Electronic Supplementary Information

Domino Sonogashira coupling/metal carbene-involved annulation
enabled by $\mathrm{Pd} / \mathrm{Cu}$ relay catalysis: rapid assembly of indazole-containing biheteroaryls
Ruiming Ding, ${ }^{a}$ Haili Cui, ${ }^{a}$ Yongyan Zhu, ${ }^{\text {a, } b}$ Yao Zhou, ${ }^{c}$ Huaming Tao*, ${ }^{\text {a, }{ }^{b} \text { Shaoyu }}$ Mai* a, b
${ }^{\text {a }}$ School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
${ }^{\mathrm{b}}$ Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
${ }^{c}$ Hubei Key Laboratory of Pollutant Analysis \& Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
*E-mail: shaoyumai@smu.edu.cn; taohm@smu.edu.cn.
Table of Contents:

1. General Information 2
2. Known Starting Material and General Synthetic Procedure 3
3. General Procedure for domino reaction5
4. Gram-Scale Reaction for the Synthesis of 3a 5
5. Mechanistic studies 7
6. Characterization of Products 9
7. References 25
8. NMR Spectra 26

1. General Information

All reactions were carried out under an inert atmosphere of dry N_{2} in Schlenk tube, solvents were purified by standard method. Unless specified, all metal complexes, reagents, and starting materials were purchased from commercial sources and used as received. Metal salts were stored in a nitrogen atmosphere dry box. Acetonitrile, methanol, toluene, THF, $\mathrm{Et}_{2} \mathrm{O}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by filtration through alumina according to the procedure of Grubbs. Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature using 400 MHz or 600 MHz spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts were determined relative to internal standard TMS at $0.0, \mathrm{CDCl}_{3}\left(\delta\left({ }^{1} \mathrm{H}\right), 7.26 \mathrm{ppm} ; \delta\left({ }^{13} \mathrm{C}\right), 77.16 \mathrm{ppm}\right)$. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, m $=$ multiplet), coupling constants (Hz) and integrations. High-resolution mass spectra (HRMS) were recorded on an Agilent 6545B series Q-TOF LCMS with electronspray ionization (ESI).

2. Known Starting Materials and General Synthetic Procedure

2.1 Substrate 1a-1m:

All starting materials $\mathbf{1 a}-\mathbf{1 m}$ and $\mathbf{5}$ are known compounds. Starting materials ($\mathbf{1 a} \mathbf{- 1 m}$, 5) were prepared according to the literature. ${ }^{[1]}$

2.2 General Procedure for the Synthesis of 2a-2i ${ }^{[2]}$:

To a solution of the corresponding phenol S1 ($10 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(2$ M) at room temperature was added p -TsOH monohydrate ($10 \mathrm{mmol}, 1.0$ equiv). After 10 min , added NIS ($10 \mathrm{mmol}, 1$ equiv) to the reaction mixture. The mixture was
stirred for 8 h at room temperature and quenched by addition of aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution. It was acidified by addition of aqueous $\mathrm{HCl}(1 \mathrm{M})$, the organic solvent was evaporated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried with NaSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc: 6/1), giving the expected product S2 (81-93\% yields).

To a solution of S2 (10 mmol) in DMF (30 mL) containing $\mathrm{NaH}(15 \mathrm{mmol}, 1.5$ equiv) was added thiocarbamoyl chloride ($15 \mathrm{mmol}, 1.5$ equiv) in one portion. The temperature rose rapidly to $50^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 5 h. Once the reaction was completed, water was added (30 mL) and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with $5 \% \mathrm{HCl}(20 \mathrm{~mL}), 1 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$, and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography (petroleum ether/EtOAc: 5/1), giving the expected product $\mathbf{S 3}$ ($68-79 \%$ yields).

To a $\mathbf{S 3}$ ($10 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.5 \mathrm{mmol}, 0.05$ equiv), and copper(I) iodide ($0.5 \mathrm{mmol}, 0.05$ equiv) in 30 mL of triethylamine, a solution of trimethylsilyl acetylene ($12 \mathrm{mmol}, 1.2$ equiv) was added dropwise. The reaction mixture was stirred at room temperature for overnight under N_{2} atmosphere. After rapid filtration of silica gel, the solvent was evaporated by rotary evaporator. A portion of the crude product(S4) was directly subjected for the next step. A mixture of $\mathbf{S 4}(10 \mathrm{mmol})$, anhydrous potassium carbonate (20 mmol , 2equiv) in anhydrous $\mathrm{MeOH}(30 \mathrm{~mL}$) was stirred at room temperature for 3 h . The solvent was evaporated under reduced pressure, and the residue was mixed with 20 mL of aqueous sodium bicarbonate and extracted with EtOAc (20 mL). The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography (petroleum ether/EtOAc:20/1), giving the expected product 2a-2i ($65-84 \%$ yields).

3. General Procedure for Domino reaction

General procedure: 1 (0.3 mmol , 1.5 equiv), $\mathbf{2}(0.2 \mathrm{mmol}, 1.0$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(14.1 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and copper(I) iodide ($3.1 \mathrm{mg}, 0.016$ $\mathrm{mmol}, 8 \mathrm{~mol} \%$) in 1 mL of THF, a solution of triethylamine ($54 \mathrm{uL}, 0.4 \mathrm{mmol}, 2$ equiv) was added dropwise. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum: ether/EtOAc $=30 / 1-$ $10 / 1$), giving the expected product $\mathbf{3 a - 3 m}, \mathbf{4 a - 4 k}, 5$.

4. Gram-Scale Reaction for the Synthesis of 3a

2a, $5 \mathrm{mmol}, 1.03 \mathrm{~g}$

1a ($2.31 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.5$ equiv), 2a ($1.03 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(175.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and copper(I) iodide ($76.2 \mathrm{mg}, 0.4$ $\mathrm{mmol}, 8 \mathrm{~mol} \%$) in 50 mL of THF, a solution of triethylamine ($1.33 \mathrm{~mL}, 10.0 \mathrm{mmol}, 2$ equiv) was added dropwise. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum: ether/EtOAc $=30 / 1$ $10 / 1$), giving the expected product $\mathbf{3 a}(1.13 \mathrm{~g}, 65 \%)$ as a yellow solid.

5. Mechanistic studies

The treatment of intermediate $\mathbf{6}$ with $\mathrm{CuI}(10 \mathrm{~mol} \%)$ at $100^{\circ} \mathrm{C}$ for 12 h delivered the desired biheteroaryl 7 in 62% yield (Figure 5 b). In this reaction, the elemental sulfur was also detected by HPLC. See below:

Fig. S1 Standard substance (elemental sulfur) by HPLC analysis

Fig. S2 The reaction mixture by HPLC analysis

Fig. S3 The reaction mixture and standard substance (elemental sulfur) by HPLC analysis

6. Characterization of Products

2a

O-(2-Ethynylphenyl) dimethylcarbamothioate (2a) Yield 82\%, white solid, (Eluent: petroleum ether/ethyl acetate $=20 / 1) .{ }^{1} \mathbf{H}$ NMR $(\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.54(\mathrm{dd}$, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=$ 8.2, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 ($\mathrm{s}, 3 \mathrm{H}$), 3.39 ($\mathrm{s}, 3 \mathrm{H}$), $3.20(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 187.0,155.3,133.7,129.8,126.0,124.0,117.0,81.9,78.8,43.4,39.0$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NOS}^{+}$206.0634; Found: 206.0641.

2b
\boldsymbol{O}-(2-Ethynyl-4-methylphenyl) dimethylcarbamothioate (2b) Yield 88\%, white solid, (Eluent: petroleum ether/ethyl acetate $=20 / 1) .{ }^{1} \mathbf{H}$ NMR $(\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.34(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.46(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 187.3,153.2,135.7,134.0,130.6,123.5,116.5,81.5,78.9,43.4,38.9$, 20.8. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NOS}^{+} 220.0791$; Found: 220.0794.

O-(4-Ethyl-2-ethynylphenyl) dimethylcarbamothioate (2c) Yield 36\%, white solid, (Eluent: petroleum ether/ethyl acetate $=20 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (s, 3H), $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ 187.3, 153.3, 141.9, 132.8, 129.4, 123.6, 116.5, 81.4, 79.1, 43.4, 38.9, 28.2, 15.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NOS}^{+}$ 234.0947; Found: 234.0954.

2d

O-(4-(Tert-butyl)-2-ethynylphenyl) dimethylcarbamothioate (2d) Yield 57\%, white solid, (Eluent: petroleum ether/ethyl acetate $=20 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, Chloroform-d) $\delta 7.74(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 187.2,153.0,148.8,130.7,127.1,123.2,116.0,81.2,79.4,43.4,38.9$, 34.6, 31.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NOS}^{+} 262.1260$; Found: 262.1268 .

2e
O-(4-Chloro-2-ethynylphenyl) dimethylcarbamothioate (2e) Yield 46\%, white solid, (Eluent: petroleum ether/ethyl acetate $=20 / 1) .{ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, Chloroform-d) $\delta 7.49$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (dd, $J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (d, $J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.45(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$) δ 186.6, 153.8, 133.2, 131.2, 129.9, 125.3, 118.5, 83.1, 77.6, 43.5, 39.0. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClNOS}^{+}$240.0244; Found: 240.0246.

$2 f$
O-(4-Bromo-2-ethynylphenyl) dimethylcarbamothioate (2f) Yield 44\%, white solid, (Eluent: petroleum ether/ethyl acetate $=20 / 1) .{ }^{1} \mathbf{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.65(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.45(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 186.5, 154.3, 136.1, 132.8, 125.6, 119.0, 118.8, 83.2, 77.5, 43.5, 39.0. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11}$ BrNOS $^{+} 283.9739$; Found: 283.9735 .

2g

O-(3-Ethynyl-[1,1'-biphenyl]-4-yl) dimethylcarbamothioate (2g) Yield 41\%, white solid, (Eluent: petroleum ether/ethyl acetate $=20 / 1$) , ${ }^{1} \mathbf{H} \mathbf{N M R}(\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.76(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 187.0,154.6,139.6,139.2,132.3,129.0,128.5,127.8$, 127.2, 124.3, 117.2, 82.0, 78.9, 43.5, 39.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NOS}^{+}$282.0947; Found:282.0954.

2h

O-(3-Ethynylnaphthalen-2-yl) dimethylcarbamothioate (2h) Yield 64\%, white solid, (Eluent: petroleum ether/ethyl acetate $=15 / 1) .{ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.33$ (dd, $J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.90-7.84$ (m, 2H), 7.59 (ddd, $J=$ $8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (ddd, $J=8.1,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 186.9,154.4$, 134.1, 131.2, 129.7, 128.3, 127.5, 126.3, 126.1, 122.7, 112.6, 86.9, 43.4, 39.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NOS}^{+}$256.0791; Found:256.0794.

$2 i$

O-(2-Ethynylphenyl) diethylcarbamothioate (2i) Yield 79\%, white solid, (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.53$ (dd, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, J=8.2,7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.18(\mathrm{~s}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 186.1,155.3,133.7,129.8,125.9,123.9,117.1,81.9,79.1,48.5,44.5,13.5$, 11.8. HRMS (ESI) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NOS}^{+}$234.0947; Found:234.0951.

2j
N-(2-Ethynylphenyl)- N-methylethanethioamide (2j) Yield 55\%, white solid, (Eluent: petroleum ether/ethyl acetate $=5 / 1) .{ }^{1} \mathbf{H}$ NMR $(600 \mathbf{M H z}$, Chloroform-d) δ
$7.59(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.29$ (s, 1H), 2.37 (d, $J=$ $0.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 202.1,147.9,134.1,130.5,128.8,126.1$, 119.8, 83.3, 78.5, 44.6, 33.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NS}^{+}$ 190.0685; Found: 190.0687.

2k
1-(2-Ethynylphenyl)-2-(pyrrolidin-1-yl)-2-thioxoethan-1-one (2k) Yield 52\%, cyan solid, (Eluent: petroleum ether/ethyl acetate $=10 / 1) .{ }^{1} \mathbf{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.95$ (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (dd, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50 $(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{tdd}, J=5.5,2.6,1.2 \mathrm{~Hz}$, 2H), $3.81-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 192.5,187.3,137.0,135.0,132.6,131.0,129.2,121.5,83.5,81.5,51.8,51.5$, 26.1, 24.0. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NOS}^{+}$244.0791; Found:244.0791.

1-(2-Ethynylphenyl)-2-(piperidin-1-yl)-2-thioxoethan-1-one (21) Yield 50\%, cyan solid, (Eluent: petroleum ether/ethyl acetate $=10 / 1) .{ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.97-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.59(\mathrm{~m}$, $2 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{ddd}, J=10.9,8.1,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{tq}$, $J=8.4,5.4,4.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 194.7,186.0,136.7,135.5$, 132.7, 131.1, 129.0, 121.9, 83.9, 81.8, 53.4, 48.4, 26.1, 25.2, 24.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NOS}^{+}$258.0947; Found:258.0947.

3a
N, N-Dimethyl-3-(2-phenyl-2H-indazol-3-yl)benzofuran-2-amine (3a) was obtained as a yellow solid ($62 \mathrm{mg}, 88 \%$). (Eluent: petroleum ether/ethyl acetate $=20 / 1$). ${ }^{1} \mathbf{H}$ NMR (600 MHz, Chloroform-d) $\delta 7.81$ (dt, $J=9.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (ddt, $J=8.0$, $6.8,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.09$ (ddd, $J=8.5,6.5,0.9$
$\mathrm{Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$) $\delta 158.0,149.5,149.2,140.7,131.8,129.1,128.6,128.1,127.2,124.6,124.3$, 123.3, 122.0, 121.2, 120.7, 118.0, 117.0, 109.6, 81.0, 39.1. HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}^{+}$354.1601; Found: 354.1596.

3b
N, N-Dimethyl-3-(5-methyl-2-phenyl-2H-indazol-3-yl)benzofuran-2-amine
was obtained as a yellow solid ($62 \mathrm{mg}, 84 \%$). (Eluent: petroleum ether $/$ ethyl acetate $=$ 20/1). ${ }^{1}$ H NMR (600 MHz , Chloroform-d) $\delta 7.72$ (dd, $J=8.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{dd}, J=8.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 6 \mathrm{H}), 2.41(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 157.9,149.5,148.2,140.8,132.0,131.4,130.1,129.0$, $127.9,127.5,124.6,124.5,123.3,120.6,119.0,117.7,117.0,109.6,81.1,39.0,21.9$. HRMS (ESI) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}^{+}$390.1577; Found: 390.1580.

3c
N, N-Dimethyl-3-(6-methyl-2-phenyl-2H-indazol-3-yl)benzofuran-2-amine
was obtained as a yellow solid ($60 \mathrm{mg}, 82 \%$). (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 7.57$ (d, $J=8.2 \mathrm{~Hz}, 3 \mathrm{H}$), 7.47 (d, $J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38-7.27$ (m, 4H), 7.03 (dq, $J=5.7,2.9,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 2 \mathrm{H})$, $2.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 157.9,149.8$, 149.5, 140.8, 137.1, 131.9, 129.0, 128.3, 127.9, 125.0, 124.5, 123.3, 122.7, 120.7, 120.7, 117.0, 116.2, 109.6, 81.1, 39.1, 22.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}$368.1757; Found: 368.1758 .

3d
\mathbf{N}, \mathbf{N}-Dimethyl-3-(5-methyl-2-(p-tolyl)-2H-indazol-3-yl)benzofuran-2-amine (3d) was obtained as a yellow solid ($55 \mathrm{mg}, 72 \%$). (Eluent: petroleum ether/ethyl acetate $=$ 20/1). ${ }^{1} \mathbf{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.71$ (dd, $J=8.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=8.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H})$, $7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 6 \mathrm{H}), 2.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.33$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 157.9,149.5,148.0,138.3,137.8,132.2$, $131.3,129.9,129.5,127.3,124.6,124.3,123.2,120.6,119.0,117.6,117.0,109.5$, 81.0, 39.0, 21.9, 21.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}^{+}$382.1914; Found: 382.1916.

3-(5-Ethyl-2-(4-ethylphenyl)-2H-indazol-3-yl)- N, N-dimethylbenzofuran-2-amine (3e) was obtained as a yellow solid ($68 \mathrm{mg}, 72 \%$). (Eluent: petroleum ether/ethyl acetate $=20 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathbf{M H z}$, Chloroform-d) $\delta 7.71$ (dd, $J=8.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49-7.42$ (m, 2H), 7.32 (dd, $J=1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27$ (m, 1H), 7.24 (dd, $J=$ $8.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 1 \mathrm{H}), 2.71$ $(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 6 \mathrm{H}), 2.63(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.0,149.5,148.2,144.1$, $138.5,137.8,132.1,129.0,128.3,127.6,124.4,124.4,123.2,120.6,117.7,117.7$, 117.1, 109.5, 81.3, 39.0, 29.3, 28.5, 15.7, 15.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}^{+} 410.2227$; Found: 410.2231 .

3-(5-Isopropyl-2-(4-isopropylphenyl)-2H-indazol-3-yl)- \mathbf{N}, \mathbf{N}-dimethylbenzofuran-2-amine (3f) was obtained as a yellow solid ($60 \mathrm{mg}, 69 \%$). (Eluent: petroleum ether/ethyl acetate $=20 / 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d)} \delta 7.75$ (dd, $J=8.9$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ (p, J=6.9 Hz, 1H), $2.66(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{dd}, J=6.9,2.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.22(\mathrm{dd}, J=6.9,2.8$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 158.0,149.5,148.7,148.3,142.3,138.6$, $132.0,127.7,127.68,126.9,124.4,124.3,123.2,120.6,117.7,117.2,116.3,109.5$, 81.6, 39.0, 34.4, 33.9, 24.2, 24.04, 24.03, 24.00. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}^{+} 438.2540$; Found: 438.2539 .

$3 g$

3-(5-Methoxy-2-(4-methoxyphenyl)-2H-indazol-3-yl)- \mathbf{N}, \mathbf{N}-dimethylbenzofuran-2amine ($\mathbf{3 g}$) was obtained as a yellow solid ($66 \mathrm{mg}, 80 \%$). (Eluent: petroleum ether/ethyl acetate $=20 / 1) \cdot{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathbf{M H z}$, Chloroform-d) $\delta 7.70(\mathrm{dd}, J=9.3$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.97-$ $6.92(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{dd}, J=2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $6 \mathrm{H}), 2.70(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($151 \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ 159.0, 157.9, 155.3, 149.5, 145.7, $134.0,132.1,127.0,125.6,124.1,123.3,121.9,120.5,119.3,117.0,114.1,109.5$, 96.9, 81.0, 55.5, 39.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}$414.1812; Found: 414.1808.

3-(2-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-2H-indazol-3-yl)- N, N -
dimethylbenzofuran-2-amine (3h) was obtained as a yellow solid ($62 \mathrm{mg}, 65 \%$). (Eluent: petroleum ether/ethyl acetate $=20 / 1) \cdot{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.67$ ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 158.0,152.3,149.4,148.8,148.3,148.3$, $145.2,133.8,132.6,127.2,123.5,120.6,119.0,116.7,116.2,110.7,109.6,108.1$, $97.5,95.9,80.3,56.1,56.1,56.1,55.8,39.0$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}+474.2023$; Found: 474.2021.

$3 i$

Methyl-4-(3-(2-(dimethylamino)benzofuran-3-yl)-5-methoxy-2H-indazol-2-
$\mathbf{y l}$)benzoate ($\mathbf{3 i}$) was obtained as a yellow solid $(51 \mathrm{mg}, 58 \%)$. (Eluent: petroleum
ether/ethyl acetate $=20 / 1) \cdot{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.60(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 2H), $7.30-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.61(\mathrm{~m}, 3 \mathrm{H}), 6.51-6.47(\mathrm{~m}$, $1 \mathrm{H}), 6.28(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13}$ C NMR (151 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 166.5,157.9,155.6,149.5,146.5,144.4,131.7,130.6,129.0,127.5$, 124.6, 123.9, 123.5, 123.0, 120.8, 119.5, 116.9, 109.7, 96.7, 80.6, 55.6, 52.4, 39.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}$442.1761; Found:442.1762.

3j

3-(5-Fluoro-2-phenyl-2H-indazol-3-yl)- N, N-dimethylbenzofuran-2-amine
was obtained as a yellow solid ($68 \mathrm{mg}, 92 \%$). (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 7.79$ (dd, $J=9.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (d, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=6.2,3.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.88(\mathrm{dd}, J=6.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$) δ 158.50 (d, $J=240.6 \mathrm{~Hz}$), 158.0, 149.5, 146.5, 140.6, 131.7, 129.1, 128.8 (d, $J=8.6$ $\mathrm{Hz}), 128.2,124.5,123.5(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 123.4,120.8,120.1(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 118.8(\mathrm{~d}$, $J=29.1 \mathrm{~Hz}$), 116.9, 109.6, 103.5, 103.3, 80.5, 39.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FN}_{3} \mathrm{O}^{+} 372.1507$; Found:372.1507.

3k

3-(2-(4-Chlorophenyl)-2 H -indazol-3-yl)- N, N-dimethylbenzofuran-2-amine
was obtained as a yellow solid ($64 \mathrm{mg}, 83 \%$). (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1}$ H NMR (600 MHz , Chloroform-d) $\delta 7.79$ (dd, $J=8.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 $7.54(\mathrm{~m}, 3 \mathrm{H}), 7.37$ (ddd, $J=8.8,6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.09$ (ddd, $J=$ $8.6,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 157.9,149.4,149.2,139.2,133.7,131.6,129.1,128.6$, 127.3, 125.6, 124.3, 123.3, 122.1, 121.0, 120.7, 117.8, 116.8, 109.6, 80.3, 39.0. HRMS (ESI) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}^{+}$388.1211; Found:388.1214.

31

3-(5-Chloro-2-phenyl- 2 H -indazol-3-yl)- N, N-dimethylbenzofuran-2-amine
was obtained as a yellow solid ($68 \mathrm{mg}, 88 \%$). (Eluent: petroleum ether/ethyl acetate $=$ 20/1). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.78$ (dd, $J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64-$ $7.55(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{dt}, J=5.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{dd}, J=5.9,3.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.69 (s, 6H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 158.0,149.5,147.5,140.4$, 131.7, 129.1, 128.6, 128.5, 128.3, 127.6, 124.6, 124.5, 123.4, 120.8, 119.7, 119.6, 116.8, 109.7, 80.1, 39.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}^{+}$ 388.1211; Found:388.1212.

3m

3-(5-Bromo-2-phenyl-2H-indazol-3-yl)-N,N-dimethylbenzofuran-2-amine (3m) was obtained as a yellow solid ($81 \mathrm{mg}, 94 \%$). (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1}$ H NMR (400 MHz , Chloroform-d) $\delta 7.78$ - 7.66 (m, 2H), 7.57 (d, $J=7.4 \mathrm{~Hz}$, 2 H), 7.35 (ddd, $J=28.5,19.8,7.4 \mathrm{~Hz}, 5 \mathrm{H}$), 7.05 (dd, $J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.85$ $(\mathrm{m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.0,149.4,147.5,140.4$, 131.7, 130.8, 129.1, 128.3, 125.4, 124.5, 123.5, 123.2, 120.9, 119.8, 116.8, 115.4, 109.7, 80.0, 39.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}^{+}$432.0706; Found:432.0709.

N, N-5-Trimethyl-3-(2-phenyl-2H-indazol-3-yl)benzofuran-2-amine (4a) was obtained as a yellow solid ($60 \mathrm{mg}, 82 \%$). (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1}$ H NMR (600 MHz, Chloroform-d) $\delta 7.82$ (dt, $J=8.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (ddt, $J=8.0,5.2,1.9 \mathrm{~Hz}, 3 \mathrm{H}$), 7.36 (dddd, $J=10.9,8.0,6.4,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.33-7.29$ (m, $1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{ddd}, J=8.4,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.3$,
$1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 6 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta 158.2,149.2,147.9,140.7,132.8,132.0,129.0,128.8,128.0,127.1,124.6$, 124.2, 121.9, 121.6, 121.2, 118.0, 117.2, 109.1, 80.8, 39.0, 21.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}^{+} 390.1577$; Found:390.1577.

4b
5-Ethyl- N, N-dimethyl-3-(2-phenyl-2H-indazol-3-yl)benzofuran-2-amine (4b) was obtained as a yellow solid ($55 \mathrm{mg}, 72 \%$). (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1}$ H NMR (400 MHz, Chloroform-d) $\delta 7.82$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.60 (dt, $J=$ $7.8,3.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 6 \mathrm{H}), 2.55(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.2,149.2$, $148.0,140.8,139.4,131.7,129.0,128.9,128.0,127.1,124.7,124.2,121.9,121.3$, 120.6, 117.9, 116.1, 109.1, 81.1, 39.1, 29.0, 16.4. HRMS (ESI) m/z: [M + H] Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}^{+} 382.1914$; Found:382.1915.

5-(Tert-butyl)-N,N-dimethyl-3-(2-phenyl-2H-indazol-3-yl)benzofuran-2-amine (4c) was obtained as a yellow solid ($71 \mathrm{mg}, 87 \%$). (Eluent: petroleum ether/ethyl acetate $=20 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.83(\mathrm{dd}, J=8.7,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{dt}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33$ (m, 3H), $7.32-7.27$ (m, 1H), $7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{ddd}, J=8.5,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=$ $8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 158.3,149.1,147.7,146.3,140.9,130.8,129.1,129.0,127.9,127.2$, 124.6, 124.1, 121.9, 121.2, 118.1, 117.8, 114.0, 108.7, 81.6, 39.3, 34.7, 31.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}^{+} 410.2227$; Found:410.2225.

4d 20/1). ${ }^{1} \mathbf{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.81$ (dt, $J=8.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 $7.52(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (ddd, $J=8.5,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.68(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.7,149.1,147.7,140.4,133.5,129.0$, 128.9, 128.1, 127.6, 127.1, 124.5, 124.1, 122.2, 120.7, 120.3, 118.0, 116.3, 110.3, 80.0, 38.8. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}^{+}$388.1211; Found:388.1213.

$4 e$
5-Bromo- N, N-dimethyl-3-(2-phenyl-2H-indazol-3-yl)benzofuran-2-amine
was obtained as a yellow solid ($50 \mathrm{mg}, 58 \%$). (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.82$ (dt, $J=8.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 $7.52(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 158.7,149.2,148.2$, $140.5,134.1,129.1,128.2,127.7,127.2,124.6,124.3,123.2,122.3,120.8,119.3$, 118.1, 116.6, 110.9, 80.0, 38.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}^{+}$ 432.0706; Found:432.0711.

4f
N, N-Dimethyl-5-phenyl-3-(2-phenyl-2H-indazol-3-yl)benzofuran-2-amine
was obtained as a yellow solid ($69 \mathrm{mg}, 81 \%$). (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform-d) $\delta 7.82$ (dt, $J=8.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 7.62 (m, 2H), 7.60 (dt, $J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41$ (m, 2H), $7.39-7.29$ (m, 7H), $7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.5,149.2,149.2,141.8,140.8,137.0,132.3,129.1,128.7,128.5,128.1,127.4$, 127.2, 126.8, 124.7, 124.3, 122.1, 121.1, 120.2, 118.0, 115.5, 109.6, 81.0, 39.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}^{+} 430.1914$; Found:430.1915.

$4 g$
N, N-Dimethyl-3-(2-phenyl-2H-indazol-3-yl)naphtho[1,2-b]furan-2-amine
was obtained as a yellow solid ($70 \mathrm{mg}, 87 \%$). (Eluent: petroleum ether/ethyl acetate= 20/1). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 7.87$ (ddt, $J=12.9,8.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{ddd}, J=8.8,6.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.1,6.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.26-7.23$ (m, 3H), 7.20 (ddd, $J=8.5,1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13-7.07$ (m, 2 H), $2.64(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 158.1,149.3,146.1,140.5,131.2$, $129.4,129.0,128.8,128.1,127.3,126.7,125.9,125.7,125.3,124.8,124.2,122.9$, 122.6, 121.4, 121.2, 118.0, 111.1, 82.1, 39.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+} 404.1757$; Found:404.1759.

4h
N, N-Diethyl-3-(2-phenyl-2H-indazol-3-yl)benzofuran-2-amine (4h) was obtained as a yellow solid ($35 \mathrm{mg}, 46 \%$). (Eluent: petroleum ether/ethyl acetate $=20 / 1$). ${ }^{1} \mathbf{H}$ NMR (600 MHz, Chloroform-d) $\delta 7.82(\mathrm{dd}, J=8.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.59-7.53$ (m, $3 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}$, 2H), $6.97-6.92(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dq}, J=14.2,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{dq}, J=14.2,7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl $\mathbf{3}_{3}$) δ 157.0, 149.5, 149.3, 140.7, 132.1, 129.1, 128.6, 128.0, 127.1, 124.7, 123.7, 123.2, 121.9, 121.2, 120.5, 118.0, 116.9, 109.5, 81.0, 43.3, 13.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}^{+}$382.1914; Found:382.1913.

$4 i$
(1,2-Dimethyl- \mathbf{H}-indol-3-yl)-2-phenyl- $\mathbf{2 H}$-indazole (4i) was obtained as a yellow solid ($33 \mathrm{mg}, 49 \%$). (Eluent: petroleum ether/ethyl acetate $=10 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0}$

MHz, Chloroform-d) $\delta 7.74$ (dt, $J=8.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40(\mathrm{tt}, J=8.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}$), $7.29-7.27$ (m, 1H), $7.25-7.19$ (m, 3H), 7.19 - 7.16 (m, 2H), 7.13 (ddd, $J=8.2,7.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (ddd, $J=7.9,6.8,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.60(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.3,141.0,137.1,136.3,130.6,129.0,127.7,127.3,127.0$, 124.9, 123.3, 121.6, 121.6, 121.5, 120.3, 119.3, 117.9, 109.1, 101.9, 30.0, 11.3. HRMS (ESI) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{3}{ }^{+} 338.1652$; Found: 338.1655.

4k

3-(2-Phenyl-2H-indazol-3-yl)-2-(pyrrolidin-1-yl)-1H-inden-1-one (4k) was

 obtained as a purple solid ($26 \mathrm{mg}, 33 \%$). (Eluent: petroleum ether/ethyl acetate $=15 / 1$). ${ }^{1} H$ NMR (600 MHz, Chloroform-d) $\delta 7.82-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{dt}, J=8.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.10$ (ddd, $J=8.5,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.77(\mathrm{~m}, 1 \mathrm{H})$, $6.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{dt}, J=10.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-$ 1.59 (m, 4H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) δ 193.9, 150.3, 149.2, 141.2, 140.8, 135.6, 129.8, 129.3, 128.3, 127.2, 126.7, 124.6, 124.1, 123.7, 123.2, 122.2, 121.1, 118.1, 117.2, 104.0, 49.6, 25.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}$ 392.1757; Found: 392.1753.

3-(2-Phenyl-2H-indazol-3-yl)-2-(piperidin-1-yl)-1H-inden-1-one (4I) was obtained as a purple solid ($24 \mathrm{mg}, 30 \%$). (Eluent: petroleum ether/ethyl acetate $=15 / 1$). ${ }^{1} \mathbf{H}$ NMR (600 MHz, Chloroform-d) $\delta 7.81$ (dt, $J=8.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79 - 7.75 (m, 2 H), 7.62 (dt, $J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (dd, $J=8.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (ddd, $J=8.6$, $6.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dt}, J=7.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=8.4,6.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.06 (td, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ $-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 194.5,149.5,147.6,144.4,140.6,135.2,129.2,129.1,128.7,127.4,127.3$, 125.3, 124.4, 123.7, 123.2, 122.5, 121.1, 118.3, 118.2, 111.8, 49.3, 26.1, 24.0.HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}^{+}$406.1914; Found: 406.1913.

6

(E)-O-(2-((2-(piperidin-1-yldiazenyl)phenyl)ethynyl)phenyl)

dimethylcarbamothioate (6) was obtained as a red solid ($41 \mathrm{mg}, 52 \%$). (Eluent: petroleum ether/ethyl acetate $=30 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.54(\mathrm{dd}$, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.36 (td, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (ddd, $J=8.3,7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H})$, $3.44(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$) δ 187.3, 154.6, 152.0, 132.9, 132.9, 129.3, 128.7, 125.9, 125.13, 123.9, 118.7, 118.2, 117.3, 92.8, 88.4, 43.4, 39.0, 24.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{OS}^{+}$393.1744; Found:393.1744.

7
N, N-Dimethyl-3-(2-(piperidin-1-yl)-2H-indazol-3-yl)benzofuran-2-amine (7) was obtained as a yellow solid ($45 \mathrm{mg}, 62 \%$). (Eluent: petroleum ether/ethyl acetate= 15/1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.72(\mathrm{dt}, \mathrm{J}=8.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dt}, J$ $=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 1 \mathrm{H})$, $3.32-3.24(\mathrm{~m}, 4 \mathrm{H}), 2.87(\mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{p}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.50(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.2,149.6,145.8,132.0,126.2,126.0,122.9,121.3$, 121.2, 121.0, 120.3, 117.4, 117.3, 109.4, 80.7, 56.4, 39.5, 26.2, 23.6. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}^{+}$361.2023; Found:361.2026.

3-(2-(2-Allylphenyl)-2H-indazol-3-yl)- N, N-dimethylbenzofuran-2-amine (8) was obtained as a yellow solid ($38 \mathrm{mg}, 48 \%$). (Eluent: petroleum ether/ethyl acetate=

10/1). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.80$ (dt, $J=8.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (dt, J $=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (ddd, $J=8.8,6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29$ (dd, $J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{q}, J=3.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=$ $7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (ddd, $J=8.4,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.89$ $(\mathrm{m}, 1 \mathrm{H}), 5.69(\mathrm{ddt}, J=16.9,10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.83(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 158.5,149.4,149.0,139.1$, $136.8,136.1,131.7,130.2,130.1,129.1,127.4,126.9,126.4,123.2,123.1,121.9$, 121.1, 120.7, 118.1, 117.1, 116.9, 109.6, 81.5, 39.5, 35.4, 29.9. HRMS (ESI) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}^{+}$394.1914; Found:394.1922.

Diethyl-3,3'-(2-(3-(2-(dimethylamino)benzofuran-3-yl)-2H-indazol-2-yl)-1,3phenylene)(2E, $\mathbf{2}^{\prime} \boldsymbol{E}$)-diacrylate (9) was obtained as a yellow solid ($78 \mathrm{mg}, 71 \%$). (Eluent: petroleum ether/ethyl acetate $=5 / 1) .{ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, Chloroform-d) δ 7.83 (dd, $J=8.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{ddd}, J=9.2,7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 166.3,165.6,159.0,149.7,149.6$, 139.7, 138.9, 138.8, 133.5, 133.4, 132.5, 130.3, 129.5, 128.0, 127.6, 127.5, 122.7, $122.7,122.6,121.5,121.4,120.9,120.6,118.4,118.4,109.6,84.8,60.7,60.4,40.5$, 14.3, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+} 550.2336$; Found:550. 2345.

7. References

[1] (a) Ma .X.-T.; Tian. S.-K. Adv. Synth. Catal. 2013, 335, 337-340; (b) Das, U.; S.; Ben-David, Y.; Diskin-Posner, Y.; Milstein. D. Adv. Synth. Catal. 2021, 363, 37443749; (c) Qiu, S.; Gao, X.; Zhu, S. Chem. Sci. 2021, 12, 13730-13736.
[2] Li, X.; Chen, H.; Xuan, Q.; Mai, S.; Lan, Yu.; Song, Q. Org. Lett. 2021, 23, 3518 3523.

8. NMR Spectra

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 a

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 a

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 b

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 b
DRII-8-1. 2. fid

2b

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 2 c

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 c

[^0]${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 d

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 d
DRII-9-1. 2. fid

[^1]${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 2 e

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathrm{CDCl}_{3}$) spectrum of compound 2 e

[^2]${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 f
DRII-12-2. 1. fid

27

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 f

[^3]${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 g

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{2 g}$
DRII-7-1. 2. fid

2g

[^4]${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 2 h

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 h

[^5]${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 i

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 i

[^6]${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{2 j}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 j

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 k

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2 k

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 21

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 21

DRU31-1. 2. fid

0	210	200	190	180	170	160	150	140	130	120	110	100
$\mathrm{f1}(\mathrm{ppm})$												

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a

YG3-1.2.fid

3a

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3b

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathrm{CDCl}_{3}$) spectrum of compound 3b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3 c

DRII-6(C+H). 1. fid
DRH6

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3c

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3d

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3d

DRII-17.3. fid

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3 e

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 e

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3 f

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 f

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 g

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3 h

DRI-18.2. fid

3h

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 h

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3 i

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 i

DRII-20.2.fid

$3 i$

[^7]${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{3 j}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 j

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3 k

DRI-19. 1. fid

3k

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 k

DRII-19.2.fid

3k

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 31

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 31
DRII-3. 1. fid

31

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 m

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 m

[^8]${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4 a

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 a

DRII-8.3. fid

[^9]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 b

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{4 b}$
DRII-11. 3. fic

4b

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4 c

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 c

[^10]${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4 d

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 d
DRII-10. 3. fic

4d

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4 e

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 e

DRII-12. 3. fid

$4 e$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 f

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 f

[^11]${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 g}$

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{4 g}$

DRII-13. 3. fid

4g

| 0 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 1 | 1 | | | | | | | | |
| fl 1 | (ppm) | | | | | | | | | | | |

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 h

DRII-22. 1. fid

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 h
DRII-22. 2. fid

4h

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 i

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $4 i$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 k

${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4 k

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 41

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 41

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

[^12]${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 7

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 7

J-2. 2. fid

[^13]${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 8

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 8

IB-6.2. fid

[^14]${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 9

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9

IB-3.2. fid

㢮

[^15]
[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]:

[^8]:

[^9]:

[^10]:

[^11]:

[^12]:

[^13]:

[^14]:

[^15]:

