Electrophotocatalytic tri- or difluoromethylative cyclization of alkenes

Danna Chen, Xuege Yang, ‡ Dongyin Wang, ‡ Yanni Li, Lou Shi* and Deqiang Liang*

Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.

[‡]These authors contributed equally to this work.

E-mail: shil090@nenu.edu.cn, liangdq695@nenu.edu.cn

Table of Contents

I. General considerations	S3
II. Optimization of reaction conditions	S4
Table S1 Electrolyte screening	S4
Table S2 PC screening	S4
Table S3 Electrode screening	S5
Table S4 Optimization of the solvent and proton source	S6
Table S5 Current and time optimization	S6
Table S6 LED screening	S7
Table S7 Optimization of the loadings of 2a , eosin Y and the electrolyte	S7
Table S8 Other control experiments	S8
III. Unsuccessful substrates	
IV. Experimental procedures	
1. General procedure for the photoelectrochemical synthesis (3a as an example)	S9
2. Gram-scale synthesis	S10
3. Sunlight experiment	S10
V. Mechanistic investigations	S12
1. Quenching experiments	S12
2. Reaction profiles	S12
3. On-off experiments	S14
4. Cyclic voltammetry studies	S15
5. Fluorescence spectra	S21
6. UV-Vis spectroscopic measurements	S22
7. Determination of the excited-state reduction potential of eosin Y in MeCN	S23
8. Hydrogen detection tests	S23
VI. Spectral data of products and new compounds	S25
VII. Copies of NMR spectra for products and new compounds	

I. General considerations

Unless otherwise stated, commercially available chemicals were used without treatment. Solvents were degassed by bubbling Ar for 10 minutes before use. Reactions were monitored by Thin Layer Chromatography (TLC) using silica gel F254 plates. Products were purified by column chromatography over 300-400 mesh silica gel under a positive pressure of air. ¹H NMR, ¹⁹F NMR, ¹³C NMR and DEPT NMR spectra were recorded at 25 °C on a Bruker AscendTM 400 spectrometer using tetramethyl silane (TMS) as internal standard. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II Focus spectrometer (ESI). Cyclic voltammetry studies were carried out on a CHI600E electrochemical workstation (Shanghai CH Instruments Co., China). UV-Vis measurements were carried out on a UV-2450 UV-Visible spectrophotometer (Shimadzu, Japan). The emission spectra were recorded on a Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies). The photoelectrochemical setup used in this research is shown in Figure S1. Photoreactors were bought from GeAo Chem (containing 24 small LEDs, 1 W for every LED, and every reaction tube is irradiated by 6 LEDs), and electrolysis was performed using a DJS-292B dual display potentiostat (Shanghai Xinrui Instruments Co., China). Allylated (1a, 1c-1l, 4a, 8a-8c, 12a and 16) or homoallylated substrates (10)^[1] and methacryloylated substrates (1b, 1m, 4b-4e, 6, 8d-8f, 12b and 14)^[2] were prepared according to literature procedures.

^[1] G. Kundu, T. Sperger, K. Rissanen and F. Schoenebeck, *Angew. Chem. Int. Ed.* 2020, **59**, 21930–21934.

^[2] Y. Yuan, Y. Zheng, B. Xu, J. Liao, F. Bu, S. Wang, J.-G. Hu and A. Lei, ACS Catal., 2020, 10, 6676–6681.

Figure S1 Photoelectrochemical setup

II. Optimization of reaction conditions

	$\mathbf{1a} \xrightarrow{CF_3SO_2Na} (\mathbf{2a}, 2 \text{ equiv})$ $\underline{Mes-Acr^+ClO_4^-} (5 \text{ mol}\%)$ $(+) C \text{ cloth Pt (-), 1.5 mA}$ $\underline{electrolyte} (1 \text{ equiv}), 455 \text{ nm}$ $CH_3CN, Ar, rt, 11 \text{ h}$	CF ₃
entry	supporting electrolyte	yield $(\%)^b$
1	Bu_4NBF_4	29
2	Et_4NBF_4	14
3	Bu_4NPF_6	33
4	Bu ₄ NOAc	26
5	Bu ₄ NClO ₄	34
6	LiClO ₄	37
7	KPF ₆	43
8	TBAI	2

 Table S1 Electrolyte screening^a

^{*a*}Reaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol), Mes-Acr⁺ClO₄⁻ (0.015 mmol), electrolyte (0.3 mmol), MeCN (9.0 mL), 6 W blue LEDs (455 nm), carbon cloth anode (15 mm × 15 mm × 0.33 mm, WOS1009, Taiwan CeTech), platinum plate cathode (15 mm × 15 mm × 0.3 mm), undivided cell, constant current = 1.5 mA, Ar, room temperature, 11 h. ^{*b*}Yields were determined by ¹⁹F NMR analysis using trifluorotoluene as an internal standard.

Table S2 PC screening^a

entry	PC	yield $(\%)^b$
1	4CzIPN	54
2	Ir(ppy) ₃	48
3	$[Ir(dtbbpy)(ppy)_2]PF_6$	49
4	(Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆	59
5	Ru(bpy) ₃ Cl ₂	22
6	eosin Y	74
7	eosin Y disodium	70
8	eosin B	66
9	rose bengal	10
10	rhodamine B	34
11	fluorescein	64
12	methylene blue	20
13	thioxanthone	34
14	_	27

^{*a*}Reaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol), PC (0.015 mmol), KPF₆ (0.3 mmol), MeCN (9.0 mL), 6 W blue LEDs (455 nm), carbon cloth anode (15 mm × 15 mm × 0.33 mm, WOS1009, Taiwan CeTech), platinum plate cathode (15 mm × 15 mm × 0.3 mm), undivided cell, constant current = 1.5 mA, Ar, room temperature, 11 h. ^{*b*}Yields were determined by ¹⁹F NMR analysis using trifluorotoluene as an internal standard.

 Table S3 Electrode screening^a

		CF ₃ SO ₂ Na (2a , 2 equiv) eosin Y (5 mol%) anode cathode, 1.5 mA KPF ₆ (1 equiv), 455 nm CH ₃ CN, Ar, rt, 11 h	CF ₃
entry	anode	cathode	yield $(\%)^b$
1	C felt	Pt plate	62
2	C rod	Pt plate	34
3	RVC	Pt plate	6
4	Pt plate	Pt plate	36
5	C cloth	Ni plate	62
6	C cloth	Ni foam	3
7	C cloth	stainless steel	68
8	C cloth	C cloth	62
9	C cloth	C felt	3
10	C cloth	C rod	57

^aReaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol), Mes-Acr⁺ClO₄⁻ (0.015 mmol), electrolyte (0.3 mmol), MeCN (9.0 mL), 6 W blue LEDs (455 nm), anode (15 mm × 15 mm), cathode (15 mm × 15 mm), undivided cell, constant current = 1.5 mA, Ar, room temperature, 11 h. ^{*b*}Yields were determined by ¹⁹F NMR analysis using trifluorotoluene as an internal standard.

	$ \begin{array}{c} $	orotic additive D2Na (2a, 2 equiv) sin Y (5 mol%) loth Pt (-), 1.5 mA (1 equiv), 455 nm vent, Ar, rt, 11 h	CF ₃
entry	solvent	protic additive (equiv)	yield $(\%)^b$
1	DCE	_	48
2	CH ₃ NO ₂	_	19
3	acetone	-	68
4	THF	-	5
5	DMA	-	16
6	DMSO	-	69
7	MeOH	_	24
8	HFIP	-	7
9	$CH_3CN/H_2O(9:1, v/v)$	-	50
10	CH ₃ CN	H ₂ O (2)	67
11	CH ₃ CN	MeOH (2)	58
12	CH ₃ CN	HFIP (2)	36
13	CH ₃ CN	TFA (2)	26

Table S4 Optimization of the solvent and proton source^a

^{*a*}Reaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol), eosin Y (0.015 mmol), KPF₆ (0.3 mmol), solvent (9.0 mL), 6 W blue LEDs (455 nm), carbon cloth anode (15 mm × 15 mm × 0.33 mm, WOS1009, Taiwan CeTech), platinum plate cathode (15 mm × 15 mm × 0.3 mm), undivided cell, constant current = 1.5 mA, Ar, room temperature, 11 h. ^{*b*}Yields were determined by ¹⁹F NMR analysis using trifluorotoluene as an internal standard.

Table S5 Current and time optimization^a

N N 1a	CF ₃ SO ₂ Na (2a , 2 equiv) eosin Y (5 mol%) (+) C cloth Pt (-), <i>I</i> , <i>t</i> KPF ₆ (1 equiv), 455 nm CH ₃ CN, Ar, rt	
entry	<i>I</i> (mA), <i>t</i> (h)	yield (%) ^b
1	1, 16.5	68
2	2, 8.25	70
3	3, 5.5	64
4	4, 4.125	62
5	5, 3.3	47
6	1.5, 10.73	72

7	1.5, 12	71

^{*a*}Reaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol), eosin Y (0.015 mmol), KPF₆ (0.3 mmol), MeCN (9.0 mL), 6 W blue LEDs (455 nm), carbon cloth anode (15 mm × 15 mm × 0.33 mm, WOS1009, Taiwan CeTech), platinum plate cathode (15 mm × 15 mm × 0.3 mm), undivided cell, constant current, Ar, room temperature. ^{*b*}Yields were determined by ¹⁹F NMR analysis using trifluorotoluene as an internal standard.

Table S6 LED screening^a

		CF ₃ SO ₂ Na (2a , 2 equiv) eosin Y (5 mol%)	
	1a	(+) C cloth Pt (-), 1.5 mA KPF ₆ (1 equiv), LEDs CH ₃ CN, Ar, rt, 11 h	CF ₃
entry		LEDs	yield $(\%)^b$
1		violet (395 nm)	59
2		white	72
3		green (525 nm)	55
4		yellow (585 nm)	32

^{*a*}Reaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol), eosin Y (0.015 mmol), KPF₆ (0.3 mmol), MeCN (9.0 mL), 6 W LEDs, carbon cloth anode (15 mm × 15 mm × 0.33 mm, WOS1009, Taiwan CeTech), platinum plate cathode (15 mm × 15 mm × 0.3 mm), undivided cell, constant current = 1.5 mA, Ar, room temperature, 11 h. ^{*b*}Yields were determined by ¹⁹F NMR analysis using trifluorotoluene as an internal standard.

Table S7 Optimization of the loadings of 2a, eosin Y and the electrolyte^a

		CF ₃ SO ₂ Na (2 a eosin Y (Y (+) C cloth Pt KPF ₆ (Z equiv CH ₃ CN, Ar,	a, X equiv) mol%) (-), 1.5 mA), 455 nm rt, 11 h	CF ₃
entry	X	Y	Ζ	yield $(\%)^b$
1	1.1	5	1	38
2	1.5	5	1	56
3	2.5	5	1	83
4	3	5	1	80
5	2.5	1	1	62
6	2.5	2.5	1	73
7	2.5	7.5	1	82
8	2.5	10	1	80
9	2.5	5	0	67
10	2.5	5	0.3	71

11	2.5	5	0.5	79
12	2.5	5	1.5	83
13	2.5	5	2	77

^{*a*}Reaction conditions: **1a** (0.3 mmol), **2a**, eosin Y, KPF₆, MeCN (9.0 mL), 6 W blue LEDs (455 nm), carbon cloth anode (15 mm \times 15 mm \times 0.33 mm, WOS1009, Taiwan CeTech), platinum plate cathode (15 mm \times 15 mm \times 0.3 mm), undivided cell, constant current = 1.5 mA, Ar, room temperature, 11 h. ^{*b*}Yields were determined by ¹⁹F NMR analysis using trifluorotoluene as an internal standard.

Table S8 Other control experiments^a

	CF ₃ SO ₂ Na (2a , 2.5 equiv) eosin Y (5 mol%)	
1a	(+) C cloth Pt (-), 1.5 mA KPF_6 (1 equiv), 455 nm CH_3CN , Ar, rt, 11 h "standard conditions"	CF ₃

entry	variation from the standard conditions	yield $(\%)^b$
1	no electric current	6
2	no light	38
3	no PC and in the dark	33
4	under an air atmosphere	76
5	no electricity and under air	20

^{*a*}Reaction conditions: **1a** (0.3 mmol), **2a** (0.75 mmol), eosin Y (0.015 mmol), KPF₆ (0.3 mmol), MeCN (9.0 mL), 6 W blue LEDs (455 nm), carbon cloth anode (15 mm × 15 mm × 0.33 mm, WOS1009, Taiwan CeTech), platinum plate cathode (15 mm × 15 mm × 0.3 mm), undivided cell, constant current = 1.5 mA, Ar, room temperature, 11 h. ^{*b*}Yields were determined by ¹⁹F NMR analysis using trifluorotoluene as an internal standard.

III. Unsuccessful substrates

IV. Experimental procedures

1. General procedure for the photoelectrochemical synthesis (3a as an example)

A custom-made undivided cell, equipped with a magnetic stirring bar, a C cloth anode (15 mm × 15 mm × 0.33 mm) and a platinum plate cathode (15 mm × 15 mm × 0.3 mm, carefully polished until shining), was charged sequentially with *N*-allylated 2-arylbenzoimidazole **1a** (0.3 mmol, 74.5 mg), CF₃SO₂Na **2a** (2.5 equiv, 0.75 mmol, 117.1 mg), eosin Y (5 mol%, 0.015 mmol, 9.7 mg) and electrolyte KPF₆ (1 equiv, 0.3 mmol, 55.2 mg) under argon, followed by the addition of MeCN (9.0 mL). The mixture was electrolyzed with stirring using a constant current of 1.5 mA under blue LED irradiation at room temperature for 11 h (2.05 F/mol). The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 20:1) to afford 5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline **3a** as a colorless oil (79.1 mg, 83% yield).

2. Gram-scale synthesis

A 100-mL two-necked flask, equipped with a magnetic stirring bar, a C cloth anode (15 mm × 15 mm × 0.33 mm) and a platinum plate cathode (15 mm × 15 mm × 0.3 mm, carefully polished until shining), was charged sequentially with *N*-allylated 2-arylbenzoimidazole **1a** (5 mmol, 1241.7 mg), CF₃SO₂Na **2a** (2.5 equiv, 12.5 mmol, 1950.7 mg), eosin Y (5 mol%, 0.25 mmol, 162.0 mg) and electrolyte KPF₆ (1 equiv, 5 mmol, 920.3 mg) under argon, followed by the addition of MeCN (150.0 mL). The mixture was electrolyzed with stirring using a constant current of 20.0 mA under blue LED irradiation (25 W × 2, 455 nm, Figure S2) at room temperature for 14 h. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 15:1) to afford 5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline **3a** as a colorless oil (1214.9 mg, 77% yield).

Figure S2 Setup for gram-scale synthesis

3. Sunlight experiment

A custom-made undivided cell, equipped with a magnetic stirring bar, a C cloth anode (15 mm \times 15 mm \times 0.33 mm) and a platinum plate cathode (15 mm \times 15 mm \times 0.3 mm, carefully polished until shining), was charged sequentially with *N*-allylated 2-arylbenzoimidazole **1a**

(0.3 mmol, 74.5 mg), CF₃SO₂Na 2a (2.5 equiv, 0.75 mmol, 117.1 mg), eosin Y (5 mol%, 0.015 mmol, 9.7 mg) and electrolyte KPF₆ (1 equiv, 0.3 mmol, 55.2 mg) under argon, followed by the addition of MeCN (9.0 mL). The mixture was electrolyzed with stirring using a constant current of 1.5 mA under sunlight irradiation (2021-09-11 (5.5 h, 11:56-17:26) and 2021-09-12 (5.5 h, 11:50-17:20), Kunming, Figure S3) at room temperature for 11 h. The residue obtained after evaporation of the solvent was purified by column chromatography on silica (petroleum ether-ethyl acetate 20:1) afford gel = to 5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline **3a** as a colorless oil (81.4 mg, 86% yield).

Figure S3 Setup for natural sunlight experiment

2级

星期日

V. Mechanistic investigations

1. Quenching experiments

A custom-made undivided cell, equipped with a magnetic stirring bar, a C cloth anode (15 mm × 15 mm × 0.33 mm) and a platinum plate cathode (15 mm × 15 mm × 0.3 mm, carefully polished until shining), was charged sequentially with *N*-allylated 2-arylbenzoimidazole **1a** (0.3 mmol, 74.5 mg), CF₃SO₂Na **2a** (2.5 equiv, 0.75 mmol, 117.1 mg), eosin Y (5 mol%, 0.015 mmol, 9.7 mg), KPF₆ (1 equiv, 0.3 mmol, 55.2 mg) and a scavenger (1.0 equiv, 0.3 mmol) under argon, followed by the addition of MeCN (9.0 mL). The mixture was electrolyzed with stirring using a constant current of 1.5 mA under blue LED irradiation at room temperature for 11 h. In the case of DPE experiment, the residue obtained after evaporation of the solvent was purified by column chromatography on silica gel using petroleum ether to afford (3,3,3-trifluoroprop-1-ene-1,1-diyl)dibenzene **18** as a colorless oil (26.8 mg, 36% yield).

2. Reaction profiles

(Trifluoromethyl)benzene (1 equiv) was added to the reactions of **1a** and **2a** as an internal standard before reaction. 0.05 mL of the crude reaction solution was taken out each time via a syringe and was subjected to ¹⁹F NMR analysis after filtered by a filter membrane with pore size of 0.45 μ m.

	A(X)	D1(Y)	C1(Y)	B(Y)
Long Name	Time	19F NMR yield	19F NMR yield	19F NMR yield
Units	h	%	%	%
Comments		1a + 2a, standard conditions	no PC, no light	no electricity
1	0	0.00	0.00	0.00
2	1	5.04	2.39	1.34
3	2	10.35	4.85	1.76
4	3	17.05	8.55	2.20
5	4	25.32	10.96	2.96
6	5	33.84	12.83	3.44
7	6	44.15	14.86	4.06
8	7	55.00	17.83	4.84
9	8	66.78	19.01	5.01
10	9	77.29	21.48	5.62
11	10	82.15	24.91	5.92
12	11	83.35	26.65	6.44
13	12	83.89	28.40	6.83
14	13	84.51	31.25	7.57
15	14	84.45	32.24	8.65

Figure S4 Reaction kinetic profiles

3. On-off experiments

Benzotrifluoride (1.0 equiv) was added as an internal standard to the reactions of **1a** with **2a** before reaction. 0.05 mL of the crude reaction solution was taken out each time via a syringe and was subjected to ¹⁹F NMR analysis after filtered by a filter membrane with pore size of 0.45 μ m.

4. Cyclic voltammetry studies

General procedure: Cyclic voltammetries were performed in a three-electrode cell at room temperature. The working electrode was a glassy carbon (GC, d = 3 mm) disk electrode, and the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in a saturated aqueous KCl solution, and separated from reactions by a salt bridge. 12 mL solution containing 1.2 mmol *n*Bu₄NBF₄ was poured into the electrochemical cell in all experiments. The scan rate was 0.05 V/s.

Figure S6 Cyclic voltammograms of 1a (10⁻³ M) in CH₃CN

Figure S7 Anodic cyclic voltammograms of 2a (10⁻³ M) in CH₃CN

Figure S8 Cyclic voltammograms of 2a (10⁻³ M) in CH₃CN ranging from -2 to 2 V

Figure S9 Anodic cyclic voltammograms of eosin Y (10⁻³ M) in CH₃CN

Figure S10 Anodic cyclic voltammograms of eosin Y (10⁻³ M) in DCE ranging from -2 to 2

V

Figure S11 Anodic cyclic voltammograms of eosin Y in DMA

Figure S12 Anodic cyclic voltammograms of 1a (10⁻³ M), 2a (10⁻³ M), eosin Y (10⁻³ M) in CH₃CN

Figure S13 Cathodic cyclic voltammograms of eosin Y (10⁻³ M) in CH₃CN

Figure S14 Cathodic cyclic voltammograms of eosin Y (10⁻³ M) in CH₃CN with or without blue light irradiation

Figure S15 Cathodic cyclic voltammograms of eosin Y (10⁻³ M) in CH₂Cl₂

Figure S16 Cathodic cyclic voltammograms of eosin Y (10⁻³ M) in DCE

Figure S17 Anodic cyclic voltammogram of **2a** (10⁻³ M) and an equimolar mixture of **2a** and EY (10⁻³ M) with or without 10 min of blue light irradiation

5. Fluorescence spectra

Fluorescence spectra were collected on a Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies). It has been established that **2a** could attenuate eosin Y fluorescence,^[3] although those experiments were troubled by aggregation-induced emission (AIE).

Figure S18 Fluorescence quenching of eosin Y $(2*10^{-5} \text{ M})$ in the presence of **2a** in CH₃CN/H₂O (1:9, v/v). The solution was excited at 455 nm (ex. slit 10 nm, em. slit 10 nm).

Figure S19 Fluorescence quenching of eosin Y ($2*10^{-5}$ M) in the presence of **2a** in EtOH/H₂O (1:9, v/v). The solution was excited at 455 nm (ex. slit 10 nm, em. slit 10 nm).

^[3] a) J. Jeon, Y.-T. He, S. Shin and S. Hong, *Angew. Chem. Int. Ed.*, 2020, **59**, 281–285; b) Y.-T. He, D. Kang, I. Kim and S. Hong, *Green Chem.*, 2018, **20**, 5209–5214.

Figure S20 Fluorescence of eosin Y (10⁻³ M) in CH₃CN. The solution was excited at 366 nm (ex. slit 10 nm, em. slit 10 nm)

6. UV-Vis spectroscopic measurements

The UV-Vis absorption spectra were collected on a UV-2450 UV-Visible spectrophotometer (Shimadzu, Japan). A significant bathochromic shift was observed upon mixing eosin Y with **2a**.

Figure S21 UV-vis spectra of EY (10⁻² M) and an equimolar mixture of EY and 2a (10⁻² M) in CH₃CN

7. Determination of the excited-state reduction potential of eosin Y in MeCN

The excited-state reduction potential of eosin Y ($E[EY^*/EY^-]$) is estimated to be 1.51 V vs. Ag/AgCl according to the following equations:

 E^{red^*} (EY*/EY^{•-}) = E^{red} (EY*/EY^{•-}) + $E_{0,0}$

where E^{red} (EY*/EY⁻, -0.741 V) was obtained from its cyclic voltammetry spectrum (Figure S13); $E_{0,0}$ is caculated from its photoluminescence maximum (550 nm as shown in Figure S20) using the equation $E_{0,0} = \text{hc}/\lambda_{\text{max}} = 1240 \text{ nm}/550 \text{ nm}.$

8. Hydrogen detection tests

The hydrogen detection tests were conducted with a H_2 detector (XLA-BX-H2), which was connected with the model reaction under standard conditions by a syringe with the pump on. The detector readings were recorded (Figure S22).

	A(X)	B(Y)	
Long Name	Time	H2 concentration	
Units	min	ppm	
Comments			
1	0	0	
2	2	59	
3	4	237	
4	6	365	
5	8	444	
6	10	479	
7	12	501	
8	14	512	
9	16	515	
10	18	517	
11	20	511	
12	22	518	
13	24	523	
14	26	518	
15	28	517	

Figure S22 Hydrogen detection tests

VI. Spectral data of products and new compounds

5-Methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline (**3a**),^[4] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 83% yield (79.1 mg), colorless oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.37 – 8.35 (m, 1H), 7.87 – 7.83 (m, 1H), 7.52 – 7.45 (m, 3H), 7.41 – 7.36 (m, 1H), 7.35 – 7.29 (m, 2H), 4.47 (d, *J* = 13.0 Hz, 1H), 3.98 (d, *J* = 12.9 Hz, 1H), 2.43 – 2.23 (m, 2H), 1.74 (d, *J* = 1.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.4, 143.9, 140.7, 134.6, 130.9, 128.4, 126.3, 126.0 (q, *J* = 277.4 Hz), 125.3, 124.8, 123.1, 122.8, 119.9, 109.1, 49.4 (q, *J* = 2.1 Hz), 41.6 (q, *J* = 26.9 Hz), 36.3 (q, *J* = 1.6 Hz), 22.6 (q, *J* = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.65 (t, *J* = 11.8 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₆F₃N₂⁺ ([M+H]⁺) 317.1260. Found 317.1258.

5-Methyl-5-(2,2,2-trifluoroethyl)benzo[4,5]imidazo[2,1-*a*]isoquinolin-6(5*H*)-one (**3b**),^[5] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 64% yield (63.3 mg), colorless oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (dd, J = 7.8, 1.5 Hz, 1H), 8.38 – 8.33 (m, 1H), 7.85 – 7.82 (m, 1H), 7.62 – 7.58 (m, 1H), 7.55 – 7.51 (m, 1H), 7.49 – 7.42 (m, 3H), 3.54 – 3.42 (m, 1H), 3.00 – 2.89 (m, 1H), 1.77 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.0, 149.2, 144.0, 138.4, 131.6, 131.4, 128.4, 126.5, 126.3, 126.2, 125.8, 125.4, 124.9 (q, J = 277.0 Hz), 122.4, 120.0, 115.7, 45.2 (q, J = 2.3 Hz), 43.9 (q, J = 27.5 Hz), 31.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.36 (t, J = 9.0 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₄F₃N₂O⁺ ([M+H]⁺) 331.1053. Found 331.1041.

^[4] R. Kong, T. Fu, R. Yang, D. Chen, D. Liang, Y. Dong, W. Li and B. Wang, ChemCatChem, 2021, 13, 2952-2958.

^[5] K. Sun, G. Li, S. Guo, Z. Zhang and G. Zhang, Org. Biomol. Chem., 2021, 19, 375–378.

3,5-Dimethyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoli ne (**3c1**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 72% yield (71.7 mg), pale yellow solid: mp 97 – 98 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 7.8 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.39 – 7.35 (m, 1H), 7.32 – 7.28 (m, 3H), 7.26 (d, *J* = 1.4 Hz, 1H), 4.46 (d, *J* = 12.9 Hz, 1H), 3.94 (d, *J* = 12.9 Hz, 1H), 2.45 (s, 3H), 2.40 – 2.25 (m, 2H), 1.73 (d, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.7, 143.9, 141.3, 140.8, 134.6, 129.2, 126.3, 126.0 (q, *J* = 277.4 Hz), 125.4, 122.9, 122.7, 122.5, 119.7, 109.0, 49.3 (q, *J* = 2.2 Hz), 41.5 (q, *J* = 26.8 Hz), 36.2 (q, *J* = 1.8 Hz), 22.5 (q, *J* = 1.9 Hz), 21.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -59.66 (t, *J* = 10.8 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₉H₁₈F₃N₂⁺ ([M+H]⁺) 331.1417. Found 331.1420.

3-Methoxy-5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]iso quinoline (**3c2**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 77% yield (63.9 mg), pale yellow solid: mp 124 – 125 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.4 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.36 – 7.33 (m, 1H), 7.31 – 7.28 (m, 2H), 7.01 – 6.97 (m, 2H), 4.45 (d, *J* = 12.9 Hz, 1H), 3.93 (d, *J* = 12.9 Hz, 1H), 3.90 (s, 3H), 2.42 – 2.21 (m, 2H), 1.71 (d, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.7, 148.7, 143.9, 142.8, 134.6, 128.1, 126.0 (q, *J* = 279.0 Hz), 122.6 (q, *J* = 3.0 Hz), 119.5, 118.0, 112.8, 111.6, 108.9, 55.5, 49.31 (q, *J* = 2.1 Hz), 41.5 (q, *J* = 27.1 Hz), 36.38 (q, *J* = 1.8 Hz), 22.5 (q, *J* = 1.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.64 (t, *J* = 11.2 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₉H₁₈F₃N₂O⁺ ([M+H]⁺) 347.1366. Found 347.1370.

3-Chloro-5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoqu

inoline (**3c3**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 68% yield (71.1 mg), white solid: mp 142 – 143 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, *J* = 7.0, 0.8 Hz,1H), 7.85 – 7.80 (m, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.38 – 7.29 (m, 3H), 4.45 (d, *J* = 13.0 Hz, 1H), 3.95 (d, *J* = 13.0 Hz, 1H), 2.41 – 2.22 (m, 2H), 1.72 (d, *J* = 1.5 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.5, 143.8, 142.3, 136.8, 134.6, 128.8, 127.7, 125.8 (q, *J* = 277.3 Hz), 125.4, 123.9, 123.4, 123.0, 120.0, 109.1, 49.3 (d, *J* = 2.2 Hz), 41.4 (q, *J* = 27.2 Hz), 36.5 (q, *J* = 1.6 Hz), 22.5 (q, *J* = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.63 (t, *J* = 10.5 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₅ClF₃N₂⁺ ([M+H]⁺) 351.0870. Found 351.0872.

3-Bromo-5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoqu inoline (**3c4**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 81% yield (95.9 mg), white solid: mp 143 – 144 °C. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.1 Hz, 1H), 7.85 – 7.80 (m, 1H), 7.63 – 7.58 (m, 2H), 7.38 – 7.28 (m, 3H), 4.44 (d, J = 13.0 Hz, 1H), 3.93 (d, J = 13.0 Hz, 1H), 2.40 – 2.21 (m, 2H), 1.72 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.5, 143.8, 142.5, 134.6, 131.7, 128.3, 127.8, 125.8 (q, J = 277.3 Hz), 125.1, 124.3, 123.4, 123.0, 120.0, 109.2, 49.2 (q, J = 2.2 Hz), 41.4 (q, J = 27.1 Hz), 36.4 (q, J = 1.6 Hz), 22.4 (q, J = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.62 (t, J = 11.1 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₅BrF₃N₂⁺ ([M+H]⁺) 395.0365. Found 395.0361.

5-Methyl-5-(2,2,2-trifluoroethyl)-3-(trifluoromethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline (**3c5**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 87% yield (100.2 mg), white solid: mp 160 – 161 °C. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.1 Hz, 1H), 7.89 – 7.84 (m, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.70 (s, 1H), 7.43 – 7.39 (m, 1H), 7.39 – 7.32 (m, 2H), 4.51 (d, J = 13.1 Hz, 1H), 4.01 (d, J = 13.0 Hz, 1H),

2.45 – 2.26 (m, 2H), 1.79 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.9, 143.9, 141.1, 134.6, 132.3 (q, J = 32.6 Hz), 128.6 (q, J = 1.6 Hz), 126.7, 125.4 (q, J = 3.7 Hz), 125.8 (q, J = 279.0 Hz), 123.8, 123.7 (q, J = 272.6 Hz), 123.3, 122.1 (q, J = 3.8 Hz), 120.3, 109.3, 49.4 (q, J = 2.0 Hz), 41.5 (q, J = 27.4 Hz), 36.5 (q, J = 1.6 Hz), 22.5 (q, J = 2.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.66 (t, J = 11.2 Hz, 3F), -62.79 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₉H₁₅F₆N₂⁺ ([M+H]⁺) 385.1134. Found 385.1135.

Methyl

5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline-3carboxylate (**3c6**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 75% yield (84.5 mg), white solid: mp 186 – 187 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 8.0 Hz, 1H), 8.15 – 8.12 (m, 2H), 7.88 – 7.84 (m, 1H), 7.43 – 7.31 (m, 3H), 4.51 (d, *J* = 13.0 Hz, 1H), 4.02 (d, *J* = 13.1 Hz, 1H), 3.97 (s, 3H), 2.46 – 2.28 (m, 2H), 1.79 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.3, 147.3, 144.0, 140.7, 134.7, 131.9, 129.5, 129.3, 126.32, 126.28, 125.9 (q, *J* = 277.2 Hz), 123.7, 123.2, 120.3, 109.3, 52.5, 49.3 (d, *J* = 2.0 Hz), 41.5 (q, *J* = 27.0 Hz), 36.5 (d, *J* = 1.7 Hz), 22.7 (d, *J* = 2.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.63 (t, *J* = 10.7 Hz, 3F). HRMS (ESI-TOF) Calcd for C₂₀H₁₈F₃N₂O₂⁺ ([M+H]⁺) 375.1315. Found 375.1313.

2,4-Dichloro-5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]is oquinoline (**3d**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 62% yield (71.4 mg), white solid: mp 219 – 220 °C. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 2.3 Hz, 1H), 7.84 – 7.80 (m, 1H), 7.49 (d, J = 2.3 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.37 – 7.31 (m, 2H), 4.55 (d, J = 13.3 Hz, 1H), 3.97 (d, J = 13.4 Hz, 1H), 2.70 – 2.49 (m, 2H), 1.95 (s,

3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.0, 143.9, 135.9, 135.0, 134.5, 134.1, 133.2, 129.3, 125.8 (q, J = 277.4 Hz), 125.3, 123.8, 123.3, 120.1, 109.4, 49.5 (q, J = 2.3 Hz), 38.7 (q, J = 27.1 Hz), 38.0 (q, J = 1.9 Hz), 24.3 (q, J = 1.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.63 (t, J = 10.7 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₄Cl₂F₃N₂⁺ ([M+H]⁺) 385.0481. Found 385.0484.

1-Chloro-5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoqu inoline (**3e**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 62% yield (65.0 mg), white solid: mp 157 – 158 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.95 (m, 1H), 7.58 – 7.54 (m, 1H), 7.40 (s, 1H), 7.39 (d, *J* = 2.2 Hz, 1H), 7.38 – 7.30 (m, 3H), 4.44 (d, *J* = 13.1 Hz, 1H), 3.99 (dd, *J* = 13.1, 1.1 Hz, 1H), 2.20 – 2.11 (m, 2H), 1.72 (d, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.5, 143.7, 143.5, 133.6, 133.4, 131.5, 130.5, 125.8 (q, *J* = 277.3 Hz), 123.9, 123.8, 123.6, 122.8, 120.9, 108.9, 49.1 (q, *J* = 1,9 Hz), 40.8 (q, *J* = 27.2 Hz), 37.1 (q, *J* = 1.8 Hz), 22.5 (q, *J* = 2.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.56 (t, *J* = 11.7 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₅ClF₃N₂⁺ ([M+H]⁺) 351.0870. Found 351.0868.

5-Methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*][2,6]naphthyri dine (**3f**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 88% yield (83.5 mg), brown solid: mp 128 – 129 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.79 – 8.74 (m, 2H), 8.15 (d, *J* = 4.9 Hz, 1H), 7.90 – 7.86 (m, 1H), 7.44 – 7.34 (m, 3H), 4.51 (d, *J* = 13.1 Hz, 1H), 4.05 (d, *J* = 13.0 Hz, 1H), 2.49 – 2.32 (m, 2H), 1.83 (d, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.0, 147.0, 145.7, 143.9, 134.7, 134.4, 132.3, 125.7 (q, *J* = 277.1 Hz), 124.3, 123.5, 120.6, 118.9, 109.5, 49.7 (q, *J* = 2.1 Hz), 41.6 (q, *J* = 27.2 Hz), 35.3, 22.4 (q, *J* = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.63 (t, *J* = 10.6 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₇H₁₅F₃N₃⁺ ([M+H]⁺) 318.1213. Found

4-Methyl-4-(2,2,2-trifluoroethyl)-4,5-dihydrobenzo[4,5]imidazo[1,2-*a*]thieno[2,3-*c*]p yridine (**3g**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 42% yield (40.4 mg), pale yellow oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.78 (m, 1H), 7.47 (d, J = 5.1 Hz, 1H), 7.35 – 7.26 (m, 3H), 7.09 (d, J = 5.1 Hz, 1H), 4.41 (d, J = 12.9 Hz, 1H), 3.95 (d, J = 12.9 Hz, 1H), 2.42 (q, J = 11.2 Hz, 2H), 1.68 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.9, 145.3, 143.9, 134.4, 128.8, 126.2, 126.0 (q, J = 277.1 Hz), 124.8, 123.2, 122.7, 119.8, 109.0, 51.0 (q, J = 2.2 Hz), 41.4 (q, J = 27.0 Hz), 36.0 (q, J = 1.9 Hz), 23.3 (q, J = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.74 (t, J = 10.8 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₆H₁₄F₃N₂S⁺ ([M+H]⁺) 323.0824. Found 323.0829.

5,9,10-Trimethyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquin oline (**3h1**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 72% yield (74.6 mg), yellowish solid: mp 133 – 134 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.33 – 8.30 (m, 1H), 7.60 (s, 1H), 7.49 – 7.42 (m, 3H), 7.14 (s, 1H), 4.41 (d, *J* = 12.9 Hz, 1H), 3.93 (d, *J* = 12.9 Hz, 1H), 2.41 (s, 3H), 2.40 (s, 3H), 2.37 – 2.24 (m, 2H), 1.72 (d, *J* = 1.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.6, 142.5, 140.4, 133.2, 132.4, 131.7, 130.4, 128.3, 126.1, 126.0 (q, *J* = 277.3 Hz), 125.6, 124.7, 119.9, 109.3, 49.4 (q, *J* = 1.6 Hz), 41.5 (q, *J* = 26.9 Hz), 36.3 (q, *J* = 1.4 Hz), 22.5 (q, *J* = 1.3 Hz), 20.6, 20.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -59.64 (t, *J* = 11.4 Hz, 3F). HRMS (ESI-TOF) Calcd for C₂₀H₂₀F₃N₂⁺ ([M+H]⁺) 345.1573. Found 345.1588.

5,9,10-Trimethyl-5-(2,2,2-trifluoroethyl)-3-(trifluoromethyl)-5,6-dihydrobenzo[4,5]i

midazo[2,1-*a*]isoquinoline (**3h2**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 69% yield (84.8 mg), white solid: mp 180 – 181 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 8.1 Hz, 1H), 7.73 – 7.70 (m, 1H), 7.67 (d, *J* = 1.6 Hz, 1H), 7.61 (s, 1H), 7.16 (s, 1H), 4.45 (d, *J* = 13.0 Hz, 1H), 3.96 (d, *J* = 13.0 Hz, 1H), 2.42 (s, 3H), 2.40 (s, 3H), 2.38 – 2.24 (m, 2H), 1.77 (d, *J* = 1.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.1, 142.5, 140.8, 133.3, 133.2, 132.4, 131.9 (d, *J* = 32.4 Hz), 128.9, 126.4, 125.8 (q, *J* = 277.2 Hz), 125.3 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 270.8 Hz), 122.0 (q, *J* = 3.8 Hz), 120.2, 109.4, 49.3 (q, *J* = 2.1 Hz), 41.4 (q, *J* = 27.1 Hz), 36.5 (q, *J* = 1.8 Hz), 22.4 (q, *J* = 1.9 Hz), 20.7, 20.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -59.64 (t, *J* = 11.8 Hz, 3F), -62.73 (s, 3F). HRMS (ESI-TOF) Calcd for C₂₁H₁₉F₆N₂⁺ ([M+H]⁺) 413.1447. Found 413.1451.

9,10-Difluoro-5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]i soquinoline (**3i**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 83% yield (87.3 mg), white solid: mp 178 – 179 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.27 (m, 1H), 7.60 (dd, *J* = 10.5, 7.2 Hz, 1H), 7.54 – 7.46 (m, 3H), 7.16 (dd, *J* = 9.6, 6.8 Hz, 1H), 4.38 (d, *J* = 13.0 Hz, 1H), 3.96 (d, *J* = 12.9 Hz, 1H), 2.41 – 2.23 (m, 2H), 1.75 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.8 (d, *J* = 3.3 Hz), 149.4 (q, *J* = 13.9 Hz), 147.0 (q, *J* = 11.1 Hz), 140.4, 139.0 (q, *J* = 9.4 Hz), 131.1, 130.0 (d, *J* = 11.0 Hz), 128.5, 126.1, 125.8 (q, *J* = 277.3 Hz), 124.75, 124.70, 107.1 (q, *J* = 19.8 Hz), 97.0 (d, *J* = 2.0 Hz), 49.4 (q, *J* = 2.2 Hz), 41.6 (q, *J* = 27.1 Hz), 36.2 (q, *J* = 1.4 Hz), 22.5 (d, *J* = 2.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.82 (t, *J* = 10.7 Hz, 3F), -140.77 – -140.87 (m, 1F), -142.79 – 142.89 (m, 1F). HRMS (ESI-TOF) Calcd for C₁₈H₁₄F₅N₂⁺ ([M+H]⁺) 353.1072. Found 353.1071.

9,10-Dichloro-5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*] isoquinoline (**3j1**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 81% yield (93.7 mg), yellowish solid: mp 184 – 185 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.27 (m, 1H), 7.87 (s, 1H), 7.56 – 7.46 (m, 4H), 4.39 (d, *J* = 13.0 Hz, 1H), 3.95 (d, *J* = 12.9 Hz, 1H), 2.41 – 2.23 (m, 2H), 1.73 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.2, 143.2, 140.7, 133.9, 131.5, 128.6, 127.0, 126.8, 126.5, 125.9 (q, *J* = 277.3 Hz), 124.8, 124.5, 120.9, 110.5, 49.5 (q, *J* = 2.0 Hz), 41.7 (q, *J* = 27.1 Hz), 36.2 (q, *J* = 1.7 Hz), 22.7 (q, *J* = 2.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.69 (t, *J* = 11.7 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₄Cl₂F₃N₂⁺ ([M+H]⁺) 385.0481. Found 385.0488.

9,10-Dichloro-5-methyl-5-(2,2,2-trifluoroethyl)-3-(trifluoromethyl)-5,6-dihydrobenzo [4,5]imidazo[2,1-*a*]isoquinoline (**3j2**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 92% yield (125.0 mg), white solid: mp 209 – 210 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.45 – 8.43 (m, 1H), 7.93 (s, 1H), 7.76 (ddd, *J* = 8.1, 1.7, 0.8 Hz, 1H), 7.71 (d, *J* = 1.6 Hz, 1H), 7.52 (s, 1H), 4.45 (d, *J* = 13.1 Hz, 1H), 4.01 (d, *J* = 13.1 Hz, 1H), 2.41 – 2.30 (m, 2H), 1.79 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.7, 143.2, 141.2, 133.8, 133.1, 132.8, 128.0, 127.5, 127.1, 125.63 (q, *J* = 277.2 Hz), 125.58 (q, *J* = 3.9 Hz), 123.6 (q, *J* = 271.1 Hz), 122.1 (q, *J* = 4.0 Hz), 121.4, 110.7, 49.5 (q, *J* = 1.6 Hz), 41.6 (q, *J* = 27.5 Hz), 36.5 (q, *J* = 1.0 Hz), 22.6 (q, *J* = 1.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.68 (t, *J* = 10.3 Hz, 3F), -62.88 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₉H₁₃Cl₂F₆N₂⁺ ([M+H]⁺) 453.0354. Found 453.0355.

9,10-Dibromo-5-methyl-5-(2,2,2-trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*] isoquinoline (**3**k), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 72% yield (101.7 mg), white solid: mp 196 – 197 °C. R_f (petroleum

ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.28 (m, 1H), 8.07 (s, 1H), 7.66 (s, 1H), 7.56 – 7.46 (m, 3H), 4.39 (d, *J* = 13.0 Hz, 1H), 3.94 (d, *J* = 13.0 Hz, 1H), 2.38 – 2.26 (m, 2H), 1.73 (d, *J* = 0.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.1, 144.2, 140.8, 134.8, 131.6, 128.6, 126.6, 125.8 (q, *J* = 277.2 Hz), 124.9, 124.5, 124.2, 118.2, 118.0, 113.6, 49.5 (q, *J* = 2.0 Hz), 41.7 (q, *J* = 27.0 Hz), 36.2 (q, *J* = 1.8 Hz), 22.7 (q, *J* = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.67 (t, *J* = 11.0 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₄Br₂F₃N₂⁺ ([M+H]⁺) 472.9470. Found 472.9466.

5-(2,2,2-Trifluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline (**31**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 79% yield (71.8 mg), colorless oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.34 – 8.31 (m, 1H), 7.86 – 7.84 (m, 1H), 7.52 – 7.45 (m, 2H), 7.41 – 7.35 (m, 2H), 7.34 – 7.30 (m, 2H), 4.57 (dd, *J* = 13.0, 2.2 Hz, 1H), 4.28 (dd, *J* = 13.0, 4.2 Hz, 1H), 3.67 – 3.62 (m, 2H), 2.47 – 2.24 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.3, 144.0, 136.3, 134.9, 130.8, 128.8, 127.7, 126.2 (q, *J* = 276.2 Hz), 126.1, 125.9, 123.2, 122.8, 120.0, 109.1, 43.7, 37.5 (q, *J* = 27.8 Hz), 33.4 (q, *J* = 2.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.54 (t, *J* = 10.6 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₇H₁₄F₃N₂⁺ ([M+H]⁺) 303.1104. Found 303.1105.

1-Fluoro-5,12-dimethyl-5-(2,2,2-trifluoroethyl)indolo[2,1-*a*]isoquinolin-6(5*H*)-one (**3m**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 69% yield (75.0 mg), white solid: mp 96 – 97 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.51 – 8.48 (m, 1H), 7.63 – 7.61 (m, 1H), 7.45 – 7.35 (m, 3H), 7.26 – 7.24 (m, 1H), 7.17 – 7.12 (m, 1H), 3.29 – 3.17 (m, 1H), 2.82 – 2.71 (m, 1H), 2.51 (d, *J* = 10.0 Hz, 3H), 1.72 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.6, 159.2, 156.7, 138.1 (d, *J* = 3.2 Hz), 135.1, 132.8, 129.3 (d, *J* = 9.1

Hz), 126.4, 125.1 (q, J = 277.3 Hz), 124.5, 122.0 (d, J = 3.1 Hz), 119.1, 118.8 (d, J = 1.8 Hz), 116.3, 115.5 (d, J = 23.6 Hz), 114.9 (d, J = 15.5 Hz), 45.5 (p, J = 2.2 Hz), 43.5 (q, J = 27.7 Hz), 28.2, 11.7 (d, J = 21.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -60.33 (t, J = 10.3 Hz, 3F), -105.40 – -105.52 (m, 1F). HRMS (ESI-TOF) Calcd for C₂₀H₁₆F₄NO⁺ ([M+H]⁺) 362.1163. Found 362.1175.

5-(2,2-Difluoroethyl)-5-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline (**3n1**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 83% yield (74.2 mg), brown oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.39 – 8.36 (m, 1H), 7.86 – 7.82 (m, 1H), 7.52 – 7.43 (m, 3H), 7.39 – 7.35 (m, 1H), 7.33 – 7.29 (m, 2H), 5.75 – 5.45 (m, 1H), 4.29 (d, *J* = 12.7 Hz, 1H), 4.02 – 3.98 (m, 1H), 2.15 – 2.05 (m, 2H), 1.66 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.3, 143.9, 139.9, 134.7, 130.8, 128.3, 126.5, 125.5, 124.9, 123.0, 122.8, 119.9, 115.9 (t, *J* = 238.1 Hz), 109.0, 50.8, 42.6 (t, *J* = 20.8 Hz), 36.2 (t, *J* = 4.5 Hz), 23.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.01 – -112.27 (m, 2F). HRMS (ESI-TOF) Calcd for C₁₈H₁₇F₂N₂⁺ ([M+H]⁺) 299.1354. Found 299.1352.

5-(2,2-Difluoroethyl)-3,5-dimethyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline (**3n2**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 68% yield (63.8 mg), colorless oil. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 7.9 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.38 – 7.34 (m, 1H), 7.32 – 7.28 (m, 3H), 7.24 (d, *J* = 1.5 Hz, 1H), 5.76 – 5.46 (m, 1H), 4.28 (d, *J* = 12.7 Hz, 1H), 3.99 – 3.96 (m, 1H), 2.45 (s, 3H), 2.14 – 2.04 (m, 2H), 1.64 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 148.6, 143.9, 141.1, 139.9, 134.7, 129.1, 126.5, 125.5, 122.80, 122.78, 122.7, 119.7, 115.9 (t, *J* = 238.0 Hz), 108.9, 50.8, 42.6 (t, *J* = 20.8 Hz), 36.1 (q, *J* = 1.2 Hz), 23.5, 22.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.98 – -112.25 (m, 2F). HRMS (ESI-TOF) Calcd for C₁₉H₁₉F₂N₂⁺ ([M+H]⁺) 313.1511. Found 313.1500.

5-(2,2-Difluoroethyl)-3-methoxy-5-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoqu inoline (**3n3**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 84% yield (82.8 mg), white solid: mp 97 – 98 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.5 Hz, 1H), 7.83 – 7.78 (m, 1H), 7.36 – 7.26 (m, 3H), 7.01 – 6.95 (m, 2H), 5.77 – 5.46 (m, 1H), 4.25 (d, *J* = 12.7 Hz, 1H), 3.96 – 3.93 (m, 1H), 3.90 (s, 3H), 2.13 – 2.03 (m, 2H), 1.63 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.6, 148.6, 143.9, 141.9, 134.7, 128.3, 122.6, 119.5, 118.3, 115.9 (t, *J* = 238.0 Hz), 112.7, 111.7, 108.8, 55.5, 50.8, 42.4 (t, *J* = 20.7 Hz), 36.3 (t, *J* = 4.0 Hz), 23.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.00 – -112.26 (m, 2F). HRMS (ESI-TOF) Calcd for C₁₉H₁₉F₂N₂O⁺ ([M+H]⁺) 329.1460. Found 329.1463.

3-Chloro-5-(2,2-difluoroethyl)-5-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquin oline (**3n4**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 75% yield (75.0 mg), pale yellow solid: mp 101 – 102 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.3 Hz, 1H), 7.86 – 7.81 (m, 1H), 7.46 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.42 (d, *J* = 2.0 Hz, 1H), 7.39 – 7.29 (m, 3H), 5.81 – 5.51 (m, 1H), 4.32 (d, *J* = 12.8 Hz, 1H), 4.01 – 3.97 (m, 1H), 2.15 – 2.04 (m, 2H), 1.66 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.5, 143.9, 141.9, 136.8, 134.7, 128.7, 127.8, 125.4, 124.1, 123.3, 123.0, 120.0, 115.6 (t, *J* = 238.4 Hz), 109.1, 50.5, 42.4 (t, *J* = 20.8 Hz), 36.4 (t, *J* = 4.7 Hz), 23.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.09 – -112.34 (m, 2F). HRMS (ESI-TOF) Calcd for C₁₈H₁₆ClF₂N₂⁺ ([M+H]⁺) 333.0965. Found 333.0979.

3-Bromo-5-(2,2-difluoroethyl)-5-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquin oline (**3n5**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1,

v/v) in 89% yield (100.7 mg), pale yellow solid: mp 131 – 132 °C. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.3 Hz, 1H), 7.88 – 7.85 (m, 1H), 7.63 (dd, J = 8.3, 1.9 Hz, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.41 – 7.32 (m, 3H), 5.84 – 5.54 (m, 1H), 4.36 (d, J = 12.9 Hz, 1H), 4.03 – 3.99 (m, 1H), 2.16 – 2.05 (m, 2H), 1.67 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.1, 142.1, 134.2, 131.8, 128.31, 128.27, 125.7, 123.7, 123.5, 119.6, 115.5 (t, J = 238.5 Hz), 109.3, 50.4, 42.4 (t, J = 21.1 Hz), 36.4 (t, J = 4.5 Hz), 23.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.17 – -112.41 (m, 2F). HRMS (ESI-TOF) Calcd for C₁₈H₁₆BrF₂N₂⁺ ([M+H]⁺) 377.0459. Found 377.0463.

5-(2,2-Difluoroethyl)-5-methyl-3-(trifluoromethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1 -*a*]isoquinoline (**301**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 88% yield (96.2 mg), white solid: mp 97 – 98 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.1 Hz, 1H), 7.89 – 7.84 (m, 1H), 7.75 – 7.73 (m, 1H), 7.67 (d, *J* = 1.6 Hz, 1H), 7.43 – 7.32 (m, 3H), 5.82 – 5.52 (m, 1H), 4.38 (d, *J* = 12.8 Hz, 1H), 4.06 – 4.02 (m, 1H), 2.22 – 2.03 (m, 2H), 1.71 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.9, 143.9, 140.9, 134.7, 132.3 (q, *J* = 32.4 Hz), 128.8 (q, *J* = 0.4 Hz), 126.8, 125.3 (q, *J* = 3.9 Hz), 125.1, 123.753 (q, *J* = 270.9 Hz), 123.752, 123.2, 122.0 (q, *J* = 3.9 Hz), 120.3, 115.5 (t, *J* = 238.5 Hz), 109.3, 50.4, 42.4 (t, *J* = 20.8 Hz), 36.5 (t, *J* = 4.6 Hz), 23.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.75 (s, 3F), -112.22 – -112.46 (m, 2F). HRMS (ESI-TOF) Calcd for C₁₉H₁₆F₅N₂⁺ ([M+H]⁺) 367.1228. Found 367.1230.

9,10-Dichloro-5-(2,2-difluoroethyl)-5-methyl-3-(trifluoromethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline (**3o2**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 85% yield (110.5 mg), white solid: mp 223 – 224 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.34 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 9.5 Hz, 2H), 7.92 (d, *J* = 1.6 Hz, 1H), 7.85 (dd, *J*
= 8.1, 1.6 Hz, 1H), 6.29 – 5.99 (m, 1H), 4.62 (d, J = 13.2 Hz, 1H), 4.22 (d, J = 13.1 Hz, 1H), 2.26 – 2.16 (m, 2H), 1.60 (s, 3H). ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 149.4, 143.3, 142.9, 134.8, 131.4 (q, J = 31.7 Hz), 128.5 (d, J = 0.8 Hz), 126.9, 126.0, 125.5, 125.3 (q, J = 3.8 Hz), 124.4 (q, J = 271.1 Hz), 123.3 (q, J = 3.7 Hz), 120.9, 116.6 (t, J = 235.9 Hz), 112.8, 49.8, 42.5 (t, J = 20.7 Hz), 36.5 (t, J = 5.2 Hz), 23.4. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.19 (s, 3F), -110.63 – -110.91 (m, 2F). HRMS (ESI-TOF) Calcd for C₁₉H₁₄Cl₂F₅N₂⁺ ([M+H]⁺) 435.0449. Found 435.0445.

1-(5-Chloro-3-methyl-3-(2,2,2-trifluoroethyl)indolin-1-yl)ethanone (**5a1**),^[6] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 77% yield (67.5 mg), pale yellow oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.7 Hz, 1H), 7.22 (dd, J = 8.7, 2.2 Hz, 1H), 7.08 (d, J = 2.2 Hz, 1H), 4.13 (d, J = 10.7 Hz, 1H), 3.84 (d, J = 10.8 Hz, 1H), 2.59 – 2.39 (m, 2H), 2.24 (s, 3H), 1.47 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.6, 140.0, 139.3, 128.9, 128.7, 126.0 (q, J = 276.8 Hz), 122.4, 118.3, 61.1 (d, J = 1.9 Hz), 43.1 (q, J = 26.8 Hz), 41.1, 26.1, 24.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.44 (t, J = 10.6 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₄ClF₃NO⁺ ([M+H]⁺) 292.0711. Found 292.0712.

1-(5-Bromo-3-methyl-3-(2,2,2-trifluoroethyl)indolin-1-yl)ethanone (**5a2**),^[6] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 82% yield (82.7 mg), colorless oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.6 Hz, 1H), 7.36 (dd, J = 8.6, 2.1 Hz, 1H), 7.23 (d, J = 2.0 Hz, 1H), 4.13 (d, J = 10.8 Hz, 1H), 3.83 (d, J = 10.8 Hz, 1H), 2.57 – 2.42 (m, 2H), 2.24 (s, 3H), 1.47 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.7, 140.4, 139.6, 131.6, 126.0 (q, J = 276.7 Hz), 125.3, 118.7, 116.3, 61.0 (q, J = 2.4 Hz), 43.1 (q, J = 27.0 Hz), 41.1 (d, J = 1.4 Hz), 26.1 (d, J = 0.8 Hz), 24.1. ¹⁹F NMR (376 MHz, CDCl₃)

^[6] J. Wang, K. Sun, X. Chen, T. Chen, Y. Liu, L. Qu, Y. Zhao and B. Yu, Org. Lett., 2019, 21, 1863–1867.

δ -65.18 (t, J = 10.4 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₄BrF₃NO⁺ ([M+H]⁺) 336.0205. Found 336.0203.

5-Methoxy-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (**5b**),^[7] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 91% yield (74.7 mg), white solid: mp 105 – 106 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, *J* = 2.4 Hz, 1H), 6.84 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 3.80 (s, 3H), 3.21 (s, 3H), 2.87 – 2.75 (m, 1H), 2.68 – 2.57 (m, 1H), 1.40 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 178.1, 156.1, 136.4, 132.4, 125.2 (q, *J* = 276.5 Hz), 112.6, 111.3 (q, *J* = 1.6 Hz), 108.7, 55.8, 44.8 (q, *J* = 2.2 Hz), 40.6 (q, *J* = 28.2 Hz), 26.5, 25.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.87 (t, *J* = 10.4 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₅F₃NO₂⁺ ([M+H]⁺) 274.1049. Found 274.1036.

3-(2,2-Difluoroethyl)-5-methoxy-1,3-dimethylindolin-2-one (**5c**),^[8] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 89% yield (68.5 mg), pale yellow oil. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 6.84 – 6.81 (m, 2H), 6.79 – 6.76 (m, 1H), 5.77 – 5.46 (m, 1H), 3.81 (s, 3H), 3.20 (s, 3H), 2.55 – 2.43 (m, 1H), 2.32 – 2.19 (m, 1H), 1.40 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 178.8, 156.2, 136.4, 133.5, 115.1 (t, *J* = 238.3 Hz), 112.4, 110.6, 108.7, 55.8, 45.0 (q, *J* = 0.9 Hz), 41.4 (t, *J* = 21.8 Hz), 26.4, 24.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.08 – -114.36 (m, 2F). HRMS (ESI-TOF) Calcd for C₁₃H₁₆F₂NO₂⁺ ([M+H]⁺) 256.1144. Found 256.1145.

^[7] W. Fu, F. Xu, Y. Fu, C. Xu, S. Li and D. Zou, Eur. J. Org. Chem., 2013, 2014, 709-712.

^[8] H. Sun, Y. Jiang, Y.-S. Yang, Y.-Y. Li, L. Li, W.-X. Wang, T. Feng, Z.-H. Li and J.-K. Liu, Org. Biomol. Chem., 2019, 17, 6629-6638.

5-Chloro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (**5d1**),^[9] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 68% yield (56.9 mg), white solid: mp 74 – 75 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.24 (d, *J* = 2.1 Hz, 1H), 6.81 (d, *J* = 8.3 Hz, 1H), 3.23 (s, 3H), 2.89 – 2.77 (m, 1H), 2.69 – 2.57 (m, 1H), 1.41 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 177. 9, 141.4, 132.7, 128.5, 128.1, 125.1 (q, *J* = 278.1 Hz), 124.1 (q, *J* = 1.6 Hz), 109.4, 44.6 (q, *J* = 2.1 Hz), 41.6 (q, *J* = 28.5 Hz), 26.6, 24.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.97 (t, *J* = 10.4 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₂H₁₂ClF₃NO⁺ ([M+H]⁺) 278.0554. Found 278.0557.

1,3-Dimethyl-2-oxo-3-(2,2,2-trifluoroethyl)indoline-5-carbonitrile (**5d2**),^[10] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 72% yield (57.9 mg), white solid: mp 105 – 106 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.53 (d, *J* = 1.5 Hz, 1H), 6.97 (d, *J* = 8.1 Hz, 1H), 3.28 (s, 3H), 2.93 – 2.81 (m, 1H), 2.74 – 2.63 (m, 1H), 1.44 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 178.1, 146.7, 133.9, 132.0, 127.0 (q, *J* = 1.6 Hz), 124.9 (q, *J* = 276.3 Hz), 119.0, 109.0, 106.0, 44.2 (q, *J* = 2.3 Hz), 40.5 (q, *J* = 28.4 Hz), 26.7, 24.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.04 (t, *J* = 10.4 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₂F₃N₂O⁺ ([M+H]⁺) 269.0896. Found 269.0899.

6-Chloro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one and 4-chloro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (**5e**),^[9] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 65% yield (54.0 mg), 1:1 mixture of regioisomers, colorless oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33.

^[9] L. Li, M. Deng, S.-C. Zheng, Y.-P. Xiong, B. Tan and X.-Y. Liu, Org. Lett., 2013, 16, 504-507.

¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 1H), 7.17 (d, J = 7.9 Hz, 1H), 7.07 (dd, J = 7.9, 1.9 Hz, 1H), 7.02 (dd, J = 8.2, 0.9 Hz, 1H), 6.89 (d, J = 1.8 Hz, 1H), 6.79 (dd, J = 7.8, 0.8 Hz, 1H), 3.23 (s, 3H), 3.22 (s, 3H), 3.18 – 3.10 (m, 1H), 2.93 – 2.76 (m, 2H), 2.69 – 2.57 (m, 1H), 1.53 (s, 3H), 1.39 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 178.4, 177.8, 144.6, 144.1, 134.4, 131.2, 129.8, 129.3, 127.2, 125.1 (q, J = 276.4 Hz), 125.0 (q, J = 276.4 Hz), 124.5 (q, J = 1.5 Hz), 123.6, 122.5, 109.3, 107.0, 45.4 (q, J = 2.3 Hz), 44.1 (q, J = 2.2 Hz), 40.6 (q, J = 28.2 Hz), 38.7 (q, J = 28.2 Hz), 26.7, 26.5, 24.9, 22.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.00 (t, J = 10.2 Hz, 3F), -61.96 (t, J = 10.3 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₂H₁₂ClF₃NO⁺ ([M+H]⁺) 278.0554. Found 278.0551.

1-Butyl-3-methyl-3-(2,2,2-trifluoroethyl)indolin-2-one (7a),^[7] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 56% yield (47.9 mg), colorless oil. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.09 – 7.05 (m, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 3.85 – 3.75 (m, 1H), 3.71 – 3.62 (m, 1H), 2.94 – 2.81 (m, 1H), 2.74 – 2.59 (m, 1H), 1.69 – 1.61 (m, 2H), 1.44 – 1.34 (m, 5H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 178.3, 142.3, 131.1, 128.4, 125.3 (q, *J* = 276.6 Hz), 123.7 (d, *J* = 1.3 Hz), 122.3, 108.7, 44.3 (q, *J* = 2.2 Hz), 40.6 (q, *J* = 28.1 Hz), 39.9, 29.3, 25.3, 20.1, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.89 (t, *J* = 10.6 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₅H₁₉F₃NO⁺ ([M+H]⁺) 286.1413. Found 286.1415.

1,3,6-Trimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (**7b**),^[9] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 60% yield (47.1 mg), yellowish oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, J = 7.5 Hz, 1H), 6.91 – 6.89 (m, 1H), 6.71 (dd, J = 0.9, 0.8 Hz, 1H), 3.22 (s, 3H), 2.86 – 2.74 (m, 1H), 2.69 – 2.55 (m, 1H), 2.40 (s, 3H), 1.39 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 178.8, 142.9, 138.7, 128.1, 125.3 (q, J = 276.3 Hz), 123.3

(q, J = 1.4 Hz), 123.2, 109.4, 44.2 (q, J = 2.3 Hz), 40.7 (q, J = 28.0 Hz), 26.4, 25.1, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.93 (t, J = 10.9 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₅F₃NO⁺ ([M+H]⁺) 258.1100. Found 258.1096.

2,4-Dimethyl-4-(2,2,2-trifluoroethyl)-3,4-dihydroisoquinolin-1(2*H*)-one (9a),^[6] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 62% yield (47.7 mg), colorless oil. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 7.8, 1.5 Hz, 1H), 7.50 (ddd, J = 1.52, 6.1, 7.6 Hz, 1H), 7.39 (ddd, J = 1.2, 6.3, 7.5 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 3.55 (d, J = 12.9 Hz, 1H), 3.40 (d, J = 13.0 Hz, 1H), 3.18 (s, 3H), 2.58 – 2.46 (m, 1H), 2.39 – 2.27 (m, 1H), 1.55 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.4, 144.2, 132.3, 128.9, 128.0, 127.7, 126.1 (q, J = 277.0 Hz), 123.7, 57.2 (q, J = 1.7 Hz), 41.33 (q, J = 27.1 Hz), 35.2 (q, J = 1.8 Hz), 35.1, 22.1 (q, J = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.99 (t, J = 11.2 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₅F₃NO⁺ ([M+H]⁺) 258.1100. Found 258.1101.

6-Methoxy-2,4-dimethyl-4-(2,2,2-trifluoroethyl)-3,4-dihydroisoquinolin-1(2*H*)-one (**9b**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 64% yield (54.8 mg), white solid: mp 73 – 74 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.7 Hz, 1H), 6.88 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.78 (d, *J* = 2.4 Hz, 1H), 3.86 (s, 3H), 3.52 (d, *J* = 12.9 Hz, 1H), 3.37 (d, *J* = 13.0 Hz, 1H), 3.15 (s, 3H), 2.58 – 2.45 (m, 1H), 2.36 – 2.23 (m, 1H), 1.61 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.4, 162.7, 146.4, 131.2, 126.1 (q, *J* = 277.1 Hz), 120.9, 112.1, 110.0, 57.2, 55.5, 41.2 (q, *J* = 27.0 Hz), 35.3 (q, *J* = 1.4 Hz), 34.9, 22.1 (q, *J* = 1.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.96 (t, *J* = 11.8 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₄H₁₇F₃NO₂⁺ ([M+H]⁺) 288.1206. Found 288.1215.

6-Bromo-2,4-dimethyl-4-(2,2,2-trifluoroethyl)-3,4-dihydroisoquinolin-1(2*H*)-one (**9c**),^[6] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 75% yield (75.3 mg), white solid: mp 56 – 57 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.3 Hz, 1H), 7.53 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.44 (d, *J* = 1.9 Hz, 1H), 3.54 (d, *J* = 13.0 Hz, 1H), 3.39 (d, *J* = 13.0 Hz, 1H), 3.16 (s, 3H), 2.57 – 2.45 (m, 1H), 2.38 – 2.26 (m, 1H), 1.54 (d, *J* = 1.3 Hz, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 163.6, 146.0, 131.1, 130.8, 127.2, 127.1, 127.0, 125.9 (q, *J* = 277.1 Hz), 125.7, 57.0 (d, *J* = 2.0 Hz), 41.2 (q, *J* = 27.1 Hz), 35.3 (d, *J* = 1.7 Hz), 35.1, 22.0 (d, *J* = 2.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.97 (t, *J* = 11.8 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₄BrF₃NO⁺ ([M+H]⁺) 336.0205. Found 336.0203.

2,4-Dimethyl-4-(2,2,2-trifluoroethyl)isoquinoline-1,3(2*H*,4*H*)-dione (**9d**),^[9] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 65% yield (56.6 mg), white solid: mp 66 – 67 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (ddd, *J* = 7.9, 1.5, 0.5 Hz, 1H), 7.67 (ddd, *J* = 7.9, 7.3, 1.5 Hz, 1H), 7.49 (ddd, *J* = 7.9, 7.3, 1.1 Hz, 1H), 7.43 (d, *J* = 7.9 Hz, 1H), 3.41 (s, 3H), 3.40 – 3.29 (m, 1H), 2.86 – 2.75 (m, 1H), 1.66 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.6, 163.7, 140.4, 133.8, 129.3, 128.1, 125.6, 125.0 (q, *J* = 278.7 Hz), 124.2, 44.4 (q, *J* = 27.6 Hz), 43. 6 (q, *J* = 2.3 Hz), 31.2, 27.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.66 (t, *J* = 9.7 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₃F₃NO₂⁺ ([M+H]⁺) 272.0893. Found 272.0881.

6-Methoxy-2,4-dimethyl-4-(2,2,2-trifluoroethyl)isoquinoline-1,3(2*H*,4*H*)-dione (**9e**),^[9] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 65% yield (59.0 mg), yellowish solid: mp 113 – 114 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.8 Hz, 1H), 7.00 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.85 (d, *J* = 2.4 Hz, 1H), 3.90 (s, 3H), 3.38 – 3.29 (m, 4H), 2.82 – 2.71 (m, 1H), 1.65 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.6, 164.0, 163.4, 142.6, 131.7, 125.0 (q, *J* = 277.1 Hz), 117.2, 113.6, 111.1, 55.6, 44.4 (q, *J* = 27.4 Hz), 43.7 (q, *J* = 2.3 Hz), 31.3, 27.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.61 (t, *J* = 10.3 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₄H₁₅F₃NO₃⁺ ([M+H]⁺) 302.0999. Found 302.0996.

6-Bromo-2,4-dimethyl-4-(2,2,2-trifluoroethyl)isoquinoline-1,3(2*H*,4*H*)-dione (**9f**),^[10] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 73% yield (76.6 mg), white solid: mp 137 – 138 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.5 Hz, 1H), 7.63 (dd, *J* = 6.7, 1.8 Hz, 1H), 7.57 (d, *J* = 1.8 Hz, 1H), 3.40 (s, 3H), 3.38 – 3.30 (m, 1H), 2.82 – 3.71 (m, 1H), 1.67 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.8, 163.0, 142.1, 131.7, 130.9, 129.1, 128.9, 124.8 (q, *J* = 277.0 Hz), 123.2, 44.4 (q, *J* = 27.6 Hz), 43.5 (q, *J* = 2.3 Hz), 31.0, 27.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.68 (t, *J* = 10.0 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₂BrF₃NO₂⁺ ([M+H]⁺) 349.9998. Found 349.9999.

3-(2,2,2-Trifluoroethyl)-2,3-dihydropyrrolo[2,1-*b*]quinazolin-9(1*H*)-one (11),^[11] isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 44% yield (35.8 mg), white solid: mp 118 – 119 °C. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 7.9 Hz, 1H), 7.75 (ddd, *J* = 1.5,

^[10] Z. Zhang, L. Zhang, Y. Cao, F. Li, G. Bai, G. Liu, Y. Yang and F. Mo, Org. Lett., 2019, 21, 762-766.

^[11] J. Zheng, Z. Deng, Y. Zhang and S. Cui, Adv. Synth. Catal., 2016, 358, 746-751.

7.1, 8.6 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.48 (dd, J = 7.6, 7.4 Hz, 1H), 4.43 – 4.37 (m, 1H), 3.99 – 3.91 (m, 1H), 3.58 – 3.49 (m, 1H), 3.34 – 3.21 (m, 1H), 2.72 – 2.65 (m, 1H), 2.36 – 2.22 (m, 1H), 2.10 – 1.99 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.8, 158.5, 148.9, 134.3, 127.1, 126.7, 126.6 (q, J = 276.8 Hz), 126.5, 120.8, 44.7, 38.4 (q, J = 2.8 Hz), 36.0 (q, J = 29.1 Hz), 27.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -64.68 (t, J = 10.5 Hz, 3F). HRMS (ESI-TOF) Calcd for C₁₃H₁₂F₃N₂O⁺ ([M+H]⁺) 269.0896. Found 269.0898.

6-Methyl-2-phenyl-6-(2,2,2-trifluoroethyl)-5,6-dihydropyrazolo[5,1-*a*]isoquinoline (**13a**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 86% yield (88.8 mg), white solid: mp 107 – 108 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.85 (m, 2H), 7.65 – 7.63 (m, 1H), 7.47 – 7.30 (m, 6H), 6.88 (s, 1H), 4.42 (d, *J* = 13.3 Hz, 1H), 4.11 (dd, *J* = 12.3, 1.0 Hz, 1H), 2.40 (d, *J* = 11.2 Hz, 1H), 2.34 (dd, *J* = 10.4, 0.7 Hz, 1H), 1.66 (d, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.6, 139.2, 137.5, 133.2, 128.74, 128.67, 128.1, 127.8, 126.1 (q, *J* = 277.1 Hz), 125.8, 125.6, 125.3, 124.7, 98.0, 56.1 (q, *J* = 1.2 Hz), 41.2 (q, *J* = 26.9 Hz), 37.2 (d, *J* = 1.7 Hz), 22.5 (d, *J* = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.45 (t, *J* = 11.8 Hz, 3F). HRMS (ESI-TOF) Calcd for C₂₀H₁₈F₃N₂⁺ ([M+H]⁺) 343.1417. Found 343.1413.

6-Methyl-2-phenyl-6-(2,2,2-trifluoroethyl)pyrazolo[5,1-*a*]isoquinolin-5(6*H*)-one (**13b**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 67% yield (72.0 mg), white solid: mp 59 – 60 °C. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.03 (m, 2H), 7.84 – 7.82 (m, 1H), 7.52 – 7.42 (m, 6H), 7.15 (s, 1H), 3.57 – 3.45 (m, 1H), 2.98 – 2.87 (m, 1H), 1.76 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.3, 158.2, 143.7, 136.4, 131.0, 130.0, 129.9, 128.8, 128.3, 126.91, 126.86, 125.0 (q, J = 277.2 Hz), 124.8, 122.1, 101.8, 45.6 (q, J = 2.2 Hz), 44.0 (q, J = 27.5 Hz), 31.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.26 (p, J = 5.2 Hz, 3F). HRMS (ESI-TOF) Calcd for C₂₀H₁₆F₃N₂O⁺ ([M+H]⁺) 357.1209. Found 357.1210.

7-(Cyclopropylmethoxy)-2-(3,5-dichloropyridin-4-yl)-6-(difluoromethoxy)-4-methyl-4-(2,2,2-trifluoroethyl)-3,4-dihydroisoquinolin-1(2*H*)-one (**15**), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 66% yield (106.2 mg), white solid: mp 183 – 184 °C. R_f (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.67 (s, 1H), 7.79 (s, 1H), 7.28 (s, 1H), 6.83 (t, *J* = 74.6 Hz, 1H), 4.03 – 3.95 (m, 2H), 3.52 – 3.40 (m, 1H), 2.93 – 2.82 (m, 1H), 1.76 (s, 3H), 1.39 – 1.29 (m, 1H), 0.72 – 0.68 (m, 2H), 0.41 – 0.37 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.2, 160.6, 150.4, 148.6 (d, *J* = 46.8 Hz), 145.4 (t, *J* = 3.1 Hz), 139.1, 133.7, 132.3, 131.3, 124.7 (q, *J* = 277.1 Hz), 121.3, 120.1, 115.4 (t, *J* = 261.3 Hz), 113.5, 74.3, 44.7 (q, *J* = 2.3 Hz), 42.7 (q, *J* = 27.9 Hz), 32.3, 9.9, 3.38, 3.34. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.41 (t, *J* = 9.4 Hz, 3F), -82.16 – -82.41 (m, 2F). HRMS (ESI-TOF) Calcd for C₂₂H₁₈Cl₂F₅N₂O4⁺ ([M+H]⁺) 539.0558. Found 539.0566.

8-(4-(1-Cyclohexyl-1*H*-tetrazol-5-yl)butoxy)-1-methyl-1-(2,2,2-trifluoroethyl)-5,6-di hydro-1*H*-pyrrolo[3,2,1-*ij*]quinolin-4(2*H*)-one (17), isolated by flash column chromatography (petroleum ether/EtOAc = 20:1, v/v) in 75% yield (110.8 mg), colorless oil. *R_f* (petroleum ether/EtOAc = 5:1, v/v) 0.33. ¹H NMR (400 MHz, CDCl₃) δ 6.61 – 6.60 (m, 1H), 6.57 (d, *J* = 2.2 Hz, 1H), 4.17 – 4.09 (m, 2H), 3.98 (t, *J* = 6.0 Hz, 2H), 3.87 (d, *J* = 12.3 Hz, 1H), 3.31 (q, *J* = 7.2 Hz, 1H), 2.98 – 2.90 (m, 3H), 2.68 (t, *J* = 7.7 Hz, 2H), 2.60 – 2.39 (m, 2H), 2.08 – 1.98 (m, 7H), 1.93 – 1.87 (m, 3H), 1.46 – 1.30 (m, 7H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.8, 156.2, 153.5, 135.8, 133.7, 126.0 (q, J = 277.1 Hz), 121.3, 112.9, 107.9, 68.1, 58.0 (q, J = 2.1 Hz), 57.6, 43.4 (q, J = 26.9 Hz), 42.4 (q, J = 1.9 Hz), 32.9, 31.3, 28.6, 26.7 (d, J = 1.3 Hz), 25.3, 24.8, 24.6, 24.0, 23.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.50 (t, J = 11.8 Hz, 3F). HRMS (ESI-TOF) Calcd for C₂₅H₃₃F₃N₅O₂⁺ ([M+H]⁺) 492.2581. Found 492.2580.

(3,3,3-Trifluoroprop-1-ene-1,1-diyl)dibenzene (**18**),^[4] isolated by flash column chromatography (pure petroleum ether) in 36% yield (26.8 mg), colorless oil. *R_f* (pure petroleum ether) 0.50. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.37 (m, 3H), 7.36 – 7.30 (m, 3H), 7.27 – 7.22 (m, 4H), 6.12 (q, *J* = 8.3 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.5 (q, *J* = 5.6 Hz), 140.1, 137.3, 129.4, 129.1 (q, *J* = 1.9 Hz), 128.5 (d, *J* = 1.5 Hz), 128.03, 127.96, 123.1 (q, *J* = 269.0 Hz), 115.4 (q, *J* = 33.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -55.60 (d, *J* = 8.5 Hz, 3F). HRMS (ESI-TOF) Calcd for $C_{15}H_{12}F_{3}^{+}$ ([M+H]⁺) 249.0886. Found 249.0885.

1-(2-Mthylallyl)-2-phenyl-1*H*-benzo[*d*]imidazole (**1a**),^[12] white solid: mp 100 – 101 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.83 (m, 1H), 7.79 – 7.75 (m, 2H), 7.52 – 7.49 (m, 3H), 7.34 – 7.27 (m, 3H), 5.02 (p, *J* = 1.5 Hz, 1H), 4.69 (s, 2H), 4.64 (s, 1H), 1.81 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.0, 143.0, 139.8, 136.1, 130.2, 129.9, 129.1, 128.7, 122.9, 122.5, 119.9, 112.2, 110.5, 50.4, 20.2. HRMS (ESI-TOF) Calcd for C₁₇H₁₇N₂⁺ ([M+H]⁺) 249.1386. Found 249.1381.

1-(2-Methylallyl)-2-(p-tolyl)-1H-benzo[d]imidazole (1c1), white solid: mp 110 –

^[12] R. Kong, T. Fu, R. Yang, D. Chen, D. Liang, Y. Dong, W. Li and B. Wang, *ChemCatChem*, 2021, 13, 2952–2958.

111 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 3.9, 2.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.21 – 7.14 (m, 5H), 4.89 (s, 1H), 4.56 (s, 2H), 4.53 (s, 1H), 2.32 (s, 3H), 1.68 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.2, 143.0, 140.0, 139.8, 136.1, 129.4, 129.0, 127.3, 122.7, 122.4, 119.8, 112.1, 110.4, 50.3, 21.5, 20.2. HRMS (ESI-TOF) Calcd for C₁₈H₁₉N₂⁺ ([M+H]⁺) 263.1543. Found 263.1541.

2-(4-Methoxyphenyl)-1-(2-methylallyl)-1*H*-benzo[*d*]imidazole (**1c2**), white solid: mp 108 – 109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.73 (m, 1H), 7.63 (d, *J* = 8.8 Hz, 2H), δ 7.24 – 7.16 (m, 3H), 6.94 (d, *J* = 8.8 Hz, 2H), 4.93 (s, 1H), 4.58 (s, 2H), 4.55 (s, 1H), 3.79 (s, 3H), 1.73 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.9, 154.0, 143.0, 139.9, 136.1, 130.5, 122.6, 122.5, 122.4, 119.6, 114.2, 112.1, 110.3, 55.4, 50.4, 20.2. HRMS (ESI-TOF) Calcd for C₁₈H₁₉N₂O⁺ ([M+H]⁺) 279.1492. Found 279.1480.

2-(4-Chlorophenyl)-1-(2-methylallyl)-1*H*-benzo[*d*]imidazole (**1c3**), white solid: mp 108 – 109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.82 (m, 1H), 7.71 (ddd, *J* = 8.5, 2.5, 2.0 Hz, 2H), 7.48 (ddd, *J* = 8.5, 2.5, 2.0 Hz, 2H), 7.34 – 7.29 (m, 3H), 5.02 (s, 1H), 4.65 (s, 2H), 4.61 (s, 1H), 1.81 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.8, 142.9, 139.7, 136.1, 130.3, 129.0, 128.6, 123.2, 122.7, 119.9, 112.3, 110.4, 50.3, 20.2. HRMS (ESI-TOF) Calcd for C₁₇H₁₆ClN₂⁺ ([M+H]⁺) 283.0997. Found 283.0999.

2-(4-Bromophenyl)-1-(2-methylallyl)-1*H*-benzo[*d*]imidazole (1c4), white solid: mp 91 – 92 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.72 (m, 1H), 7.58 – 7.53 (m, 4H),

7.25 – 7.18 (m, 3H), 4.92 (dd, J = 1.5, 1.6 Hz, 1H), 4.56 (s, 2H), 4.51 (s, 1H), 1.72 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.8, 142.9, 139.7, 136.2, 132.0, 130.6, 129.1, 124.5, 123.2, 122.7, 120.0, 112.3, 110.4, 50.3, 20.2. HRMS (ESI-TOF) Calcd for C₁₇H₁₆BrN₂⁺ ([M+H]⁺) 327.0491. Found 327.0494.

1-(2-Methylallyl)-2-(4-(trifluoromethyl)phenyl)-1*H*-benzo[*d*]imidazole (**1c5**), white solid: mp 97 – 98 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 2H), 7.88 – 7.85 (m, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.37 – 7.32 (m, 3H), 5.04 (s, 1H), 4.69 (s, 2H), 4.63 (s, 1H), 1.84 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.3, 142.9, 139.6, 136.2, 133.7 (q, *J* = 1.5 Hz), 131.7 (q, *J* = 32.4 Hz), 129.4, 125.7 (q, *J* = 3.7 Hz), 123.9 (q, *J* = 270.8 Hz), 123.5, 122.9, 120.1, 112.4, 110.5, 50.4, 20.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.79 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₆F₃N₂⁺ ([M+H]⁺) 317.1260. Found 317.1271.

Methyl 4-(1-(2-methylallyl)-1*H*-benzo[*d*]imidazol-2-yl)benzoate (**1c6**), white solid: mp 96 – 97 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.16 (m, 2H), 7.88 – 7.85 (m, 3H), 7.36 – 7.30 (m, 3H), 5.03 (t, *J* = 1.3, 1H), 4.70 (s, 2H), 4.63 (s, 1H), 3.97 (s, 3H), 1.82 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.5, 152.7, 143.0, 139.6, 136.2, 134.4, 131.2, 129.9, 129.1, 123.4, 122.9, 120.1, 112.4, 110.5, 52.4, 50.4, 20.2. HRMS (ESI-TOF) Calcd for C₁₉H₁₉N₂O₂⁺ ([M+H]⁺) 307.1441. Found 307.1445.

2-(3,5-Dichlorophenyl)-1-(2-methylallyl)-1*H*-benzo[*d*]imidazole (1d), pink solid: mp 79 – 80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.82 (m, 1H), 7.70 (d, *J* = 1.9 Hz,

2H), 7.50 (dd, J = 1.9, 1.8 Hz, 1H), 7.37 – 7.31 (m, J = 4.4, 2.1 Hz, 3H), 5.06 (s, 1H), 4.69 (s, 2H), 4.60 (s, 1H), 1.84 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.9, 142.8, 139.5, 136.2, 135.5, 133.0, 129.8, 127.4, 123.7, 123.0, 120.2, 112.7, 110.5, 50.4, 20.1. HRMS (ESI-TOF) Calcd for C₁₇H₁₅Cl₂N₂⁺ ([M+H]⁺) 317.0607. Found 317.0609.

2-(2-Chlorophenyl)-1-(2-methylallyl)-1*H*-benzo[*d*]imidazole (**1e**), pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 1H), 7.54 – 7.51 (m, 2H), 7.49 – 7.44 (m, 1H), 7.43 – 7.37 (m, 2H), 7.35 – 7.28 (m, 2H), 4.86 (p, *J* = 1.4 Hz, 1H), 4.61 (t, *J* = 1.2, 1.3 Hz, 1H), 4.58 (s, 2H), 1.54 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.3, 143.0, 139.4, 134.9, 134.3, 132.3, 131.3, 130.0, 129.8, 126.9, 123.0, 122.4, 120.2, 113.2, 110.7, 50.4, 19.9. HRMS (ESI-TOF) Calcd for C₁₇H₁₆ClN₂⁺ ([M+H]⁺) 283.0997. Found 283.0999.

1-(2-Methylallyl)-2-(pyridin-4-yl)-1*H*-benzo[*d*]imidazole (**1f**), brown solid: mp 115 – 116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.78 – 8.75 (m, 2H), 7.88 – 7.85 (m, 1H), 7.70 – 7.68 (m, 2H), 7.34 – 7.31 (m, 3H), 5.02 (s, 1H), 4.69 (s, 2H), 4.57 (s, 1H), 1.83 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.9, 150.3, 142.8, 139.4, 137.7, 136.3, 123.8, 123.1, 123.0, 120.3, 112.4, 110.6, 50.3, 20.2. HRMS (ESI-TOF) Calcd for C₁₆H₁₆N₃⁺ ([M+H]⁺) 250.1339. Found 250.1335.

1-(2-Methylallyl)-2-(thiophen-2-yl)-1*H*-benzo[*d*]imidazole (**1g**), pale yellow solid: mp 121 – 122 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.71 (m, 1H), 7.37 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.32 (dd, J = 3.8, 1.1 Hz, 1H), 7.20 – 7.13 (m, 3H), 7.03 (dd, J = 5.1, 3.7 Hz, 1H), 4.86 (s, 1H), 4.67 (s, 2H), 4.41 (s, 1H), 1.75 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.0, 142.9, 139.3, 136.2, 132.1, 128.7, 127.9, 127.7, 123.1, 122.7, 119.7, 112.0, 109.9, 50.0, 20.2. HRMS (ESI-TOF) Calcd for C₁₅H₁₅N₂S⁺ ([M+H]⁺) 255.0950. Found 255.0951.

5,6-Dimethyl-1-(2-methylallyl)-2-phenyl-1*H*-benzo[*d*]imidazole (**1h1**), yellowish solid: mp 237 – 238 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.72 (m, 2H), 7.59 (s, 1H), 7.51 – 7.46 (m, 3H), 7.07 (s, 1H), 5.00 (t, *J* = 1.5, 1.6 Hz, 1H), 4.63 (s, 3H), 2.40 (s, 6H), 1.81 (s, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.2, 141.6, 140.0, 134.7, 132.0, 131.4, 130.5, 129.6, 129.0, 128.6, 119.9, 112.0, 110.5, 50.3, 20.6, 20.3, 20.2. HRMS (ESI-TOF) Calcd for C₁₉H₂₁N₂⁺ ([M+H]⁺) 277.1699. Found 277.1709.

5,6-Dimethyl-1-(2-methylallyl)-2-(4-(trifluoromethyl)phenyl)-1*H*-benzo[*d*]imidazole (**1h2**), white solid: mp 123 – 124 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.85 (m, 2H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.60 (s, 1H), 7.08 (s, 1H), 5.03 (dt, *J* = 2.7, 1.4 Hz, 1H), 4.63 (dd, *J* = 2.1, 1.0 Hz, 2H), 4.61 (dd, *J* = 1.8, 1.0 Hz, 1H), 2.40 (d, *J* = 1.1 Hz, 6H), 1.83 (t, *J* = 1.1 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.5, 141.6, 139.8, 134.8, 134.0 (d, *J* = 1.2 Hz), 132.8, 131.9, 131.4 (q, *J* = 32.7 Hz), 129.3, 125.6 (q, *J* = 3.7 Hz), 123.9 (q, *J* = 272.4 Hz), 120.1, 112.2, 110.6, 50.3, 20.7, 20.3, 20.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.78 (s, 3F). HRMS (ESI-TOF) Calcd for C₂₀H₂₀F₃N₂⁺ ([M+H]⁺) 345.1573. Found 345.1571.

5,6-Difluoro-1-(2-methylallyl)-2-phenyl-1*H*-benzo[*d*]imidazole (1i), white solid: mp 103 - 104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.59 (dd, *J* = 10.4,

7.3 Hz, 1H), 7.53 – 7.50 (m, 3H), 7.11 (dd, J = 9.8, 6.9 Hz, 1H), 5.05 (q, J = 1.4 Hz, 1H), 4.64 (s, 3H), 1.79 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.5 (d, J = 3.1 Hz), 149.3 (dd, J = 4.1, 15.6 Hz), 146.9 (dd, J = 2.0, 15.6 Hz), 139.2, 138.1 (d, J = 10.4 Hz), 131.4 (d, J = 10.6 Hz), 130.2, 129.6, 128.9, 128.8, 112.6, 107.2 (d, J = 19.4 Hz), 98.5 (d, J = 22.8 Hz), 50.7, 20.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -141.24 – -141.34 (m, 1F), δ -143.32 – -143.42 (m, 1F). HRMS (ESI-TOF) Calcd for C_{17H15}F₂N₂⁺ ([M+H]⁺) 285.1198. Found 285.1196.

5,6-Dichloro-1-(2-methylallyl)-2-phenyl-1*H*-benzo[*d*]imidazole (**1j1**), brown solid: mp 158 – 159 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.75 – 7.70 (m, 2H), 7.55 – 7.48 (m, 3H), 7.40 (s, 1H), 5.04 (s, 1H), 4.63 (s, 2H), 4.60 (s, 1H), 1.79 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.9, 142.4, 139.2, 135.3, 130.4, 129.3, 129.0, 128.9, 126.8, 126.6, 121.0, 112.6, 111.8, 50.6, 20.1. HRMS (ESI-TOF) Calcd for C₁₇H₁₅Cl₂N₂⁺ ([M+H]⁺) 317.0607. Found 317.0611.

5,6-Dichloro-1-(2-methylallyl)-2-(4-(trifluoromethyl)phenyl)-1*H*-benzo[*d*]imidazole (**1j2**), yellowish solid: mp 147 – 148 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.90 – 7.85 (m, 2H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.43 (s, 1H), 5.08 (q, *J* = 1.6 Hz, 1H), 4.64 (s, 2H), 4.60 (p, *J* = 1.1 Hz, 1H), 1.83 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.2, 142.2, 139.0, 135.4, 132.8 (q, *J* = 1.1 Hz), 132.3 (q, *J* = 32.9 Hz), 129.4, 127.5, 127.1, 125.9 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 272.5 Hz), 121.3, 112.8, 111.9, 50.6, 20.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.91 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₈H₁₄Cl₂F₃N₂⁺ ([M+H]⁺) 385.0481. Found 385.0476.

5,6-Dibromo-1-(2-methylallyl)-2-phenyl-1*H*-benzo[*d*]imidazole (**1**k), white solid: mp 193 – 194 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.14 (s, 1H), 8.07 (s, 1H), 7.77 (dd, *J* = 6.6, 2.9 Hz, 2H), 7.58 (dd, *J* = 5.1, 1.9 Hz, 3H), 4.88 (t, *J* = 1.6 Hz, 1H), 4.86 (s, 2H), 4.26 (s, 1H), 1.71 (s, 3H). ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 155.7, 143.2, 141.1, 136.9, 130.8, 129.6, 129.4, 129.3, 123.9, 117.3, 117.0, 116.4, 111.2, 50.1, 20.3. HRMS (ESI-TOF) Calcd for C₁₇H₁₅Br₂N₂⁺ ([M+H]⁺) 404.9597. Found 404.9609.

1-(2-(2-Fluorophenyl)-3-methyl-1*H*-indol-1-yl)-2-methylprop-2-en-1-one (1**m**), brown solid: mp 87 – 88 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, J = 7.7, 1.3 Hz, 1H), 7.59 – 7.57 (m, 1H), 7.38 – 7.34 (m, 1H), 7.32 (dd, J = 4.4, 1.6 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.25 – 7.23 (m, 1H), 7.20 (ddd, J = 1.2, 6.1, 7.5 Hz, 1H), 7.13 – 7.09 (m, 1H), 5.34 (q, J = 1.7 Hz, 1H), 5.28 (s, 1H), 2.22 (s, 3H), 1.86 (t, J = 1.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.5, 160.8, 158.3, 140.8, 136.9, 131.6 (d, J =12.2 Hz), 129.9 (q, J = 75.9 Hz), 124.8, 124.6, 124.1 (d, J = 14.2 Hz), 122.8, 121.8 (d, J = 60.5 Hz), 119.0, 118.0, 115.7 (d, J = 86.5 Hz), 114.5, 18.5, 9.3 (d, J = 5.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.64 – -112.69 (m, 1F). HRMS (ESI-TOF) Calcd for C₁₉H₁₇FNO⁺ ([M+H]⁺) 294.1289. Found 294.1289.

4-Methoxy-*N*-methyl-*N*-(2-methylallyl)benzamide (**8b**),^[12] 2:3 mixture of rotamers due to the restricted rotation of the N-(CO) bond, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.2 Hz, 2H), 4.98 (s, 1H), 4.92 (s, 1H), 4.11 (brs, 1H), 3.82 (s, 4H), 3.01 (brs, 3H major), 2.94 (brs, 3H minor), 1.76 (brs, 3H minor), 1.63 (brs, 3H major). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.2 (br, major), 171.3 (br, minor), 160.6, 140.6, 128.7 (br), 128.4 (br), 113.6, 112.3 (br, minor), 112.0 (br, major), 57.5 (br, major), 55.3, 53.1 (br, minor), 37.1 (br, minor), 33.6 (br, major), 20.0. HRMS (ESI-TOF) Calcd for C₁₃H₁₈NO₂⁺ ([M+H]⁺) 220.1332. Found 220.1330.

4-Bromo-*N*-methyl-*N*-(2-methylallyl)benzamide (**8c**),^[12] 2:3 mixture of rotamers due to the restricted rotation of the N-(CO) bond, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 13.2, 7.9 Hz, 2H major and 2 H minor), 7.41 – 7.17 (m, 2H major and 2 H minor), 4.97 – 4.87 (stack, 2H major and 2 H minor), 4.11 (s, 2H minor), 3.74 (s, 2H major), 3.03 (s, 3H major), 2.87 (s, 3H minor), 1.76 (s, 3H minor), 1.60 (s, 3H major). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 171.2 (major), 170.3 (minor), 140.3 (major), 140.0 (minor), 135.3 (minor), 135.0 (major), 131.5, 128.6 (minor), 128.4 (major), 123.9 (major), 123.8 (minor), 112.7 (minor), 112.2 (major), 57.2 (major), 52.9 (minor), 36.8 (minor), 33.5 (major), 19.9. HRMS (ESI-TOF) Calcd for C₁₂H₁₅BrNO⁺ ([M+H]⁺) 268.0332. Found 268.0335.

N-Methacryloyl-*N*-methylbenzamide (**8d**),^[13] yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (ddd, J = 6.9, 6.9, 1.2 Hz, 3H), 7.40 (dddd, J = 7.0, 7.0, 1.0, 1.0 Hz, 2H), 5.27 (s, 1H), 5.14 (q, J = 1.6 Hz, 1H), 3.40 (s, 3H), 1.67 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.3, 174.3, 143.0, 137.1, 131.9, 128.8, 128.5, 122.0, 33.4, 18.6. HRMS (ESI-TOF) Calcd for C₁₂H₁₄NO₂⁺ ([M+H]⁺) 204.2485. Found 204.2481.

4-Bromo-*N*-methacryloyl-*N*-methylbenzamide (**8f**), white semisolid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.48 (m, 2H), 7.43 – 7.30 (m, 2H), 5.31 (s, 1H), 5.21 (q, *J* = 1.6 Hz, 1H), 3.39 (s, 3H), 1.71 (t, *J* = 1.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.9, 173.1, 142.7, 135.9, 132.0, 129.9, 126.6, 122.6, 33.5, 18.7. HRMS (ESI-TOF) Calcd for C₁₂H₁₃BrNO₂⁺ ([M+H]⁺) 282.0124. Found 282.0125.

^[13] X.-F. Xia, S.-L. Zhu, D. Wang and Y.-M. Liang, Adv. Synth. Catal., 2017, 359, 859-865.

1-(2-Methylallyl)-3,5-diphenyl-1*H*-pyrazole (**12a**), white solid: mp 38 – 39 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.84 (m, 2H), 7.47 – 7.38 (m, 7H), 7.32 – 7.27 (m, 1H), 6.63 (s, 1H), 4.91 (dd, *J* = 1.4, 1.5 Hz, 1H), 4.69 (s, 2H), 4.57 (s, 1H), 1.71 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.8, 145.4, 141.7, 133.5, 130.8, 128.7, 128.62, 128.60, 127.6, 125.7, 112.2, 103.4, 55.2, 20.2. HRMS (ESI-TOF) Calcd for C₁₉H₁₉N₂⁺ ([M+H]⁺) 275.1543. Found 275.1540.

1-(3,5-Diphenyl-1*H*-pyrazol-1-yl)-2-methylprop-2-en-1-one (**12b**), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.86 (m, 2H), 7.46 – 7.36 (m, 9H), 6.79 (s, 1H), 6.09 (t, *J* = 1.1 Hz, 1H), 5.88 (p, *J* = 1.5 Hz, 1H), 2.18 (t, *J* = 1.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 168.8, 153.4, 148.1, 138.8, 131.9, 130.8, 129.1, 128.78, 128.77, 128.4, 128.31, 128.28, 126.3, 108.8, 19.7. HRMS (ESI-TOF) Calcd for C₁₉H₁₇N₂O⁺ ([M+H]⁺) 289.1335. Found 289.1339.

3-(Cyclopropylmethoxy)-*N*-(3,5-dichloropyridin-4-yl)-4-(difluoromethoxy)-*N*-methac ryloylbenzamide (14), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 2H), 7.35 – 7.30 (m, 2H), 7.16 (d, *J* = 8.3 Hz, 1H), 6.71 (t, *J* = 74.6 Hz, 1H), 5.79 (d, *J* = 1.2 Hz, 1H), 5.49 (q, *J* = 1.5 Hz, 1H), 3.88 (d, *J* = 7.0 Hz, 2H), 1.94 (s, 3H), 1.30 – 1.23 (m, 1H), 0.67 – 0.62 (m, 2H), 0.37 – 0.33 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.0, 170.3, 150.5, 149.0, 143.98, 143.95, 143.91, 143.1, 140.4, 132.3, 131.4, 123.9, 121.72, 121.69, 115.6 (t, *J* = 1039.0 Hz), 114.6, 74.0, 18.5, 9.9, 3.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.98 (d, *J* = 74.4 Hz, 2F). HRMS (ESI-TOF) Calcd for C₂₁H₁₈Cl₂F₂N₂O₄⁺ ([M+H]⁺) 470.0612. Found 470.0611.

6-(4-(1-Cyclohexyl-1*H*-tetrazol-5-yl)butoxy)-1-(2-methylallyl)-3,4-dihydroquinolin-2 (1*H*)-one (**16**), yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 6.84 (d, J = 8.5 Hz, 1H), 6.71 (d, J = 8.9 Hz, 2H), 4.87 (p, J = 1.5 Hz, 1H), 4.70 (s, 1H), 4.43 (s, 2H), 4.20 – 4.12 (m, 1H), 3.99 (t, J = 6.0 Hz, 2H), 2.96 – 2.87 (m, 4H), 2.69 – 2.65 (m, 2H), 2.07 – 1.98 (m, 7H), 1.95 – 1.87 (m, 3H), 1.75 (s, 4H), 1.46 – 1.30 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.6, 154.4, 153.6, 139.7, 133.4, 127.7, 116.5, 114.2, 112.5, 110.6, 67.4, 57.5, 48.0, 32.9, 31.7, 28.5, 25.8, 25.2, 24.8, 24.0, 22.9, 20.0. HRMS (ESI-TOF) Calcd for C₂₄H₃₄N₅O₂⁺ ([M+H]⁺) 424.2707. Found 424.2715.

3a, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

40 30

20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm)

¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

DEPT 90 and DEPT 135

3c1, ¹H NMR

¹³C NMR

¹⁹F NMR

3c2, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

¹⁹F NMR

3c3, ¹H NMR

¹³C NMR

¹³C NMR

DEPT 90 and DEPT 135

3c5, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

¹⁹F NMR

3c6, ¹H NMR

¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{f1\ (ppm)}$

3d, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

3f, ¹H NMR

¹³C NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

DEPT 90 and DEPT 135

3h2, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR

DEPT 90 and DEPT 135

¹⁹F NMR

¹³C NMR

DEPT 90 and DEPT 135

¹⁹F NMR

¹³C NMR

DEPT 90 and DEPT 135

3I, ¹H NMR

¹³C NMR

3m, ¹H NMR

¹³C NMR

S94

DEPT 90 and DEPT 135

¹⁹F NMR

3n1, ¹H NMR

¹³C NMR

¹⁹F NMR

3n2, ¹H NMR

¹³C NMR

3n3, ¹H NMR

¹³C NMR

¹⁹F NMR

3n4, ¹H NMR

¹³C NMR

¹⁹F NMR

¹³C NMR

DEPT 90 and DEPT 135

301, ¹H NMR

¹³C NMR

¹⁹F NMR

S108

5a1, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

¹⁹F NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

¹⁹F NMR

5d1, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

5d2, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

5e, ¹H NMR

¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{f1\ (ppm)}$

7a, ¹H NMR

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

¹⁹F NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

DEPT 90 and DEPT 135

¹⁹F NMR

11, ¹H NMR

¹³C NMR

¹⁹F NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

0

С

CF₃

N

Ν

ĊI o∕∕∕

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{f1\ (ppm)}$

¹⁹F NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

1c2, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

1c3, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

1c5, ¹H NMR

¹³C NMR

1c6, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

1e, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

DEPT 90 and DEPT 135

¹⁹F NMR

¹³C NMR

DEPT 90 and DEPT 135

¹⁹F NMR

S180

¹³C NMR

DEPT 90 and DEPT 135

1k, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

¹³C NMR

¹⁹F NMR

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

12a, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

12b, ¹H NMR

¹³C NMR

DEPT 90 and DEPT 135

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S202

