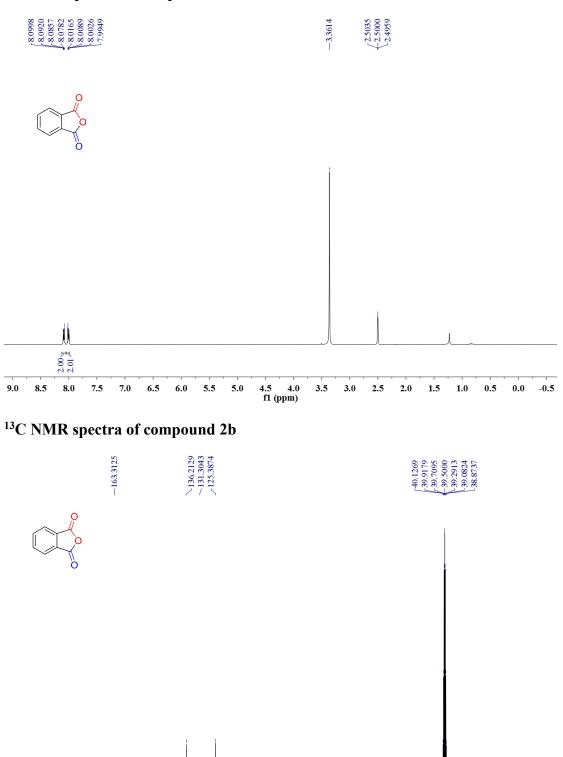
4,6-dimethylisobenzofuran-1,3-dione (2x)¹⁶

9.9 mg, 56% (isolated yield), white solid, mp 129.8-130.6 °C, $R_f = 0.19$ (hexane/EtOAc/HOAc = 50/1/0.05). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.61 (s, 1H), 7.44 (s, 1H), 2.67 (s, 3H), 2.52 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 163.3, 163.1, 147.5, 140.1, 138.6, 131.9, 125.9, 123.7, 22.0, 17.6. HRMS (ESI) m/z calculated for C₁₀H₉O₃ [M+H]⁺ 177.0546, found: 177.0542.

4,7-dimethylisobenzofuran-1,3-dione (2y)¹⁸

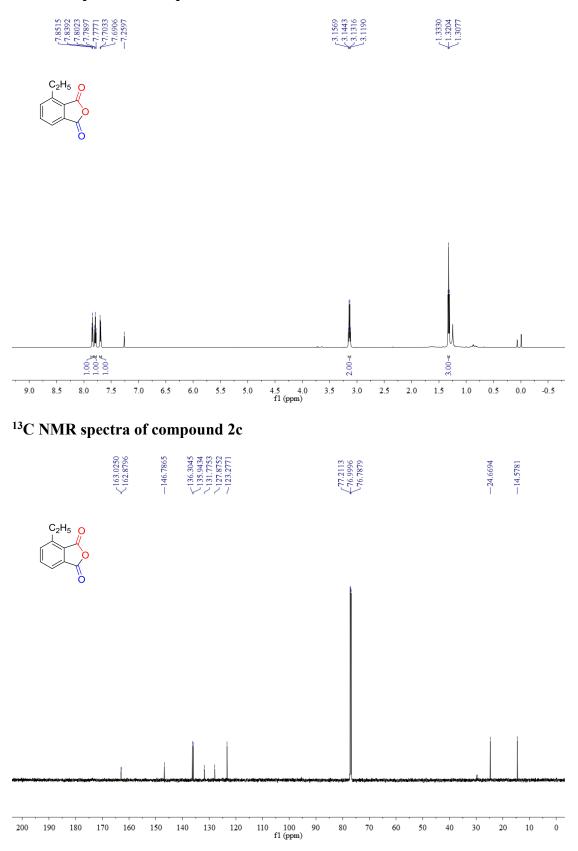

10.2 mg, 58% (isolated yield), white solid, mp 163.6-164.4 °C, $R_f = 0.23$ (hexane/EtOAc/HOAc = 50/1/0.05). ¹H NMR (400 MHz, CDCl₃): δ [ppm] = 7.50 (s, 2H), 2.67 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 163.3, 137.8, 137.7, 128.5, 17.4. HRMS (ESI) m/z calculated for C₁₀H₉O₃ [M+H]⁺ 177.0546, found: 177.0548.

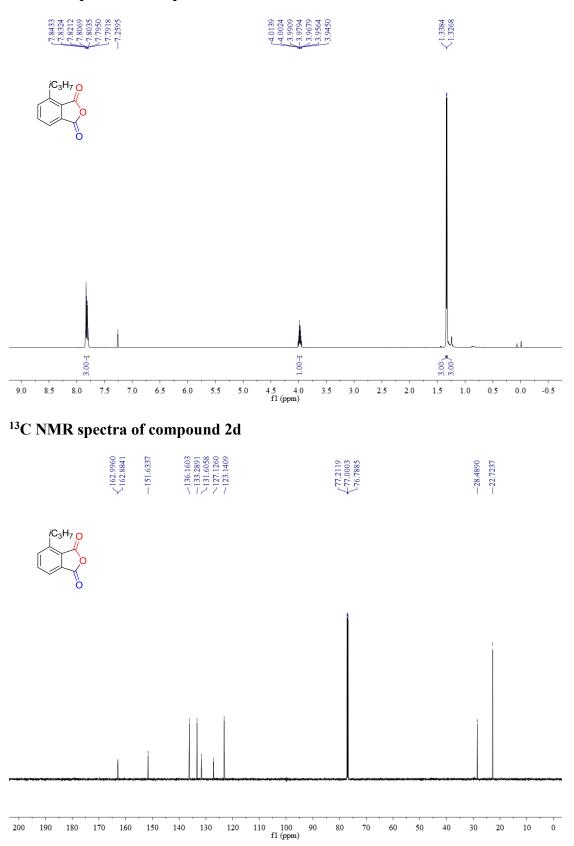

VIII. References


- 1 R. Giri and J. Q. Yu, Synthesis of 1,2- and 1,3-dicarboxylic acids via Pd(II)-catalyzed carboxylation of aryl and vinyl C-H bonds, *J. Am. Chem. Soc.*, 2008, **130**, 14082.
- 2 Y. Zhang, J. Jiao and R. A. Flowers, Mild conversion of β -diketone and β -ketoesters to carboxylic acids, *J. Org. Chem.*, 2006, **71**, 4516.
- 3 K. Ghosh, R. Karmakar and D. Mal, Total synthesis of neo-tanshinlactones through a cascade benzannulation-lactonization as the key step, *Eur. J. Org. Chem.*, 2013, **2013**, 4037.
- 4 R. B. Brundrett and E. H. White, Synthesis and chemiluminescence of derivatives of luminol and isoluminol, *J. Am. Chem. Soc.*, 1974, **96**, 7497.
- 5 L. Mavoungou-Gomes, Naphtho[2,3-b]furans, *Comptes Rendus des Seances de l'Academie des Sciences, Serie C: Sciences Chimiques*, 1970, **270**, 750.
- L. Mavoungou-Gomes, Synthesis of new heterocyclic systems. Derivatives of 5-H-dibenzo[a, d]cycloheptene, Comptes Rendus des Seances de l'Academie des Sciences, Serie C: Sciences Chimiques, 1972, 274, 73.
- 7 C. Soucy, The regioselectivity of metal hydride reductions of 3-substituted phthalic anhydrides, J. Org. Chem., 1987, 52, 129.
- 8 P. Nandhikonda and M. D. Heagy, Dual fluorescent N-aryl-2,3-naphthalimides: applications in ratiometric DNA detection and white organic light-emitting devices, *Org. Lett.*, 2010, **12**, 4796.
- 9 T. K. Kim, J. E. Kim, U. J. Youn, S. J. Han, I. C. Kim, C. G. Cho and J. H. Yim, Total syntheses of lobaric acid and its derivatives from the antarctic lichen stereocaulon alpinum, *J. Nat. Prod.*, 2018, **81**, 1460.
- 10 A. C. Estrada, M. M. Q. Simões, I. C. M. S. Santos, M. G. P. M. S. Neves, J. A. S. Cavaleiro and A. M. V. Cavaleiro, Oxidation of polycyclic aromatic hydrocarbons with hydrogen peroxide in the presence of transition metal mono-substituted Keggin-Type polyoxometalates, *ChemCatChem*, 2011, **3**, 771.
- 11 K. J. Liu, Y. L. Fu, L. Y. Xie, C. Wu, W. B. He, S. Peng, Z. Wang, W. H. Bao, Z. Cao, X. H. Xu and W. M. He, Green and efficient: oxidation of aldehydes to carboxylic acids and acid anhydrides with air, *ACS Sustainable Chem. Eng.*, 2018, **6**, 4916.
- 12 V. Georgian and J. Lepe M., Alicyclic syntheses. I. The Diels-Alder reaction of 2-phenyl-butadiene with citraconic anhydride and 5-p-tolylthiotoluquinone, *J. Org. Chem.*, 1964, **29**, 40.
- 13 Q. Liao, Q. Kang, Y. Yang, C. An, B. Xu and J. Hou, Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells, *Adv. Mater.*, 2020, **32**, 1906557.
- 14 W. Metlesics, Dimerization of 2-methyl-o-quinol acetate, Monatsh. Chem., 1957, 88, 108.
- 15 N. Kise, S. Yamamoto and T. Sakurai, Electroreductive coupling of phthalic anhydrides with α,β -unsaturated carbonyl compounds: synthesis of 1,4-dihydroxynaphthalenes, *J. Org. Chem.*, 2020, **85**, 13973.
- 16 P. Y. Blanc, Some diene enol esters and their application in a general synthesis of substituted phthalic anhydrides, *Helv. Chim. Acta*, 1961, **44**, 1.
- 17 W. Reeve, The synthesis of hydrastic acid, J. Am. Chem. Soc., 1951, 73, 1371.
- 18 B. A. Abel, C. A. L. Lidston and G. W. Coates, Mechanism-inspired design of bifunctional catalysts for the alternating ring-opening copolymerization of epoxides and cyclic anhydrides, *J. Am. Chem. Soc.*, 2019, **141**, 12760.

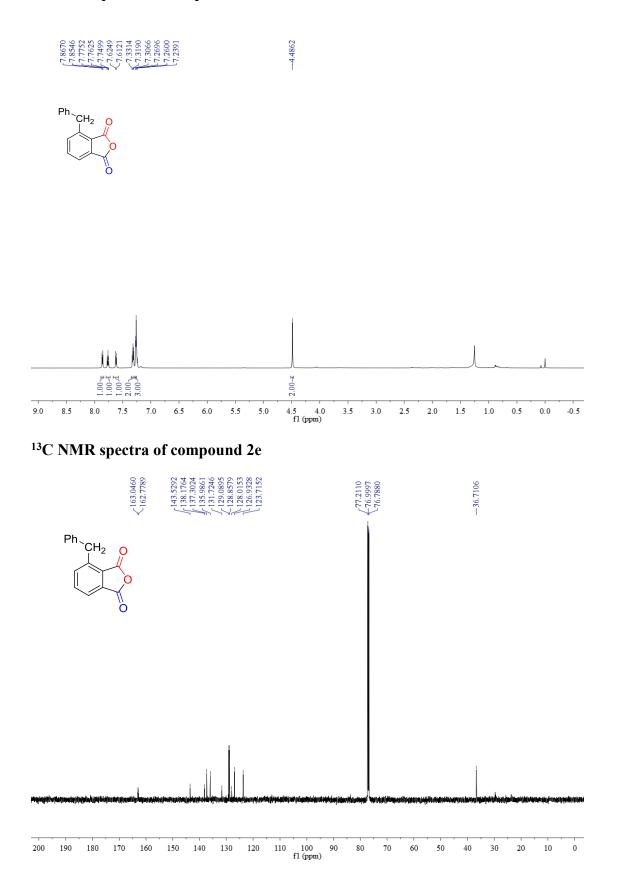
IX. Copies of NMR spectra

¹H NMR spectra of compound 2a

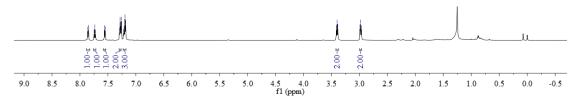




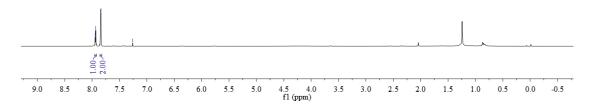
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)


¹H NMR spectra of compound 2c

¹H NMR spectra of compound 2d

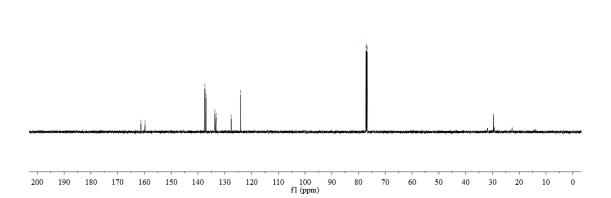

¹H NMR spectra of compound 2e

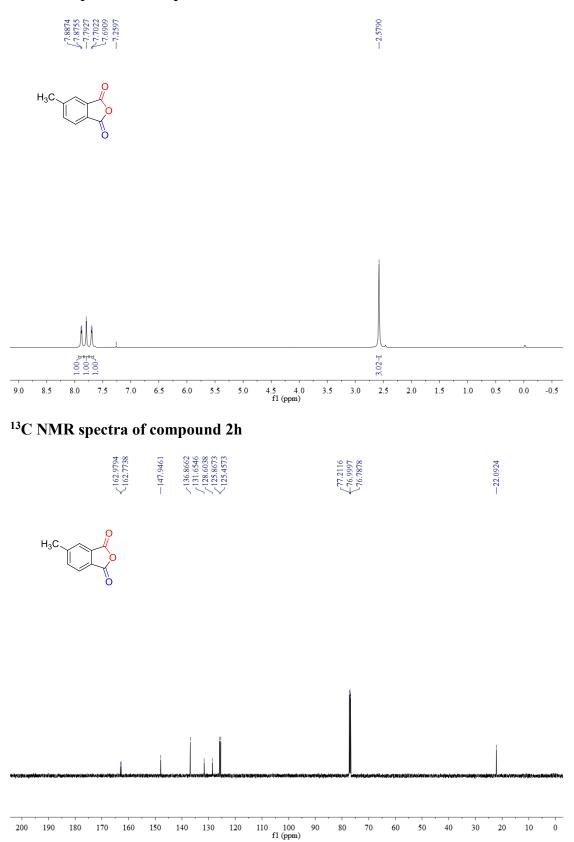
¹H NMR spectra of compound 2f


¹³C NMR spectra of compound 2f

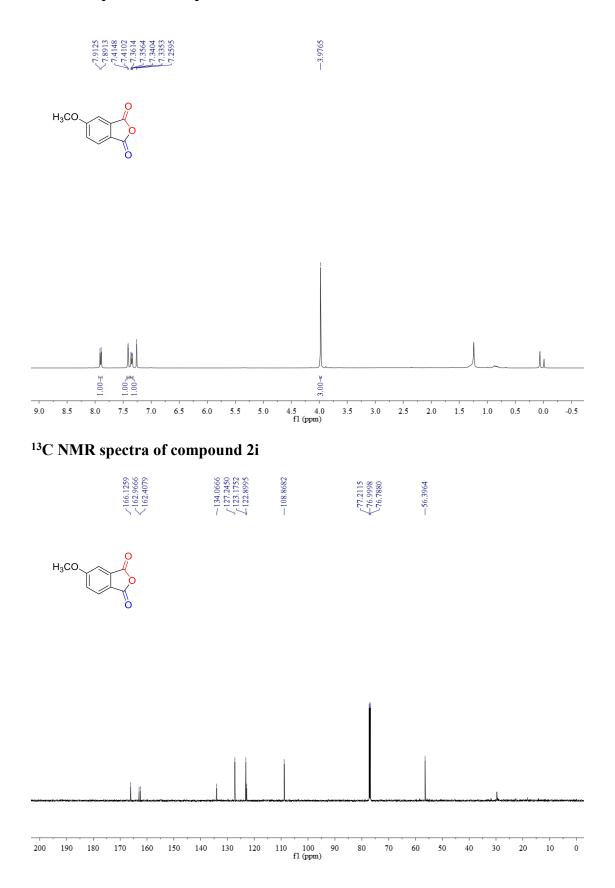
	≺162.9346 ≺162.8591	$\int_{123,127}^{144,1272} \int_{137,2379}^{140,1766} \int_{133,17656}^{133,17656} \int_{128,5078}^{133,17656} \int_{128,6278}^{123,6264} \int_{123,6264}^{123,6264}$	77.3172 76.6996 76.6818		
Ph H ₂ C CH ₂	0				
			i		
1919-19-19-19-19-19-19-19-19-19-19-19-19	filden ber selver er ber filter		14744 JAN18-12444 Arrel 1244 (Jan18)		will before and the sector
<u> </u>	· · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · ·	
200 190 180	170 160	150 140 130 120 110 f1	100 90 80 70 60 (ppm)	50 40 30 20 1	0 0

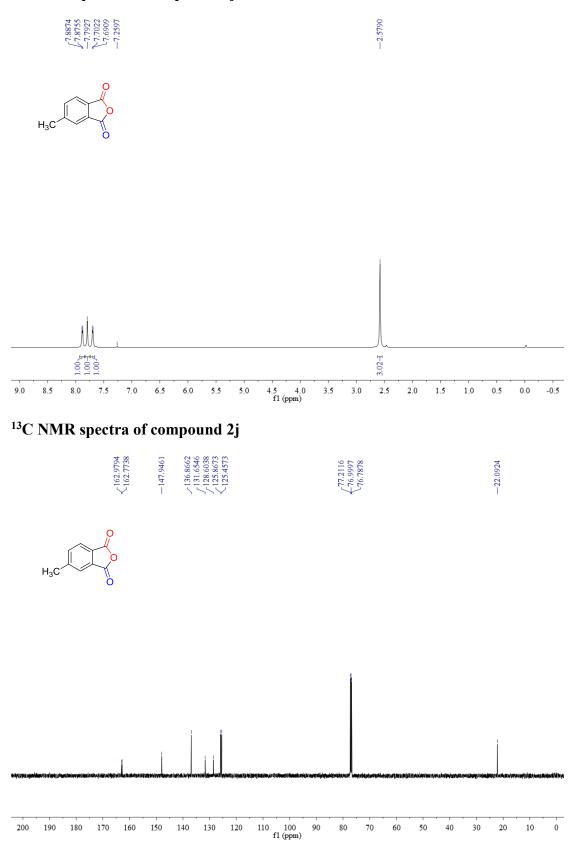
¹H NMR spectra of compound 2g

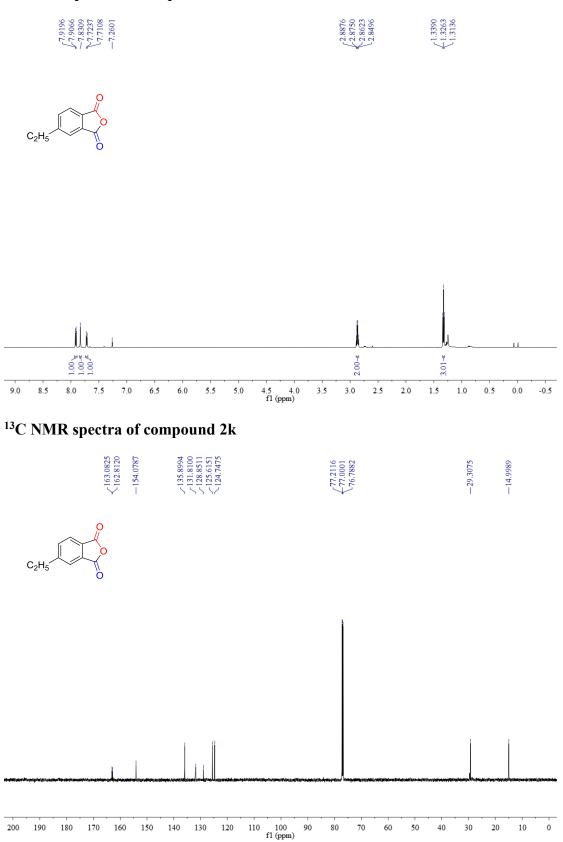


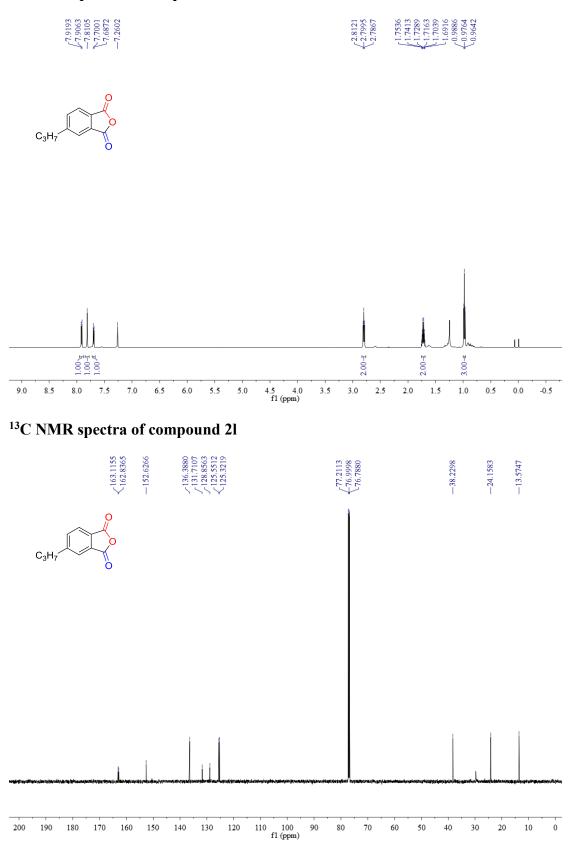

 $\underbrace{ \begin{array}{c} 77.2115 \\ 76.9999 \\ 76.7881 \end{array} }$

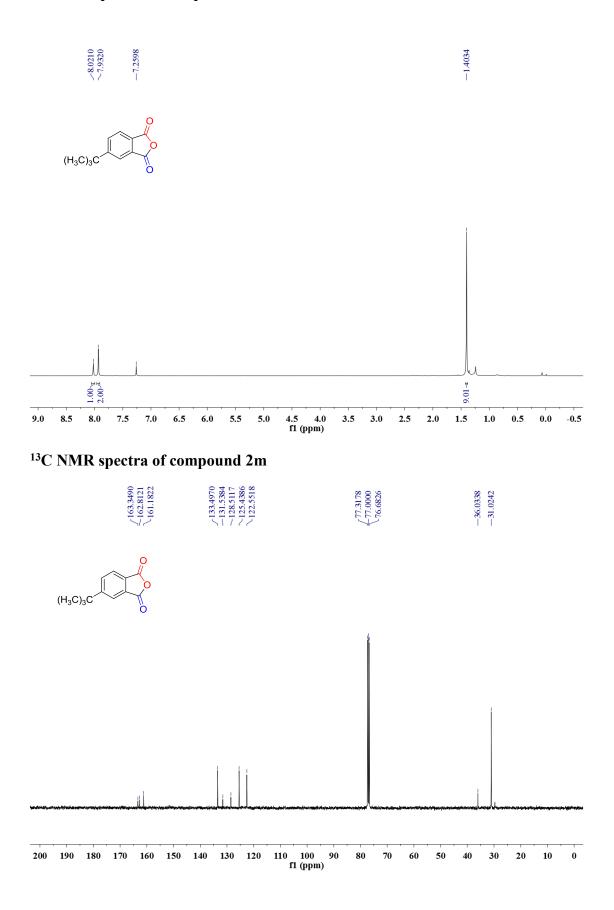
¹³C NMR spectra of compound 2g

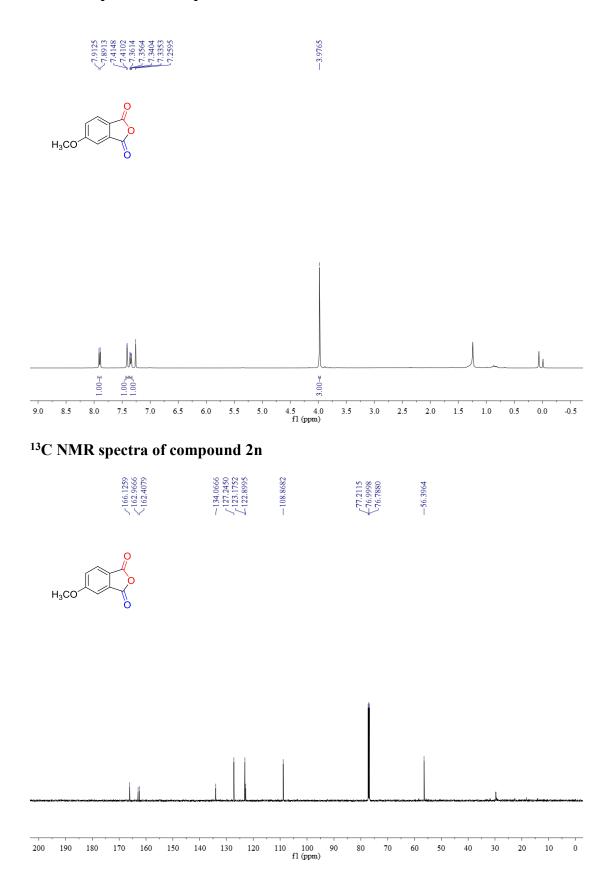



¹H NMR spectra of compound 2h

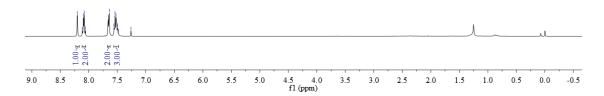

¹H NMR spectra of compound 2i

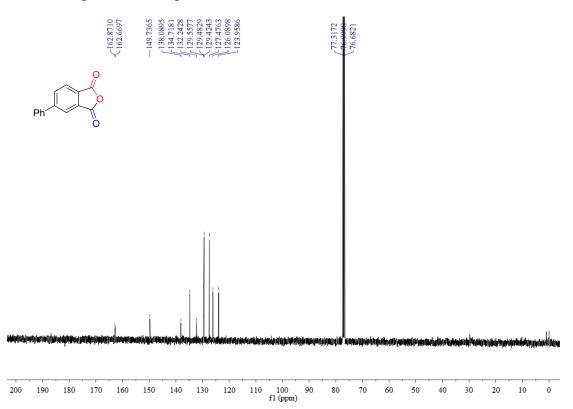

¹H NMR spectra of compound 2j


¹H NMR spectra of compound 2k

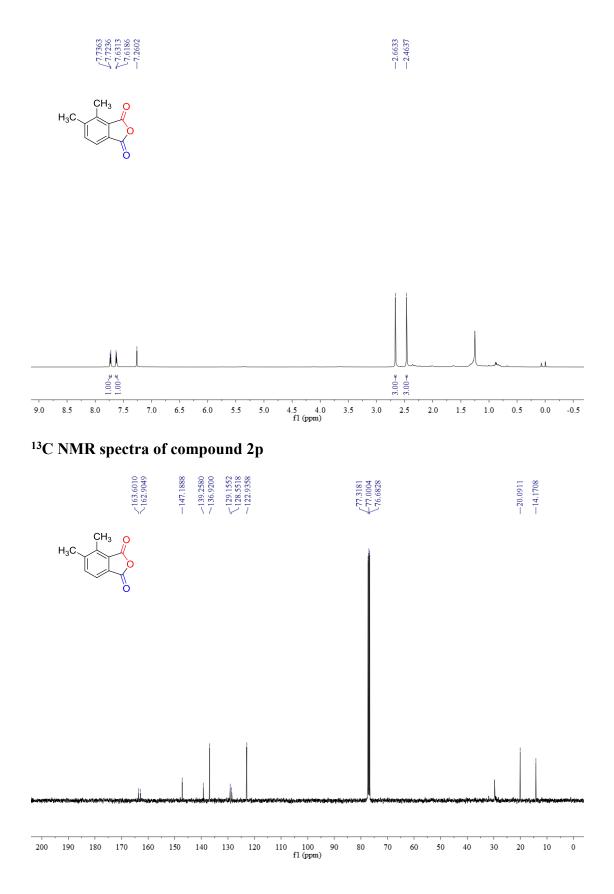

¹H NMR spectra of compound 2l

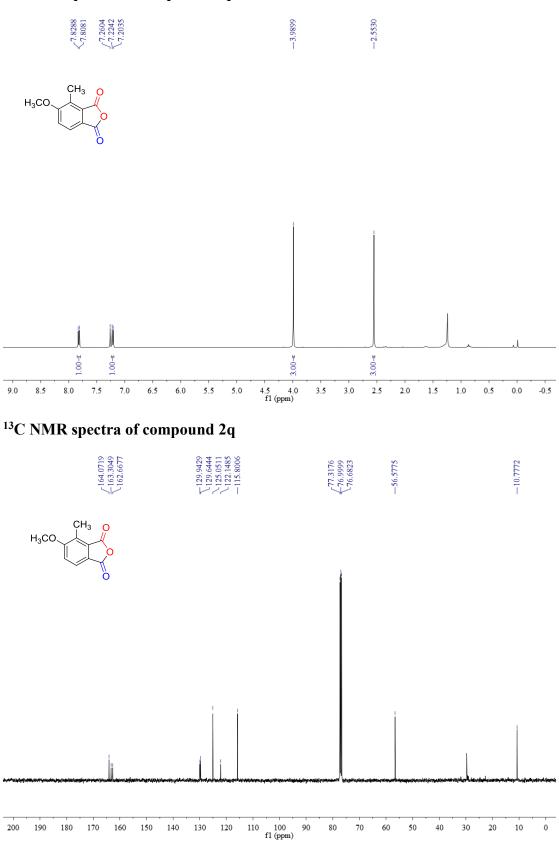
¹H NMR spectra of compound 2m

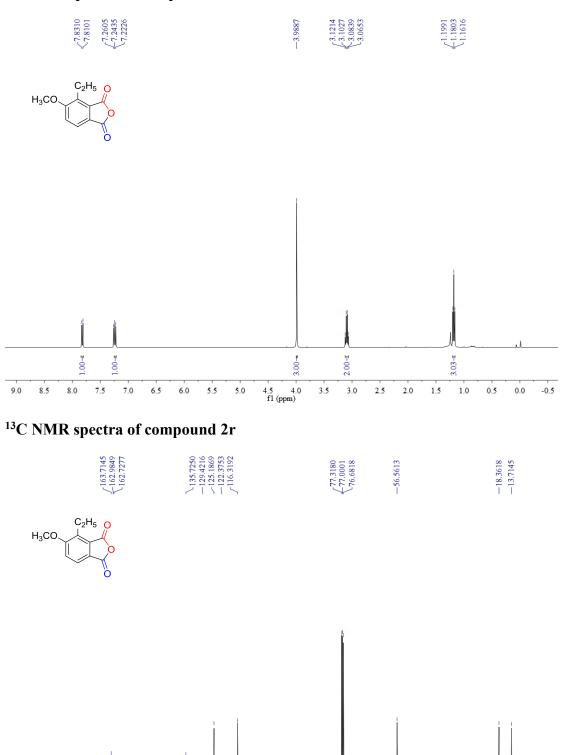

¹H NMR spectra of compound 2n


¹H NMR spectra of compound 20

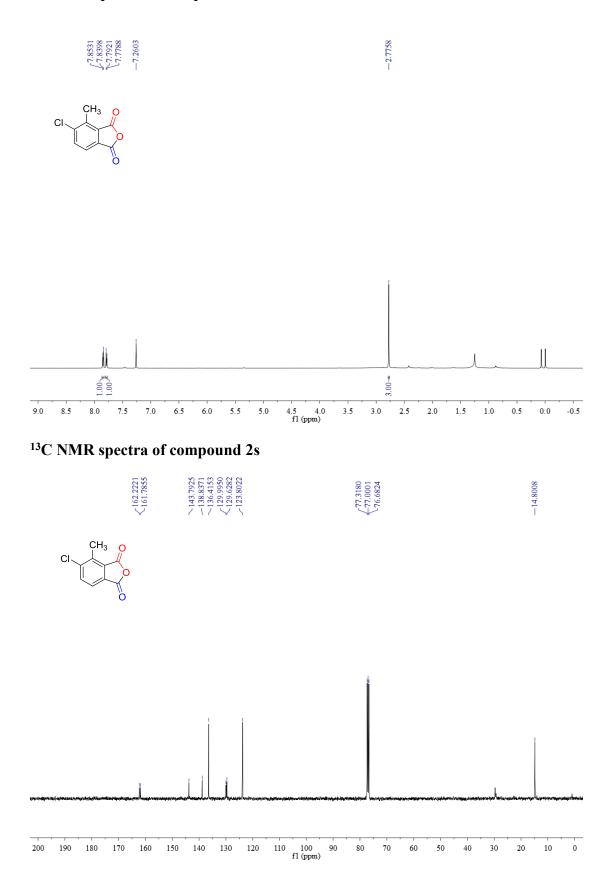
8.2008 8.1130 8.0796 8.0796 8.0796 7.6599 7.7.6599 7.7.5570 7.7.5570 7.7.5570 7.7.5570 7.7.5570 7.7.5570 7.7.5570 7.7.5570 7.7.5570 7.7.5570 7.7.5570 7.7.5570



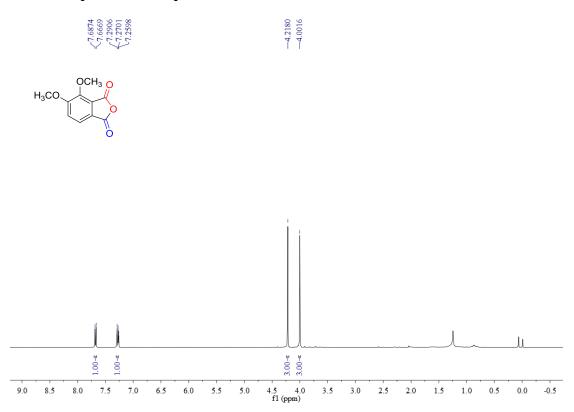

¹³C NMR spectra of compound 20


¹H NMR spectra of compound 2p

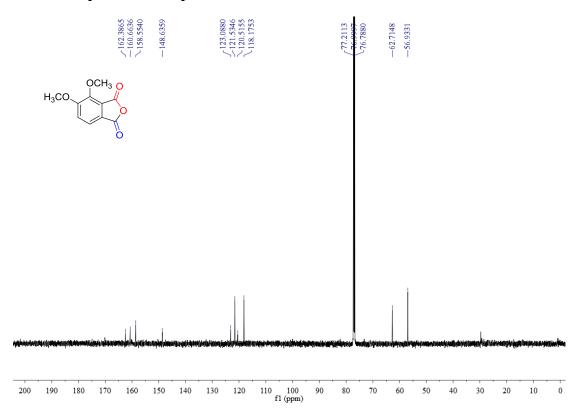
¹H NMR spectra of compound 2q

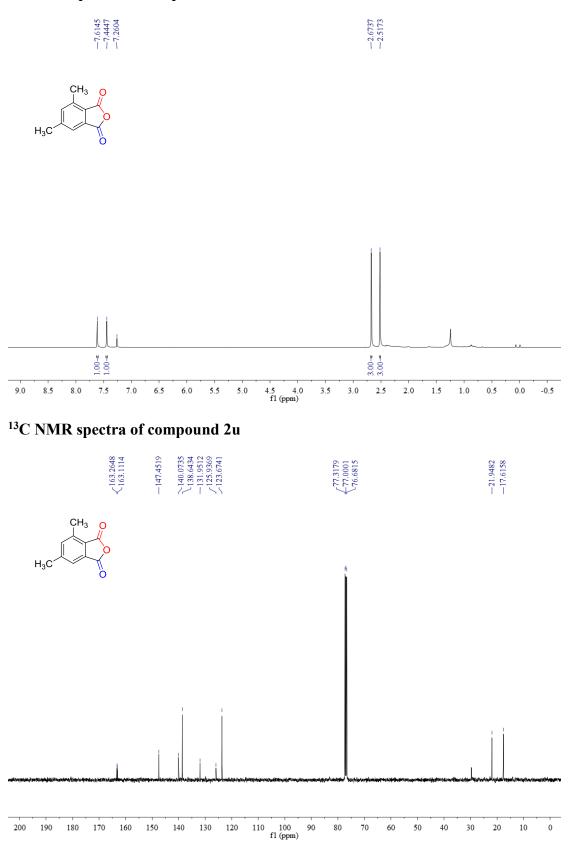


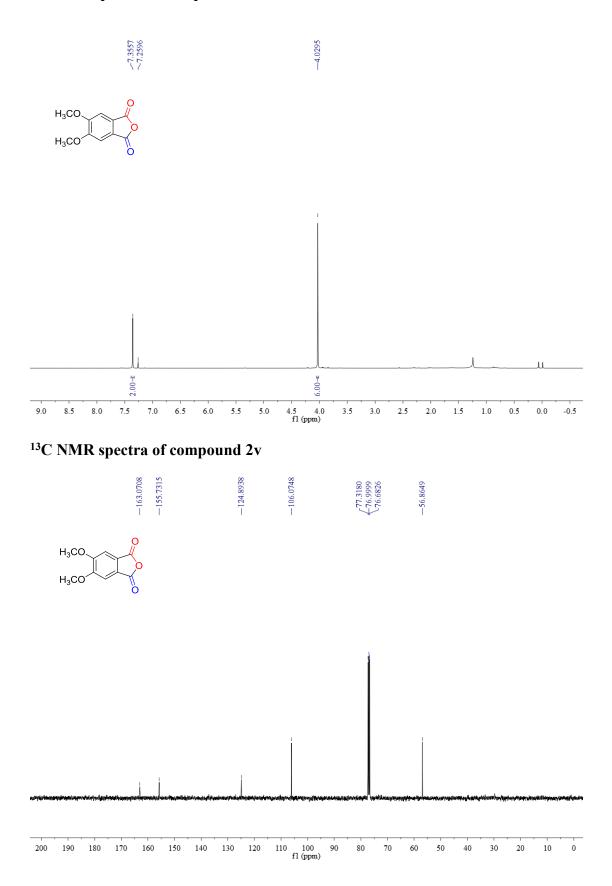
¹H NMR spectra of compound 2r



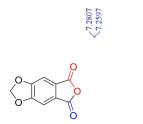
110 100 f1 (ppm)

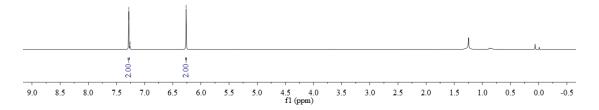

¹H NMR spectra of compound 2s


¹H NMR spectra of compound 2t

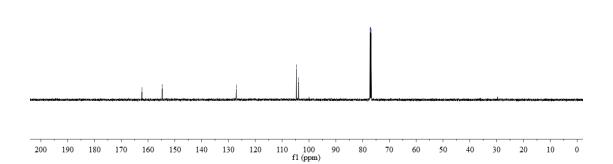

¹³C NMR spectra of compound 2t

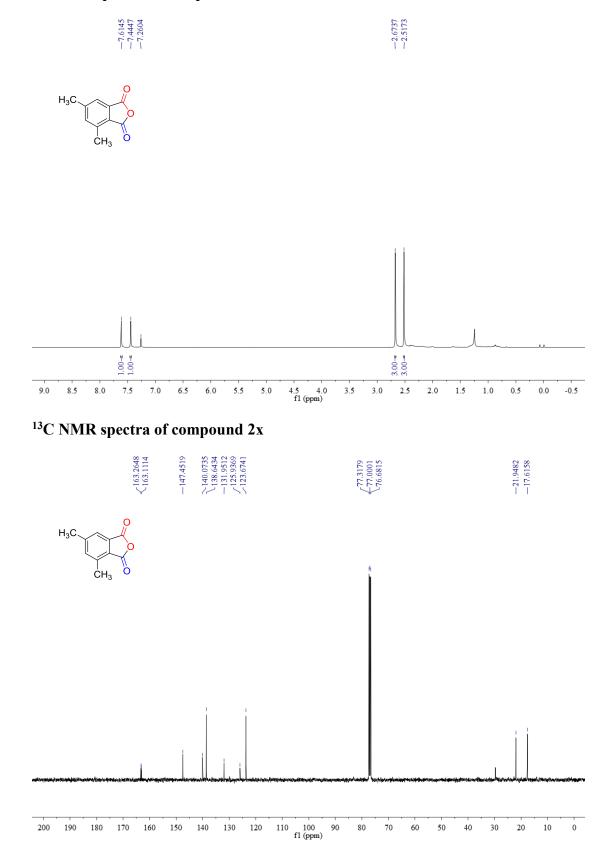
¹H NMR spectra of compound 2u



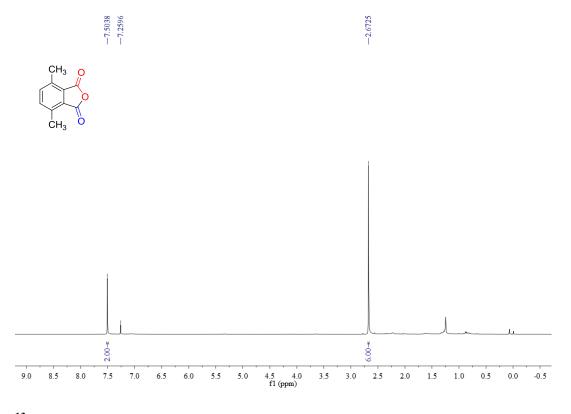

¹H NMR spectra of compound 2v

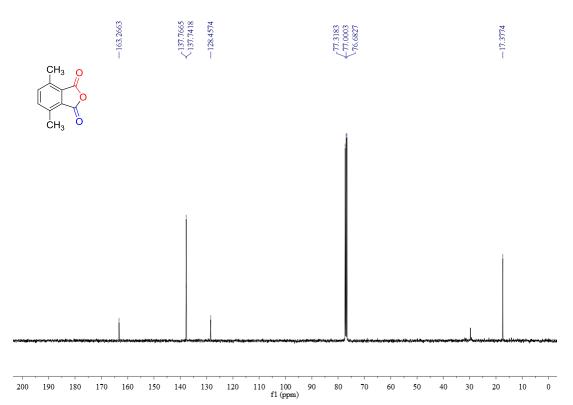
¹H NMR spectra of compound 2w


-6.2619



¹³C NMR spectra of compound 2w




¹H NMR spectra of compound 2x

¹H NMR spectra of compound 2y

¹³C NMR spectra of compound 2y

