SUPPLEMENTARY INFORMATION

Artemeriopolides A–D, two types of sesquiterpenoid dimers with rare carbon skeletons from *Artemisia eriopoda* and their antihepatoma cytotoxicity

Xiao-Feng He,^{‡a} Qi-Hao Li,^{‡a} Tian-Ze Li,^a Yun-Bao Ma,^a Wei Dong,^a Ke-Xin Yang,^{a,b}

Chang-An Geng,^a Hao-Wei Zhang,^{a,b} Yuan Wang,^{a,b} and Ji-Jun Chen*^{a,b}

[†]State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming

Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

[‡]University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

*Corresponding author. Prof. Dr. Ji-Jun Chen, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132[#] Lanhei Road, Kunming 650201, Yunnan, *People's Republic of China*. Tel.: +86 871 65223265, Fax: +86 871 65227197, *E-mail address*: <u>chenjj@mail.kib.ac.cn</u> (Ji-

Jun Chen).

List of Supplementary Information

General Experimental Instruments and Procedures
ECD Calculations
Cytotoxicity assays
Cell migration and invasion assays
Flow cytometry assays
Western blot
Table S1 Crystal data and structure refinement for compound 1
Table S2 Crystal data and structure refinement for compound 37
Figure S1 All raw images of Western blot of the key-related proteins with cell migration and invasion (N-cadherin, E-cadherin, and vimentin)11
Figure S2. Cell viability of compound 1 in HCC cells was evaluated by MTT assay11
S1. ¹ H NMR (600 MHz, CDCl ₃) of compound 1
S2. ¹³ C NMR (DEPT) (150 MHz, CDCl ₃) of compound 1
S3. ¹ H- ¹ H COSY (600 MHz, CDCl ₃) of compound 1
S4. HSQC (600 MHz, CDCl ₃) of compound 114
S5. HMBC (600 MHz, CDCl ₃) of compound 115
S6. ROESY (600 MHz, CDCl ₃) of compound 115
S7. [α] _D spectrum of compound 1 in MeOH16
S8. IR of compound 116
S9. ECD and UV of compound 117
S10. HRESIMS of compound 1
S11. ¹ H NMR (600 MHz, CD ₃ OD) of compound 2
S12. ¹³ C NMR (DEPT) (150 MHz, CD ₃ OD) of compound 220
S13. ¹ H- ¹ H COSY (600 MHz, CD ₃ OD) of compound 221
S14. HSQC (600 MHz, CD ₃ OD) of compound 221
S15. HMBC (600 MHz, CD ₃ OD) of compound 2
S16. ROESY (600 MHz, CD ₃ OD) of compound 2
S17. [α] _D spectrum of compound 2 in MeOH23
S18. IR of compound 2
S19. ECD and UV of compound 2
S20. HRESIMS of compound 2
S22. ¹³ C NMR (DEPT) (150 MHz, CD ₃ OD) of compound 3

S23. ¹ H- ¹ H COSY (600 MHz, CD ₃ OD) of compound 3	29
S24. HSQC (600 MHz, CD ₃ OD) of compound 3	30
S25. HMBC (600 MHz, CD ₃ OD) of compound 3	31
S26. ROESY (600 MHz, CD ₃ OD) of compound 3	32
S27. [α] _D spectrum of compound 3 in MeOH	32
S28. IR of compound 3	
S29. ECD and UV of compound 3	34
S30. HRESIMS of compound 3	35
S31. ¹ H NMR (600 MHz, CDCl ₃) of compound 4	36
S32. ¹³ C NMR (DEPT) (150 MHz, CDCl ₃) of compound 4	
S33. ¹ H- ¹ H COSY (600 MHz, CDCl ₃) of compound 4	
S34. HSQC (600 MHz, CDCl ₃) of compound 4	
S35. HMBC (600 MHz, CDCl ₃) of compound 4	40
S36. ROESY (600 MHz, CDCl ₃) of compound 4	41
S37. [α] _D spectrum of compound 4 in MeOH	42
S38. IR of compound 4	42
S40. HRESIMS of compound 4	44

General Experimental Instruments and Procedures

A Shimadzu LC/MS-IT-TOF mass spectrometer (Shimadzu, Kyoto, Japan) was used to gain the HRESIMS. UV spectra were conducted on a Shimadzu UV2401PC spectrophotometer (Shimadzu, Kyoto, Japan), and IR (KBr) spectra were obtained on a Bio-Rad FTS-135 spectrometer (Hercules, California, USA). 1D and 2D NMR spectra were conducted on Advance III-400 or III-600 spectrometers (Bruker, Bremerhaven, Germany) with TMS as the internal standard. Optical rotations were determined on a JASCO P-1020 digital polarimeter (Horiba, Tokyo, Japan). X-ray crystallographic analyses using Cu Ka radiation were performed on a Bruker D8 QUEST instrument (Bruker, Karlsruher, Germany). Electronic circular dichroism (ECD) spectra were measured on an Applied Photophysics Circular Dichromatograph (Applied Photophysics, Britain). Thin-layer chromatography (TLC) analyses were performed on silica gel GF₂₅₄ plates (Yantai Jiangyou Silicon Development Company, Yantai, China), and spots were monitored under UV light or by heating after sprayed with 10% H_2SO_4 in EtOH (v/v). Silica gel (200~300 mesh, Linyi Haixiang, Linyi, China) and Sephadex LH-20 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) were used for column chromatography. Medium pressure liquid chromatography (MPLC) separation was conducted on a Dr-Flash II apparatus using an MCI gel CHP 20P column (75~150 µm, Mitsubishi Chemical Corporation, Tokyo, Japan). High performance liquid chromatography (HPLC) was performed on a Shimadzu LC-CBM-20 system (Shimadzu, Kyoto, Japan) with Agilent XDB-C₁₈ (5 μ m, 9.4 × 250 mm) columns.

Cell cycle and apoptosis assays were performed on a flow cytometer (FACSCalibur, Becton Dickinson Co., Ltd., New Jersey, USA). Western blot assay was conducted on vertical electrophoresis apparatus (DYCZ-24DN, Liuyi Biotechnology Co., Ltd., Beijing, China) and a Semi-Dry Blotter (YRDIMES, wealtec Co., Ltd., Nevada, USA.), exposured by MultiSpectral imaging system (BioSpectrum, Analytik Jena Co., Ltd., Jena, Germany).

ECD Calculations

The conformation search was performed by Spartan '14 software using molecular mechanics MMFF94x. The appropriate low-energy conformers were selected and optimized in the gas phase by semiempirical method in Gaussian 09 program package, and were further optimized and analyzed for frequency using the density functional theory (DFT) at the B3LYP/6-31G(d,p) level, resulting in no imaginary frequencies. Solvent effects were taken into consideration by using the conductor polarizable continuum model (CPCM). All the conformers were used for calculating electronic circular dichroism (ECD) by the time-dependent density functional theory (TD-DFT) method at the B3LYP/6-31G(d,p) level with the CPCM model in MeOH.1 The overall calculated ECD curves were generated by Boltzmann weighting of the selected low-energy conformers using SpecDis 1.62 with $\sigma = ~0.3$ eV.

Cytotoxicity assays

The cytotoxicity of the compounds 1–4 was tested by the MTT assay. Briefly, cells in a density of 3×10^4 cells/well were seeded into 96-well plates and incubated at 37 °C with 5% CO₂ for 24 h. The culture medium was replaced with fresh medium containing different concentrations of guaianolide dimers, and cells were incubated for additional 48 h. After removal of the medium, 100 µL of MTT reagent (1mg/mL) was added into each well, and the plates were kept in incubator for 4 h. After that, 100 µL of dimethyl sulfoxide (DMSO) was added into each well, and the plates were measured at 490 nm using microplate reader (BIO-RAD, USA). The inhibitory ratio was calculated as $[(A_{490} \text{ control} - A_{490} \text{ treated})/A_{490} \text{ control}] \times 100\%$. The cytotoxicity of compounds was expressed as IC₅₀ values calculated by GraphPad Prism 5

(GraphPad Software, California, USA).

Cell migration and invasion assays

Cell migration and invasion of HepG2 cells were evaluated by Transwell assays (Corning, USA). For cell migration assay, HepG2 cells $(10 \times 10^{5}/\text{mL})$ were seeded on the upper chambers. After adherence, the cells were maintained in serum-free DMEM with various concentrations of compound 1 for 48 h. Then, cells in the upper chambers were wiped, and the migrated cells were fixed in 70% ethanol and stained with crystal violet solution (0.1%) for 30 min. After that, images were taken by imaging system (Olympus IX73). For cell invasion assay, matrigel (BD Biosciences) was diluted to 1:50 in pre-cool DMEM medium and added to the upper chamber 6 h prior to seeding the cells. The subsequent procedures were the same as above.

Flow cytometry assays

We assessed the effect of compound 1 on cell cycle and apoptosis by flow cytometry. HepG2 cells were seeded into 6-well plates at a density of 3×10^5 cells per well, cultured overnight. Then, cells were treated with various concentrations (0.0, 16.8, 33.6, and 67.2 μ M) of 1 for 12 h (cell cycle) or 48h (apoptosis). In cell cycle assay, cells were collected and fixed in 70% ethanol at -20 °C overnight. Thereafter, HepG2 cells were resuspended in PBS containing in staining buffer of 100 μ g/mL PI and 200 μ g/mL RNase A. In apoptosis assay, cells were harvested and suspended in binding buffer, and stained with fluorochrome Annexin V/PI for 15 min. Finally, the cells were analyzed by flow cytometry. Cell cycle and apoptosis assays were analyzed by using a BD AccuriC6 flow cytometer (BD Biosciences, San Jose, CA, USA).

Western blot

The expression of apoptosis-related proteins was determined by Western blot. Briefly, HepG2 cells were seeded into 6-well plates and treated with compound **1** for 48 h. The cells were collected and lysed in RIPA buffer to extract total protein, and the protein concentration was determined by BCA method. Samples were then fractionated using SDS-PAGE and transferred to PVDF membranes. Then, the membranes were incubated with specific primary antibodies at 4 °C overnight. The secondary antibody was incubated for 2 h at room temperature. Proteins were detected by ECL solution (Advansta, USA) and photographed by the multispectral imaging system (UVP, USA).

Table S1 Crystal data and structure refinement for compound 1

Identification code	global				
Empirical formula	C29 H40 O5				
Formula weight	468.61				
Temperature	100(2) K				
Wavelength	1.54178 Å				
Crystal system	Triclinic				
Space group	P1				
Unit cell dimensions	a = 9.7122(3) Å	$\alpha = 94.3130(10)^{\circ}.$			
	b = 10.0265(3) Å	$\beta = 101.0300(10)^{\circ}.$			
	c = 19.5820(6) Å	$\gamma = 90.1650(10)^{\circ}$.			
Volume	1866.07(10) Å ³				
Z	3				
Density (calculated)	1.251 Mg/m ³				
Absorption coefficient	0.668 mm ⁻¹				
F(000)	762				
Crystal size	0.280 x 0.240 x 0.120 r	nm ³			
Theta range for data collection	2.31 to 72.34°.				
Index ranges	-10<=h<=11, -12<=k<=	=12, -24<=1<=24			
Reflections collected	58997				
Independent reflections	14179 [R(int) = 0.0424]			
Completeness to theta = 72.34°	99.7 %				
Absorption correction	Semi-empirical from ec	quivalents			
Max. and min. transmission	0.92 and 0.80				
Refinement method	Full-matrix least-square	es on F ²			
Data / restraints / parameters	14179 / 3 / 934				
Goodness-of-fit on F ²	1.066				
Final R indices [I>2sigma(I)]	R1 = 0.0414, wR2 = 0.	1065			
R indices (all data)	R1 = 0.0419, wR2 = 0.	0.0419, wR2 = 0.1068			
Absolute structure parameter	0.00(5)				
Largest diff. peak and hole	0.710 and -0.306 e.Å ⁻³	0.710 and -0.306 e.Å ⁻³			

Identification code	global	
Empirical formula	C30 H38 O5	
Formula weight	478.60	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 9.979(2) Å	= 90°.
	b = 10.231(3) Å	$\Box = 94.762(13)^{\circ}.$
	c = 25.066(6) Å	$\Box = 90^{\circ}.$
Volume	2550.3(10) Å ³	
Ζ	4	
Density (calculated)	1.246 Mg/m ³	
Absorption coefficient	0.665 mm ⁻¹	
F(000)	1032	
Crystal size	0.340 x 0.150 x 0.020	mm ³
Theta range for data collection	1.77 to 79.72°.	
Index ranges	-10<=h<=12, -12<=k<	=12, -30<=l<=30
Reflections collected	30700	
Independent reflections	9060 [R(int) = 0.1034]	
Completeness to theta = 79.72°	84.5 %	
Absorption correction	Semi-empirical from e	quivalents
Max. and min. transmission	0.99 and 0.60	
Refinement method	Full-matrix least-squar	res on F ²
Data / restraints / parameters	9060 / 1 / 639	
Goodness-of-fit on F ²	1.076	
Final R indices [I>2sigma(I)]	R1 = 0.0832, wR2 = 0	.1991
R indices (all data)	R1 = 0.1242, wR2 = 0	.2199
Absolute structure parameter	0.22(13)	
Largest diff. peak and hole	0.365 and -0.438 e.Å-3	3

Table S2 Crystal data and structure refinement for compound ${\bf 3}$

Compound 1 0.0 16.8, 33.6, 67.2 µM

125-135 KDa _____ E-cadherin

Compound 1 0.0 16.8, 33.6, 67.2 µM

54 KDa _____ vimentin

Figure S1 All raw images of Western blot of the key-related proteins with cell migration and invasion (N-cadherin, E-cadherin, and vimentin).

Figure S2. Cell viability of compound 1 in HCC cells was evaluated by MTT assay.

S1. ¹H NMR (600 MHz, CDCl₃) of compound 1

S4. HSQC (600 MHz, CDCl₃) of compound 1

S5. HMBC (600 MHz, $CDCl_3$) of compound 1

S6. ROESY (600 MHz, CDCl₃) of compound 1

S7. $[\alpha]_D$ spectrum of compound 1 in MeOH

Rudolph Research Analytical

This sample was measured on an Autopol VI, Serial #91058 Manufactured by Rudolph Research Analytical, Hackettstown, NJ, USA.

Measurement Date : Tuesday, 08-JUN-2021

Set Temperature : OFF

Time Delay : Disabled

Delay between Measurement : Disabled

<u>n</u> 5	Average -12.69	<u>Std.Dev.</u> 0.41	<u>% RSD</u> -3.23	<u>Maxim</u> -12.22	um <u>Mini</u> -13.1	<u>mum</u> 5				
S.No	Sample ID	Time		Result	Scale	OR °Arc	WLG.nm	Lg.mm	Conc.g/100ml	Temp.
1	jae-14a	10:47:1	10 AM	-12.22	SR	-0.0132	589	100.00	0.108	24.4
2	jae-14a	10:47:1	19 AM	-12.41	SR	-0.0134	589	100.00	0.108	24.4
3	jae-14a	10:47:2	27 AM	-12.59	SR	-0.0136	589	100.00	0.108	24.4
4	jae-14a	10:47:3	35 AM	-13.15	SR	-0.0142	589	100.00	0.108	24.4
5	jae-14a	10:47:4	13 AM	-13.06	SR	-0.0141	589	100.00	0.108	24.4

S8. IR of compound 1

S11. ¹H NMR (600 MHz, CD₃OD) of compound 2

S12. ¹³C NMR (DEPT) (150 MHz, CD₃OD) of compound 2

S13. $^{1}\text{H}\text{-}^{1}\text{H}$ COSY (600 MHz, CD₃OD) of compound **2**

S14. HSQC (600 MHz, CD₃OD) of compound **2**

S16. ROESY (600 MHz, CD₃OD) of compound 2

S17. $[\alpha]_D$ spectrum of compound 2 in MeOH

Rudolph Research Analytical

This sample was measured on an Autopol VI, Serial #91058 Manufactured by Rudolph Research Analytical, Hackettstown, NJ, USA.

Measurement Date : Tuesday, 10-AUG-2021

Set Temperature : OFF

Time Delay : Disabled

Delay between Measurement : Disabled

<u>n</u> 5	Average -81.06	<u>Std.Dev.</u> 0.22	<u>% RSD</u> -0.27	-80.78	um <u>Mini</u> -81.35	<u>mum</u> 5				
S.No	Sample ID	Time		Result	Scale	OR °Arc	WLG.nm	Lg.mm	Conc.g/100ml	Temp.
1	jae-40b	10:01:	57 AM	-80.99	SR	-0.1142	589	100.00	0.141	26.1
2	jae-40b	10:02:	06 AM	-80.99	SR	-0.1142	589	100.00	0.141	26.1
3	jae-40b	10:02:	14 AM	-80.78	SR	-0.1139	589	100.00	0.141	26.1
4	jae-40b	10:02:	23 AM	-81.35	SR	-0.1147	589	100.00	0.141	26.1
5	jae-40b	10:02:	30 AM	-81.21	SR	-0.1145	589	100.00	0.141	26.1

S18. IR of compound 2

S20. HRESIMS of compound 2

S21. ¹H NMR (600 MHz, CD₃OD) of compound **3**

S22. ¹³C NMR (DEPT) (150 MHz, CD₃OD) of compound **3**

S23. $^1\mathrm{H}\text{-}^1\mathrm{H}$ COSY (600 MHz, CD₃OD) of compound $\boldsymbol{3}$

S24. HSQC (600 MHz, CD₃OD) of compound **3**

S25. HMBC (600 MHz, CD₃OD) of compound **3**

S26. ROESY (600 MHz, CD₃OD) of compound 3

S27. $[\alpha]_D$ spectrum of compound **3** in MeOH

Rudolph Research Analytical

This sample was measured on an Autopol VI, Serial #91058 Manufactured by Rudolph Research Analytical, Hackettstown, NJ, USA.

Measurement Date : Tuesday, 10-AUG-2021

Set Temperature : OFF

Time Delay : Disabled

Delay between Measurement : Disabled

<u>n</u> 5	Average 38.59	<u>Std.Dev.</u> 0.57	<u>% RSD</u> 1.47	<u>Maxim</u> 39.57	um <u>Mini</u> 38.19	<u>mum</u>				
S.No	Sample ID	Time		Result	Scale	OR °Arc	WLG.nm	Lg.mm	Conc.g/100ml	Temp.
1	jae-42b	10:40:	22 AM	39.57	SR	0.0459	589	100.00	0.116	26.6
2	jae-42b	10:40:	30 AM	38.45	SR	0.0446	589	100.00	0.116	26.6
3	jae-42b	10:40:	38 AM	38.53	SR	0.0447	589	100.00	0.116	26.6
4	jae-42b	10:40:	47 AM	38.19	SR	0.0443	589	100.00	0.116	26.7
5	jae-42b	10:40:	55 AM	38.19	SR	0.0443	589	100.00	0.116	26.7

S28. IR of compound 3

S30. HRESIMS of compound 3

S31. ¹H NMR (600 MHz, CDCl₃) of compound 4

S32. ¹³C NMR (DEPT) (150 MHz, CDCl₃) of compound 4

S33. $^1\mathrm{H}\text{-}^1\mathrm{H}$ COSY (600 MHz, CDCl_3) of compound 4

S34. HSQC (600 MHz, $CDCl_3$) of compound 4

S35. HMBC (600 MHz, CDCl_3) of compound 4

S36. ROESY (600 MHz, $CDCl_3$) of compound 4

S37. $[\alpha]_D$ spectrum of compound 4 in MeOH

Rudolph Research Analytical

This sample was measured on an Autopol VI, Serial #91058 Manufactured by Rudolph Research Analytical, Hackettstown, NJ, USA.

Measurement Date : Tuesday, 08-JUN-2021

Set Temperature : OFF

Time Delay : Disabled

Delay between Measurement : Disabled

<u>n</u> 5	Average 114.85	Std.Dev. % R 0.50 0.43	SD <u>Maxim</u> 115.55	num <u>Mini</u> 114.3	mum 35				
S.No	Sample ID	Time	Result	Scale	OR °Arc	WLG.nm	Lg.mm	Conc.g/100ml	Temp.
1	jae-10a-4	01:09:24 PM	114.55	SR	0.2291	589	100.00	0.200	25.3
2	jae-10a-4	01:09:33 PM	114.35	SR	0.2287	589	100.00	0.200	25.3
3	jae-10a-4	01:09:41 PM	115.55	SR	0.2311	589	100.00	0.200	25.3
4	jae-10a-4	01:09:49 PM	115.20	SR	0.2304	589	100.00	0.200	25.3
5	jae-10a-4	01:09:57 PM	114.60	SR	0.2292	589	100.00	0.200	25.3

S38. IR of compound 4

S39. ECD and UV of compound 4

S40. HRESIMS of compound 4

