Electronic Supplementary Information

Domino Sonogashira coupling/metal carbene-involved annulation

enabled by Pd/Cu relay catalysis: rapid assembly of indazole-

containing biheteroaryls

Ruiming Ding, ^a Haili Cui, ^a Yongyan Zhu, ^{a, b} Yao Zhou, ^c Huaming Tao*, ^{a, b} Shaoyu Mai* ^{a, b}

^a School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China

^b Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China

^c Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China

*E-mail: shaoyumai@smu.edu.cn; taohm@smu.edu.cn.

Table of Contents:

	.3
2. Known Starting Material and General Synthetic Procedure	
3. General Procedure for domino reaction	.5
4. Gram-Scale Reaction for the Synthesis of 3a	.5
5. Mechanistic studies	.7
6. Characterization of Products	.9
7. References	25
8. NMR Spectra	26

1. General Information

All reactions were carried out under an inert atmosphere of dry N₂ in Schlenk tube, solvents were purified by standard method. Unless specified, all metal complexes, reagents, and starting materials were purchased from commercial sources and used as received. Metal salts were stored in a nitrogen atmosphere dry box. Acetonitrile, methanol, toluene, THF, Et₂O, and CH₂Cl₂ were dried by filtration through alumina according to the procedure of Grubbs. Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using 400 MHz or 600 MHz spectrometers. ¹H and ¹³C-NMR chemical shifts were determined relative to internal standard TMS at 0.0, CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm). The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integrations. High-resolution mass spectra (HRMS) were recorded on an Agilent 6545B series Q-TOF LCMS with electronspray ionization (ESI).

2. Known Starting Materials and General Synthetic Procedure

Me Me Me Me 1b 1c 1d 1a Et OMe Et iPı MeO 1e 1f 1g OMe COOMe MeO OMe MeO MeO 1j 1h 1i CI CI Br 1k 11 1m 5

2.1 Substrate 1a-1m:

All starting materials **1a-1m and 5** are known compounds. Starting materials **(1a-1m, 5)** were prepared according to the literature. ^[1]

2.2 General Procedure for the Synthesis of 2a-2i^[2]:

To a solution of the corresponding phenol S1 (10 mmol, 1.0 equiv) in CH₃CN (2 M) at room temperature was added p-TsOH monohydrate (10 mmol, 1.0 equiv). After 10 min, added NIS (10 mmol, 1 equiv) to the reaction mixture. The mixture was

stirred for 8 h at room temperature and quenched by addition of aqueous Na_2SO_3 solution. It was acidified by addition of aqueous HCl (1 M), the organic solvent was evaporated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried with $NaSO_4$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc: 6/1), giving the expected product **S2** (81–93% yields).

To a solution of **S2** (10 mmol) in DMF (30 mL) containing NaH (15 mmol, 1.5 equiv) was added thiocarbamoyl chloride (15 mmol, 1.5 equiv) in one portion. The temperature rose rapidly to 50 °C, and the mixture was stirred at this temperature for 5 h. Once the reaction was completed, water was added (30 mL) and the mixture was extracted with CH_2Cl_2 (3 × 30 mL). The combined organic phases were washed with 5% HCl (20 mL), 1 M NaOH (20 mL), and brine (20 mL),dried over Na₂SO₄, and evaporated in vacuo. The residue was purified by column chromatography (petroleum ether/EtOAc: 5/1), giving the expected product **S3** (68 – 79% yields).

To a **S3** (10 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂(0.5 mmol, 0.05equiv), and copper(I) iodide (0.5 mmol, 0.05 equiv) in 30 mL of triethylamine, a solution of trimethylsilyl acetylene (12 mmol, 1.2 equiv) was added dropwise. The reaction mixture was stirred at room temperature for overnight under N₂ atmosphere. After rapid filtration of silica gel, the solvent was evaporated by rotary evaporator. A portion of the crude product(S4) was directly subjected for the next step. A mixture of **S4** (10 mmol), anhydrous potassium carbonate (20 mmol, 2equiv) in anhydrous MeOH (30 mL) was stirred at room temperature for 3 h. The solvent was evaporated under reduced pressure, and the residue was mixed with 20 mL of aqueous sodium bicarbonate and extracted with EtOAc (20 mL). The combined organic fractions were dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography (petroleum ether/EtOAc:20/1), giving the expected product **2a-2i** (65 – 84% yields).

3. General Procedure for Domino reaction

General procedure: **1** (0.3 mmol, 1.5 equiv), **2** (0.2 mmol, 1.0 equiv), $Pd(PPh_3)_2Cl_2(14.1 \text{ mg}, 0.02 \text{ mmol}, 10 \text{ mol}\%)$, and copper(I) iodide (3.1 mg, 0.016 mmol, 8 mol%) in 1 mL of THF, a solution of triethylamine (54 uL, 0.4 mmol, 2 equiv) was added dropwise. The reaction mixture was stirred at 60 °C for 12 h under N₂ atmosphere. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum: ether/EtOAc = 30/1-10/1), giving the expected product **3a-3m**, **4a-4k**, **5**.

4. Gram-Scale Reaction for the Synthesis of 3a

1a (2.31 g, 7.5 mmol, 1.5 equiv), **2a** (1.03 g, 5.0 mmol, 1.0 equiv), $Pd(PPh_3)_2Cl_2(175.5 mg, 0.25 mmol, 5 mol %), and copper(I) iodide (76.2 mg, 0.4 mmol, 8 mol%) in 50 mL of THF, a solution of triethylamine (1.33 mL, 10.0 mmol, 2 equiv) was added dropwise. The reaction mixture was stirred at 60 °C for 12 h under N₂ atmosphere. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum: ether/EtOAc = 30/1-10/1), giving the expected product$ **3a**(1.13 g, 65%) as a yellow solid.

5. Mechanistic studies

The treatment of intermediate **6** with CuI (10 mol %) at 100 °C for 12 h delivered the desired biheteroaryl **7** in 62% yield (Figure 5b). In this reaction, the elemental sulfur was also detected by HPLC. See below:

Fig. S1 Standard substance (elemental sulfur) by HPLC analysis

Fig. S2 The reaction mixture by HPLC analysis

Fig. S3 The reaction mixture and standard substance (elemental sulfur) by HPLC analysis

6. Characterization of Products

O-(2-Ethynylphenyl) dimethylcarbamothioate (2a) Yield 82%, white solid, (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.54 (dd, J = 7.7, 1.7 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.22 (td, J = 7.6, 1.2 Hz, 1H), 7.12 (dd, J = 8.2, 1.2 Hz, 1H), 3.47 (s, 3H), 3.39 (s, 3H), 3.20 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 187.0, 155.3, 133.7, 129.8, 126.0, 124.0, 117.0, 81.9, 78.8, 43.4, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₂NOS⁺ 206.0634; Found: 206.0641.

O-(2-Ethynyl-4-methylphenyl) dimethylcarbamothioate (2b) Yield 88%, white solid, (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.34 (d, J = 2.2 Hz, 1H), 7.18 (dd, J = 8.3, 2.2 Hz, 1H), 7.00 (d, J = 8.3 Hz, 1H), 3.46 (s, 3H), 3.37 (s, 3H), 3.16 (s, 1H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 187.3, 153.2, 135.7, 134.0, 130.6, 123.5, 116.5, 81.5, 78.9, 43.4, 38.9, 20.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₄NOS⁺ 220.0791; Found: 220.0794.

O-(4-Ethyl-2-ethynylphenyl) dimethylcarbamothioate (2c) Yield 36%, white solid, (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.36 (d, J = 2.3 Hz, 1H), 7.21 (dd, J = 8.3, 2.2 Hz, 1H), 7.03 (d, J = 8.3 Hz, 1H), 3.46 (s, 3H), 3.37 (s, 3H), 3.17 (s, 1H), 2.64 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 187.3, 153.3, 141.9, 132.8, 129.4, 123.6, 116.5, 81.4, 79.1, 43.4, 38.9, 28.2, 15.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₆NOS⁺ 234.0947; Found: 234.0954.

O-(4-(Tert-butyl)-2-ethynylphenyl) dimethylcarbamothioate (2d) Yield 57%, white solid, (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.74 (d, J = 2.5 Hz, 1H), 7.61 (dd, J = 8.6, 2.5 Hz, 1H), 7.25 (d, J = 8.6 Hz, 1H), 3.67 (s, 3H), 3.58 (s, 3H), 3.38 (s, 1H), 1.52 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 187.2, 153.0, 148.8, 130.7, 127.1, 123.2, 116.0, 81.2, 79.4, 43.4, 38.9, 34.6, 31.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₂₀NOS⁺ 262.1260; Found: 262.1268.

O-(4-Chloro-2-ethynylphenyl) dimethylcarbamothioate (2e) Yield 46%, white solid, (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.49 (d, J = 2.6 Hz, 1H), 7.34 (dd, J = 8.7, 2.6 Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 3.45 (s, 3H), 3.37 (s, 3H), 3.24 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 186.6, 153.8, 133.2, 131.2, 129.9, 125.3, 118.5, 83.1, 77.6, 43.5, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₁ClNOS⁺ 240.0244; Found: 240.0246.

O-(4-Bromo-2-ethynylphenyl) dimethylcarbamothioate (2f) Yield 44%, white solid, (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.65 (d, J = 2.5 Hz, 1H), 7.49 (dd, J = 8.7, 2.5 Hz, 1H), 7.00 (d, J = 8.7 Hz, 1H), 3.45 (s, 3H), 3.37 (s, 3H), 3.24 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 186.5, 154.3, 136.1, 132.8, 125.6, 119.0, 118.8, 83.2, 77.5, 43.5, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₁BrNOS⁺ 283.9739; Found: 283.9735.

O-(3-Ethynyl-[1,1'-biphenyl]-4-yl) dimethylcarbamothioate (2g) Yield 41%, white solid, (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.76 (d, J = 2.3 Hz, 1H), 7.63 – 7.54 (m, 3H), 7.46 – 7.41 (m, 2H), 7.39 – 7.33 (m, 1H), 7.20 (d, J = 8.5 Hz, 1H), 3.49 (s, 3H), 3.41 (s, 3H), 3.23 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 187.0, 154.6, 139.6, 139.2, 132.3, 129.0, 128.5, 127.8, 127.2, 124.3, 117.2, 82.0, 78.9, 43.5, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆NOS⁺ 282.0947; Found:282.0954.

O-(3-Ethynylnaphthalen-2-yl) dimethylcarbamothioate (2h) Yield 64%, white solid, (Eluent: petroleum ether/ethyl acetate= 15/1). ¹H NMR (600 MHz, **Chloroform-d)** δ 8.33 (dd, J = 8.4, 1.1 Hz, 1H), 7.90 – 7.84 (m, 2H), 7.59 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.51 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.32 (d, J = 8.9 Hz, 1H), 3.64 (s, 1H), 3.49 (s, 3H), 3.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 186.9, 154.4, 134.1, 131.2, 129.7, 128.3, 127.5, 126.3, 126.1, 122.7, 112.6, 86.9, 43.4, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄NOS⁺ 256.0791; Found:256.0794.

O-(2-Ethynylphenyl) diethylcarbamothioate (2i) Yield 79%, white solid, (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.53 (dd, J = 7.7, 1.7 Hz, 1H), 7.39 (ddd, J = 8.2, 7.5, 1.7 Hz, 1H), 7.21 (td, J = 7.6, 1.2 Hz, 1H), 7.11 (dd, J = 8.2, 1.1 Hz, 1H), 3.90 (q, J = 7.1 Hz, 2H), 3.73 (q, J = 7.1 Hz, 2H), 3.18 (s, 1H), 1.36 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 186.1, 155.3, 133.7, 129.8, 125.9, 123.9, 117.1, 81.9, 79.1, 48.5, 44.5, 13.5, 11.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₆NOS⁺ 234.0947; Found:234.0951.

N-(2-Ethynylphenyl)-*N*-methylethanethioamide (2j) Yield 55%, white solid, (Eluent: petroleum ether/ethyl acetate= 5/1). ¹H NMR (600 MHz, Chloroform-d) δ

7.59 (dd, J = 7.7, 1.6 Hz, 1H), 7.45 (td, J = 7.7, 1.6 Hz, 1H), 7.37 (td, J = 7.6, 1.3 Hz, 1H), 7.20 (dd, J = 7.9, 1.3 Hz, 1H), 3.71 (d, J = 0.7 Hz, 3H), 3.29 (s, 1H), 2.37 (d, J = 0.8 Hz, 3H). ¹³**C NMR (151 MHz, CDCl₃)** δ 202.1, 147.9, 134.1, 130.5, 128.8, 126.1, 119.8, 83.3, 78.5, 44.6, 33.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₂NS⁺ 190.0685; Found: 190.0687.

1-(2-Ethynylphenyl)-2-(pyrrolidin-1-yl)-2-thioxoethan-1-one (**2k**) Yield 52%, cyan solid, (Eluent: petroleum ether/ethyl acetate= 10/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.95 (dd, J = 7.8, 1.5 Hz, 1H), 7.59 (dd, J = 7.5, 1.4 Hz, 1H), 7.50 (td, J = 7.5, 1.5 Hz, 1H), 7.47 (td, J = 7.6, 1.5 Hz, 1H), 3.86 (tdd, J = 5.5, 2.6, 1.2 Hz, 2H), 3.81 – 3.72 (m, 2H), 3.35 (s, 1H), 2.16 – 2.02 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 192.5, 187.3, 137.0, 135.0, 132.6, 131.0, 129.2, 121.5, 83.5, 81.5, 51.8, 51.5, 26.1, 24.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₄NOS⁺ 244.0791; Found:244.0791.

1-(2-Ethynylphenyl)-2-(piperidin-1-yl)-2-thioxoethan-1-one (2l) Yield 50%, cyan solid, (Eluent: petroleum ether/ethyl acetate= 10/1). ¹H NMR (600 MHz, **Chloroform-d)** δ 7.97 – 7.93 (m, 1H), 7.61 (dd, J = 7.6, 1.4 Hz, 1H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 7.45 (td, J = 7.6, 1.4 Hz, 1H), 4.17 (t, J = 5.6 Hz, 2H), 3.69 – 3.59 (m, 2H), 3.41 (s, 1H), 1.85 – 1.80 (m, 2H), 1.78 (ddd, J = 10.9, 8.1, 4.9 Hz, 2H), 1.73 (tq, J = 8.4, 5.4, 4.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 194.7, 186.0, 136.7, 135.5, 132.7, 131.1, 129.0, 121.9, 83.9, 81.8, 53.4, 48.4, 26.1, 25.2, 24.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₆NOS⁺ 258.0947; Found:258.0947.

N,*N*-Dimethyl-3-(2-phenyl-2*H*-indazol-3-yl)benzofuran-2-amine (3a) was obtained as a yellow solid (62 mg, 88%). (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.81 (dt, *J* = 9.0, 1.0 Hz, 1H), 7.58 (ddt, *J* = 8.0, 6.8, 1.3 Hz, 3H), 7.39 – 7.33 (m, 3H), 7.32 – 7.27 (m, 2H), 7.09 (ddd, *J* = 8.5, 6.5, 0.9 Hz, 1H), 7.05 - 7.01 (m, 2H), 6.92 - 6.88 (m, 1H), 2.68 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 158.0, 149.5, 149.2, 140.7, 131.8, 129.1, 128.6, 128.1, 127.2, 124.6, 124.3, 123.3, 122.0, 121.2, 120.7, 118.0, 117.0, 109.6, 81.0, 39.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₀N₃O⁺ 354.1601; Found: 354.1596.

N,*N*-Dimethyl-3-(5-methyl-2-phenyl-2*H*-indazol-3-yl)benzofuran-2-amine (3b) was obtained as a yellow solid (62 mg, 84%). (Eluent: petroleum ether/ethyl acetate= 20/1). ¹H NMR (600 MHz, Chloroform-d) δ 7.72 (dd, J = 8.8, 0.9 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.36 – 7.32 (m, 2H), 7.32 – 7.27 (m, 3H), 7.21 (dd, J = 8.9, 1.6 Hz, 1H), 7.07 – 7.02 (m, 2H), 6.95 – 6.92 (m, 1H), 2.67 (s, 6H), 2.41 (d, J = 1.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.9, 149.5, 148.2, 140.8, 132.0, 131.4, 130.1, 129.0, 127.9, 127.5, 124.6, 124.5, 123.3, 120.6, 119.0, 117.7, 117.0, 109.6, 81.1, 39.0, 21.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₂₁N₃NaO⁺ 390.1577; Found: 390.1580.

N,N-Dimethyl-3-(6-methyl-2-phenyl-2*H*-indazol-3-yl)benzofuran-2-amine (3c) was obtained as a yellow solid (60 mg, 82%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (400 MHz, Chloroform-d) δ 7.57 (d, *J* = 8.2 Hz, 3H), 7.47 (d, *J* = 8.6 Hz, 1H), 7.38 – 7.27 (m, 4H), 7.03 (dq, *J* = 5.7, 2.9, 2.3 Hz, 2H), 6.96 – 6.87 (m, 2H), 2.67 (d, *J* = 2.1 Hz, 6H), 2.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.9, 149.8, 149.5, 140.8, 137.1, 131.9, 129.0, 128.3, 127.9, 125.0, 124.5, 123.3, 122.7, 120.7, 120.7, 117.0, 116.2, 109.6, 81.1, 39.1, 22.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₂N₃O⁺ 368.1757; Found: 368.1758.

N,*N*-Dimethyl-3-(5-methyl-2-(p-tolyl)-2*H*-indazol-3-yl)benzofuran-2-amine (3d) was obtained as a yellow solid (55 mg, 72%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.71 (dd, *J* = 8.8, 0.9 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.30 – 7.27 (m, 2H), 7.20 (dd, *J* = 8.9, 1.6 Hz, 1H), 7.15 – 7.11 (m, 2H), 7.07 – 7.02 (m, 2H), 6.94 – 6.92 (m, 1H), 2.68 (s, 6H), 2.40 (d, *J* = 1.2 Hz, 3H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.9, 149.5, 148.0, 138.3, 137.8, 132.2, 131.3, 129.9, 129.5, 127.3, 124.6, 124.3, 123.2, 120.6, 119.0, 117.6, 117.0, 109.5, 81.0, 39.0, 21.9, 21.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₄N₃O⁺ 382.1914; Found: 382.1916.

3-(5-Ethyl-2-(4-ethylphenyl)-*2H***-indazol-3-yl)***-N,N***-dimethylbenzofuran-2-amine** (**3e**) was obtained as a yellow solid (68 mg, 72%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹**H NMR (600 MHz, Chloroform-d)** δ 7.71 (dd, *J* = 8.9, 0.9 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.32 (dd, *J* = 1.7, 1.0 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.24 (dd, *J* = 8.9, 1.6 Hz, 1H), 7.18 – 7.13 (m, 2H), 7.07 – 7.02 (m, 2H), 6.96 – 6.92 (m, 1H), 2.71 (q, *J* = 7.5 Hz, 2H), 2.67 (s, 6H), 2.63 (q, *J* = 7.6 Hz, 2H), 1.26 (t, *J* = 7.5 Hz, 3H), 1.21 (t, *J* = 7.6 Hz, 3H). ¹³**C NMR (151 MHz, CDCl₃)** δ 158.0, 149.5, 148.2, 144.1, 138.5, 137.8, 132.1, 129.0, 128.3, 127.6, 124.4, 124.4, 123.2, 120.6, 117.7, 117.7, 117.1, 109.5, 81.3, 39.0, 29.3, 28.5, 15.7, 15.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₈N₃O⁺ 410.2227; Found: 410.2231.

3-(5-Isopropyl-2-(4-isopropylphenyl)-*2H***-indazol-3-yl)***-N*,*N***-dimethylbenzofuran-2-amine (3f)** was obtained as a yellow solid (60 mg, 69%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.75 (dd, *J* = 8.9, 0.9 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.36 – 7.33 (m, 1H), 7.32 – 7.28 (m, 2H), 7.21 – 7.16 (m, 2H), 7.09 – 7.02 (m, 2H), 6.99 – 6.91 (m, 1H), 2.97 (p, *J* = 6.9 Hz, 1H), 2.90 (p, *J* = 6.9 Hz, 1H), 2.66 (s, 6H), 1.29 (dd, *J* = 6.9, 2.2 Hz, 6H), 1.22 (dd, *J* = 6.9, 2.8 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 158.0, 149.5, 148.7, 148.3, 142.3, 138.6, 132.0, 127.7, 127.68, 126.9, 124.4, 124.3, 123.2, 120.6, 117.7, 117.2, 116.3, 109.5, 81.6, 39.0, 34.4, 33.9, 24.2, 24.04, 24.03, 24.00. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₃₂N₃O⁺ 438.2540; Found: 438.2539.

3-(5-Methoxy-2-(4-methoxyphenyl)-2*H***-indazol-3-yl)-***N***,***N***-dimethylbenzofuran-2amine (3g**) was obtained as a yellow solid (66 mg, 80%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.70 (dd, *J* = 9.3, 0.7 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.32 – 7.28 (m, 1H), 7.12 – 7.02 (m, 3H), 6.97 – 6.92 (m, 1H), 6.87 – 6.81 (m, 2H), 6.72 (dd, *J* = 2.4, 0.7 Hz, 1H), 3.77 (d, *J* = 6.5 Hz, 6H), 2.70 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 159.0, 157.9, 155.3, 149.5, 145.7, 134.0, 132.1, 127.0, 125.6, 124.1, 123.3, 121.9, 120.5, 119.3, 117.0, 114.1, 109.5, 96.9, 81.0, 55.5, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₄N₃O₃⁺ 414.1812; Found: 414.1808.

3-(2-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-2H-indazol-3-yl)-N,N-

dimethylbenzofuran-2-amine (3h) was obtained as a yellow solid (62 mg, 65%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.30 – 7.27 (m, 1H), 7.12 (s, 1H), 7.09 – 7.01 (m, 4H), 6.97 – 6.92 (m, 1H), 6.74 (d, J = 8.6 Hz, 1H), 6.69 (s, 1H), 3.99 (s, 3H), 3.83 (d, J = 8.0 Hz, 6H), 3.52 (s, 3H), 2.67 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 158.0, 152.3, 149.4, 148.8, 148.3, 148.3, 145.2, 133.8, 132.6, 127.2, 123.5, 120.6, 119.0, 116.7, 116.2, 110.7, 109.6, 108.1, 97.5, 95.9, 80.3, 56.1, 56.1, 55.8, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₈N₃O₅⁺ 474.2023; Found: 474.2021.

Methyl-4-(3-(2-(dimethylamino)benzofuran-3-yl)-5-methoxy-2*H*-indazol-2yl)benzoate (3i) was obtained as a yellow solid (51 mg, 58%). (Eluent: petroleum

ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.60 (d, J = 8.7 Hz, 2H), 7.30 – 7.23 (m, 3H), 6.92 – 6.87 (m, 1H), 6.68 – 6.61 (m, 3H), 6.51 – 6.47 (m, 1H), 6.28 (d, J = 2.4 Hz, 1H), 3.48 (s, 3H), 3.35 (s, 3H), 2.28 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 166.5, 157.9, 155.6, 149.5, 146.5, 144.4, 131.7, 130.6, 129.0, 127.5, 124.6, 123.9, 123.5, 123.0, 120.8, 119.5, 116.9, 109.7, 96.7, 80.6, 55.6, 52.4, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₄N₃O₄⁺ 442.1761; Found:442.1762.

3-(5-Fluoro-2-phenyl-2*H***-indazol-3-yl)-***N***,***N***-dimethylbenzofuran-2-amine (3j) was obtained as a yellow solid (68 mg, 92%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (400 MHz, Chloroform-d) \delta 7.79 (dd,** *J* **= 9.6, 4.4 Hz, 1H), 7.57 (d,** *J* **= 7.6 Hz, 2H), 7.39 – 7.27 (m, 4H), 7.21 – 7.12 (m, 2H), 7.04 (dd,** *J* **= 6.2, 3.2 Hz, 2H), 6.88 (dd,** *J* **= 6.1, 3.1 Hz, 1H), 2.69 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) \delta 158.50 (d,** *J* **= 240.6 Hz), 158.0, 149.5, 146.5, 140.6, 131.7, 129.1, 128.8 (d,** *J* **= 8.6 Hz), 128.2, 124.5, 123.5 (d,** *J* **= 11.1 Hz), 123.4, 120.8, 120.1 (d,** *J* **= 9.6 Hz), 118.8 (d,** *J* **= 29.1 Hz), 116.9, 109.6, 103.5, 103.3, 80.5, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₁₉FN₃O⁺ 372.1507; Found:372.1507.**

3-(2-(4-Chlorophenyl)-2*H***-indazol-3-yl)-***N***,***N***-dimethylbenzofuran-2-amine (3k) was obtained as a yellow solid (64 mg, 83%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) \delta 7.79 (dd, J = 8.8, 1.0 Hz, 1H), 7.59 – 7.54 (m, 3H), 7.37 (ddd, J = 8.8, 6.6, 1.1 Hz, 1H), 7.34 – 7.29 (m, 3H), 7.09 (ddd, J = 8.6, 6.5, 0.9 Hz, 1H), 7.07 – 7.02 (m, 2H), 6.89 – 6.85 (m, 1H), 2.71 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) \delta 157.9, 149.4, 149.2, 139.2, 133.7, 131.6, 129.1, 128.6, 127.3, 125.6, 124.3, 123.3, 122.1, 121.0, 120.7, 117.8, 116.8, 109.6, 80.3, 39.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₁₉ClN₃O⁺ 388.1211; Found:388.1214.**

3-(5-Chloro-2-phenyl-2*H***-indazol-3-yl)-***N***,***N***-dimethylbenzofuran-2-amine (31) was obtained as a yellow solid (68 mg, 88%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (400 MHz, Chloroform-d) \delta 7.78 (dd, J = 9.2, 2.1 Hz, 1H), 7.64 – 7.55 (m, 3H), 7.41 – 7.28 (m, 5H), 7.07 (dt, J = 5.8, 2.3 Hz, 2H), 6.91 (dd, J = 5.9, 3.0 Hz, 1H), 2.69 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) \delta 158.0, 149.5, 147.5, 140.4, 131.7, 129.1, 128.6, 128.5, 128.3, 127.6, 124.6, 124.5, 123.4, 120.8, 119.7, 119.6, 116.8, 109.7, 80.1, 39.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₁₉ClN₃O⁺ 388.1211; Found:388.1212.**

3-(5-Bromo-2-phenyl-2*H***-indazol-3-yl)-***N***,***N***-dimethylbenzofuran-2-amine (3m) was obtained as a yellow solid (81 mg, 94%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (400 MHz, Chloroform-d) \delta 7.78 – 7.66 (m, 2H), 7.57 (d,** *J* **= 7.4 Hz, 2H), 7.35 (ddd,** *J* **= 28.5, 19.8, 7.4 Hz, 5H), 7.05 (dd,** *J* **= 6.0, 3.0 Hz, 2H), 6.92 – 6.85 (m, 1H), 2.69 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) \delta 158.0, 149.4, 147.5, 140.4, 131.7, 130.8, 129.1, 128.3, 125.4, 124.5, 123.5, 123.2, 120.9, 119.8, 116.8, 115.4, 109.7, 80.0, 39.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₁₉BrN₃O⁺ 432.0706; Found:432.0709.**

N,*N*-5-Trimethyl-3-(2-phenyl-2*H*-indazol-3-yl)benzofuran-2-amine (4a) was obtained as a yellow solid (60 mg, 82%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.82 (dt, *J* = 8.7, 1.0 Hz, 1H), 7.58 (ddt, *J* = 8.0, 5.2, 1.9 Hz, 3H), 7.36 (dddd, *J* = 10.9, 8.0, 6.4, 1.4 Hz, 3H), 7.33 – 7.29 (m, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.10 (ddd, *J* = 8.4, 6.5, 0.9 Hz, 1H), 6.84 (dd, *J* = 8.3,

1.7 Hz, 1H), 6.74 – 6.71 (m, 1H), 2.64 (s, 6H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.2, 149.2, 147.9, 140.7, 132.8, 132.0, 129.0, 128.8, 128.0, 127.1, 124.6, 124.2, 121.9, 121.6, 121.2, 118.0, 117.2, 109.1, 80.8, 39.0, 21.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₂₁N₃NaO⁺ 390.1577; Found:390.1577.

5-Ethyl-*N*,*N***-dimethyl-3-(2-phenyl-2***H***-indazol-3-yl)benzofuran-2-amine (4b) was obtained as a yellow solid (55 mg, 72%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H** NMR (400 MHz, Chloroform-d) δ 7.82 (d, *J* = 8.8 Hz, 1H), 7.60 (dt, *J* = 7.8, 3.4 Hz, 3H), 7.41 – 7.27 (m, 4H), 7.18 (d, *J* = 8.2 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.86 (dd, *J* = 8.3, 1.8 Hz, 1H), 6.70 (d, *J* = 2.0 Hz, 1H), 2.68 (s, 6H), 2.55 (q, *J* = 7.6 Hz, 2H), 1.12 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.2, 149.2, 148.0, 140.8, 139.4, 131.7, 129.0, 128.9, 128.0, 127.1, 124.7, 124.2, 121.9, 121.3, 120.6, 117.9, 116.1, 109.1, 81.1, 39.1, 29.0, 16.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₄N₃O⁺ 382.1914; Found:382.1915.

5-(Tert-butyl)-*N*,*N*-dimethyl-3-(2-phenyl-2*H*-indazol-3-yl)benzofuran-2-amine (4c) was obtained as a yellow solid (71 mg, 87%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.83 (dd, *J* = 8.7, 1.0 Hz, 1H), 7.68 – 7.64 (m, 2H), 7.61 (dt, *J* = 8.4, 1.1 Hz, 1H), 7.41 – 7.33 (m, 3H), 7.32 – 7.27 (m, 1H), 7.19 (d, *J* = 8.5 Hz, 1H), 7.10 (ddd, *J* = 8.5, 6.5, 0.9 Hz, 1H), 7.06 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.80 (d, *J* = 2.0 Hz, 1H), 2.75 (s, 6H), 1.18 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 158.3, 149.1, 147.7, 146.3, 140.9, 130.8, 129.1, 129.0, 127.9, 127.2, 124.6, 124.1, 121.9, 121.2, 118.1, 117.8, 114.0, 108.7, 81.6, 39.3, 34.7, 31.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₈N₃O⁺410.2227; Found:410.2225.

5-Chloro-*N*,*N*-dimethyl-3-(2-phenyl-2*H*-indazol-3-yl)benzofuran-2-amine (4d) was obtained as a yellow solid (40 mg, 52%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.81 (dt, *J* = 8.8, 0.9 Hz, 1H), 7.57 – 7.52 (m, 3H), 7.39 – 7.35 (m, 3H), 7.35 – 7.31 (m, 1H), 7.17 (d, *J* = 8.5 Hz, 1H), 7.12 (ddd, *J* = 8.5, 6.5, 0.9 Hz, 1H), 6.97 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.84 (d, *J* = 2.2 Hz, 1H), 2.68 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 158.7, 149.1, 147.7, 140.4, 133.5, 129.0, 128.9, 128.1, 127.6, 127.1, 124.5, 124.1, 122.2, 120.7, 120.3, 118.0, 116.3, 110.3, 80.0, 38.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₁₉ClN₃O⁺ 388.1211; Found:388.1213.

4e

5-Bromo-*N*,*N*-dimethyl-3-(2-phenyl-2*H*-indazol-3-yl)benzofuran-2-amine (4e) was obtained as a yellow solid (50 mg, 58%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.82 (dt, *J* = 8.9, 1.0 Hz, 1H), 7.59 – 7.52 (m, 3H), 7.39 – 7.35 (m, 3H), 7.35 – 7.31 (m, 1H), 7.15 – 7.08 (m, 3H), 6.99 (d, *J* = 1.9 Hz, 1H), 2.68 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 158.7, 149.2, 148.2, 140.5, 134.1, 129.1, 128.2, 127.7, 127.2, 124.6, 124.3, 123.2, 122.3, 120.8, 119.3, 118.1, 116.6, 110.9, 80.0, 38.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₁₉BrN₃O⁺ 432.0706; Found:432.0711.

4f

N,*N*-Dimethyl-5-phenyl-3-(2-phenyl-2*H*-indazol-3-yl)benzofuran-2-amine (4f) was obtained as a yellow solid (69 mg, 81%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.82 (dt, *J* = 8.8, 0.9 Hz, 1H), 7.65 – 7.62 (m, 2H), 7.60 (dt, *J* = 8.5, 1.1 Hz, 1H), 7.44 – 7.41 (m, 2H), 7.39 – 7.29 (m, 7H), 7.26 – 7.23 (m, 2H), 7.11 – 7.07 (m, 2H), 2.70 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 158.5, 149.2, 149.2, 141.8, 140.8, 137.0, 132.3, 129.1, 128.7, 128.5, 128.1, 127.4, 127.2, 126.8, 124.7, 124.3, 122.1, 121.1, 120.2, 118.0, 115.5, 109.6, 81.0, 39.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₄N₃O⁺ 430.1914; Found:430.1915.

N,*N*-Dimethyl-3-(2-phenyl-2*H*-indazol-3-yl)naphtho[1,2-b]furan-2-amine (4g) was obtained as a yellow solid (70 mg, 87%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.87 (ddt, *J* = 12.9, 8.3, 1.0 Hz, 2H), 7.57 – 7.51 (m, 5H), 7.40 (ddd, *J* = 8.8, 6.5, 1.1 Hz, 1H), 7.31 (ddd, *J* = 8.1, 6.8, 1.3 Hz, 1H), 7.26 – 7.23 (m, 3H), 7.20 (ddd, *J* = 8.5, 1.3, 0.6 Hz, 1H), 7.13 – 7.07 (m, 2H), 2.64 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 158.1, 149.3, 146.1, 140.5, 131.2, 129.4, 129.0, 128.8, 128.1, 127.3, 126.7, 125.9, 125.7, 125.3, 124.8, 124.2, 122.9, 122.6, 121.4, 121.2, 118.0, 111.1, 82.1, 39.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₂N₃O⁺ 404.1757; Found:404.1759.

N,*N*-Diethyl-3-(2-phenyl-2*H*-indazol-3-yl)benzofuran-2-amine (4h) was obtained as a yellow solid (35 mg, 46%). (Eluent: petroleum ether/ethyl acetate= 20/1).¹H NMR (600 MHz, Chloroform-d) δ 7.82 (dd, J = 8.7, 1.1 Hz, 1H), 7.59 – 7.53 (m, 3H), 7.39 – 7.31 (m, 3H), 7.31 – 7.27 (m, 2H), 7.11 – 7.06 (m, 1H), 7.06 – 7.04 (m, 2H), 6.97 – 6.92 (m, 1H), 3.09 (dq, J = 14.2, 7.1 Hz, 2H), 2.97 (dq, J = 14.2, 7.1 Hz, 2H), 0.83 (t, J = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 157.0, 149.5, 149.3, 140.7, 132.1, 129.1, 128.6, 128.0, 127.1, 124.7, 123.7, 123.2, 121.9, 121.2, 120.5, 118.0, 116.9, 109.5, 81.0, 43.3, 13.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₄N₃O⁺ 382.1914; Found:382.1913.

(1,2-Dimethyl-1*H*-indol-3-yl)-2-phenyl-2*H*-indazole (4i) was obtained as a yellow solid (33 mg, 49%). (Eluent: petroleum ether/ethyl acetate= 10/1). ¹H NMR (600

MHz, Chloroform-d) δ 7.74 (dt, J = 8.8, 1.0 Hz, 1H), 7.40 (tt, J = 8.2, 1.2 Hz, 3H), 7.29 – 7.27 (m, 1H), 7.25 – 7.19 (m, 3H), 7.19 – 7.16 (m, 2H), 7.13 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 6.97 (ddd, J = 7.9, 6.8, 0.9 Hz, 2H), 3.60 (s, 3H), 1.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.3, 141.0, 137.1, 136.3, 130.6, 129.0, 127.7, 127.3, 127.0, 124.9, 123.3, 121.6, 121.6, 121.5, 120.3, 119.3, 117.9, 109.1, 101.9, 30.0, 11.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₀N₃⁺ 338.1652; Found: 338.1655.

3-(2-Phenyl-2*H***-indazol-3-yl)-2-(pyrrolidin-1-yl)-1***H***-inden-1-one (4k) was obtained as a purple solid (26 mg, 33%). (Eluent: petroleum ether/ethyl acetate= 15/1). ¹H NMR (600 MHz, Chloroform-d) \delta 7.82 – 7.76 (m, 3H), 7.59 (dt,** *J* **= 8.5, 1.1 Hz, 1H), 7.42 (dd,** *J* **= 8.5, 7.1 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.29 – 7.27 (m, 1H), 7.10 (ddd,** *J* **= 8.5, 6.5, 0.9 Hz, 1H), 7.03 (td,** *J* **= 7.5, 1.2 Hz, 1H), 6.82 – 6.77 (m, 1H), 6.23 (d,** *J* **= 7.4 Hz, 1H), 3.29 – 3.22 (m, 2H), 3.17 (dt,** *J* **= 10.8, 6.0 Hz, 2H), 1.68 – 1.59 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) \delta 193.9, 150.3, 149.2, 141.2, 140.8, 135.6, 129.8, 129.3, 128.3, 127.2, 126.7, 124.6, 124.1, 123.7, 123.2, 122.2, 121.1, 118.1, 117.2, 104.0, 49.6, 25.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₂N₃O⁺ 392.1757; Found: 392.1753.**

3-(2-Phenyl-2*H***-indazol-3-yl)-2-(piperidin-1-yl)-1***H***-inden-1-one (4I) was obtained as a purple solid (24 mg, 30%). (Eluent: petroleum ether/ethyl acetate= 15/1). ¹H NMR (600 MHz, Chloroform-d)** δ 7.81 (dt, *J* = 8.8, 0.9 Hz, 1H), 7.79 – 7.75 (m, 2H), 7.62 (dt, *J* = 8.4, 1.1 Hz, 1H), 7.45 (dd, *J* = 8.5, 7.0 Hz, 2H), 7.38 (ddd, *J* = 8.6, 6.5, 1.1 Hz, 2H), 7.29 (dt, *J* = 7.1, 0.9 Hz, 1H), 7.13 (ddd, *J* = 8.4, 6.6, 0.9 Hz, 1H), 7.06 (td, *J* = 7.5, 1.2 Hz, 1H), 6.92 – 6.88 (m, 1H), 6.39 (dd, *J* = 7.4, 0.8 Hz, 1H), 3.07 – 3.03 (m, 2H), 2.66 – 2.62 (m, 2H), 1.43 – 1.31 (m, 6H). ¹³**C NMR (151 MHz, CDCl₃)** δ 194.5, 149.5, 147.6, 144.4, 140.6, 135.2, 129.2, 129.1, 128.7, 127.4, 127.3, 125.3, 124.4, 123.7, 123.2, 122.5, 121.1, 118.3, 118.2, 111.8, 49.3, 26.1, 24.0.HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₄N₃O⁺ 406.1914; Found: 406.1913.

(E)-O-(2-((2-(piperidin-1-yldiazenyl)phenyl)ethynyl)phenyl)

dimethylcarbamothioate (6) was obtained as a red solid (41 mg, 52%). (Eluent: petroleum ether/ethyl acetate= 30/1).¹H NMR (600 MHz, Chloroform-d) δ 7.54 (dd, J = 7.7, 1.7 Hz, 1H), 7.45 (dd, J = 8.3, 1.2 Hz, 1H), 7.41 (dd, J = 7.7, 1.5 Hz, 1H), 7.36 (td, J = 7.9, 1.7 Hz, 1H), 7.28 (ddd, J = 8.3, 7.3, 1.5 Hz, 1H), 7.23 (td, J = 7.6, 1.2 Hz, 1H), 7.18 (dd, J = 8.1, 1.2 Hz, 1H), 7.10 (td, J = 7.5, 1.2 Hz, 1H), 3.84 (s, 4H), 3.44 (s, 3H), 3.37 (s, 3H), 1.71 (d, J = 11.0 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 187.3, 154.6, 152.0, 132.9, 132.9, 129.3, 128.7, 125.9, 125.13, 123.9, 118.7, 118.2, 117.3, 92.8, 88.4, 43.4, 39.0, 24.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₅N₄OS⁺ 393.1744; Found: 393.1744.

N,*N*-Dimethyl-3-(2-(piperidin-1-yl)-2*H*-indazol-3-yl)benzofuran-2-amine (7) was obtained as a yellow solid (45 mg, 62%). (Eluent: petroleum ether/ethyl acetate= 15/1).¹H NMR (600 MHz, Chloroform-d) δ 7.72 (dt, J = 8.7, 1.0 Hz, 1H), 7.50 (dt, J = 8.4, 1.1 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.10 – 7.02 (m, 3H), 7.00 – 6.95 (m, 1H), 3.32 – 3.24 (m, 4H), 2.87 (s, 6H), 1.65 (p, J = 5.8 Hz, 4H), 1.50 (q, J = 5.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 158.2, 149.6, 145.8, 132.0, 126.2, 126.0, 122.9, 121.3, 121.2, 121.0, 120.3, 117.4, 117.3, 109.4, 80.7, 56.4, 39.5, 26.2, 23.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₅N₄O⁺ 361.2023; Found:361.2026.

3-(2-(2-Allylphenyl)-2*H***-indazol-3-yl)-***N***,***N***-dimethylbenzofuran-2-amine (8) was obtained as a yellow solid (38 mg, 48%). (Eluent: petroleum ether/ethyl acetate=**

10/1).¹**H NMR (600 MHz, Chloroform-d)** δ 7.80 (dt, J = 8.7, 1.0 Hz, 1H), 7.61 (dt, J = 8.4, 1.1 Hz, 1H), 7.37 (ddd, J = 8.8, 6.6, 1.1 Hz, 1H), 7.34 – 7.30 (m, 1H), 7.29 (dd, J = 7.3, 1.4 Hz, 1H), 7.26 (q, J = 3.7, 2.7 Hz, 2H), 7.24 – 7.21 (m, 1H), 7.17 (td, J = 7.5, 1.8 Hz, 1H), 7.12 (ddd, J = 8.4, 6.5, 0.9 Hz, 1H), 7.03 – 6.98 (m, 2H), 6.93 – 6.89 (m, 1H), 5.69 (ddt, J = 16.9, 10.0, 6.8 Hz, 1H), 5.01 – 4.83 (m, 2H), 3.14 (d, J = 6.7 Hz, 2H), 2.74 (s, 6H). ¹³**C NMR (151 MHz, CDCl₃)** δ 158.5, 149.4, 149.0, 139.1, 136.8, 136.1, 131.7, 130.2, 130.1, 129.1, 127.4, 126.9, 126.4, 123.2, 123.1, 121.9, 121.1, 120.7, 118.1, 117.1, 116.9, 109.6, 81.5, 39.5, 35.4, 29.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₄N₃O⁺ 394.1914; Found:394.1922.

Diethyl-3,3'-(2-(dimethylamino)benzofuran-3-yl)-2*H***-indazol-2-yl)-1,3phenylene)(2***E***,2'***E***)-diacrylate (9) was obtained as a yellow solid (78 mg, 71%). (Eluent: petroleum ether/ethyl acetate= 5/1).¹H NMR (600 MHz, Chloroform-d) \delta 7.83 (dd,** *J* **= 8.8, 1.1 Hz, 1H), 7.77 (dd,** *J* **= 8.0, 1.3 Hz, 1H), 7.65 (dd,** *J* **= 8.5, 1.1 Hz, 1H), 7.50 (dd,** *J* **= 7.9, 1.3 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.43 – 7.38 (m, 2H), 7.19 – 7.14 (m, 2H), 7.00 (ddd,** *J* **= 9.2, 7.8, 1.5 Hz, 2H), 6.94 (td,** *J* **= 7.5, 1.0 Hz, 1H), 6.67 (d,** *J* **= 16.0 Hz, 1H), 6.45 (d,** *J* **= 16.0 Hz, 1H), 5.89 (d,** *J* **= 16.0 Hz, 1H), 4.16 (q,** *J* **= 7.1 Hz, 2H), 4.02 (q,** *J* **= 7.1 Hz, 2H), 2.53 (s, 6H), 1.23 (t,** *J* **= 7.1 Hz, 3H), 1.15 (t,** *J* **= 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) \delta 166.3, 165.6, 159.0, 149.7, 149.6, 139.7, 138.9, 138.8, 133.5, 133.4, 132.5, 130.3, 129.5, 128.0, 127.6, 127.5, 122.7, 122.7, 122.6, 121.5, 121.4, 120.9, 120.6, 118.4, 118.4, 109.6, 84.8, 60.7, 60.4, 40.5, 14.3, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₃H₃₂N₃O₅⁺ 550.2336; Found:550. 2345.**

7. References

[1] (a) Ma .X.-T.; Tian. S.-K. Adv. Synth. Catal. 2013, 335, 337–340; (b) Das, U.; S.; Ben-David, Y.; Diskin-Posner, Y.; Milstein. D. Adv. Synth. Catal. 2021, 363, 3744-3749; (c) Qiu, S.; Gao, X.; Zhu, S. Chem. Sci. 2021, 12, 13730–13736.
[2] Li, X.; Chen, H.; Xuan, Q.; Mai, S.; Lan, Yu.; Song, Q. Org. Lett. 2021, 23, 3518–3523.

8. NMR Spectra

¹H NMR (600 MHz, CDCl₃) spectrum of compound 2a

¹H NMR (600 MHz, CDCl₃) spectrum of compound 2j

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 2j

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 2k

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 21

44

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 4d

53

DRM-12.3.fid

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 4i

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 4k

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 41

