Supporting Information for

Copper-Catalyzed Silylation of Propargyl Carbonates: A General Entry to

Allenylsilanes

He Zhang ${ }^{a, b}$, Linjuan Jiang, ${ }^{c}$ Mei Yang, ${ }^{a, b}$ Yuanhong Liu ${ }^{*}, a, b$

Abstract

${ }^{a}$ Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China. ${ }^{b}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China. ${ }^{\text {c }}$ School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 20023, P. R. China. E-mail: yhliu@sioc.ac.cn

Contents: Page
General Methods S1
Synthesis and characterization of propargyl carbonates 1 S2
Optimization studies for the formation of $\mathbf{3 a}$ S23
Synthesis and characterization of products $\mathbf{3}$ S25
Synthesis and characterization of products 4 S37
Synthesis and characterization of product 5 S44
1 mmol Scale reaction of $\mathbf{1 a}$ S45
References S45
NMR spectra S47

General Methods.

Unless noted, all reactions were carried out using standard Schlenk technique under an argon atmosphere or a dry box technique under a nitrogen atmosphere. THF was distilled from sodium and benzophenone or purified using Innovative Technology Solvent Purifier (for the synthesis of substrates). 1,4-Dioxane was distilled from sodium and benzophenone. CuCl , NaHCO_{3} and PPh_{3} were purchased from $\mathrm{J} \& \mathrm{~K}$ Chemical Company. PCy_{3} was purchased from Alfa Chemical Company. Unless otherwise noted, all other reagents and starting materials were purchased from commercial sources. Triethyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2$\mathrm{yl})$ silane ($\mathrm{Et}_{3} \mathrm{Si}$-Bpin) was prepared according to published method. ${ }^{1}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature in CDCl_{3} (containing 0.03% TMS) solutions on Varian XL-400 MHz spectrometer, Agilent XL-400 MHz spectrometer or Bruker Avance III HD 400 MHz spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra was recorded with tetramethylsilane (0.00 ppm) or solvent residual peak $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right)$ as internal reference; ${ }^{13} \mathrm{C}$ NMR spectra was recorded with $\mathrm{CDCl}_{3}(77.00 \mathrm{ppm})$ as internal reference. High-resolution mass spectra were obtained by using JEOL AccuTOF GCv4G GCT MS spectrometer, Agilent Technologies 7250 GCQTOF spectrometer, Thermo Scientific Q Exactive HF Orbitrap-FTMS and Thermo Fisher Scientific LTQ FTICR-MS. The IR spectra were measured on a ThermoFisher Nicolet FT-IR spectrometer.

Synthesis and characterization of propargyl carbonates 1.

The propargyl carbonates were prepared from the corresponding propargyl alcohols.

For the synthesis of propargyl carbonates $1 \mathrm{a}-1 \mathrm{w}$, see the following:

Typical procedure for the synthesis of 1a.

Methyl (1-phenylhept-2-yn-1-yl) carbonate (1a). 1-Hexyne ($0.75 \mathrm{~mL}, 534.0 \mathrm{mg}, 6.5 \mathrm{mmol}$) was deprotonated in dry THF (10 mL) by n-BuLi solution (1.6 M in hexane, $3.8 \mathrm{~mL}, 6 \mathrm{mmol}$) slowly at $-78^{\circ} \mathrm{C}$ (using a dry ice/acetone bath) under argon. After the slow addition, the mixture was stirred at the same temperature for 30 minutes at $-78^{\circ} \mathrm{C}$. Then the dry ice/acetone bath was removed. To the mixture, benzaldehyde ($0.51 \mathrm{~mL}, 530.6 \mathrm{mg}, 5 \mathrm{mmol}$) was added. After the reaction was complete (2 h), the mixture was cooled to $-78^{\circ} \mathrm{C}$, and $\mathrm{ClCO}_{2} \mathrm{Me}(1.42 \mathrm{~g}, 15 \mathrm{mmol}$) was slowly added. Then the dry ice/acetone bath was removed. The reaction was stirred overnight at room temperature until the reaction was complete as monitored by TLC. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic layers were washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under the reduced pressure. Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=15: 1)$ to afford the title product $\mathbf{1 a}$ in 79% yield $(970 \mathrm{mg})$ as
a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 3 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,137.0,128.9,128.5,127.6,89.4,76.0,70.1,54.8,30.3$, $21.8,18.4,13.5$. The spectroscopic data are in agreement with that previously reported. ${ }^{2}$

1b
Methyl (1-(p-tolyl)hept-2-yn-1-yl) carbonate (1b). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1$) to afford the title product $\mathbf{1 b}$ in 88% yield (1.15 g) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.25(\mathrm{~s}, 1 \mathrm{H}), 3.77$ (s, $3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{td}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,138.9,134.2,129.2,127.7,89.1,76.2$, 70.1, $54.8,30.4,21.9,21.1,18.5,13.5$. IR (neat): 2957, 2234, 1746, 1515, 1440, 1321, 1248, 1181, 1143, 946, 917, 816, 789, 740, $723 \mathrm{~cm}^{-1}$. HRMS (FI) m/z : [M] Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$ 260.1407; Found 260.1403.

1-(4-(tert-Butyl)phenyl)hept-2-yn-1-yl methyl carbonate (1c). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1 c}$ in 66% yield $(1.0 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H})$, $1.31(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,152.1,134.0$,
$127.5,125.5,89.2,76.2,70.1,54.9,34.6,31.2,30.4,21.9,18.5,13.6$. IR (neat): 2958, 2871, 2236, 1747, 1440, 1321, 1250, 1146, 1107, 948, 919, 839, 788, $682 \mathrm{~cm}^{-1}$. HRMS (FI) m/z : $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ 302.1876; Found 302.1881.

1d
Methyl (1-(o-tolyl)hept-2-yn-1-yl) carbonate (1d). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1 d}$ in 88% yield $(1.15 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{td}, J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,136.1,135.1,130.7,128.9,127.9$, $126.1,89.2,75.9,68.2,54.9,30.4,21.9,19.0,18.5,13.5$. The spectroscopic data are in agreement with that previously reported. ${ }^{3}$

1-Mesitylhept-2-yn-1-yl methyl carbonate (1e). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1$) to afford the title product $\mathbf{1 e}$ in 72% yield (1.04 g) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.84(\mathrm{~s}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 6 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.20$ $(\mathrm{td}, J=7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 155.0,138.2,137.0,130.8,129.7,88.3,75.7,66.2,54.7,30.3,21.9,20.8,20.0,18.5$, 13.5. IR (neat): 2957, 1746, 1611, 1440, 1319, 1256, 1159, 1129, 1034, 920, 851, 793, 739, $695 \mathrm{~cm}^{-1}$. HRMS (FI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ 288.1720; Found 288.1724.

$1 f$

Methyl (1-(naphthalen-2-yl)hept-2-yn-1-yl) carbonate (1f). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1 f}$ in 72% yield $(1.06 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.37$ $(\mathrm{m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,134.3,133.4,132.9$, $128.5,128.2,127.6,127.0,126.6,126.3,125.0,89.7,76.1,70.3,54.9,30.3,21.9,18.5,13.5$. IR (neat): 2956, 2871, 2235, 1746, 1440, 1325, 1249, 1140, 1121, 925, 892, 859, 789, $746 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (FI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3}$ 296.1407; Found 296.1410.

1-(3,5-Dimethoxyphenyl)hept-2-yn-1-yl methyl carbonate (1g). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ to afford the title product $\mathbf{1 g}$ in 89% yield $(1.36 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.69$ (s, 2H), $6.44(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.79$ (s, 9H), 2.27 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.7,154.8,139.1,105.4,101.0,89.2,75.9,69.9,55.2,54.8$, 30.2, 21.8, 18.4, 13.4. IR (neat): 2957, 2237, 1747, 1598, 1459, 1431, 1329, 1252, 1204, 1154, 1066, 916, 837, 788, $689 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} 306.1462$; Found 306.1458 .

1-([1,1'-Biphenyl]-4-yl)hept-2-yn-1-yl methyl carbonate (1h). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ to afford the title product $\mathbf{1 h}$ in 68% yield $(1.10 \mathrm{~g})$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.0,141.9,140.5,136.0,128.8,128.2$, $127.5,127.3,127.1,89.6,76.0,70.0,54.9,30.4,21.9,18.5,13.5$. The spectroscopic data are in agreement with that previously reported. ${ }^{3}$

Methyl (1-(4-(trifluoromethyl)phenyl)hept-2-yn-1-yl) carbonate (1i). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1 i}$ in 85% yield $(1.33 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{t}, J=9.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $2.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,140.9,131.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right), 127.9,125.6\left(\mathrm{q},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=\right.$ $3.6 \mathrm{~Hz}), 123.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=270.7 \mathrm{~Hz}\right), 90.2,75.4,69.2,55.1,30.3,21.9,18.5,13.5 .{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) $\delta-62.8 . \operatorname{IR}$ (neat): 2960, 2236, 1750, 1622, 1442, 1323, 1252, 1165, 1125, 1110, 1066, 929, 836, $788 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} 314.1124$; Found 314.1123.

1j
1-(4-Chlorophenyl)hept-2-yn-1-yl methyl carbonate (1j). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1} \mathbf{j}$ in 84% yield $(1.18 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{td}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.39(\mathrm{~m}$, $2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,135.6,134.9,129.1,128.7$, 89.8, 75.6, 69.3, 54.9, 30.3, 21.9, 18.4, 13.5. IR (neat): 2957, 2873, 2236, 1747, 1492, 1440, 1321, 1248, 1145, 1089, 1017, 946, 922, 825, $788 \mathrm{~cm}^{-1}$. HRMS (FI) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Cl} 280.0861$; Found 280.0862.

1-(4-Bromophenyl)hept-2-yn-1-yl methyl carbonate (1k). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $1 \mathbf{k}$ in 87% yield $(1.42 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{td}, J=7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.37(\mathrm{~m}$, $2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,136.1,131.7,129.3,123.1$, 89.8, 75.6, 69.4, 54.9, 30.2, 21.8, 18.4, 13.5. IR (neat): 2957, 2872, 2232, 1747, 1440, 1322, 1247, 1144, 1070, 1013, 946, 921, 819, 788, $741 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{3}$ 324.0356; Found 324.0347.

1-(3,5-Dichlorophenyl)hept-2-yn-1-yl methyl carbonate (11). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1 1}$ in 88% yield $(1.38 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42$ (s, 2H), 7.34 (s, 1H), 6.21 (s, 1H), 3.82 $(\mathrm{s}, 3 \mathrm{H}), 2.28(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.6,140.2,135.1,129.0,126.1,90.5,74.9,68.5$, 55.2, 30.2, 21.9, 18.4, 13.5. IR (neat): 2958, 2873, 2236, 1749, 1591, 1572, 1439, 1253, 1201, 1148, 942, 914, 861, 788, $680 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{3} 314.0471$; Found 314.0465.

3-(Cyclohex-1-en-1-yl)-1-phenylprop-2-yn-1-yl methyl carbonate (1m). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1 m}$ in 83% yield $(1.12 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.42$ $(\mathrm{s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 154.9,136.8,136.6,129.0,128.6,127.7,119.7,89.9,82.1,70.3,54.9,28.8,25.6$, 22.1, 21.3. IR (neat): 2930, 2223, 1746, 1439, 1322, 1249, 1211, 1189, 1049, 939, 907, 842, 788, 767, $695 \mathrm{~cm}^{-1}$. HRMS (FI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} 270.1250$; Found 270.1252.

Methyl (1-phenylhex-2-yn-1-yl) carbonate (1n). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1 n}$ in 95% yield $(1.10 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $2.25(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 154.9,137.0,128.9,128.5,127.6,89.3,76.2,70.1,54.9,21.7,20.7,13.4 . \operatorname{IR}$ (neat): 2962, 2236, 1746, 1496, 1440, 1322, 1248, 1143, 1029, 931, 909, 788, 762, $695 \mathrm{~cm}^{-1}$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$ 232.1094; Found 232.1090

3-Cyclopropyl-1-phenylprop-2-yn-1-yl methyl carbonate (10). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product 10 in 58% yield $(668.0 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.26(\mathrm{~s}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.28(\mathrm{~m}, 1 \mathrm{H}), 0.80-0.73(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9$, $137.0,128.9,128.5,127.6,92.4,71.2,70.2,54.9,8.3,-0.5$. IR (neat): 3011, 2240, 1745, 1496, 1440, 1320, 1248, 1158, 1048, 930, 907, 893, 788, 768, $696 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} 230.0937$; Found 230.0933.

3-Cyclohexyl-1-phenylprop-2-yn-1-yl methyl carbonate (1p). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1 p}$ in 76% yield $(831.0 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 3 \mathrm{H})$, $6.32(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{bs}, 2 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 3 \mathrm{H})$, 1.32-1.30 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,137.1,128.9,128.5,127.7,93.3$, 76.0, 70.2, 54.8, 32.2, 29.0, 25.7, 24.7. IR (neat): 2929, 2854, 2235, 1746, 1440, 1323, 1249, 1151, 931, 909, 890, 788, 762, 713, $695 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[M]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$ 272.1407; Found 272.1401.

4-Chloro-1-phenylbut-2-yn-1-yl methyl carbonate (1q). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1$) to afford the title product $\mathbf{1 q}$ in 64% yield (763.0 mg) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.52$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (d, $\left.J=5.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 6.33(\mathrm{~s}, 1 \mathrm{H})$, $4.18(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.6,135.7,129.3,128.7,127.6$, 82.9, 82.1, 69.3, 55.1, 29.9. IR (neat): 2957, 1747, 1440, 1323, 1245, 1148, 936, 913, 860, 787, 763, $695 \mathrm{~cm}^{-1}$. HRMS (FI) m/z: [M] Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Cl} 238.0391$; Found 238.0395.

6-Chloro-1-phenylhex-2-yn-1-yl methyl carbonate (1r). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ to afford the title product $\mathbf{1 r}$ in 91% yield (1.22 g) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.52$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38-7.36 (m, 3H), 6.28 (s, 1H), 3.78 (s , $3 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 154.8,136.6,129.0,128.5,127.5,87.2,77.2,69.8,54.9,43.4,30.9,16.2$. IR (neat): 2957, 2235, 1746, 1440, 1322, 1248, 1197, 1138, 931, 910, 788, 762, $695 \mathrm{~cm}^{-1}$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{3}$ 266.0704; Found 266.0705.

5-((tert-Butyldimethylsilyl)oxy)-1-phenylpent-2-yn-1-yl methyl carbonate (1s). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20$: 1 as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1$) to afford the title product 1 s in 41% yield $(361.0 \mathrm{mg})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.36(\mathrm{~m}, 3 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,136.8,129.0,128.5,127.7,86.3,77.1,70.0$, 61.4, 54.9, 25.8, 23.2, 18.2, -5.4. IR (neat): 2954, 2929, 2856, 1749, 1440, 1323, 1250, 1144, 1103, 1057, 932, 910, 834, 776, $695 \mathrm{~cm}^{-1}$ HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si} 348.1751$; Found 348.1750.

1,4-Diphenylbut-2-yn-1-yl methyl carbonate (1t). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1$) to afford the title product $\mathbf{1 t}$ in 88% yield (491.0 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.56$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.30 (m, 7H), 7.24-7.21 (m, 1H), $6.36(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,136.7,135.8$, $129.1,128.6,128.5,127.8,127.7,126.7,86.6,78.3,70.0,54.9,25.1$. IR (neat): 3031, 2956, 1746, 1495, 1454, 1440, 1322, 1249, 1197, 1139, 933, 910, 787, 731, $694 \mathrm{~cm}^{-1}$. HRMS (FI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$ 280.1094; Found 280.1100 .

1u
1,5-Diphenylpent-2-yn-1-yl methyl carbonate (1u). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1$) to afford the title product $\mathbf{1 u}$ in 89% yield (521.0 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-$ $7.17(\mathrm{~m}, 3 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 154.9,140.2,136.7,128.9,128.5,128.4,128.3,127.6,126.3,88.4$, $76.9,70.0,54.9,34.5,21.0$. The spectroscopic data are in agreement with that previously reported. ${ }^{4}$

4,4-Dimethyl-1-phenylpent-2-yn-1-yl methyl carbonate (1v). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $\mathbf{1 v}$ in 92% yield $(1.13 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.35 (m, 3H), $6.31(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,137.1,128.9$, $128.5,127.7,97.2,74.5,70.1,54.8,30.6,27.5$. IR (neat): 2970, 2242, 1739, 1456, 1438, 1265, 1247, 1194, 956, 933, 908, 857, 790, 770, $703 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$ 246.1250; Found 246.1245.

Methyl undec-6-yn-5-yl carbonate (1w). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=30$: 1) to afford the title product $\mathbf{1 w}$ in 87% yield $(984.0 \mathrm{mg})$ as a colorless oil. ${ }^{4}{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 5.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 2 \mathrm{H})$, $1.51-1.36(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,87.0,76.9,68.7$, $54.7,34.8,30.4,27.0,22.1,21.8,18.3,13.8,13.5$. The spectroscopic data are in agreement with that previously reported. ${ }^{5}$

For the synthesis of propargyl carbonate 1x, see the following:

Methyl (3-methyl-1-phenylnon-4-yn-3-yl) carbonate (1x). 1-Hexyne ($985.8 \mathrm{mg}, 12 \mathrm{mmol}$) was deprotonated in dry THF (10 mL) by n-BuLi solution (1.6 M in hexane, $6.9 \mathrm{~mL}, 11 \mathrm{mmol}$) slowly at $-78^{\circ} \mathrm{C}$ (using a dry ice/acetone bath) under argon. After the slow addition, the mixture was stirred for 30 minutes at $-78{ }^{\circ} \mathrm{C}$. Then to the mixture, 4-phenylbutan-2-one ($1.48 \mathrm{~g}, 10$ mmol) was added, and then the dry ice/acetone bath was removed. The mixture was stirred at room temperature for 2 h . The resulting reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic extracts were washed with brine, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure to afford the product of alcohol, which was used directly without further purification for the next step.

The above crude alcohol was deprotonated in dry THF (26 mL) by $n-\mathrm{BuLi}$ solution (1.6 M in hexane, $7.5 \mathrm{~mL}, 12 \mathrm{mmol}$) slowly at $-78^{\circ} \mathrm{C}$ (using a dry ice/acetone bath) under argon. After the slow addition, the mixture was stirred for 30 minutes at $-78^{\circ} \mathrm{C}$. Then to the mixture, $\mathrm{ClCO}_{2} \mathrm{Me}(1.42 \mathrm{~g}, 15 \mathrm{mmol})$ was added, and then the dry ice/acetone bath was removed. The reaction mixture was stirred at room temperature until the reaction was complete as monitored by TLC (2 h). The resulting reaction mixture was quenched with water and extracted with ethyl acetate. The combined organic extracts were washed with brine, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1)$ to afford the title product $1 \mathbf{x}$ in 90% overall yield $(2.6 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 3.76$ (s, 3H), 2.83 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.40$ $(\mathrm{m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.5,141.6,128.40,128.38$, $125.9,86.8,79.4,77.7,54.2,43.7,30.8,30.6,26.7,21.9,18.4,13.6$. The spectroscopic data are in agreement with that previously reported. ${ }^{6}$

For the synthesis of new propargyl carbonates 1y and 1za, see the following: Typical procedure for the synthesis of 1 y :

1,3-Diphenylprop-2-yn-1-yl methyl carbonate (1y). To a solution of phenylacetylene (3.98 g, 39.0 mmol) in THF (60 mL) was added dropwise $\mathrm{EtMgBr}\left(3.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 12.0 \mathrm{~mL}$, 36.0 mmol) at room temperature under argon. Then the mixture was warmed up to $40^{\circ} \mathrm{C}$ and stirred for 1 h . After cooling to room temperature, benzaldehyde ($3.18 \mathrm{~g}, 30 \mathrm{mmol}$) was added and the reaction mixture was stirred until the reaction was complete as monitored by TLC (1 h). The resulting reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure to afford the product of alcohol, which was used directly without further purification for the next step.

To a solution of the above crude alcohol in $\mathrm{DCM}(60 \mathrm{~mL})$ were added pyridine $(12.1 \mathrm{~mL}$, 150.0 mmol) and DMAP ($366.5 \mathrm{mg}, 3.0 \mathrm{mmol}$) under air. The solution was cooled to $0^{\circ} \mathrm{C}$, $\mathrm{ClCO}_{2} \mathrm{Me}(7.0 \mathrm{~mL}, 90.0 \mathrm{mmol})$ was added dropwise. The reaction mixture was warmed to room temperature and stirred for 3 h . The mixture was quenched with water and extracted with dichloromethane. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ to afford the title product $\mathbf{1 y}$ in 75% overall yield $(6.0 \mathrm{~g})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.32-$ $7.29(\mathrm{~m}, 3 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,136.5,131.9$, $129.2,128.9,128.7,128.2,127.8,121.9,88.0,84.8,70.2,55.0$. The spectroscopic data are in agreement with that previously reported. ${ }^{7}$

Methyl (1-phenylhept-1-yn-3-yl) carbonate (1za). First step: phenylacetylene (1.99 g, 19.5
$\mathrm{mmol})$ and $\mathrm{EtMgBr}\left(3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{~mL}, 18.0 \mathrm{mmol}\right)$ in $\mathrm{THF}(30 \mathrm{~mL})$ was stirred at $40^{\circ} \mathrm{C}$ for 1 h , and after valeraldehyde ($1.29 \mathrm{~g}, 15.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (30 mL) were added pyridine ($6.0 \mathrm{~mL}, 75.0 \mathrm{mmol}$) and DMAP ($183.3 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathrm{ClCO}_{2} \mathrm{Me}(3.5 \mathrm{~mL}, 45.0 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and then stirred at room temperature. Then saturated ammonium chloride solution and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ were added to the reaction mixture. The mixture was filtered and extracted with dichloromethane, washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=15: 1$) to afford the title product $\mathbf{1 z a}$ in 54% overall yield (2.0 g) as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.45-$ $7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 5.46(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.55-$ $1.47(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $155.0,131.8,128.6,128.2,122.2,86.0,85.8,68.7,54.8,34.6,27.0,22.2,13.9$. The spectroscopic data are in agreement with that previously reported. ${ }^{5}$

For the synthesis of new propargyl carbonates $\mathbf{1 z}, \mathbf{1 z b}, 1 \mathrm{zc}$, see the following:

Methyl (1-(naphthalen-2-yl)-3-phenylprop-2-yn-1-yl) carbonate (1z). Methyl chloroformate ($755.9 \mathrm{mg}, 8.0 \mathrm{mmol}$) was added to a solution of 1-(naphthalen-2-yl)-3-phenylprop-2-yn-1-ol ($516.6 \mathrm{mg}, 2.0 \mathrm{mmol}$), pyridine ($632.8 \mathrm{mg}, 8.0 \mathrm{mmol}$), and DMAP (48.9 $\mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred overnight at room temperature. The resulting solution was quenched with a saturated aqueous $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ solution, washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ to afford the title product $\mathbf{1 z}$ in 55% yield $(346.2 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49-7.47 (m, 4H), 7.30-7.29 (m, 3H), $6.71(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,133.7,133.5,132.9,131.8,128.9,128.7,128.3,128.2,127.6,127.2,126.7,126.4$,
124.9, 121.8, 88.2, 84.8, 70.3, 55.0. IR (neat): 3058, 2228, 1746, 1490, 1440, 1326, 1248, 1165, 1125, 1033, 923, 859, 788, 754, $690 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}$ 339.0992; Found 330.0993.

1zb
Methyl (3-phenylprop-2-yn-1-yl) carbonate (1zb). The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=30: 1$) to afford the title product $\mathbf{1 z b}$ in 85% yield $(812.0 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45$ (dd, $J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 155.2,131.8,128.8,128.2,121.9,87.1,82.2,56.1,55.0$. The spectroscopic data are in agreement with that previously reported. ${ }^{8}$

Methyl (3-(naphthalen-1-yl)prop-2-yn-1-yl) carbonate (1zc). The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$) to afford the title product 1zc in 85% yield (407.8 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.3,133.2,133.0,131.0,129.3,128.2,126.9,126.4,125.9,125.0,119.5$, 87.0, 85.2, 56.3, 55.1. IR (neat): 3058, 2961, 2226, 1744, 1449, 1431, 1367, 1274, 1253, 1104, 958, 932, 901, 799, $772 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} 241.0859$; Found 241.0860 .

For the synthesis of propargyl carbonate 1zd, see the following:

Hept-2-yn-1-yl methyl carbonate (1zd). 1-Hexyne ($1.4 \mathrm{~mL}, 985.8 \mathrm{mg}, 12 \mathrm{mmol}$) was
deprotonated in dry THF (20 mL) by n-BuLi solution (2.5 M in hexane, $4.4 \mathrm{~mL}, 11 \mathrm{mmol}$) slowly at $-78^{\circ} \mathrm{C}$ under argon. After the slow addition, the mixture was stirred for 30 minutes. To the mixture, $\mathrm{HCHO}(300.0 \mathrm{mg}, 10 \mathrm{mmol})$ was added under nitrogen, and then the mixture was stirred at room temperature for 2 h . After the reaction was complete, $\mathrm{ClCO}_{2} \mathrm{Me}(2.84 \mathrm{~g}, 30$ mmol) was slowly added at $-78^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred overnight at room temperature until the reaction was complete as monitored by TLC. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic layers were washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was concentrated and the solvent was evaporated under the reduced pressure. Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=$ 20: 1 as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=30: 1$) to afford the title product $\mathbf{1 z d}$ in 79% yield (1.34 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.72(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.22$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.3,88.5,73.3,56.2,54.9,30.3,21.8,18.4,13.5$. The spectroscopic data are in agreement with that previously reported. ${ }^{4}$

For the synthesis of propargyl carbonates $1 \mathrm{ze}-1 \mathrm{zf}, 1 \mathrm{zh}-1 \mathrm{zj}$, and 1 zm , see the following: Typical procedure for the synthesis of $1 z e$.

Methyl (5-phenylpent-1-yn-3-yl) carbonate (1ze). To a schlenk tube were added 3phenylpropanal ($0.66 \mathrm{~mL}, 670.9 \mathrm{mg}, 5 \mathrm{mmol}$), THF (10 mL), then the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and ethynylmagnesium bromide was added (0.5 M in THF, $12 \mathrm{~mL}, 6 \mathrm{mmol}$). After the reaction was stirred at room temperature for $3 \mathrm{~h}, \mathrm{ClCO}_{2} \mathrm{Me}(1.42 \mathrm{~g}, 15 \mathrm{mmol})$ was slowly added at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred overnight at room temperature until the reaction was complete as monitored by TLC. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic layers were washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced
pressure. Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$) to afford the title product 1ze in 57% yield (622.0 mg) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.19 (m, 3H), 5.20 (td, $J=6.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.8,140.3,128.5,128.4$, $126.2,80.2,74.9,67.1,55.0,36.1,30.9$. The spectroscopic data are in agreement with that previously reported. ${ }^{9}$

1zf
Methyl (5-(naphthalen-1-yl)pent-1-yn-3-yl) carbonate (1zf). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1)$ to afford the title product $\mathbf{1 z f}$ in 61% yield $(812.0 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.29 (td, $J=6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-$ $2.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,136.4,133.9,131.6,128.8,127.1,126.1$, $126.0,125.54,125.52,123.4,80.2,75.0,67.4,55.0,35.3,28.0$. IR (neat): 3286, 2956, 1747, 1597, 1510, 1441, 1396, 1344, 1257, 1180, 1031, 1004, 944, $777 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] ${ }^{+}$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$ 268.1094; Found 268.1083.

6-((tert-Butyldimethylsilyl)oxy)hex-1-yn-3-yl methyl carbonate (1zh). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent:
petroleum ether: ethyl acetate $=20: 1$) to afford the title product $\mathbf{1 z h}$ in 52% yield $(506.0 \mathrm{mg})$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.26(\mathrm{td}, J=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 2 \mathrm{H}), 0.89$ (s, 9 H), $0.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,80.5,74.4,67.7,62.2,54.8,31.3$, $27.9,25.9,18.2,-5.4$. The spectroscopic data are in agreement with that previously reported. ${ }^{10}$

5,9-Dimethyldec-8-en-1-yn-3-yl methyl carbonate (1zi). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$) to afford the title product $\mathbf{1 z i}$ in 28% yield (338.0 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.27(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.03-$ $1.83(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 5 \mathrm{H}), 1.60(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=$ 6.4 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.0,154.9,131.4,124.3,80.9,80.6,74.49$, $74.48,74.20 .74 .19,66.8,66.3,54.91,54.88,41.8,41.4,36.8,36.7,29.0,28.7,25.6,25.2,25.1$, 19.3, 19.2, 17.59, 17.58. IR (neat): 3294, 2959, 2917, 1749, 1442, 1379, 1342, 1259, 1109, 962, 925, $790,667 \mathrm{~cm}^{-1}$. HRMS (FI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} 238.1563$; Found 238.1562.

1zj
Methyl (5-(5-methylfuran-2-yl)pent-1-yn-3-yl) carbonate (1zj). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$) to afford the title product $\mathbf{1 z j}$ in 73% yield $(811.0 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 154.8,152.0,150.7,106.1,105.9,80.1,74.8,66.9,55.0,33.1,23.4$,
13.4. IR (neat): $3288,2957,1749,1570,1442,1258,1018,942,784 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ 222.0887; Found 222.0883.

1 zm
Methyl (1-phenylprop-2-yn-1-yl) carbonate (1zm). Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ to afford the title product $\mathbf{1 z m}$ in 73% yield (1.39 g) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.56-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.7,135.7,129.3$, 128.7, 127.6, 79.5, 76.4, 69.2, 55.1. The spectroscopic data are in agreement with that previously reported. ${ }^{11}$

For the synthesis of propargyl carbonate 1 zg , see the following:

Methyl oct-1-yn-3-yl carbonate (1zg). To a stirred solution of propargyl alcohol (0.73 mL , $631.0 \mathrm{mg}, 5 \mathrm{mmol}$) and pyridine ($4.5 \mathrm{~mL}, 3.96 \mathrm{~g}, 50 \mathrm{mmol}$) in dichloromethane (50 mL) was added dropwise $\mathrm{ClCO}_{2} \mathrm{Me}(1.89 \mathrm{~g}, 20 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. Then the mixture was stirred for 3 h at room temperature. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with DCM. The combined organic layers were washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10$: 1) to afford the title product $\mathbf{1 z g}$ in 91% yield $(834.0 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}$, $2 \mathrm{H}), 1.34-1.32(\mathrm{~m}, 4 \mathrm{H}), 0,90(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.9,80.5$, $74.3,67.8,54.8,34.5,31.1,24.3,22.3,13.8$. The spectroscopic data are in agreement with that
previously reported. ${ }^{12}$

For the synthesis of propargyl carbonate 1 zk , see the following:

4-((Methoxycarbonyl)oxy)hex-5-yn-1-yl benzoate (1zk). Under an argon atmosphere, to a dried Schlenk tube equipped with a stirring bar were added 4-hydroxyhex-5-yn-1-yl benzoate ($589.0 \mathrm{mg}, 2.7 \mathrm{mmol}$), DCM (6 mL) and $\mathrm{Et}_{3} \mathrm{~N}(0.45 \mathrm{~mL}, 327.9 \mathrm{mg}, 3.24 \mathrm{mmol})$. Then DMAP ($33.0 \mathrm{mg}, 0.27 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , then $\mathrm{ClCO}_{2} \mathrm{Me}(306.2 \mathrm{mg}, 3.24 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight. Then the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, extracted with ethyl acetate. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1)$ to afford the title product $\mathbf{1 z k}$ in 34% yield (253.6 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.06-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.33-5.30 (m, 1H), $4.37(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.00$ ($\mathrm{m}, 4 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,154.8,132.9,130.1,129.5,128.3,79.9,74.9$, $67.2,64.1,55.0,31.3,24.2$. The spectroscopic data are in agreement with that previously reported. ${ }^{10}$

For the synthesis of propargyl carbonate 1 zl , see the following:

6-(Benzyloxy)hex-1-yn-3-yl methyl carbonate (1zl). Under an argon atmosphere, to dried Schlenk tube equipped with a stirring bar was added 6-(benzyloxy)hex-1-yn-3-ol (572.0 mg , $2.8 \mathrm{mmol})$ and THF (6 mL). After the mixture was cooled down to $0^{\circ} \mathrm{C}, \mathrm{NaH}(60 \%$ dispersion
in mineral oil) ($123.2 \mathrm{mg}, 3.08 \mathrm{mmol}$) was added in portions. The reaction mixture was stirred at same temperature for 30 min . Then $\mathrm{ClCO}_{2} \mathrm{Me}(317.5 \mathrm{mg}, 3.36 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight. Then the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, extracted with ethyl acetate. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Before the column chromatography, the column was alkalified using petroleum ether: triethylamine $=20: 1$ as the eluent. Then the residue was purified by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$) to afford the title product $\mathbf{1 z l}$ in 72% yield (531.9 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.25(\mathrm{td}$, $J=6.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8154.9, 138.3, 128.3, $127.6,127.5,80.3,74.6,72.8,69.3,67.6,54.9,31.5,25.0$. The spectroscopic data are in agreement with that previously reported. ${ }^{10}$

Optimization studies for the formation of 3a.

General procedure for optimization studies.

The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, Cu catalyst (0.02 mmol), ligand (0.02 mmol), base, $\mathrm{Et}_{3} \mathrm{Si}$-Bpin ($0.4 \mathrm{mmol}, 96.9 \mathrm{mg}$), solvent (1 mL) were added sequentially to a screw-cap vial. The mixture was stirred for 1 minute, and 1a ($0.2 \mathrm{mmol}, 49.3 \mathrm{mg}$) was added. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ in an oil bath for 24 h , the mixture was cooled down to room temperature, filtered through a pad of silica gel and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the yields were determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5trimethylbenzene (1.0 equiv., 24.0 mg) in CDCl_{3} as the internal standard.

Table S1. Optimization studies for the formation of 3a.

${ }^{a} 0.2$ mmol scale. NMR yields. ${ }^{b} 1.5$ equiv of base was used. ${ }^{c} 1.0$ equiv of base was used. ${ }^{d} 1.5$ equiv $\mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}$ was used.

Synthesis of allenylsilanes 3 .

Typical procedure for the synthesis of 3a.

Triethyl(1-phenylhepta-1,2-dien-3-yl)silane (3a). In the nitrogen-filled glove box, CuCl ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{SiBpin}$ ($0.6 \mathrm{mmol}, 145.3 \mathrm{mg}$), 1,4-dioxane (1.5 mL) was added to screw-cap vial (4 mL). The solvent stirred at ambient temperature for 1 minute. Then $\mathbf{1 a}(0.3 \mathrm{mmol}, 73.9 \mathrm{mg})$ was added. The vial was sealed with a screw cap featuring a PTFE/silicone septum and taken outside the glove box. The vial was immersed into an oil bath preheated at $80^{\circ} \mathrm{C}$. After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . The mixture was filtered over a silica gel pad and washed with ethyl acetate. The solvent was evaporated under the reduced pressure. Purification by silica gel plate (eluent: petroleum ether) afforded the titile product $\mathbf{3 a}$ in 80% yield $(69.0 \mathrm{mg}$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{bs}, 1 \mathrm{H}), 2.09-$ $2.05(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.64(\mathrm{q}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.8,136.4,128.4,125.8$, $125.6,98.3,89.7,31.3,29.4,22.6,13.9,7.4,3.2$. IR (neat): 2954, 2931, 2873, 1917, 1598, 1496, 1457, 1414, 1377, 1238, 1007, 973, 905, 798. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{Si}$ 286.2111; Found 286.2115.

Triethyl(1-(p-tolyl)hepta-1,2-dien-3-yl)silane (3b). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}(0.03$ $\mathrm{mmol}, 8.4 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 b}(0.3 \mathrm{mmol}, 78.1 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether) afforded the title product $\mathbf{3 b}$ in 73% yield $(66.0 \mathrm{mg}$) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,
$2 \mathrm{H}), 5.83(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.34(\mathrm{~m}$, $2 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{q}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 205.9,135.2,133.3,129.2,125.7,98.2,89.5,31.3,29.5,22.6,21.1,13.9,7.4$, 3.3. IR (neat): 2953, 2930, 2873, 1917, 1512, 1457, 1415, 1377, 1237, 1107, 1008, 973, 826. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Si} 300.2268$; Found 300.2274.

(1-(4-(tert-Butyl)phenyl)hepta-1,2-dien-3-yl)triethylsilane (3c). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg})$, $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 c}(0.3 \mathrm{mmol}, 90.7 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 c}$ in 86% yield (88.4 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.84(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.30$ $(\mathrm{s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{q}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 206.0,148.5,133.3,125.5,125.4,98.1,89.4,34.4,31.4,29.5,22.7,14.0$, 7.4, 3.2. IR (neat): 2954, 2932, 2873, 1917, 1514, 1459, 1420, 1377, 1362, 1269, 1237, 1008, 973, 839, 715. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{Si}$ 342.2737; Found 342.2749.

3d
Triethyl(1-(o-tolyl)hepta-1,2-dien-3-yl)silane (3d). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}(0.03$ $\mathrm{mmol}, 8.4 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 d}(0.3 \mathrm{mmol}, 78.1 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether) afforded the title product 3d in 77% yield $(69.3 \mathrm{mg}$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.02(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.47(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{q}, J=6.4 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.4,134.4,133.8,130.3,126.1,125.9,125.4,97.1$, 86.6, 31.4, 29.4, 22.7, 19.8, 13.9, 7.4, 3.2. IR (neat): 2954, 2931, 2874, 1915, 1600, 1489, 1463, 1414, 1377, 1237, 1006, 973, 795. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Si} 300.2268$; Found 300.2271 .

Triethyl(1-mesitylhepta-1,2-dien-3-yl)silane (3e). CuCl ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), РСуз (0.03 $\mathrm{mmol}, 8.4 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 e}(0.3 \mathrm{mmol}, 86.5 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product 3 e in 45% yield (44.0 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.82(\mathrm{~s}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~s}$, $3 H), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.94-0.90$ $(\mathrm{m}, 12 \mathrm{H}), 0.65-0.58(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.7$, 135.7, 134.8, 129.6, 129.0, $93.4,84.7,31.5,29.5,22.7,21.7,20.8,14.0,7.4,3.3$. IR (neat): 2953, 2931, 2873, 1919, 1480, 1458, 1414, 1376, 1237, 1010, 974, 851, 803, $718 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{Si} 328.2581$; Found 328.2587.

Triethyl(1-(naphthalen-2-yl)hepta-1,2-dien-3-yl)silane (3f). CuCl ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 f}(0.3 \mathrm{mmol}, 88.9 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification
by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 f}$ in 76% yield (76.5 mg) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.73(\mathrm{t}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.45-$ $7.35(\mathrm{~m}, 3 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 2.11-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{q}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 206.3,133.95,133.88,132.1,128.0,127.6,127.4,126.0,124.9,124.4,123.8,98.5,90.1,31.3$, 29.4, 22.6, 14.0, 7.4, 3.2. IR (neat): 2953, 2930, 2873, 1916, 1628, 1598, 1508, 1457, 1317, 1237, 1006, 886, 855, 817, $716 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{Si} 336.2268$; Found 336.2272.

(1-(3,5-Dimethoxyphenyl)hepta-1,2-dien-3-yl)triethylsilane (3g). CuCl ($0.03 \mathrm{mmol}, 3.0$ mg), $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3$ mg) and 1,4-dioxane (1.5 mL), $\mathbf{1 g}(0.3 \mathrm{mmol}, 91.9 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 g}$ in 93% yield (97.1 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.26$ ($\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.80(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.8,160.8,138.6,103.7,98.41,98.35,89.9,55.1,31.3,29.4$, 22.6, 13.9, 7.4, 3.2. IR (neat): 2953, 2873, 1917, 1591, 1460, 1428, 1377, 1306, 1290, 1204, 1139, 1066, 1009, 972, 928, 848, 830, 715, $682 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si} 346.2323$; Found 346.2332.

(1-([1,1'-Biphenyl]-4-yl)hepta-1,2-dien-3-yl)triethylsilane (3h). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg})$, $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 h}(0.3 \mathrm{mmol}, 96.7 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether) afforded the title product 3h in 76\% yield (82.9 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.54-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.0,141.0,138.5,135.5,128.7,127.2,126.9$, 126.8, 126.2, $98.4,89.4,31.4,29.4,22.6,13.9,7.4,3.3$. IR (neat): 3028, 2953, 2930, 2872, 1915, 1600, 1486, 1457, 1417, 1237, 1007, 844, 781, 758, 695 cm^{-1}. HRMS (EI) m/z: [M] ${ }^{+}$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{Si} 362.2424$; Found 362.2437.

Triethyl(1-(4-(trifluoromethyl)phenyl)hepta-1,2-dien-3-yl)silane (3i). $\mathrm{CuCl}(0.03 \mathrm{mmol}$, 3.0 mg), $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}$, 145.3 mg) and 1,4-dioxane (1.5 mL), $\mathbf{1 i}(0.3 \mathrm{mmol}, 94.3 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 i}$ in 90% yield (95.6 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.8,140.6,127.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.9 \mathrm{~Hz}\right), 125.8,125.4\left(\mathrm{q},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 124.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ 269.9 Hz), 99.0, 89.0, 31.3, 29.2, 22.6, 13.9, 7.3, 3.2. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.3. IR (neat): 2956, 2875, 1916, 1615, 1458, 1426, 1322, 1237, 1162, 1106, 1066, 1016, 973, 847, $716 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{Si} 354.1985$; Found 354.1980

(1-(4-Chlorophenyl)hepta-1,2-dien-3-yl)triethylsilane (3j). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}$ ($0.03 \mathrm{mmol}, 8.4 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 j}(0.3 \mathrm{mmol}, 84.2 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 j}$ in 82% yield (78.9 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.81(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.7,135.0,131.0,128.6,126.9,98.8,88.9,31.3,29.3,22.6,13.9,7.4,3.2$. IR (neat): 2954, 2931, 2873, 1916, 1490, 1457, 1418, 1237, 1194, 1090, 1011, 974, 835, $716 \mathrm{~cm}^{-1}$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{ClSi}$ 320.1722; Found 320.1730.

(1-(4-Bromophenyl)hepta-1,2-dien-3-yl)triethylsilane (3k). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg})$, РСуз $_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 k}(0.3 \mathrm{mmol}, 97.6 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether) afforded the title product $\mathbf{3 k}$ in 80% yield (88.2 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.80(\mathrm{bs}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{q}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.6,135.5,131.5,127.3,118.9,98.9,88.9,31.3,29.3,22.6,13.9,7.4,3.2$. IR (neat): 2954, 2932, 2873, 1916, 1741, 1488, 1457, 1417, 1238, 1070, 1047, 1008, 974, $833 \mathrm{~cm}^{-1}$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BrSi}$ 364.1216; Found 364.1222.

(1-(3,5-Dichlorophenyl)hepta-1,2-dien-3-yl)triethylsilane (31). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg})$, $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3}$ Si-Bpin $(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane $(1.5 \mathrm{~mL}), \mathbf{1 1}(0.3 \mathrm{mmol}, 94.6 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 I}$ in 85% yield $(90.6 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.07(\mathrm{~s}, 3 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 2 \mathrm{H})$, $1.49-1.33(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 205.3,140.2,134.9,125.3,123.9,99.6,88.2,31.2,29.2,22.6$, 13.9, 7.3, 3.1. IR (neat): 2954, 2874, 1916, 1583, 1561, 1427, 1377, 1238, 1112, 1006, 909, 871, 847, 800, $671 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{Cl}_{2}$ Si 354.1332; Found 354.1335.

3m
(1-(Cyclohex-1-en-1-yl)-3-phenylpropa-1,2-dien-1-yl)triethylsilane (3m). $\mathrm{CuCl} \quad(0.03$ $\mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6$ mmol, 145.3 mg) and 1,4-dioxane (1.5 mL), 1m ($0.3 \mathrm{mmol}, 81.1 \mathrm{mg}$) were stirred at $80{ }^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 m}$ in 65% yield $(61.0 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.12$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{bs}, 1 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.74-0.66(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 208.9,135.8,133.4,128.5$, $125.93,125.87,125.3,103.3,91.0,28.4,26.1,23.0,22.2,7.5,4.1$. IR (neat): $2932,2873,1900$, $1598,1495,1455,1376,1238,1116,1003,976,875,797,729,692 \mathrm{~cm}^{-1} . \operatorname{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{Si} 310.2111$; Found 310.2109.

3n
Triethyl(1-phenylhexa-1,2-dien-3-yl)silane (3n). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}(0.03$ $\mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 n}(0.3 \mathrm{mmol}, 69.7 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 n}$ in 92% yield (75.0 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{t}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.91(\mathrm{~m}, 12 \mathrm{H}), 0.64(\mathrm{q}, J=8.4 \mathrm{~Hz}$, 6 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.9,136.3,128.5,125.8,125.6,98.1,89.7,31.9,22.4$, 14.1, 7.4, 3.2. IR (neat): 2953, 2873, 1917, 1598, 1496, 1456, 1413, 1237, 1072, 1001, 905, 796, 715, $691 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Si}$ 272.1955; Found 272.1958.

(1-Cyclopropyl-3-phenylpropa-1,2-dien-1-yl)triethylsilane (30). CuCl ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 0}(0.3 \mathrm{mmol}, 69.1 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 o}$ in 86% yield (69.5 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.12-$ $7.09(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 1.15(\mathrm{bs}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 9 \mathrm{H}), 0.71-0.69(\mathrm{~m}, 8 \mathrm{H}), 0.49(\mathrm{bs}$, 2 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.0,136.0,128.5,125.9,125.8,102.7,91.5,9.8,8.6$, 8.0, 7.4, 3.4. IR (neat): 2952, 2909, 2874, 1917, 1596, 1495, 1456, 1414, 1237, 1000, 847, 800, 733, 717, $691 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{Si} 270.1798$; Found 270.1798.

3p
(1-Cyclohexyl-3-phenylpropa-1,2-dien-1-yl)triethylsilane (3p). CuCl ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), PСу $_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-B p i n(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 p}(0.3 \mathrm{mmol}, 81.7 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 p}$ in 79% yield (74.1 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.88$ $(\mathrm{s}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-$ $1.15(\mathrm{~m}, 5 \mathrm{H}), 0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.1,136.3,128.5,125.64,125.59,104.2,90.5,39.6,34.7,34.1,26.82,26.78,26.0,7.5,3.5$. IR (neat): 2923, 2873, 1911, 1598, 1495, 1456, 1448, 1237, 1005, 978, 905, 796, 731, 715, 691 cm^{-1}. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{Si} 312.2268$; Found 312.2274.

$3 q$
(1-Chloro-4-phenylbuta-2,3-dien-2-yl)triethylsilane (3q). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}$ $(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-\operatorname{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 q}(0.3 \mathrm{mmol}, 71.6 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded trace product $\mathbf{3 q}$.

(6-Chloro-1-phenylhexa-1,2-dien-3-yl)triethylsilane (3r). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}$ $(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 r}(0.3 \mathrm{mmol}, 80.0 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica
gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 r}$ in 78% yield (71.8 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.98(\mathrm{~m}$, $2 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.66(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.5$, 135.7, 128.6, 125.9, 125.8, 97.2, 90.5, 44.7, 31.6, 26.5, 7.4, 3.1. IR (neat): 2953, 2874, 1917, 1597, 1496, 1456, 1414, 1237, 1002, 973, 907, 800, 766, 733, 716, $692 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{ClSi}$ 306.1565; Found 306.1567.

3s
tert-Butyldimethyl((5-phenyl-3-(triethylsilyl)penta-3,4-dien-1-yl)oxy)silane (3s). CuCl ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), $\mathrm{PCy}_{3}\left(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}\right.$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}$ $(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4 -dioxane $(1.5 \mathrm{~mL}), 1 \mathrm{~s}(0.3 \mathrm{mmol}, 104.6 \mathrm{mg})$ were stirred at 80 ${ }^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product 3s in 84% yield (98.0 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.33(\mathrm{~m}, 4 \mathrm{H})$, $7.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 2 \mathrm{H})$, $1.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.77(\mathrm{q}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.16(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 206.0,136.0,128.5,125.9,125.7,94.5,89.6,62.8,32.7,25.9,18.3$, 7.4, 3.1, -5.28, -5.29. IR (neat): 2952, 2929, 2874, 1917, 1599, 1496, 1457, 1254, 1095, 1004, 975, $834,798,774,734,715,692 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[M]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{OSi}_{2} 388.2612$; Found 388.2604.

(1,4-Diphenylbuta-2,3-dien-2-yl)triethylsilane (3t). $\mathrm{CuCl}\left(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}\right.$), PCy_{3} (0.03 $\mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$
dioxane (1.5 mL), $\mathbf{1 t}(0.3 \mathrm{mmol}, 84.1 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $3 \mathbf{t}$ in 80% yield (77.3 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.10$ $(\mathrm{m}, 1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=10.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, J=5.6 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 207.8,140.2,135.7,128.9,128.4,128.1,126.1,125.9,125.8$, 98.1, 89.7, 36.9, 7.3, 3.3. IR (neat): 2952, 2908, 2873, 1917, 1598, 1495, 1454, 1413, 1237, 1072, 1004, 793, 735, 715, $691 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Si} 320.1955$; Found 320.1957.

(1,5-Diphenylpenta-1,2-dien-3-yl)triethylsilane (3u). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}(0.03$ $\mathrm{mmol}, 8.4 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 u}(0.3 \mathrm{mmol}, 88.3 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{3 u}$ in 91% yield $(91.0 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.10(\mathrm{~m}, 10 \mathrm{H}), 5.91(\mathrm{bs}, 1 \mathrm{H}), 2.87-2.76$ (m, $2 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}, J=9.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 205.9,142.2,136.0,128.5,128.4,128.3,125.9,125.77,125.76,98.0,90.4,35.4$, 31.6, 7.4, 3.2. IR (neat): 2951, 2908, 2873, 1919, 1598, 1495, 1455, 1413, 1237, 1004, 963, 905, 799, 734, 716, $692 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{Si}$ 334.2111; Found 334.2114.

(4,4-Dimethyl-1-phenylpenta-1,2-dien-3-yl)triethylsilane (3v). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg})$, $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 v}(0.3 \mathrm{mmol}, 73.9 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification
by silica gel column (eluent: petroleum ether) afforded the title product 3v in 41% yield (35.0 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H})$, 5.87 (s, 1H), $1.18(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.72-0.67(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 206.1,136.3,128.5,125.7,125.6,108.5,90.4,36.0,31.5,7.5,4.8$. IR (neat): 2955, 2874, 1918, 1600, 1495, 1455, 1361, 1225, 1002, 905, 798, 731, 716, $692 \mathrm{~cm}^{-1}$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{Si}$ 286.2111; Found 286.2116.

Triethyl(undeca-5,6-dien-5-yl)silane (3w). $\mathrm{CuCl}\left(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}\right.$), $\mathrm{PCy}_{3}(0.03 \mathrm{mmol}, 8.4$ mg), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 $\mathrm{mL}), \mathbf{1 w}(0.3 \mathrm{mmol}, 67.9 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether) afforded the title product $\mathbf{3 w}$ in 84% yield $(67.0 \mathrm{mg}$) as a colorless oil. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.76-4.73(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.30(\mathrm{~m}, 8 \mathrm{H})$, $0.95-0.88(\mathrm{~m}, 15 \mathrm{H}), 0.58(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.2,93.0,85.3$, 32.2, 31.3, 29.4, 28.6, 22.5, 22.3, 14.01, 13.97, 7.4, 3.2. IR (neat): 2954, 2927, 2873, 1932, 1458, 1414, 1378, 1237, 1008, 974, $714 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[M]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{Si}$ 266.2424; Found 266.2417.

Triethyl(3-methyl-1-phenylnona-3,4-dien-5-yl)silane (3x). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}$ $(0.03 \mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 x}(0.3 \mathrm{mmol}, 86.5 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether) afforded the title product $\mathbf{3 x}$ in 84% yield $(82.9 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 2.71$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.30$
$(\mathrm{m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.57(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 204.8,142.6,128.3,128.2,125.6,93.4,93.0,35.8,34.6,31.4,29.7,22.5$, 18.8, 14.1, 7.4, 3.3. IR (neat): 2952, 2873, 1936, 1496, 1454, 1375, 1237, 1008, 731, 715, 696 cm^{-1}. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{Si} 328.2581$; Found 328.2592.

Synthesis of allenylsilanes 4a-4b.

(1,3-Diphenylpropa-1,2-dien-1-yl)triethylsilane (4a). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}(0.06$ $\mathrm{mmol}, 16.8 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 y}(0.3 \mathrm{mmol}, 79.9 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 a}$ in 72% yield (65.8 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~s}$, $1 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.81-0.77(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 210.2,137.1$, $134.8,128.6,128.5,127.6,126.5,126.3,126.2,101.6,90.7,7.4,3.9$. IR (neat): 2952, 2909, 2873, 1910, 1595, 1490, 1456, 1238, 1002, 803, 760, 734, 691, $672 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{Si}$ 306.1798; Found 306.1798.

When the reaction was carried out using $\mathrm{CuCl}(10 \mathrm{~mol} \%, 0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}(10$ $\mathrm{mol} \%, 0.03 \mathrm{mmol}, 8.4 \mathrm{mg}$), NaHCO_{3} (2.0 equiv, $0.6 \mathrm{mmol}, 50.4 \mathrm{mg}$), $\mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(2.0$ equiv, $0.6 \mathrm{mmol}, 145.3 \mathrm{mg}), 1,4$-dioxane (1.5 mL), and $\mathbf{1 y}(0.3 \mathrm{mmol}, 79.9 \mathrm{mg})$ at $80^{\circ} \mathrm{C}$ for 24 h , the product $\mathbf{4 a}$ was obtained in 53% yield $(49.0 \mathrm{mg})$ as a colorless oil.

Triethyl(3-(naphthalen-2-yl)-1-phenylpropa-1,2-dien-1-yl)silane (4b). $\mathrm{CuCl}(0.03 \mathrm{mmol}$, 3.0 mg), $\mathrm{PCy}_{3}(0.06 \mathrm{mmol}, 16.8 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}$, 145.3 mg) and 1,4-dioxane (1.5 mL), $\mathbf{1 z}(0.3 \mathrm{mmol}, 94.4 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 b}$ in 60%
yield (64.0 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.77-7.73$ (m, 3H), $7.65(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.83-0.76(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 210.6,137.0,133.8,132.4,132.4,128.6,128.3,127.7,127.5,126.6$, 126.2, 125.3, 124.6, 124.4, 101.9, 91.1, 7.5, 4.0. IR (neat): 2952, 2873, 1908, 1628, 1595, 1508, 1490, 1377, 1238, 1111, 1002, 908, 888, 731, $694 \mathrm{~cm}-1$. HRMS (EI) m/z: [M]+ Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Si} 356.1955$; Found 356.1955.

Synthesis of allenylsilanes 4c-4f.

Typical procedure for the synthesis of 4 c :

Triethyl(1-phenylhepta-1,2-dien-1-yl)silane (4c). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PPh}_{3}(0.06$ $\mathrm{mmol}, 15.7 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), 1za ($0.3 \mathrm{mmol}, 73.9 \mathrm{mg}$) were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 c}$ in 70% yield $(60.1 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.16-7.15(\mathrm{~m}, 1 \mathrm{H}), 5.10$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.97-0.88(\mathrm{~m}, 12 \mathrm{H}), 0.72(\mathrm{q}, J$ $=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.3,138.7,128.3,127.5,125.8,96.7,86.5$, 31.9, 28.2, 22.4, 13.9, 7.4, 4.0. IR (neat): 2954, 2931, 2873, 1925, 1596, 1490, 1457, 1415, 1238, 1002, 732, 718, $693 \mathrm{~cm}^{-1} . \mathrm{HRMS}$ (EI) m/z: $\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{Si} 257.1720$; Found 257.1715.

4d
Triethyl(1-phenylpropa-1,2-dien-1-yl)silane (4d). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PPh}_{3}(0.06$ $\mathrm{mmol}, 15.7 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-B p i n(0.6 \mathrm{mmol}, 145.3 \mathrm{mg}$) and $1,4-$ dioxane (1.5 mL), 1zb $(0.3 \mathrm{mmol}, 57.1 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica
gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 d}$ in 71% yield $(49.0 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 4.64$ (s, 2H), 0.96 (t, $J=7.6 \mathrm{~Hz}, 9 \mathrm{H}$), $0.74(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.8$, 137.6, 128.4, 127.6, 126.0, 95.6, 69.7, 7.3, 3.9. IR (neat): 2953, 2874, 1916, 1596, 1490, 1415, 1238, 1003, 974, 812, 760, 732, 718, $695 \mathrm{~cm}^{-1}$. HRMS (FI) m/z: [M] Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{Si}$ 230.1485; Found 230.1487.

 $4 e$

Triethyl(1-(naphthalen-1-yl)propa-1,2-dien-1-yl)silane (4e). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), $\mathrm{PPh}_{3}(0.06 \mathrm{mmol}, 15.7 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 z c}(0.3 \mathrm{mmol}, 72.1 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 e}$ in 72% yield (60.8 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 1 \mathrm{H})$, 7.69 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.66(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.9,135.5,134.0$, $131.6,128.3,126.4,125.9,125.6,125.5,125.3,124.9,93.5,67.7,7.3,3.5$. IR (neat): 2952, 2874, 1923, 1576, 1457, 1389, 1237, 1138, 1005, 908, 800, 781, 718, $699 \mathrm{~cm}^{-1}$. HRMS (EI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Si}$ 280.1642; Found 280.1640.

Triethyl(hepta-1,2-dien-3-yl)silane (4f). $\mathrm{CuCl}\left(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}\right.$), $\mathrm{PPh}_{3}(0.06 \mathrm{mmol}, 15.7$ mg), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), 1zd ($0.3 \mathrm{mmol}, 51.1 \mathrm{mg}$) were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 f}$ in 62% yield (39.1 mg) as a colorless oil. ${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.31(\mathrm{t}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.31(\mathrm{~m}, 4 \mathrm{H})$, $0.96-0.88(\mathrm{~m}, 12 \mathrm{H}), 0.61(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.0,91.5,68.5$,
31.1, 28.7, 22.5, 14.0, 7.3, 3.1. IR (neat): 2954, 2931, 2874, 1925, 1458, 1415, 1378, 1238, 1005, 807, $716 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{Si} 210.1798$; Found 210.1794.

Synthesis of allenylsilanes $\mathbf{4 g}-\mathbf{4 n}$.

Typical procedure for the synthesis of $\mathbf{4 g}$.

Triethyl(5-phenylpenta-1,2-dien-1-yl)silane (4g). $\mathrm{CuCl}(0.02 \mathrm{mmol}, 2.0 \mathrm{mg}), \mathrm{PCy}_{3}(0.04$ $\mathrm{mmol}, 11.2 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.4 \mathrm{mmol}, 33.6 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{Si}-\mathrm{Bpin}(0.4 \mathrm{mmol}, 96.9 \mathrm{mg})$ and $1,4-$ dioxane (1.0 mL), 1ze ($0.2 \mathrm{mmol}, 43.7 \mathrm{mg}$) were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 g}$ in 75% yield (38.8 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16$ (m, 3H), 4.85 (dt, J $=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 2 \mathrm{H}), 0.94$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.57(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 210.6,142.0$, $128.5,128.3,125.8,82.3,78.8,36.1,30.0,7.3,3.8$. The spectroscopic data are in agreement with that previously reported. ${ }^{13}$

Triethyl(5-(naphthalen-1-yl)penta-1,2-dien-1-yl)silane (4h). CuCl ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), $\mathrm{PCy}_{3}(0.06 \mathrm{mmol}, 16.8 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 z f}(0.3 \mathrm{mmol}, 80.5 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 h}$ in 72% yield (67.1 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dt}, J=16.8,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.84(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 9 \mathrm{H}), 0.57(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 210.6,138.0,133.9,131.9$, 128.7, 126.6, 126.0, 125.7, 125.5, 125.4, 123.7, 82.5, 79.0, 33.2, 29.3, 7.3, 3.8. IR (neat): 2952,
$2909,2873,1935,1597,1510,1457,1413,1395,1376,1236,1007,854,775,720 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{Si} 308.1955$; Found 308.1958.

4i
Triethyl(octa-1,2-dien-1-yl)silane (4i). $\mathrm{CuCl}\left(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}\right.$), $\mathrm{PCy}_{3}(0.06 \mathrm{mmol}, 16.8$ mg), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 z g}(0.3 \mathrm{mmol}, 55.3 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 i}$ in 74% yield $(50.0 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.82(\mathrm{dt}, J=6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-$ $1.93(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 6 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.58(\mathrm{q}, J$ $=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 210.8,82.9,78.2,31.4,29.5,28.0,22.5,14.1$, 7.3, 3.9. IR (neat): 2954, 2932, 2874, 2173, 1936, 1458, 1415, 1378, 1339, 1236, 1132, 1016, 974, 856, $722 \mathrm{~cm}^{-1}$. HRMS (FI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{28}$ Si 224,1955; Found 224.1957.

tert-Butyldimethyl((6-(triethylsilyl)hexa-4,5-dien-1-yl)oxy)silane (4j). $\mathrm{CuCl}(0.03 \mathrm{mmol}$, 3.0 mg), $\mathrm{PCy}_{3}(0.06 \mathrm{mmol}, 16.8 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}$, 145.3 mg) and 1,4-dioxane (1.5 mL), $\mathbf{1 z h}(0.3 \mathrm{mmol}, 85.9 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether: ethyl acetate $=50: 1$) afforded the title product $\mathbf{4 j}$ in 88% yield $(86.4 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.84$ (dt, $J=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ $1.59(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 210.8,82.5,78.5,62.6,32.8,25.9,24.3,18.3,7.3,3.8,-5.3$. IR (neat): 2954, 2930, 2876, 1936, 1463, 1413, 1386, 1361, 1254, 1099, 1005, 834, 813, 775, 722 cm^{-1}. HRMS (FI) m/z: [M] Calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{OSi}_{2} 326.2456$; Found 326.2450.

(5,9-Dimethyldeca-1,2,8-trien-1-yl)triethylsilane (4k). $\mathrm{CuCl}\left(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}\right.$), PCy_{3} ($0.06 \mathrm{mmol}, 16.8 \mathrm{mg}$), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), 1zi ($0.3 \mathrm{mmol}, 71.5 \mathrm{mg}$) were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 k}$ in 95% yield (79.5 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.78(\mathrm{~m}, 1 \mathrm{H})$, $4.69(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.92-$ $1.11(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 211.3,131.0,124.9,81.2,81.0,77.42,77.36,36.59,36.56,35.8$, $35.7,33.34,33.28,25.70,25.65,25.6,19.43,19.40,17.6,7.3,3.9$. IR (neat): 2954, 2912, 2875, 1935, 1457, 1415, 1377, 1236, 1016, 974, 857, $722 \mathrm{~cm}^{-1}$. HRMS (FI) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{Si}$ 278.2424; Found 278.2431.

Triethyl(5-(5-methylfuran-2-yl)penta-1,2-dien-1-yl)silane (41). CuCl ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), $\mathrm{PCy}_{3}(0.06 \mathrm{mmol}, 16.8 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), $\mathbf{1 z j}(0.3 \mathrm{mmol}, 66.7 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether) afforded the title product $\mathbf{4 I}$ in 91% yield (72.0 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{dt}, J=6.8$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, $0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 210.5,153.8$, $150.2,105.8,105.5,82.0,78.9,28.3,26.7,13.5,7.3,3.8$. IR (neat): 2953, 2911, 2875, 1936, 1699, 1570, 1457, 1414, 1377, 1237, 1017, 963, 856, 778, $720 \mathrm{~cm}^{-1}$. HRMS (FI) m/z: [M] ${ }^{+}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{26}$ OSi 262.1747; Found 262.1751.

6-(Triethylsilyl)hexa-4,5-dien-1-yl benzoate (4m). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg})$, РСуз (0.06 $\mathrm{mmol}, 16.8 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4dioxane (1.5 mL), 1zk ($0.3 \mathrm{mmol}, 82.9 \mathrm{mg}$) were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether to petroleum ether: ethyl acetate $=100: 1$) afforded the title product $\mathbf{4 m}$ in 76% yield $(72.4 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.05$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{dt}, J=7.2,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.35(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 0.94$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 210.6,166.6$, $132.7,130.4,129.5,128.2,81.7,79.0,64.3,28.6,24.5,7.2,3.8 \mathrm{~cm}^{-1}$. IR (neat): 2952, 2910, $2874,1936,1720,1451,1269,1114,855,708,687 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $[\mathrm{M}-\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si} 315.1775$; Found 315.1780 .

(6-(Benzyloxy)hexa-1,2-dien-1-yl)triethylsilane (4n). CuCl ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), PCy_{3} (0.06 mmol, 16.8 mg), $\mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and 1,4dioxane $(1.5 \mathrm{~mL}), \mathbf{1 z l}(0.3 \mathrm{mmol}, 78.7 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel column (eluent: petroleum ether to petroleum ether: ethyl acetate $=100: 1$) afforded the title product $4 \mathbf{n}$ in 73% yield $(66.6 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{dt}, J=6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 9H), $0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 210.7,138.6,128.3,127.6,127.5$, $82.3,78.7,72.9,69.8,29.7,24.7,7.3,3.8 \mathrm{~cm}^{-1}$. IR (neat): $2950,2910,2873,1935,1454,1377$, 1363, 1237, 1102, 1016, 854, 720, $696 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: $\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{7}\right]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{OSi}$ 271.1513; Found 271.1508.

Synthesis of allenylsilane 40.

Triethyl(3-phenylpenta-1,2-dien-1-yl)silane (4o). CuF_{2} ($0.03 \mathrm{mmol}, 3.0 \mathrm{mg}$), PCy_{3} (0.03 $\mathrm{mmol}, 8.4 \mathrm{mg}), \mathrm{NaHCO}_{3}(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 145.3 \mathrm{mg})$ and $1,4-$ dioxane (1.5 mL), $\mathbf{1 z m}(0.3 \mathrm{mmol}, 57.1 \mathrm{mg})$ were stirred at $80^{\circ} \mathrm{C}$ for 18 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{4 o}$ in 41% yield (28.6 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 210.8,135.1,128.5,126.0,125.8,87.5,83.2,7.3,3.9$. IR (neat): 2953, 2909, 2874, 1921, 1596, 1495, 1456, 1413, 1237, 1179, 1016, 858, 765, 720, 695 cm^{-1}. HRMS (EI) m/z: [M] Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{Si} 230.1485$; Found 230.1480 .

Synthesis of allenylsilane 5.

Dimethyl(phenyl)(1-phenylhepta-1,2-dien-3-yl)silane (5). $\mathrm{CuCl}(0.03 \mathrm{mmol}, 3.0 \mathrm{mg}), \mathrm{PCy}_{3}$ ($0.03 \mathrm{mmol}, 8.4 \mathrm{mg}$), $\mathrm{NaHCO}_{3}\left(0.6 \mathrm{mmol}, 50.4 \mathrm{mg}\right.$), $\mathrm{PhMe}_{2} \operatorname{Si}-\mathrm{Bpin}(0.6 \mathrm{mmol}, 157.3 \mathrm{mg})$ and 1,4-dioxane (1.5 mL), 1a ($0.3 \mathrm{mmol}, 73.9 \mathrm{mg}$) were stirred at $80^{\circ} \mathrm{C}$ for 24 h . Purification by silica gel plate (eluent: petroleum ether) afforded the title product $\mathbf{5}$ in 87% yield $(79.6 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.22$ $(\mathrm{m}, 4 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 2 \mathrm{H})$, $1.30-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 206.4,137.8,136.0,133.8,129.2,128.5,127.8,125.9,125.8,100.0,90.4,31.3,29.4$, $22.4,13.9,-2.86,-2.94$ The spectroscopic data are in agreement with that previously reported. ${ }^{2}$

1 mmol Scale reaction of 1 a .

Triethyl(1-phenylhepta-1,2-dien-3-yl)silane (3a). In the nitrogen-filled glove box, CuCl (0.1 $\mathrm{mmol}, 9.9 \mathrm{mg}$), РСу ${ }_{3}(0.1 \mathrm{mmol}, 28.0 \mathrm{mg}), \mathrm{NaHCO}_{3}(2.0 \mathrm{mmol}, 168.0 \mathrm{mg}), \mathrm{Et}_{3} \operatorname{SiBpin}(2.0$ mmol, 484.5 mg), 1,4-dioxane (5 mL) was added to the sealing tube. The solvent stirred at ambient temperature for 1 minute. Then 1a ($1.0 \mathrm{mmol}, 246.3 \mathrm{mg}$) was added. The tube was sealed and taken outside the glove box. The tube was immersed into an oil bath preheated at $80^{\circ} \mathrm{C}$. After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . The mixture was filtered over a silica gel pad and washed with ethyl acetate. The solvent was evaporated under the reduced pressure. Purification by silica gel column (eluent: petroleum ether) afforded the titile product 3a in 86% yield (246.7 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.22(\mathrm{~m}, 4 \mathrm{H})$, $7.12(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{bs}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}$, $2 \mathrm{H}), 0.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H})$.

References:

(1) T, Boebel.; J, Hartwig. Iridium-Catalyzed Preparation of Silylboranes by Silane Borylation and Their Use in the Catalytic Borylation of Arenes. Organometallics 2008, 27, 6013-6019.
(2) H, Ohmiya.; H, Ito.; M, Sawamura. General and functional group-tolerable approach to allenylsilanes by rhodium-catalyzed coupling between propargylic carbonates and a silylboronate. Org. Lett. 2009, 11, 5618-5620.
(3) A, Qin.; G, Zhu.; Q, Chen.; H, Qian.; S, Ma. Palladium-catalyzed desulfitative crosscoupling reaction of sodium sulfinates with propargylic carbonates. Adv. Synth. Catal. 2019, 361, 4656-4660.
(4) T. N, Zhao.; Y, Yang.; T, Lessing.; K. J, Szabó. Borylation of propargylic substrates by bimetallic catalysis. Synthesis of allenyl, propargylic, and butadienyl Bpin derivatives. J. Am. Chem. Soc. 2014, 136, 7563-7566.
(5) N, Sun.; M, Chen.; Y, Liu. Gold-catalyzed oxidative reactions of propargylic carbonates involving 1,2-carbonate migration: Stereoselective synthesis of functionalized alkenes. J. Org.

Chem. 2014, 79, 4055-4067.
(6) H, Ito.; Y, Sasaki.; M, Sawamura. Copper(I)-catalyzed substitution of propargylic carbonates with diboron: selective synthesis of multisubstituted allenylboronates. J. Am. Chem. Soc. 2008, 130, 15774-15775.
(7) R, Shen.; J, Yang.; S, Zhu.; C, Chen.; L, Wu. Gold(I)-catalyzed decarboxylation of propargyl carbonates: reactivity reversal of the gold catalyst from Π-Lewis acidity to σ-Lewis Acidit. Adv. Synth. Catal. 2015, 357, 1259-1269.
(8) K, Sato.; Y, Ogiwara.; N, Sakai. Palladium-catalyzed [5 + 1] annulation of salicylic acid derivatives and propargylic carbonates. Bull. Chem. Soc. Japan 2020, 93, 1595-1602.
(9) G, Molander.; E, Sommers.; S, Neufeldt. Palladium(0)- catalyzed synthesis of chiral eneallenes using alkenyl trifluoroborates. J. Org. Chem. 2006, 71, 1563-1568.
(10) X, Min.; X. R, Xu.; Y, He. Axial-to-central chirality transfer for construction of quaternary stereocenters via dearomatization of BINOLs. Org. Lett. 2019, 21, 9188-9193.
(11) M, Yoshida.; M, Higuchi.; K, Shishido. Stereoselective construction of substituted chromans by palladium-catalyzed cyclization of propargylic carbonates with 2-(2Hydroxyphenyl)acetates. Org. Lett. 2009, 11, 4752-4755.
(12) Y, Wang.; G, Pritchard.; M, Kimber. A General Convergent Strategy for the Synthesis of Tetra-Substituted Furan Fatty Acids (FuFAs). Eur. J. Org. Chem. 2020, 2914-2922.
(13) V, Sabbasani.; D, Lee. Nitration of Silyl Allenes To Form Functionalized Nitroalkenes. Org. Lett. 2013, 15, 3954-3957.

$1 \mathbf{a}$

1b

1c

$\left.\right\|_{\mid} ^{\circ}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{+}{+} \\ & \stackrel{1}{0} \end{aligned}$	$\left.\right\|_{1} ^{\infty}$					$\left.\right\|_{\text {¢ }} ^{\text {Now }}$

1d

-					$\overbrace{\check{(N)}}^{\substack{\tilde{\omega} \\ \hline}}$	$\left.\right\|^{\text {® }}$

1m

1 n

	$\begin{aligned} & \text { 宮 } \\ & \hline \end{aligned}$		$\stackrel{\text { ¢ }}{\text { ¢ }}$			$\left.\right\|^{\text {U }}$

10

$\left.\right|_{| |} ^{\sim}$

		$\left.\right\|_{1} ^{9.0}$	$\stackrel{\sim}{\sim}$		$\left.\right\|_{\text {® }} ^{\substack{\text { ¢ } \\ \text { ¢ }}}$	$\left.\right\|_{\mid c} ^{\text {¢ }}$	$\left.\right\|_{\text {®. }} ^{\text {® }}$

$1 v$

¢	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\left.\right\|^{\text {ám }}$	$\begin{aligned} & \stackrel{\text { ヘ̈n }}{0} \\ & \underset{\circ}{0} \end{aligned}$		$\left.\right\|_{\substack{\infty \\ \hline \multirow{3}{*}{\hline}\\ \hline}} ^{\substack{\infty \\ \hline}}$

$\mathrm{MeO}_{2} \mathrm{CO}$

1w

$\stackrel{\circ}{\circ}$

2-naphthyl

MeO

$\mathrm{MeO}_{2} \mathrm{CO}$
1zd

1zj

1 zm

	\hat{N}		

1zm

${ }^{n} \mathrm{Bu}$
3a

3d

$3 f$

3m

$\stackrel{\otimes}{\sim}$

 w W/ ||ijijij

$\left.\right|_{1} ^{\text {尔 }}$

