Electronic Supplementary Information

Carboxyl group assisted isodesmic *meta*-C–H iodination of phenethylamines, benzylamines, and 2-aryl anilines

Lei Yang,^{a,b} Xinchao Wang,^a Meng Zhang,^a Shangda Li,^a Xinqiang Fang,^{*a} and Gang Li^{*a,c}

^aKey Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 West Yang-Qiao Road, Fuzhou, Fujian, 350002, China E-mail: xqfang@fjirsm.ac.cn (X.F.), gang.li@sjtu.edu.cn (G.L.) ^bFujian College, University of Chinese Academy of Sciences, Beijing, 100049, China ^cFrontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

table of contents

1. General information	S3
2. Experimental section	S3
2.1 Preparation of substrates	S3
2.2 Optimization of the reaction conditions	S16
2.3 General procedure for the synthesis of products	S18
2.4 Unsuccessful substrates	S32
2.5 Gram-scale synthesis	S32
2.6 Removal of Directing Group (DG)	S33
2.7 Further elaborations	S35
2.8 The reduced (C-I -> C-H) byproduct from iodinating reagents	S36
2.9 References	S37
3. NMR spectra of compounds	S38
3.1 NMR spectra of substrates	S38
3.2 NMR spectra of products	S72

1. General information

Unless otherwise noted, commercially available reagents were purchased from commercial suppliers (such as Adamas, J&K Chemical Co., Energy Chemical. etc.), and used as received. Solvents were generally dried over 4 Å molecular sieves. Hexafluoroisopropanol (HFIP) was distilled before use. The reaction vessels used for C–H functionalization were 38 mL sealed tube. Purification of products was performed by flash chromatography (FC) using silica gel or preparative thin layer chromatography or semi-preparative MPLC (medium pressure liquid chromatography). ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III spectrometer (400 MHz and 101 MHz, respectively) or a JEOL ECZ600S spectrometer (600 MHz and 151 MHz, respectively). Chemical shifts are reported parts per million (ppm) referenced to CDCl₃ (δ 7.26 ppm), DMSO- *d*₆ (δ 2.50 ppm), CD₃OD- *d*₄ (δ 3.31 ppm), tetramethylsilane (TMS, δ 0.00 ppm) for ¹H NMR; CDCl₃ (δ 77.16 ppm), DMSO- *d*₆ (δ 39.52 ppm) for ¹³C NMR. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. High-resolution mass spectra (HRMS) were obtained on an Impact II UHR-TOF mass spectrometry equipped with an ESI source from Bruker at Fujian Institute of Research on the Structure of Matter.

2. Experimental section

2.1 Preparation of substrates

To a 100 mL round bottom flask add (1*R*,2*R*)-cyclohexane-1,2-dicarboxylic acid (5.16 g, 30 mmol), and followed by acetic anhydride (40 mL). The solution was stirred at 80 °C for 1 h. Then acetic anhydride was removed in vacuo to yield the anhydride as a white solid. The product^[S1] was pure enough for the use of next step directly.

Step 1^[S2]: The corresponding amine (1 equiv) was dissolved in DCM (0.5 M) at 0 °C. Then ethyl chloroformate (1.05 equiv) was added, and followed by Et₃N (2 equiv). The solution was kept stirring in the ice bath until the reaction was complete (monitored by TLC, about 1 hour to 12 hours). Then the reaction solution was diluted with brine and extracted three times with DCM. The combined organic layer was dried with anhydrous Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified via a silica gel column to afford the corresponding products (PE/EA = 10/1 to 5/1).

Step 2: The product of step 1 (1 equiv) was dissolved in anhydrous THF (0.15 M), which was then injected into a round bottom flask under N₂ atmosphere at 0 °C. NaHMDS (2.0 M in THF, 1.05 equiv) was added and the reaction was kept stirring for 30 min. The solution of anhydride (1 equiv, dissolved in anhydrous THF in advance) was added afterwards. After stirred for another 30 min, the solution of react mixture was diluted with H₂O, acidized by 1 N HCl, and extracted three times with EA. The combined organic layer was dried over with anhydrous Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified by a silica gel column to afford the corresponding products (DCM 100 mL first, and then PE/EA = 5/1 to 3/1 with 1% of acetic acid).

Step 1: The corresponding amine (1 equiv) was dissolved in DCM (0.5 M) at 0 °C, then ethyl chloroformate (1.05 equiv) and K_2CO_3 (1 equiv) was added in follow. Then remove the ice bath and keep stirring at room temperature until react completely (monitoring by silica gel plate). Then, diluted with brine and extracted three times with DCM. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified via a silica gel column to afford the corresponding products (PE/EA = 100/1 to 20/1).

Step 2^[S3]: A 38 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with the product of step 1 (1 equiv), phenylboronic acid (1.5 equiv), $Pd(OAc)_2$ (0.25 mol%), ⁱ⁻Pr₂NH (2 equiv) sequentially. Then H₂O (5 mL) was added and heating the mixture to 100 °C and stirring vigorous for 2 - 4 h (until the mixture get black), The reaction mixture was diluted with brine and extracted three times with EA. The combined organic layer was dried over with anhydrous Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified by a silica gel column to afford the corresponding products (PE/EA = 10/1 to 5/1).

Step 3: The product of step 2 (1 equiv) was dissolved in anhydrous THF (0.15 M), and then, injected into a round bottom flask under N₂ atmosphere at 0 °C. NaHMDS (2.0 M in THF, 1.05 equiv) was added and kept stirred for 1 hour. The solution of anhydride (1 equiv, dissolved in anhydrous THF in advance) was added follow, after stirred for 30 min, the solution of react mixture was diluted with brine, acidized by 1 N HCl, and then the mixture was extracted three times with EA. The combined organic layer was dried over with Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified by a silica gel column to afford the corresponding products (DCM 100 mL first, and then PE/EA = 10/1 to 2/1 with 1% of acetic acid)

(1R,2R)-2-((ethoxycarbonyl)(phenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1a)

White solid, M.p.: 106.3 - 107.7 °C. Yield of last step: 35%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.23 (m, 2H), 7.23 – 7.15 (m, 3H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.95 – 3.87 (m, 2H), 3.67 (td, *J* = 11.3, 3.2 Hz, 1H), 2.89 – 2.72 (m, 3H), 2.21 – 2.04 (m, 2H), 1.86 – 1.71 (m, 2H), 1.43 – 1.12 (m, 7H). ¹³C NMR

(101 MHz, Chloroform-*d*) δ 181.7, 178.2, 154.2, 139.0, 129.1, 128.5, 126.4, 62.9, 46.3, 45.9, 45.5, 34.9, 29.5, 29.2, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₅NO₅Na⁺ [M+Na⁺] 370.1625, found 370.1626.

(1*R*,2*R*)-2-((ethoxycarbonyl)(2-fluorophenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1b) White solid, M.p.: 104.5 – 106.0 °C. Yield of last step: 39%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.10 (m, 2H), 7.07 – 6.94 (m, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 4.02 – 3.88 (m, 2H), 3.67 (td, *J* = 11.4, 3.2 Hz, 1H), 2.91 – 2.75 (m, 3H), 2.21 – 2.02 (m, 2H), 1.86 – 1.71 (m, 2H), 1.42 – 1.26 (m, 3H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.23 – 1.08 (m, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -118.48. ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.6, 178.2, 161.5 (d, *J* _{*C*-*F*} = 245.3 Hz), 154.2, 131.7 (d, *J* _{*C*-*F*} = 4.8 Hz), 128.3 (d, *J* _{*C*-*F*} = 7.8 Hz), 125.9 (d, *J* _{*C*-*F*} = 16.2 Hz), 124.1 (d, *J* _{*C*-*F*} = 3.6 Hz), 115.2 (d, *J* _{*C*-*F*</sup> = 22.0 Hz), 62.9, 46.3, 45.4, 44.3, 29.5, 29.3, 28.3 (d, *J* _{*C*-*F*} = 1.7 Hz), 25.7, 25.5, 14.0. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₄FNO₅Na⁺ [M+Na⁺] 388.1531, found 388.1531.}

(1*R*,2*R*)-2-((2-chlorophenethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (1c) White solid, M.p.: 59.7 – 61.1 °C. Yield of last step: 48%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.28 (m, 1H), 7.20 – 7.09 (m, 3H), 4.04 (q, *J* = 7.1 Hz, 2H), 4.01 – 3.92 (m, 2H), 3.68 (td, *J* = 11.3, 3.2 Hz, 1H), 2.97 – 2.88 (m, 2H), 2.89 – 2.78 (m, 1H), 2.20 – 2.03 (m, 2H), 1.84 – 1.71 (m, 2H), 1.41 – 1.26 (m, 3H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.21 – 1.11 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.7, 178.3, 154.2, 136.7, 134.4, 131.6, 129.4, 128.0, 126.9, 62.9, 46.2, 45.4, 43.9, 32.6, 29.5, 29.2, 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₄ClNO₅Na⁺ [M+Na⁺] 404.1235, found 404.1235.

(1*R*,2*R*)-2-((2-bromophenethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (1d) Colorless sticky oil. Yield of last step: 48%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 7.8 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.08 – 7.02 (m, 1H), 4.04 (q, *J* = 7.1 Hz, 2H), 4.00 – 3.94 (m, 2H), 3.69 (td, *J* = 11.3, 3.2 Hz, 1H), 2.98 – 2.89 (m, 2H), 2.89 – 2.78 (m, 1H), 2.21 – 2.05 (m, 2H), 1.85 – 1.70 (m, 2H), 1.44 – 1.31 (m, 3H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.21 – 1.12 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.4, 178.3, 154.2, 138.5, 132.7, 131.6, 128.2, 127.6, 124.8, 62.9, 46.3, 45.4, 44.0, 35.1, 29.6, 29.3, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₄BrNO₅Na⁺ [M+Na⁺] 448.0730, found 448.0728.

(1*R*,2*R*)-2-((ethoxycarbonyl)(2-(trifluoromethyl)phenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1e)

Colorless sticky oil. Yield of last step: 56%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (dd, J = 7.9, 1.3 Hz, 1H), 7.44 (td, J = 7.5, 1.3 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 4.15 – 4.04 (m, 2H), 3.92 (td, J = 7.7, 1.6 Hz, 2H), 3.71 (td, J = 11.3, 3.2 Hz, 1H), 3.02 – 2.88 (m, 2H), 2.88 – 2.76 (m, 1H), 2.20 – 2.05 (m, 2H), 1.86 – 1.72 (m, 2H), 1.42 – 1.27 (m, 3H), 1.27 – 1.11 (m, 4H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -59.57. ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.7, 178.4, 154.1, 137.6 (q, J_{C-F} = 1.9 Hz), 132.4, 131.9, 128.9 (q, J_{C-F} = 29.7 Hz), 126.6, 125.9 (q, J_{C-F} = 6.0 Hz), 124.5 (q, J_{C-F} = 273.7 Hz), 63.0, 46.2, 45.6, 45.5, 31.7, 29.5, 29.2, 25.7, 25.5, 14.0. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₄F₃NO₅Na⁺ [M+Na⁺] 438.1499, found 438.1500.

(1*R*,2*R*)-2-((ethoxycarbonyl)(2-methylphenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1f) Colorless sticky oil. Yield of last step: 57%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 – 7.06 (m, 4H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.92 – 3.80 (m, 2H), 3.68 (td, *J* = 11.2, 3.2 Hz, 1H), 2.90 – 2.74 (m, 3H), 2.36 (s, 3H), 2.21 – 2.07 (m, 2H), 1.87 – 1.73 (m, 2H), 1.43 – 1.17 (m, 7H). ¹³C NMR (101 MHz, Chloroform*d*) δ 181.7, 178.2, 154.2, 137.0, 136.5, 130.2, 130.0, 126.6, 126.0, 62.9, 46.2, 45.5, 44.7, 32.3, 29.5, 29.2, 25.7, 25.5, 19.2, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₇NO₅Na⁺ [M+Na⁺] 384.1781, found 384.1781.

(1*R*,2*R*)-2-((ethoxycarbonyl)(2-methoxyphenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1g) Colorless sticky oil. Yield of last step: 43%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (td, *J* = 7.8, 1.8 Hz, 1H), 7.07 (dd, *J* = 7.3, 1.7 Hz, 1H), 6.88 – 6.78 (m, 2H), 4.11 – 4.02 (m, 2H), 4.02 – 3.86 (m, 2H), 3.81 (s, 3H), 3.66 (td, *J* = 11.4, 3.3 Hz, 1H), 2.87 – 2.75 (m, 3H), 2.19 – 2.04 (m, 2H), 1.83 – 1.71 (m, 2H), 1.40 – 1.27 (m, 3H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.19 – 1.10 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.5, 178.2, 157.8, 154.4, 130.9, 127.7, 127.4, 120.5, 110.1, 62.6, 55.3, 46.3, 45.5, 44.3, 29.6, 29.5, 29.3, 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₇NO₆Na⁺ [M+Na⁺] 400.1731, found 400.1731.

(1R,2R)-2-((ethoxycarbonyl)(3-fluorophenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1h)

White solid, M.p.: 63.5 - 65.3 °C. Yield of last step: 36%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.16 (m, 1H), 6.94 (dt, J = 7.5, 1.3 Hz, 1H), 6.92 – 6.83 (m, 2H), 4.14 (q, J = 7.1 Hz, 2H), 3.98 – 3.82 (m, 2H), 3.65 (td, J = 11.3, 3.2 Hz, 1H), 2.88 – 2.69 (m, 3H), 2.20 – 2.00 (m, 2H), 1.85 – 1.69 (m, 2H), 1.40 – 1.10 (m, 7H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.72. ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.7, 178.2, 162.9 (d, $J_{C-F} = 245.4$ Hz), 154.1, 141.5 (d, $J_{C-F} = 7.3$ Hz), 129.9 (d, $J_{C-F} = 8.3$ Hz), 124.8 (d, $J_{C-F} = 2.9$ Hz), 115.9 (d, $J_{C-F} = 20.9$ Hz), 113.3 (d, $J_{C-F} = 20.9$ Hz), 63.0, 46.3, 45.6, 45.5, 34.5 (d, $J_{C-F} = 3.6$ Hz), 29.4, 29.2, 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₄FNO₅Na⁺ [M+Na⁺] 388.1531, found 388.1531.

(1R,2R)-2-((3-chlorophenethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (1i)

Colorless sticky oil. Yield of last step: 55%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.12 (m, 3H), 7.05 (dt, *J* = 6.6, 1.9 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.96 – 3.83 (m, 2H), 3.65 (td, *J* = 11.3, 3.2 Hz, 1H), 2.82 (td, *J* = 11.3, 3.5 Hz, 1H), 2.74 (t, *J* = 7.5 Hz, 2H), 2.20 – 2.02 (m, 2H), 1.86 – 1.72 (m, 2H), 1.41 – 1.29 (m, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.24 – 1.10 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.7, 178.2, 154.0, 141.0, 134.2, 129.7, 129.2, 127.4, 126.6, 63.0, 46.3, 45.6, 45.5, 34.5, 29.5, 29.2, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₄ClNO₅Na⁺ [M+Na⁺] 404.1235, found 404.1235.

(1*R*,2*R*)-2-((3-bromophenethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (1j) White solid, M.p.: 59.9 – 61.8 °C. Yield of last step: 48%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.30 (m, 2H), 7.16 – 7.08 (m, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.96 – 3.83 (m, 2H), 3.65 (td, *J* = 11.3, 3.2 Hz, 1H), 2.83 (td, *J* = 11.4, 3.6 Hz, 1H), 2.74 (t, *J* = 7.5 Hz, 2H), 2.20 – 2.03 (m, 2H), 1.86 – 1.74 (m, 2H), 1.41 – 1.09 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.7, 178.2, 154.0, 141.3, 132.1, 130.1, 129.5, 127.8, 122.5, 63.0, 46.3, 45.6, 45.5, 34.4, 29.5, 29.2, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₄BrNO₅Na⁺ [M+Na⁺] 448.0730, found 448.0729.

(1*R*,2*R*)-2-((ethoxycarbonyl)(3-(trifluoromethyl)phenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1k)

Colorless sticky oil. Yield of last step: 42%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.41 (m, 2H), 7.42 – 7.34 (m, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 4.01 – 3.84 (m, 2H), 3.65 (td, *J* = 11.4, 3.2 Hz, 1H), 2.89 – 2.77 (m, 3H), 2.20 – 2.00 (m, 2H), 1.86 – 1.70 (m, 2H), 1.42 – 1.11 (m, 7H). ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -62.58. ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.7, 178.2, 154.0, 139.9, 132.6, 130.8 (q, J_{C-F} = 32.1 Hz), 128.9, 125.8 (q, J_{C-F} = 3.8 Hz), 124.3 (q, J_{C-F} = 272.2 Hz), 123.3 (q, J_{C-F} = 3.7 Hz), 63.0, 46.3, 45.6, 45.5, 34.6, 29.5, 29.2, 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₄F₃NO₅Na⁺ [M+Na⁺] 438.1499, found 438.1499.

(1*R*,2*R*)-2-((ethoxycarbonyl)(3-methoxyphenethyl)carbamoyl)cyclohexane-1-carboxylic acid (11) Colorless sticky oil. Yield of last step: 43%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.13 (m, 1H), 6.80 – 6.68 (m, 3H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.97 – 3.87 (m, 2H), 3.77 (s, 3H), 3.67 (td, *J* = 11.3, 3.2 Hz, 1H), 2.83 (td, *J* = 11.4, 3.6 Hz, 1H), 2.74 (t, *J* = 7.6 Hz, 2H), 2.20 – 2.03 (m, 2H), 1.86 – 1.70 (m, 2H), 1.43 – 1.12 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.5, 178.2, 159.7, 154.2, 140.6, 129.4, 121.5, 114.5, 112.0, 62.9, 55.2, 46.2, 45.9, 45.5, 34.9, 29.5, 29.2, 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₇NO₆Na⁺ [M+Na⁺] 400.1731, found 400.1729.

(1*R*,2*R*)-2-((ethoxycarbonyl)(4-fluorophenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1m) White solid, M.p.: 89.5 – 90.4°C. Yield of last step: 46%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 – 7.09 (m, 2H), 6.99 – 6.89 (m, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.87 (td, *J* = 7.1, 2.8 Hz, 2H), 3.65 (td, *J* = 11.3, 3.2 Hz, 1H), 2.82 (td, *J* = 11.2, 3.4 Hz, 1H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.20 – 2.00 (m, 2H), 1.87 – 1.70 (m, 2H), 1.43 – 1.10 (m, 7H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.99. ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.8, 178.2, 161.7 (d, *J*_{*C*-*F*} = 243.9 Hz), 154.1, 134.6 (d, *J*_{*C*-*F*} = 3.2 Hz), 130.5 (d, *J*_{*C*-*F*} = 7.8 Hz), 115.2 (d, *J*_{*C*-*F*} = 21.2 Hz), 63.0, 46.3, 45.9, 45.5, 34.0, 29.5, 29.2, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₄FNO₅Na⁺ [M+Na⁺] 388.1531, found 388.1532.

(1*R*,2*R*)-2-((ethoxycarbonyl)(4-methylphenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1n) Colorless sticky oil. Yield of last step: 38%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.08 (s, 4H), 4.20 – 4.10 (m, 2H), 3.93 – 3.85 (m, 2H), 3.67 (td, *J* = 11.3, 3.2 Hz, 1H), 2.89 – 2.79 (m, 1H), 2.78 – 2.68 (m, 2H), 2.31 (s, 3H), 2.20 – 2.04 (m, 2H), 1.85 – 1.73 (m, 2H), 1.42 – 1.12 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.6, 178.2, 154.2, 135.9, 135.8, 129.1, 129.0, 62.9, 46.3, 46.1, 45.5, 34.4, 29.5, 29.2, 25.7, 25.5, 21.1, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₇NO₅Na⁺ [M+Na⁺] 384.1781, found 384.1781.

(1*R*,2*R*)-2-((ethoxycarbonyl)(4-methoxyphenethyl)carbamoyl)cyclohexane-1-carboxylic acid (1o) White solid, M.p.: 76.2 – 77.3 °C. Yield of last step: 40%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.91 – 3.83 (m, 2H), 3.77 (s, 3H), 3.66 (td, J = 11.3, 3.2 Hz, 1H), 2.83 (td, J = 11.4, 3.7 Hz, 1H), 2.75 – 2.64 (m, 2H), 2.20 – 2.01 (m, 2H), 1.85 – 1.72 (m, 2H), 1.39 – 1.14 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.6, 178.2, 158.2, 154.2, 131.1, 130.1, 113.9, 62.9, 55.4, 46.3, 46.1, 45.5, 34.0, 29.5, 29.3, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₇NO₆Na⁺ [M+Na⁺] 400.1731, found 400.1731.

(1*R*,2*R*)-2-((2-(benzo[d][1,3]dioxol-5-yl)ethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (1p)

Brown solid, M.p.: 72.1 – 73.6 °C. Yield of last step: 71%. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.70 (d, *J* = 7.9 Hz, 1H), 6.68 (d, *J* = 1.6 Hz, 1H), 6.61 (dd, *J* = 7.9, 1.7 Hz, 1H), 5.90 (s, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.85 (td, *J* = 7.2, 2.9 Hz, 2H), 3.65 (td, *J* = 11.3, 3.2 Hz, 1H), 2.82 (td, *J* = 11.7, 3.6 Hz, 1H), 2.68 (t, *J* = 7.7 Hz, 2H), 2.18 – 2.03 (m, 2H), 1.87 – 1.71 (m, 2H), 1.41 – 1.11 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.5, 178.2, 154.2, 147.6, 146.1, 132.7, 122.0, 109.5, 108.3, 100.9, 62.9, 46.3, 46.1, 45.5, 34.6, 29.5, 29.2, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅NO₇Na⁺ [M+Na⁺] 414.1523, found 414.1523.

(1*R*,2*R*)-2-((ethoxycarbonyl)(2-(7-methoxynaphthalen-1-yl)ethyl)carbamoyl)cyclohexane-1-carboxylic acid (1q)

White solid, M.p.: 137.4 – 138.7 °C. Yield of last step: 62%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 8.9 Hz, 1H), 7.63 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.58 (d, *J* = 2.5 Hz, 1H), 7.26 – 7.18 (m, 2H), 7.11 (dd, *J* = 8.9, 2.4 Hz, 1H), 4.17 – 4.02 (m, 3H), 3.97 (s, 3H), 3.95 – 3.87 (m, 1H), 3.65 (td, *J* = 11.1, 3.2 Hz, 1H), 3.19 – 3.10 (m, 2H), 2.86 (td, *J* = 11.3, 3.6 Hz, 1H), 2.19 – 2.07 (m, 2H), 1.85 – 1.71 (m, 2H), 1.38 – 1.15 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.9, 178.2, 158.0, 154.2, 133.6, 133.4, 130.0, 129.2, 127.6, 127.0, 123.2, 118.3, 102.8, 63.0, 55.6, 46.5, 45.7, 45.1, 32.6, 29.5, 29.2, 25.7, 25.5, 14.0. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₉NO₆Na⁺ [M+Na⁺] 450.1887, found 450.1886.

(1R,2R)-2-((ethoxy carbonyl)(3-phenyl propyl) carbamoyl) cyclohexane-1-carboxylic acid (1r)

Colorless sticky oil. Yield of last step: 44%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.23 (m, 2H), 7.21 – 7.13 (m, 3H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.80 – 3.60 (m, 3H), 2.82 (td, *J* = 11.3, 3.8 Hz, 1H), 2.60 (td, *J* = 7.5, 3.0 Hz, 2H), 2.17 – 2.03 (m, 2H), 1.89 – 1.73 (m, 4H), 1.40 – 1.13 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.6, 178.3, 154.3, 141.6, 128.4, 125.9, 62.9, 46.3, 45.5, 44.2, 33.2, 29.9, 29.5, 29.2, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₇NO₅Na⁺ [M+Na⁺] 384.1781, found 384.1781.

(1R,2R)-2-(benzyl(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (1s)

Colorless sticky oil. Yield of last step: 32%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.16 (m, 5H), 5.00 – 4.86 (m, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.82 (td, *J* = 11.3, 3.2 Hz, 1H), 2.89 (td, *J* = 11.6, 3.6 Hz, 1H), 2.23 – 2.11 (m, 2H), 1.89 – 1.75 (m, 2H), 1.46 – 1.16 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.9, 178.3, 154.2, 137.9, 128.4, 127.3, 127.1, 63.0, 47.2, 46.2, 45.5, 29.4, 29.3, 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₂₃NO₅Na⁺ [M+Na⁺] 356.1468, found 356.1468.

(1*R*,2*R*)-2-((ethoxycarbonyl)(2-methylbenzyl)carbamoyl)cyclohexane-1-carboxylic acid (1t) Colorless sticky oil. Yield of last step: 27%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 – 7.08 (m, 3H), 6.99 – 6.93 (m, 1H), 5.01 – 4.86 (m, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.90 (td, *J* = 11.2, 3.2 Hz, 1H), 2.90 (td, *J* = 11.6, 3.5 Hz, 1H), 2.31 (s, 3H), 2.29 – 2.16 (m, 2H), 1.91 – 1.80 (m, 2H), 1.48 – 1.28 (m, 4H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.9, 178.1, 154.3, 135.7, 134.9, 130.1, 126.7, 126.2, 125.0, 63.1, 46.2, 45.4, 45.0, 29.6, 29.3, 25.7, 25.6, 19.2, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₅NO₅Na⁺ [M+Na⁺] 370.1625, found 370.1625.

(1R,2R)-2-((ethoxycarbonyl)(2-fluorobenzyl)carbamoyl)cyclohexane-1-carboxylic acid (1u)

Colorless sticky oil. Yield of last step: 28%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.15 (m, 1H), 7.13 – 6.93 (m, 3H), 5.11 – 4.90 (m, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.85 (td, J = 11.3, 3.2 Hz, 1H), 2.89

(td, J = 11.5, 3.6 Hz, 1H), 2.27 – 2.13 (m, 2H), 1.92 – 1.75 (m, 2H), 1.46 – 1.16 (m, 7H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -119.25. ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.7, 178.3, 160.4 (d, $J_{C-F} = 246.0$ Hz), 154.1, 128.6 (d, $J_{C-F} = 8.1$ Hz), 128.4 (d, $J_{C-F} = 4.0$ Hz), 125.0 (d, $J_{C-F} = 14.0$ Hz), 124.3 (d, $J_{C-F} = 3.6$ Hz), 115.1 (d, $J_{C-F} = 21.6$ Hz), 63.2, 46.2, 45.4, 41.1 (d, $J_{C-F} = 5.0$ Hz), 29.5, 29.3, 25.7, 25.6, 14.0. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₂₂FNO₅Na⁺ [M+Na⁺] 374.1374, found 374.1375.

(1*R*,2*R*)-2-((2-chlorobenzyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (1v) Colorless sticky oil. Yield of last step: 34%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 – 7.15 (m, 1H), 7.09 – 6.99 (m, 2H), 6.93 – 6.85 (m, 1H), 5.00 (d, *J* = 16.5 Hz, 1H), 4.87 (d, *J* = 16.5 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.81 (td, *J* = 11.3, 3.2 Hz, 1H), 2.81 (td, *J* = 11.5, 3.5 Hz, 1H), 2.20 – 2.06 (m, 2H), 1.81 – 1.69 (m, 2H), 1.39 – 1.13 (m, 4H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 182.0, 178.1, 154.1, 135.1, 132.4, 129.3, 128.0, 127.0, 126.6, 63.2, 46.1, 45.4, 45.1, 29.6, 29.3, 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₂₂ClNO₅Na⁺ [M+Na⁺] 390.1079, found 390.1080.

(1*R*,2*R*)-2-((3-chlorobenzyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (1w)

Colorless sticky oil. Yield of last step: 30%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.15 (m, 3H), 7.11 – 7.03 (m, 1H), 4.97 – 4.80 (m, 2H), 4.27 – 4.16 (m, 2H), 3.79 (td, *J* = 11.3, 3.1 Hz, 1H), 2.87 (td, *J* = 11.4, 3.6 Hz, 1H), 2.24 – 2.09 (m, 2H), 1.90 – 1.76 (m, 2H), 1.46 – 1.31 (m, 3H), 1.29 – 1.19 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.7, 178.3, 154.0, 140.0, 134.1, 129.8, 127.8, 127.4, 125.6, 63.3, 46.8, 46.2, 45.5, 29.5, 29.3, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₂₂ClNO₅Na⁺ [M+Na⁺] 390.1079, found 390.1079.

(1R,2R)-2-((3-bromobenzyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (1x)

Colorless sticky oil. Yield of last step: 32%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.31 (m, 2H), 7.19 – 7.06 (m, 2H), 4.92 (d, *J* = 15.2 Hz, 1H), 4.83 (d, *J* = 15.2 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.79 (td, *J* = 11.3, 3.2 Hz, 1H), 2.87 (td, *J* = 11.5, 3.6 Hz, 1H), 2.24 – 2.10 (m, 2H), 1.92 – 1.76 (m, 2H), 1.45 – 1.16 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.6, 178.3, 153.9, 140.3, 130.7, 130.3, 130.1, 126.0, 122.4, 63.3, 46.8, 46.2, 45.5, 29.5, 29.3, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₂₂BrNO₅Na⁺ [M+Na⁺] 434.0574, found 434.0578.

(1*R*,2*R*)-2-((ethoxycarbonyl)(3-(methoxycarbonyl)benzyl)carbamoyl)cyclohexane-1-carboxylic acid (1y)

Colorless sticky oil. Yield of last step: 36%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.84 (m, 2H), 7.39 (dt, *J* = 7.8, 1.7 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 1H), 5.04 (d, *J* = 15.2 Hz, 1H), 4.89 (d, *J* = 15.2 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 3.80 (td, *J* = 11.3, 3.2 Hz, 1H), 2.88 (td, *J* = 11.7, 3.5 Hz, 1H), 2.22 – 2.11 (m, 2H), 1.89 – 1.76 (m, 2H), 1.45 – 1.32 (m, 3H), 1.28 – 1.21 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.9, 178.3, 167.3, 154.0, 138.4, 132.1, 130.1, 128.8, 128.7, 128.5, 63.3, 52.3, 47.0, 46.4, 45.5, 29.5, 29.3, 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₄NO₇⁻ [M-H⁺] 390.1558, found 309.1559.

(1*R*,2*R*)-2-([1,1'-biphenyl]-2-yl(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (4a) White solid, M.p.: 208.4 – 209.5 °C. Yield of last step: 50%. The two rotamers' ratio is about 78:22. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.27 (m, 6.06H), 7.25 – 7.16 (m, 2.01H), 7.15 – 7.10 (m, 0.69H), 7.05 – 7.01 (m, 0.20H), 4.05 – 3.93 (m, 1.71H), 3.92 – 3.79 (m, 0.52H), 3.70 (td, *J* = 11.4, 3.2 Hz, 0.78H), 2.90 – 2.74 (m, 1.00H), 2.24 – 2.09 (m, 1.24H), 1.91 – 1.77 (m, 1.94H), 1.76 – 1.67 (m, 0.80H), 1.48 – 1.20 (m, 3.66H), 1.06 (t, *J* = 7.1 Hz, 2.23H), 1.02 – 0.85 (m, 1.60H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.9, 181.7, 178.9, 178.6, 153.5, 153.1, 140.6, 140.3, 138.8, 138.3, 136.2, 136.1, 130.7, 130.2, 129.1, 128.9, 128.7, 128.65, 128.46, 128.4, 128.3, 128.12, 128.06, 127.8, 127.6, 63.00, 62.96, 46.0, 45.3, 44.9, 29.6, 29.5, 29.2, 28.6, 25.9, 25.7, 25.4, 14.1, 13.9. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₅NO₅Na⁺ [M+Na⁺] 418.1625, found 418.1630.

(1*R*,2*R*)-2-((ethoxycarbonyl)(2'-fluoro-[1,1'-biphenyl]-2-yl)carbamoyl)cyclohexane-1-carboxylic acid (4b)

White solid, M.p.: 217.9 – 218.8 °C. Yield of last step: 33%. The two rotamers' ratio is about 84:16. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.26 (s, 0.92H), 7.58 – 7.32 (m, 4.02H), 7.30 – 6.99 (m, 4.00H), 4.05 – 3.70 (m, 2.19H), 3.47 (t, *J* = 12.1 Hz, 1.16H), 2.50 (s, 1.19H), 2.09 – 1.93 (m, 1.11H), 1.82 – 1.50 (m, 2.86H), 1.34 – 0.74 (m, 7.17H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -115.58, -116.70. ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.8, 176.2, 159.0 (d, *J*_{*C*-*F*} = 245.4 Hz), 152.8, 136.8, 133.8, 131.0 (d, *J*_{*C*-*F*} = 2.5 Hz), 130.8, 130.2 (d, *J*_{*C*-*F*} = 8.3 Hz), 129.2, 128.8, 128.1, 125.2 (d, *J*_{*C*-*F*} = 16.0 Hz), 124.1 (d, *J*_{*C*-*F*} =

2.9 Hz), 115.7 (d, *J*_{*C*-*F*} = 22.0 Hz), 62.8, 45.6, 45.2, 28.7, 28.1, 25.2, 24.9, 13.6. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₄FNO₅Na⁺ [M+Na⁺] 436.1531, found 436.1532.

(1*R*,2*R*)-2-((2'-chloro-[1,1'-biphenyl]-2-yl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (4c)

White solid, M.p.: 203.9 - 205.3 °C. Yield of last step: 30%. The two rotamers' ratio is about 76:24. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.30 (m, 4.00H), 7.29 – 7.03 (m, 4.18H), 4.26 – 4.02 (m, 1.28H), 4.00 – 3.81 (m, 1.00H), 3.72 – 3.59 (m, 0.76H), 2.90 – 2.66 (m, 0.97H), 2.25 – 2.06 (m, 1.19H), 1.93 – 1.64 (m, 2.49H), 1.50 – 1.17 (m, 4.39H), 1.15 – 1.02 (m, 2.38H), 1.01 – 0.87 (m, 0.62H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 182.2, 181.7, 179.0, 178.7, 153.4, 153.1, 137.2, 137.1, 136.8, 136.5, 136.4, 135.8, 133.0, 132.6, 131.5, 131.3, 131.1, 130.7, 130.0, 129.7, 129.6, 129.5, 129.3, 129.1, 129.0, 128.7, 127.9, 127.7, 126.3, 126.0, 63.3, 63.1, 45.9, 45.8, 45.3, 44.9, 29.5, 29.1, 28.8, 28.2, 25.9, 25.7, 25.4, 25.3, 14.3, 13.9. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₄ClNO₅Na⁺ [M+Na⁺] 452.1235, found 452.1235.

(1*R*,2*R*)-2-((ethoxycarbonyl)(3'-fluoro-[1,1'-biphenyl]-2-yl)carbamoyl)cyclohexane-1-carboxylic acid (4d)

White solid, M.p.: 171.6 - 172.4 °C. Yield of last step: 57%. The two rotamers' ratio is about 79:21. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.33 (m, 2.24H), 7.36 – 7.25 (m, 1.78H), 7.17 – 7.10 (m, 0.80H), 7.05 – 6.96 (m, 2.27H), 6.95 – 6.89 (m, 0.91H), 4.06 – 3.87 (m, 2.23H), 3.72 (td, J = 11.4, 3.2 Hz, 0.79H), 2.93 – 2.72 (m, 1.00H), 2.26 – 2.10 (m, 1.20H), 1.95 – 1.69 (m, 2.80H), 1.50 – 1.22 (m, 3.38H), 1.11 – 0.95 (m, 3.84H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.46, -113.50. ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.74, 181.71, 178.8, 178.7, 162.6 (d, $J_{C-F} = 245.4$ Hz), 162.5 (d, $J_{C-F} = 246.2$ Hz), 153.4, 153.0, 141.0 (d, $J_{C-F} = 7.9$ Hz), 140.5 (d, $J_{C-F} = 7.7$ Hz), 139.5 (d, $J_{C-F} = 1.4$ Hz), 139.1 (d, $J_{C-F} = 1.9$ Hz), 136.11, 136.09, 130.5, 130.1, 130.0, 129.7 (d, $J_{C-F} = 8.4$ Hz), 129.2, 129.1, 129.0, 128.7, 128.6, 128.5, 124.5 (d, $J_{C-F} = 20.7$ Hz), 114.5 (d, $J_{C-F} = 20.9$ Hz), 63.12, 63.07, 46.0, 45.3, 44.9, 29.7, 29.5, 29.1, 28.6, 25.8, 25.7, 25.4, 14.1, 13.9. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₄FNO₅Na⁺ [M+Na⁺] 436.1531, found 436.1530.

(1*R*,2*R*)-2-((3'-chloro-[1,1'-biphenyl]-2-yl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylic acid (4e)

White solid, M.p.: 163.8 - 164.8 °C. Yield of last step: 31%. The two rotamers' ratio is about 80:20. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.35 (m, 2.18H), 7.33 – 7.24 (m, 2.89H), 7.23 – 7.17 (m, 1.02H), 7.16 – 7.06 (m, 1.80H), 7.05 – 7.00 (m, 0.19H), 4.09 – 3.88 (m, 2.24H), 3.72 (td, J = 11.4, 3.2 Hz, 0.80H), 2.93 – 2.72 (m, 1.00H), 2.27 – 2.11 (m, 1.18H), 1.97 – 1.68 (m, 2.83H), 1.49 – 1.21 (m, 3.38H), 1.12 – 0.96 (m, 3.81H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.8, 181.7, 178.9, 178.8, 153.3, 153.0, 140.6, 140.2, 139.3, 139.0, 136.1, 134.0, 133.9, 130.5, 130.0, 129.8, 129.5, 129.3, 129.1, 128.95, 128.85, 128.8, 128.7, 128.6, 127.9, 127.8, 127.0, 126.8, 63.2, 63.1, 46.0, 45.2, 44.9, 29.7, 29.5, 29.1, 28.8, 25.9, 25.7, 25.4, 14.1, 14.0. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₄ClNO₅Na⁺ [M+Na⁺] 452.1235, found 452.1236.

(1*R*,2*R*)-2-((ethoxycarbonyl)(3'-(methoxycarbonyl)-[1,1'-biphenyl]-2-yl)carbamoyl)cyclohexane-1-carboxylic acid (4f)

White solid, M.p.: 183.8 – 184.6 °C. Yield of last step: 35%. The two rotamers' ratio is about 79:21. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.95 (m, 0.76H), 7.95 – 7.86 (m, 1.21H), 7.47 – 7.28 (m, 5.06H), 7.19 – 7.08 (m, 0.75H), 7.07 – 7.00 (m, 0.21H), 4.04 – 3.96 (m, 1.78H), 3.95 – 3.84 (m, 3.52H), 3.68 (td, J = 11.4, 3.1 Hz, 0.79H), 2.90 – 2.74 (m, 1.00H), 2.24 – 2.12 (m, 1.24H), 1.89 – 1.75 (m, 2.04H), 1.73 – 1.64 (m, 0.76H), 1.47 – 1.19 (m, 3.42H), 1.06 (t, J = 7.1 Hz, 2.32H), 1.03 – 0.89 (m, 1.42H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.6, 181.1, 178.9, 178.7, 167.4, 166.9, 153.4, 153.0, 139.7, 139.3, 139.2, 138.8, 136.19, 136.17, 133.3, 130.8, 130.1, 129.99, 129.96, 129.8, 129.2, 129.1, 129.0, 128.9, 128.7, 128.62, 128.55, 128.3, 63.2, 63.1, 52.3, 52.2, 46.1, 45.9, 45.3, 44.8, 29.7, 29.3, 29.1, 28.7, 25.8, 25.7, 25.3, 14.0, 13.9. HRMS (m/z, ESI-TOF): Calcd for C₂₅H₂₇NO₇Na⁺ [M+Na⁺] 476.1680, found 476.1679.

(1*R*,2*R*)-2-((ethoxycarbonyl)(3'-methyl-[1,1'-biphenyl]-2-yl)carbamoyl)cyclohexane-1-carboxylic acid (4g)

White solid, M.p.: 183.8 - 184.7 °C. Yield of last step: 43%. The two rotamers' ratio is about 82:18. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.29 (m, 2.97H), 7.28 – 7.19 (m, 1.04H), 7.17 – 7.09 (m, 1.68H), 7.08 – 6.96 (m, 2.29H), 3.97 (q, *J* = 7.1 Hz, 1.77H), 3.91 – 3.79 (m, 0.39H), 3.71 (td, *J* = 11.4, 3.1 Hz, 0.82H), 2.95 – 2.74 (m, 1.00H), 2.33 (s, 2.94H), 2.26 – 2.10 (m, 1.21H), 1.93 (dd, *J* = 12.8, 3.2 Hz, 0.82H), 1.88 – 1.69 (m, 2.00H), 1.51 – 1.23 (m, 3.36H), 1.12 – 0.92 (m, 3.77H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.6, 181.5, 178.7, 178.6, 153.5, 153.2, 140.5, 140.3, 138.6, 138.2, 137.7, 137.5, 136.1, 130.6, 130.1, 129.3, 129.0, 128.8, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 125.8, 125.7, 62.9, 62.8, 45.9,

45.2, 44.9, 29.6, 29.4, 29.1, 28.7, 25.8, 25.6, 25.3, 21.4, 21.3, 14.0, 13.8. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₇NO₅Na⁺ [M+Na⁺] 432.1781, found 432.1776.

(1*R*,2*R*)-2-((ethoxycarbonyl)(3'-methoxy-[1,1'-biphenyl]-2-yl)carbamoyl)cyclohexane-1-carboxylic acid (4h)

White solid, M.p.: 165.8 - 166.3 °C. Yield of last step: 37%. The two rotamers' ratio is about 87:13. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.30 (m, 3.06H), 7.27 – 7.20 (m, 1.06H), 7.15 – 7.09 (m, 0.84H), 7.04 – 6.99 (m, 0.20H), 6.87 – 6.81 (m, 1.24H), 6.80 – 6.72 (m, 1.88H), 4.09 – 3.91 (m, 2.00H), 3.80 – 3.73 (m, 3.23H), 3.73 (s, 0.87H), 2.91 – 2.72 (m, 1.00H), 2.23 – 2.11 (m, 1.27H), 1.92 – 1.66 (m, 3.04H), 1.47 – 1.20 (m, 3.31H), 1.11 – 0.92 (m, 4.00H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.7, 181.4, 178.8, 178.6, 159.3, 153.5, 153.2, 140.4, 140.2, 140.1, 139.7, 136.1, 130.6, 130.1, 129.4, 129.1, 128.8, 128.6, 128.5, 128.3, 128.1, 121.2, 121.1, 114.4, 113.3, 113.1, 63.0, 62.9, 55.4, 55.3, 46.01, 46.96, 45.3, 44.9, 29.7, 29.4, 29.1, 28.6, 25.8, 25.7, 25.6, 25.3, 14.1, 13.9. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₇NO₆Na⁺ [M+Na⁺] 448.1731, found 448.1731.

(1*R*,2*R*)-2-((ethoxycarbonyl)(4'-methyl-[1,1'-biphenyl]-2-yl)carbamoyl)cyclohexane-1-carboxylic acid (4i)

White solid, M.p.: 170.0 - 171.2 °C. Yield of last step: 33%. The two rotamers' ratio is about 75:25. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.29 (m, 3.01H), 7.20 – 7.06 (m, 4.76H), 7.03 (d, *J* = 7.3 Hz, 0.23H), 4.06 – 3.91 (m, 1.74H), 3.91 – 3.77 (m, 0.51H), 3.71 (td, *J* = 11.4, 3.2 Hz, 0.75H), 2.94 – 2.75 (m, 1.00H), 2.36 (s, 2.26H), 2.28 (s, 0.74H), 2.19 (dt, *J* = 11.6, 6.7 Hz, 1.27H), 1.99 – 1.90 (m, 0.75H), 1.89 – 1.79 (m, 1.22H), 1.78 – 1.68 (m, 0.77H), 1.53 – 1.22 (m, 3.35H), 1.10 – 0.99 (m, 3.01H), 0.96 (t, *J* = 7.1 Hz, 0.76H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 182.0, 181.7, 179.0, 178.7, 153.6, 153.1, 140.6, 140.3, 137.5, 137.3, 136.2, 136.1, 135.9, 135.4, 130.8, 130.3, 129.1, 128.9, 128.8, 128.6, 128.57, 128.52, 128.4, 128.3, 127.8, 62.95, 62.91, 46.1, 46.0, 45.3, 45.0, 29.6, 29.5, 29.2, 28.6, 25.9, 25.7, 25.4, 21.3, 21.2, 14.1, 13.9. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₇NO₅Na⁺ [M+Na⁺] 432.1781, found 432.1781.

2.2 Optimization of the reaction conditions

Table S1 Optimization of ligands

Reaction conditions: **1a** (0.1 mmol), **2** (0.3 mmol), $Pd(OAc)_2$ (0.01 mmol), Ligand (0.005 mmol), AgOTFA (0.015 mmol), K₂HPO₄ (0.05 mmol), HFIP (1 mL), 90 °C, 6 h; Then MeI (0.1 mL), K₂CO₃ (0.5 mmol), acetone (2 mL), 60 °C, 2 h. Yield was determined by ¹H NMR with CH₂Br₂ as internal standard, the ratio of mono/di was showed in parentheses.

Table S2 Optimization of other reaction conditions

entry	deviation from standard conditions	yield (%, 3a) [mono/di]	SM _{Me} /BP1/BP2 (%)	
		74[1.55/1]ª		
2	without L1	27[27/trace]	75/trace/3	
3	10 mol% of L1	86[2.58/1]	14/trace/4	
4	15 mol% of L1	84[2.82/1]	15/trace/4	
5	20 mol% of L1	80[3.44/1]	18/trace/4	
6	30 mol% of L1	74[6.40/1]	33/trace/trace	
7	without AgOTFA	76[4.43/1]	34/trace/3	
8	0.05 equiv of AgOTFA	79[4.64/1]	20/trace/3	
9	0.1 equiv of AgOTFA	77[3.53/1]	14/trace/3	
10	0.2 equiv of AgOTFA	87[2.78/1]	15/trace/3	
11	0.5 equiv of AgOTFA	84[1.47/1]	trace/6/3	
12	1 equiv of AgOTFA	70[1.19/1]	0/13/7	
13	2 equiv of AgOTFA	29[29/trace]	70/trace/5	
14	3 equiv of AgOTFA	17[17/trace]	80/trace/3	
15	AgOAc instead of AgOTFA	85[1.93/1]	4/6/3	
16	Ag ₂ CO ₃ instead of AgOTFA	78[4.20/1]	25/trace/trace	
17	without K ₂ HPO ₄	67[2.94/1]	12/6/10	
18	0.25 equiv of K ₂ HPO ₄	88[1.44/1]	5/5/3	
19	1 equiv of K ₂ HPO ₄	79[5.08/1]	25/trace/2	
20	K ₂ CO ₃ instead of K ₂ HPO ₄	69[6.67/1]	31/trace/2	
21	KH ₂ PO ₄ instead of K ₂ HPO ₄	80[1.72/1]	6/8/10	
22	without Pd(OAc) ₂	0[0/0]	100/0/0	
23	70 °C instead of 90 °C	34[34/trace]	70/trace/1	
24	80 °C instead of 90 °C	73[5.08/1]	30/trace/2	
25	100 °C instead of 90 °C	86[2.58/1]	10/3/3	
26	3 h	65[4.91/1]	30/trace/1	
27	12 h	86[2.07/1]	7/4/3	
28	24 h	90[1/1.31] 74[1/1.24]ª	trace/7/3	

entry	deviation from standard conditions	yield (%, 3a) [mono/di]	SM _{Me} /BP1/BP2 (%)
29	36 h	90[1.43/1]	trace/5/3
30 ^b	36 h	77[1/14.4] 63[0/63]ª	trace/11/2
31	Ar atmosphere instead of Air	84[2.00/1]	6/4/3
32	1-iodo-4-methoxy-2-nitrobenzene 2 equiv	80[3.21/1]	11/3/2
33	1-iodo-4-methoxy-2-nitrobenzene 2.5 equiv	89[2.18/1]	8/4/3

results by other iodinating reagents (3 equiv) under standard conditions:

Reaction conditions: **1a** (0.1 mmol), **2** (0.3 mmol), $Pd(OAc)_2$ (0.01 mmol), **L1** (0.005 mmol), AgOTFA (0.015 mmol), K_2HPO_4 (0.05 mmol), HFIP (1 mL), 90 °C, 6 h; Then MeI (0.1 mL), K_2CO_3 (0.5 mmol), acetone (2 mL), 60 °C, 2 h. Yield was determined by ¹H NMR with CH₂Br₂ as internal standard. ^aIsolated yield. ^b0.5 equiv of AgOTFA was used. ^cIOAc (from I₂/PhIOAc).

2.3 General procedure for the synthesis of products

To an oven-dried 38 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with substrate **1** or **4** (0.1 mmol, 1 equiv), 4-iodo-3-nitroanisole (84 mg, 0.3 mmol, 3 equiv), Pd(OAc)₂ (2.3 mg, 0.01 mmol, 10 mol%), **L1** (3-nitropyridin-2-ol, 0.7 mg, 0.005 mmol, 5 mol%), AgOTFA (11 mg, 0.05 mmol, 0.5 equiv) and K₂HPO₄ (8.72 mg, 0.05 mmol, 0.5 equiv) sequentially. HFIP (1 mL) was added to the mixture along the inside wall of the tube. The tube was then capped and placed into a preheated oil bath (90 °C) or hotplate (90 °C). The reaction was stirred for 36 h and cooled to room temperature. After the solvent was removed under reduced pressure, MeI (0.1 mL), K₂CO₃ (70 mg, 0.5 mmol, 5 equiv) were added sequentially. Acetone (2 mL) was added to the mixture along the inside wall of the tube. The mixture along the inside wall of the tube. The mixture along the inside wall of the tube. The mixture along the inside wall of the tube reduced pressure, MeI (0.1 mL), K₂CO₃ (70 mg, 0.5 mmol, 5 equiv) were added sequentially. Acetone (2 mL) was added to the mixture along the inside wall of the tube. The mixture along the inside wall of the tube. The mixture was stirred at 60 °C for 2 h and then cooled to room temperature. The crude reaction mixture was diluted with EA (5 mL) and filtered through a short pad of Celite. The sealed tube

and Celite pad were washed with an additional 25 mL of EA. The filtrate was concentrated in vacuo, and the resulting residue was purified by preparative thin layer chromatography using PE/EA (30/1) as the eluent to give the desired product, some products were further purified by semi-preparative MPLC (medium pressure liquid chromatography).

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(3-iodophenethyl)carbamoyl)cyclohexane-1-carboxylate (3a_{mono})

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Reaction condition 1: see table S1 entry 1; Reaction condition 2: see table S1 entry 29. Colorless sticky oil; yield 1: 22.1 mg, 45%; yield 2: 16.1 mg, 33%. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.56 (s, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 7.01 (t, *J* = 7.7 Hz, 1H), 4.23 – 4.13 (m, 2H), 3.96 – 3.83 (m, 2H), 3.69 (td, *J* = 11.4, 3.3 Hz, 1H), 3.63 (s, 3H), 2.83 (td, *J* = 11.4, 3.7 Hz, 1H), 2.77 – 2.70 (m, 2H), 2.16 – 2.06 (m, 2H), 1.86 – 1.77 (m, 2H), 1.37 – 1.29 (m, 6H), 1.24 – 1.18 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 154.1, 141.5, 138.1, 135.6, 130.3, 128.5, 94.5, 63.1, 51.9, 46.6, 45.7, 34.5, 29.7, 29.3, 25.7, 25.6, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₆INO₅Na⁺ [M+Na⁺] 510.0748, found 510.0748.

methyl (1*R*,2*R*)-2-((3,5-diiodophenethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylate (3a_{di})

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Reaction condition 1: see table S1 entry 1; Reaction condition 2: see table S1 entry 29; Reaction condition 3: see table S1 entry 31. Colorless sticky oil; yield 1: 17.9 mg, 29%; yield 2: 24.9 mg, 41%; yield 3: 38.5 mg, 63%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (t, *J* = 1.7 Hz, 1H), 7.51 (d, *J* = 1.6 Hz, 2H), 4.25 – 4.14 (m, 2H), 3.95 – 3.77 (m, 2H), 3.71 – 3.60 (m, 4H), 2.82 (td, *J* = 11.3, 4.0 Hz, 1H), 2.67 (t, *J* = 7.6 Hz, 2H), 2.18 – 2.04 (m, 2H), 1.86 – 1.75 (m, 2H), 1.39 – 1.16 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 153.9, 143.23, 143.16, 137.5, 94.9, 63.2, 51.9, 46.5, 45.6, 45.4, 33.9, 29.7, 29.2, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅I₂NO₅Na⁺ [M+Na⁺] 635.9714, found 635.9704.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(2-fluoro-5-iodophenethyl)carbamoyl)cyclohexane-1carboxylate (3b)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 28.7 mg, 57%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.43 (m, 2H), 6.76 (dd, *J* = 9.5, 8.4 Hz, 1H), 4.24 – 4.07 (m, 2H), 3.98 – 3.86 (m, 2H), 3.68 (td, *J* = 11.4, 3.2 Hz, 1H), 3.62 (s, 3H), 2.87 –

2.73 (m, 3H), 2.17 – 2.03 (m, 2H), 1.87 – 1.74 (m, 2H), 1.39 – 1.12 (m, 7H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -119.57. ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 161.5 (d, $J_{C-F} = 247.2$ Hz), 154.0, 140.2 (d, $J_{C-F} = 4.8$ Hz), 137.2 (d, $J_{C-F} = 7.9$ Hz), 128.7 (d, $J_{C-F} = 17.3$ Hz), 117.5 (d, $J_{C-F} = 23.2$ Hz), 87.0 (d, $J_{C-F} = 3.6$ Hz), 63.0, 51.8, 46.5, 45.6, 44.1, 29.7, 29.3, 28.0 (d, $J_{C-F} = 1.9$ Hz), 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅FINO₅Na⁺ [M+Na⁺] 528.0654, found 528.0648.

methyl (1*R*,2*R*)-2-((2-chloro-5-iodophenethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1carboxylate (3c)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 39.1 mg, 75%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 2.2 Hz, 1H), 7.44 (dd, *J* = 8.3, 2.2 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 4.23 – 4.05 (m, 2H), 3.98 – 3.90 (m, 2H), 3.69 (td, *J* = 11.4, 3.4 Hz, 1H), 3.63 (s, 3H), 2.93 – 2.74 (m, 3H), 2.17 – 2.04 (m, 2H), 1.86 – 1.73 (m, 2H), 1.41 – 1.16 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 175.9, 154.0, 140.1, 139.1, 136.9, 134.5, 131.1, 91.5, 63.0, 51.8, 46.5, 45.6, 43.7, 32.3, 29.8, 29.2, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅ClINO₅Na⁺ [M+Na⁺] 544.0358, found 544.0352.

methyl (1*R*,2*R*)-2-((2-bromo-5-iodophenethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1carboxylate (3d)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 44.5 mg, 79%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 2.2 Hz, 1H), 7.36 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.23 (d, *J* = 8.3 Hz, 1H), 4.19 – 4.09 (m, 2H), 3.94 (t, *J* = 7.3 Hz, 2H), 3.69 (td, *J* = 11.4, 3.3 Hz, 1H), 3.63 (s, 3H), 2.93 – 2.77 (m, 3H), 2.17 – 2.06 (m, 2H), 1.88 – 1.74 (m, 2H), 1.43 – 1.13 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 175.9, 154.0, 140.9, 140.0, 137.2, 134.3, 124.6, 92.5, 63.0, 51.8, 46.5, 45.6, 43.7, 34.7, 29.8, 29.2, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅BrINO₅Na⁺ [M+Na⁺] 587.9853, found 587.9851.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(5-iodo-2-(trifluoromethyl)phenethyl)carbamoyl)cyclohexane-1-carboxylate (3e)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 30.5 mg, 55%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, J = 1.8 Hz, 1H), 7.66 (dq, J = 8.3, 0.9 Hz, 1H), 7.31 (d, J = 8.3 Hz, 1H), 4.22 – 4.09 (m, 2H), 3.98 – 3.84 (m, 2H), 3.72 (td, J = 11.2, 3.2

Hz, 1H), 3.64 (s, 3H), 2.97 – 2.81 (m, 3H), 2.20 – 2.09 (m, 2H), 1.87 – 1.74 (m, 2H), 1.38 – 1.19 (m, 7H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -59.86. ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.6, 175.9, 154.0, 141.0, 139.7 (q, $J_{C-F} = 1.4$ Hz), 135.9, 128.6 (q, $J_{C-F} = 29.8$ Hz), 127.5 (q, $J_{C-F} = 5.4$ Hz), 124.4 (q, $J_{C-F} = 273.7$ Hz), 98.9, 63.2, 51.9, 46.5, 45.7, 45.4, 31.3, 29.7, 29.3, 25.8, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₅F₃INO₅Na⁺ [M+Na⁺] 578.0622, found 578.0613.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(5-iodo-2-methylphenethyl)carbamoyl)cyclohexane-1carboxylate (3f)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 36.9 mg, 74%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, *J* = 1.9 Hz, 1H), 7.42 (dd, *J* = 7.9, 2.0 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 4.31 – 4.14 (m, 2H), 3.89 – 3.76 (m, 2H), 3.74 – 3.59 (m, 4H), 2.83 (td, *J* = 11.3, 4.0 Hz, 1H), 2.74 (t, *J* = 7.9 Hz, 2H), 2.30 (s, 3H), 2.18 – 2.07 (m, 2H), 1.82 (d, *J* = 3.1 Hz, 2H), 1.40 – 1.28 (m, 6H), 1.23 (d, *J* = 11.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 175.9, 154.1, 139.7, 138.6, 136.3, 135.6, 132.2, 90.9, 63.1, 51.8, 46.6, 45.7, 44.5, 32.0, 29.7, 29.3, 25.7, 25.5, 18.9, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₈INO₅Na⁺ [M+Na⁺] 524.0904, found 524.0904.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(5-iodo-2-methoxyphenethyl)carbamoyl)cyclohexane-1carboxylate (3g)

Purified by PTLC (preparative thin layer chromatography). Yellow sticky oil; yield: 39.0 mg, 75%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.36 (d, *J* = 2.3 Hz, 1H), 6.58 (d, *J* = 8.6 Hz, 1H), 4.20 – 4.05 (m, 2H), 3.98 – 3.83 (m, 2H), 3.78 (s, 3H), 3.67 (td, *J* = 11.3, 3.2 Hz, 1H), 3.62 (s, 3H), 2.92 – 2.67 (m, 3H), 2.16 – 2.02 (m, 2H), 1.86 – 1.74 (m, 2H), 1.43 – 1.14 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.3, 175.9, 157.8, 154.3, 139.2, 136.4, 130.3, 112.5, 82.6, 62.8, 55.5, 51.8, 46.5, 45.6, 44.0, 29.7, 29.3, 29.2, 25.7, 25.6, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₈INO₆Na⁺ [M+Na⁺] 540.0854, found 540.0855.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(3-fluoro-5-iodophenethyl)carbamoyl)cyclohexane-1carboxylate (3h)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 35.0 mg, 69%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (t, *J* = 1.5 Hz, 1H), 7.30 – 7.26 (m, 1H), 6.90 (dt, *J* = 9.3, 1.9 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.98 – 3.81 (m, 2H), 3.68 (td, *J* = 11.5, 3.5 Hz, 1H), 3.64 (s, 3H), 2.83 (td, *J* = 11.4, 4.0 Hz, 1H), 2.74 (t, *J* = 7.6 Hz, 2H), 2.17 – 2.06 (m, 2H), 1.86 –

1.74 (m, 2H), 1.37 – 1.16 (m, 7H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.24. ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 162.3 (d, $J_{C-F} = 251.4$ Hz), 154.0, 143.3 (d, $J_{C-F} = 7.4$ Hz), 134.0 (d, $J_{C-F} = 3.0$ Hz), 122.9 (d, $J_{C-F} = 23.6$ Hz), 115.8 (d, $J_{C-F} = 20.9$ Hz), 93.5 (d, $J_{C-F} = 8.5$ Hz), 63.1, 51.9, 46.5, 45.7, 45.4, 34.2 (d, $J_{C-F} = 3.2$ Hz), 29.6, 29.2, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅FINO₅Na⁺ [M+Na⁺] 528.0654, found 528.0648.

methyl (1*R*,2*R*)-2-((3-chloro-5-iodophenethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1carboxylate (3i)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 38.4 mg, 74%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (t, *J* = 1.7 Hz, 1H), 7.43 (t, *J* = 1.5 Hz, 1H), 7.16 (t, *J* = 1.7 Hz, 1H), 4.24 – 4.14 (m, 2H), 3.97 – 3.78 (m, 2H), 3.67 (td, *J* = 11.4, 3.4 Hz, 1H), 3.63 (s, 3H), 2.82 (td, *J* = 11.3, 3.8 Hz, 1H), 2.71 (t, *J* = 7.6 Hz, 2H), 2.17 – 2.04 (m, 2H), 1.85 – 1.73 (m, 2H), 1.39 – 1.14 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 153.9, 142.8, 136.4, 135.1, 134.9, 128.8, 94.1, 63.1, 51.9, 46.5, 45.6, 45.4, 34.1, 29.7, 29.2, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅ClINO₅Na⁺ [M+Na⁺] 544.0358, found 544.0355.

methyl (1*R*,2*R*)-2-((3-bromo-5-iodophenethyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1carboxylate (3j)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 41.4 mg, 73%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (s, 1H), 7.48 (s, 1H), 7.31 (s, 1H), 4.25 – 4.15 (m, 2H), 3.97 – 3.79 (m, 2H), 3.72 – 3.60 (m, 4H), 2.82 (td, *J* = 11.3, 3.9 Hz, 1H), 2.71 (t, *J* = 7.6 Hz, 2H), 2.16 – 2.05 (m, 2H), 1.86 – 1.75 (m, 2H), 1.38 – 1.14 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 153.9, 143.1, 137.7, 136.9, 131.7, 122.9, 94.5, 63.2, 51.9, 46.6, 45.7, 45.4, 34.0, 29.7, 29.2, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅BrINO₅Na⁺ [M+Na⁺] 587.9853, found 587.9847.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(3-iodo-5-(trifluoromethyl)phenethyl)carbamoyl)cyclohexane-1-carboxylate (3k)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 46.1 mg, 83%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.75 (s, 1H), 7.42 (s, 1H), 4.26 – 4.12 (m, 2H), 4.01 – 3.82 (m, 2H), 3.71 – 3.61 (m, 4H), 2.88 – 2.75 (m, 3H), 2.18 – 2.03 (m, 2H), 1.87 – 1.74 (m, 2H), 1.39 – 1.14 (m, 7H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.77. ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 175.9, 153.9, 142.2, 141.5, 132.44 (q, *J*_{C-F} = 32.5 Hz), 132.36 (q, *J*_{C-F} = 3.8

Hz), 125.3 (q, $J_{C-F} = 3.6$ Hz), 123.0 (q, $J_{C-F} = 273.1$ Hz), 94.0, 63.2, 51.9, 46.6, 45.7, 45.4, 34.2, 29.7, 29.2, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅F₃INO₅Na⁺ [M+Na⁺] 578.0622, found 578.0617.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(3-iodo-5-methoxyphenethyl)carbamoyl)cyclohexane-1carboxylate (3l)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 41.3 mg, 80%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.14 (t, J = 1.4 Hz, 1H), 7.08 (t, J = 1.9 Hz, 1H), 6.71 (t, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.97 – 3.81 (m, 2H), 3.75 (s, 3H), 3.69 (td, J = 11.3, 3.2 Hz, 1H), 3.63 (s, 3H), 2.83 (td, J = 11.3, 3.8 Hz, 1H), 2.70 (t, J = 7.6 Hz, 2H), 2.16 – 2.06 (m, 2H), 1.85 – 1.74 (m, 2H), 1.39 – 1.16 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 160.2, 154.1, 142.4, 130.5, 121.1, 114.7, 94.4, 63.1, 55.5, 51.9, 46.6, 45.7, 34.5, 29.6, 29.3, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₈INO₆Na⁺ [M+Na⁺] 540.0854, found 540.0854.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(4-fluoro-3-iodophenethyl)carbamoyl)cyclohexane-1carboxylate (3m)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 24.4 mg, 48%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (dd, *J* = 6.0, 2.1 Hz, 1H), 7.17 – 7.11 (m, 1H), 6.96 (t, *J* = 8.1 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.95 – 3.81 (m, 2H), 3.68 (td, *J* = 11.3, 3.2 Hz, 1H), 3.63 (s, 3H), 2.82 (td, *J* = 11.3, 3.9 Hz, 1H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.17 – 2.05 (m, 2H), 1.86 – 1.75 (m, 2H), 1.39 – 1.16 (m, 7H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -97.70. ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 160.6 (d, *J*_{C-F} = 244.1 Hz), 154.0, 139.7, 136.9 (d, *J*_{C-F} = 3.7 Hz), 130.8 (d, *J*_{C-F} = 7.2 Hz), 115.5 (d, *J*_{C-F} = 23.8 Hz), 81.2 (d, *J*_{C-F} = 25.4 Hz), 63.1, 51.9, 46.6, 45.8, 45.7, 33.6, 29.7, 29.3, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅FINO₅Na⁺ [M+Na⁺] 528.0654, found 528.0654.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(3-iodo-4-methylphenethyl)carbamoyl)cyclohexane-1carboxylate (3n)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 20.5 mg, 41%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, J = 1.7 Hz, 1H), 7.13 (d, J = 7.7 Hz, 1H), 7.07 (dd, J = 7.7, 1.8 Hz, 1H), 4.25 – 4.12 (m, 2H), 3.92 – 3.82 (m, 2H), 3.69 (td, J = 11.3, 3.2 Hz, 1H), 3.63 (s, 3H), 2.82 (td, J = 11.1, 9.5, 5.6 Hz, 1H), 2.70 (t, J = 7.7 Hz, 2H), 2.37 (s, 3H), 2.16 – 2.07

(m, 2H), 1.85 - 1.75 (m, 2H), 1.39 - 1.15 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 154.1, 139.37, 139.36, 138.4, 129.7, 129.0, 101.2, 63.0, 51.8, 46.6, 45.8, 45.7, 33.8, 29.7, 29.3, 27.7, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₈INO₅Na⁺ [M+Na⁺] 524.0904, found 524.0903.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(3-iodo-4-methoxyphenethyl)carbamoyl)cyclohexane-1carboxylate (30)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 20.7 mg, 40%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 2.1 Hz, 1H), 7.13 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.73 (d, *J* = 8.3 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.93 – 3.80 (m, 5H), 3.74 – 3.63 (m, 1H), 3.63 (s, 3H), 2.82 (td, *J* = 11.2, 3.8 Hz, 1H), 2.69 (t, *J* = 7.6 Hz, 2H), 2.17 – 2.04 (m, 2H), 1.85 – 1.75 (m, 2H), 1.39 – 1.16 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 156.8, 154.1, 139.9, 133.3, 130.2, 110.9, 85.9, 63.0, 56.5, 51.8, 46.6, 46.0, 45.7, 33.5, 29.7, 29.3, 25.7, 25.6, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₈INO₆Na⁺ [M+Na⁺] 540.0854, found 540.0854.

methyl

(1R,2R)-2-((ethoxycarbonyl)(2-(7-iodobenzo[d][1,3]dioxol-5-

yl)ethyl)carbamoyl)cyclohexane-1-carboxylate (3p)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 29.1 mg, 55%. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.95 (d, *J* = 1.5 Hz, 1H), 6.65 (d, *J* = 1.5 Hz, 1H), 5.97 (s, 2H), 4.27 – 4.16 (m, 2H), 3.93 – 3.75 (m, 2H), 3.68 (td, *J* = 11.3, 3.3 Hz, 1H), 3.63 (s, 3H), 2.82 (td, *J* = 11.1, 3.8 Hz, 1H), 2.66 (t, *J* = 7.7 Hz, 2H), 2.16 – 2.04 (m, 2H), 1.86 – 1.74 (m, 2H), 1.43 – 1.15 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 154.1, 148.0, 146.7, 134.9, 130.3, 109.6, 100.6, 70.5, 63.1, 51.9, 46.6, 45.9, 45.7, 34.2, 29.7, 29.3, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₆INO₇Na⁺ [M+Na⁺] 554.0646, found 554.0646.

methyl

(1R,2R)-2-((ethoxycarbonyl)(2-(3-iodo-7-methoxynaphthalen-1-

yl)ethyl)carbamoyl)cyclohexane-1-carboxylate (3q)

Purified by PTLC (preparative thin layer chromatography). Yellow sticky oil; yield: 40.0 mg, 71%. ¹H NMR (400 MHz, Methanol- d_4) δ 8.05 (d, J = 1.8 Hz, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.57 (d, J = 2.6 Hz, 1H), 7.49 (d, J = 1.8 Hz, 1H), 7.14 (dd, J = 9.0, 2.4 Hz, 1H), 4.20 – 4.02 (m, 3H), 3.98 (s, 3H), 3.94 – 3.86 (m, 1H), 3.71 – 3.61 (m, 4H), 3.17 – 3.08 (m, 2H), 2.80 (td, J = 11.4, 3.7 Hz, 1H), 2.19 – 2.05 (m, 2H), 1.90 – 1.76 (m, 2H), 1.43 – 1.31 (m, 3H), 1.26 – 1.15 (m, 4H). ¹³C NMR (101 MHz, Chloroform-

d) δ 178.5, 175.9, 158.5, 154.1, 136.0, 135.60, 135.57, 132.5, 130.9, 129.1, 119.3, 103.1, 87.8, 63.2, 55.7, 51.8, 46.7, 45.9, 45.0, 32.2, 29.7, 29.3, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₅H₃₀INO₆Na⁺ [M+Na⁺] 590.1010, found 590.1010.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(3-(3-iodophenyl)propyl)carbamoyl)cyclohexane-1carboxylate (3r_{mono})

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 15.5 mg, 31%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (t, *J* = 1.7 Hz, 1H), 7.51 (dt, *J* = 7.9, 1.4 Hz, 1H), 7.14 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.00 (t, *J* = 7.7 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.83 – 3.71 (m, 1H), 3.73 – 3.58 (m, 5H), 2.82 (td, *J* = 11.0, 3.8 Hz, 1H), 2.54 (t, *J* = 7.9 Hz, 2H), 2.15 – 2.05 (m, 2H), 1.87 – 1.73 (m, 4H), 1.39 – 1.15 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 175.9, 154.3, 144.3, 137.5, 135.1, 130.2, 127.8, 94.6, 63.0, 51.9, 46.6, 45.8, 44.1, 32.8, 29.8, 29.6, 29.3, 25.7, 25.5, 14.4. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₈INO₅Na⁺ [M+Na⁺] 524.0904, found 524.0904.

methyl (1*R*,2*R*)-2-((3-(3,5-diiodophenyl)propyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1carboxylate (3r_{di})

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 17.1 mg, 27%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.50 (d, J = 1.4 Hz, 2H), 4.27 (q, J = 7.1 Hz, 2H), 3.83 – 3.74 (m, 1H), 3.69 – 3.61 (m, 5H), 2.82 (td, J = 11.2, 3.8 Hz, 1H), 2.49 (t, J = 8.0 Hz, 2H), 2.16 – 2.05 (m, 2H), 1.86 – 1.71 (m, 4H), 1.39 – 1.17 (m, 7H). ¹³C NMR (101 MHz,) δ 178.6, 176.0, 154.3, 146.2, 142.7, 136.9, 94.9, 63.1, 52.0, 46.6, 45.8, 44.0, 32.4, 29.7, 29.6, 29.3, 25.7, 25.5, 14.4. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₇I₂NO₅Na⁺ [M+Na⁺] 649.9871, found 649.9863.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(3-iodobenzyl)carbamoyl)cyclohexane-1-carboxylate (3s_{mono}) Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 11.1 mg, 24%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 7.9 Hz, 1H), 7.01 (t, J = 7.8 Hz, 1H), 4.85 (q, J = 15.0 Hz, 2H), 4.24 (q, J = 7.1 Hz, 2H), 3.79 (td, J = 11.1, 3.3 Hz, 1H), 3.60 (s, 3H), 2.84 (td, J = 11.3, 3.8 Hz, 1H), 2.19 – 2.07 (m, 2H), 1.88 – 1.75 (m, 2H), 1.42 – 1.19 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 175.8, 154.0, 140.4, 136.8, 136.3, 130.2, 127.0, 94.3, 63.3, 51.9, 46.7, 46.5, 45.7, 29.6, 29.3, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₄INO₅Na⁺ [M+Na⁺] 496.0591, found 496.0588.

methyl (1*R*,2*R*)-2-((3,5-diiodobenzyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylate (3s_{di}) Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 20.6 mg, 34%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (t, J = 1.5 Hz, 1H), 7.56 (d, J = 1.6 Hz, 2H), 4.90 (d, J = 15.2 Hz, 1H), 4.67 (d, J = 15.1 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.77 (td, J = 11.2, 3.2 Hz, 1H), 3.64 (s, 3H), 2.84 (td, J = 11.2, 3.8 Hz, 1H), 2.18 – 2.08 (m, 2H), 1.86 – 1.75 (m, 2H), 1.40 – 1.20 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 175.8, 153.7, 144.0, 142.1, 136.2, 94.7, 63.5, 52.1, 46.5, 46.0, 45.7, 29.6, 29.2, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₃I₂NO₅Na⁺ [M+Na⁺] 621.9558, found 621.9555.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(5-iodo-2-methylbenzyl)carbamoyl)cyclohexane-1carboxylate (3t)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 32.3 mg, 66%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (dd, J = 8.0, 1.8 Hz, 1H), 7.31 (s, 1H), 6.84 (d, J = 8.0 Hz, 1H), 4.84 (s, 2H), 4.22 (q, J = 7.1 Hz, 2H), 3.87 (td, J = 11.2, 3.3 Hz, 1H), 3.65 (s, 3H), 2.84 (td, J = 11.4, 3.9 Hz, 1H), 2.27 – 2.10 (m, 5H), 1.89 – 1.78 (m, 2H), 1.44 – 1.17 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.3, 175.9, 154.1, 138.3, 135.8, 134.8, 134.3, 132.0, 91.1, 63.3, 52.1, 46.5, 45.5, 44.6, 29.7, 29.3, 25.7, 25.6, 18.9, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₆INO₅Na⁺ [M+Na⁺] 510.0748, found 510.0748.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(2-fluoro-5-iodobenzyl)carbamoyl)cyclohexane-1-carboxylate (3u)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 21.4 mg, 44%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.43 (m, 2H), 6.76 (dd, *J* = 9.9, 8.4 Hz, 1H), 4.99 (d, *J* = 15.8 Hz, 1H), 4.87 (d, *J* = 15.8 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.83 (td, *J* = 11.1, 3.2 Hz, 1H), 3.66 (s, 3H), 2.85 (td, *J* = 11.3, 3.9 Hz, 1H), 2.22 – 2.09 (m, 2H), 1.88 – 1.75 (m, 2H), 1.42 – 1.18 (m, 7H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -120.10. ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 175.9, 160.5 (d, *J*_{C-F} = 247.7 Hz), 153.8, 137.6 (d, *J*_{C-F} = 7.9 Hz), 137.6 (d, *J*_{C-F} = 4.0 Hz), 127.8 (d, *J*_{C-F} = 14.9 Hz), 117.4 (d, *J*_{C-F} = 22.9 Hz), 87.3 (d, *J*_{C-F} = 3.4 Hz), 63.4, 52.1, 46.4, 45.6,

40.7 (d, *J*_{*C*-*F*} = 4.9 Hz), 29.6, 29.3, 25.7, 25.5, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₃FINO₅Na⁺ [M+Na⁺] 514.0497, found 514.0497.

methyl (1*R*,2*R*)-2-((2-chloro-5-iodobenzyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylate (3v)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 32.0 mg, 63%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (dd, J = 8.4, 2.1 Hz, 1H), 7.41 (d, J = 2.1 Hz, 1H), 7.04 (d, J = 8.2 Hz, 1H), 5.04 (d, J = 16.5 Hz, 1H), 4.89 (d, J = 16.5 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.89 (td, J = 11.2, 3.3 Hz, 1H), 3.67 (s, 3H), 2.85 (td, J = 11.3, 4.0 Hz, 1H), 2.25 – 2.09 (m, 2H), 1.89 – 1.79 (m, 2H), 1.45 – 1.16 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 153.8, 137.6, 137.1, 135.9, 132.6, 131.0, 91.9, 63.4, 52.2, 46.4, 45.5, 44.8, 29.6, 29.2, 25.7, 25.6, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₃CIINO₅Na⁺ [M+Na⁺] 530.0202, found 530.0197.

methyl (1*R*,2*R*)-2-((3-chloro-5-iodobenzyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylate (3w)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). White solid, M.p.: 52.3 – 53.7 °C; yield: 25.2 mg, 50%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (t, *J* = 1.7 Hz, 1H), 7.49 (t, *J* = 1.5 Hz, 1H), 7.20 (t, *J* = 1.7 Hz, 1H), 4.92 (d, *J* = 15.2 Hz, 1H), 4.71 (d, *J* = 15.2 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.78 (td, *J* = 11.1, 3.1 Hz, 1H), 3.63 (s, 3H), 2.84 (td, *J* = 11.1, 3.8 Hz, 1H), 2.19 – 2.07 (m, 2H), 1.87 – 1.76 (m, 2H), 1.40 – 1.21 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 175.8, 153.8, 141.7, 135.9, 135.1, 134.9, 127.5, 93.9, 63.5, 52.0, 46.5, 46.3, 45.7, 29.6, 29.3, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₁₉H₂₃CIINO₅Na⁺ [M+Na⁺] 530.0202, found 530.0202.

methyl (1*R*,2*R*)-2-((3-bromo-5-iodobenzyl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylate (3x)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). White solid, M.p.: 56.1 – 57.5 °C; yield: 27.3 mg, 50%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (s, 1H), 7.53 (s, 1H), 7.36 (s, 1H), 4.93 (d, *J* = 15.2 Hz, 1H), 4.70 (d, *J* = 15.2 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.78 (td, *J* = 11.2, 3.2 Hz, 1H), 3.63 (s, 3H), 2.84 (td, *J* = 11.4, 3.9 Hz, 1H), 2.20 – 2.06 (m, 2H), 1.88 – 1.75 (m, 2H), 1.42 – 1.19 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.6, 175.9, 153.8, 142.0, 138.5, 135.6, 130.4,

122.9, 94.3, 63.5, 52.1, 46.5, 46.2, 45.7, 29.6, 29.3, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for $C_{19}H_{23}BrINO_5Na^+$ [M+Na⁺] 573.9697, found 573.9696.

methyl 3-(((1R,2R)-N-(ethoxycarbonyl)-2-(methoxycarbonyl)cyclohexane-1carboxamido)methyl)-5-iodobenzoate (3y)

Purified by semi-preparative MPLC (medium pressure liquid chromatography). Colorless sticky oil; yield: 22.4 mg, 42%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (t, *J* = 1.6 Hz, 1H), 7.88 (t, *J* = 1.6 Hz, 1H), 7.79 (t, *J* = 1.7 Hz, 1H), 4.97 (d, *J* = 15.1 Hz, 1H), 4.81 (d, *J* = 15.1 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 3.79 (td, *J* = 11.2, 3.2 Hz, 1H), 3.62 (s, 3H), 2.84 (td, *J* = 11.2, 3.8 Hz, 1H), 2.20 – 2.08 (m, 2H), 1.88 – 1.75 (m, 2H), 1.39 – 1.31 (m, 3H), 1.30 – 1.25 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.6, 175.9, 165.6, 153.8, 141.1, 140.5, 137.4, 131.9, 128.5, 93.9, 63.4, 52.5, 52.0, 46.5, 46.4, 45.6, 29.6, 29.2, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₆INO₇Na⁺ [M+Na⁺] 554.0646, found 554.0651.

methyl (1*R*,2*R*)-2-((3',5'-diiodo-[1,1'-biphenyl]-2-yl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylate (5a)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 38.2 mg, 58%. The two rotamers' ratio is about 92:8. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (t, *J* = 1.6 Hz, 0.1H), 8.01 (t, *J* = 1.6 Hz, 0.83H), 7.57 (d, *J* = 1.6 Hz, 0.19H), 7.50 (d, *J* = 1.6 Hz, 1.73H), 7.45 – 7.35 (m, 2.06H), 7.30 – 7.25 (m, 1.11H), 7.23 – 7.17 (m, 0.91H), 4.12 – 3.92 (m, 2.04H), 3.73 (td, *J* = 11.4, 3.2 Hz, 1.11H), 3.66 (s, 2.68H), 3.61 (s, 0.23H), 2.84 (td, *J* = 11.5, 3.9 Hz, 0.92H), 2.66 (td, *J* = 11.5, 3.9 Hz, 0.08H), 2.21 – 2.10 (m, 0.97H), 2.05 – 1.95 (m, 0.99H), 1.87 – 1.74 (m, 2.03H), 1.42 – 1.01 (m, 7.06H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.2, 175.9, 153.1, 144.2, 142.4, 137.5, 136.9, 136.3, 129.8, 129.4, 129.3, 128.6, 94.4, 63.2, 51.9, 46.4, 45.4, 29.8, 29.1, 25.7, 25.4, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₅I₂NO₅Na⁺ [M+Na⁺] 683.9714, found 683.9703.

(1R,2R)-2-((ethoxycarbonyl)(2'-fluoro-5'-iodo-[1,1'-biphenyl]-2-

yl)carbamoyl)cyclohexane-1-carboxylate (5b)

Purified by PTLC (preparative thin layer chromatography). White solid, M.p.: 163.6 - 165.4 °C; yield: 37.7 mg, 68%. The two rotamers' ratio is about 90:10. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 - 7.99

(m, 0.16H), 7.64 – 7.56 (m, 0.92H), 7.51 – 7.37 (m, 3.17H), 7.36 – 7.20 (m, 2.19H), 6.86 (t, J = 9.0 Hz, 0.81H), 4.13 – 3.95 (m, 2.01H), 3.78 – 3.57 (m, 4.03H), 2.82 (td, J = 11.4, 3.8 Hz, 0.90H), 2.73 – 2.63 (m, 0.10H), 2.19 – 2.08 (m, 0.97H), 1.98 – 1.71 (m, 3.20H), 1.42 – 1.22 (m, 3.26H), 1.18 – 1.02 (m, 3.94H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.0, -116.8. ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.7, 175.9, 159.7 (d, $J_{C-F} = 248.7$ Hz), 153.3, 146.5 (d, $J_{C-F} = 20.0$ Hz), 139.8 (d, $J_{C-F} = 3.0$ Hz), 138.6 (d, $J_{C-F} = 7.9$ Hz), 136.9, 132.8, 130.7 (d, $J_{C-F} = 20.0$ Hz), 129.6, 129.4, 128.2, 117.9 (d, $J_{C-F} = 23.3$ Hz), 86.8 (d, $J_{C-F} = 3.7$ Hz), 63.2, 51.9, 46.2, 45.3, 29.4, 29.1, 25.7, 25.4, 13.9. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₅FINO₅Na⁺ [M+Na⁺] 576.0654, found 576.0650.

methyl

(1*R*,2*R*)-2-((2'-chloro-5'-iodo-[1,1'-biphenyl]-2-

yl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylate (5c)

Purified by PTLC (preparative thin layer chromatography). Yellow solid, M.p.: 173.5 - 174.8 °C; yield: 39.8 mg, 70%. The two rotamers' ratio is about 71:29. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.53 (m, 1.04H), 7.50 – 7.37 (m, 3.04H), 7.35 – 7.30 (m, 1.00H), 7.28 – 7.22 (m, 1.02H), 7.18 – 7.12 (m, 0.95H), 4.21 (q, *J* = 7.1 Hz, 0.45H), 4.15 – 4.06 (m, 0.75H), 3.95 – 3.84 (m, 1.04H), 3.75 – 3.59 (m, 4.10H), 2.86 (td, *J* = 11.5, 4.0 Hz, 0.71H), 2.69 (td, *J* = 11.5, 3.7 Hz, 0.29H), 2.20 – 2.12 (m, 0.71H), 2.11 – 2.05 (m, 0.29H), 1.95 – 1.87 (m, 0.72H), 1.86 – 1.72 (m, 1.47H), 1.62 – 1.54 (m, 0.3H), 1.43 – 1.18 (m, 5.63H), 1.10 (t, *J* = 7.1 Hz, 2.21H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.2, 179.0, 177.1, 175.9, 153.6, 153.2, 139.6, 139.5, 139.2, 138.7, 138.3, 137.8, 136.5, 136.0, 135.9, 134.2, 133.2, 131.6, 131.3, 131.0, 130.8, 129.7, 129.6, 129.4, 128.0, 127.9, 91.2, 90.4, 63.4, 63.3, 51.9, 51.8, 46.2, 46.0, 45.4, 45.0, 29.8, 29.1, 28.6, 25.7, 25.6, 25.5, 25.3, 14.5, 13.9. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₅ClINO₅Na⁺ [M+Na⁺] 592.0358, found 592.0358.

methyl

(1*R*,2*R*)-2-((ethoxycarbonyl)(3'-fluoro-5'-iodo-[1,1'-biphenyl]-2-

yl)carbamoyl)cyclohexane-1-carboxylate (5d)

Purified by PTLC (preparative thin layer chromatography). White solid, M.p.: 80.1 - 82.0 °C; yield: 35.8 mg, 65%. The two rotamers' ratio is about 85:15. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.36 (m, 3.18H), 7.34 (t, J = 1.4 Hz, 0.87H), 7.31 – 7.27 (m, 1.01H), 7.24 – 7.18 (m, 0.89H), 7.02 – 6.95 (m, 0.29H), 6.90 (dt, J = 9.3, 1.9 Hz, 0.79H), 4.11 – 3.93 (m, 2.09H), 3.73 (td, J = 11.4, 3.2 Hz, 0.99H), 3.66 (s, 2.53H), 3.62 (s, 0.46H), 2.82 (td, J = 11.4, 3.9 Hz, 0.85H), 2.71 (td, J = 11.5, 3.5 Hz, 0.15H), 2.22 – 2.03 (m, 1.15H), 2.03 – 1.90 (m, 0.87H), 1.86 – 1.73 (m, 2.01H), 1.42 – 1.24 (m, 3.23H), 1.18 – 1.01 (m, 3.99H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.45, -111.08. ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.1, 175.9, 162.0 (d, $J_{C-F} = 252.0$ Hz), 153.2, 142.4 (d, $J_{C-F} = 8.1$ Hz), 137.8 (d, $J_{C-F} = 2.0$ Hz), 136.3, 133.5 (d, $J_{C-F} = 3.2$ Hz), 129.8, 129.38, 129.36, 128.6, 123.9 (d, $J_{C-F} = 23.5$ Hz), 115.6 (d, $J_C = 5.25$ Hz), 115.6 (d, $J_C = 5.25$ Hz), 129.8, 129.38, 129.36, 128.6, 123.9 (d, $J_{C-F} = 2.5$ Hz), 129.8, 129.38, 129.36, 128.6, 123.9 (d, $J_{C-F} = 2.5$ Hz), 115.6 (d, $J_C = 5.5$ Hz), 120.0 (d, $J_C = 5.5$ Hz), 129.8, 129.38, 129.36, 128.6, 123.9 (d, $J_C = 5.5$ Hz), 125.6 (d, $J_C = 5.5$ Hz), 125.8 Hz), 125.8

 $_{-F}$ = 21.8 Hz), 93.2 (d, J_{C-F} = 8.5 Hz), 63.2, 51.9, 46.3, 45.4, 29.2, 29.1, 25.7, 25.4, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₅FINO₅Na⁺ [M+Na⁺] 576.0654, found 576.0649.

methyl

(1R,2R)-2-((3'-chloro-5'-iodo-[1,1'-biphenyl]-2-

yl)(ethoxycarbonyl)carbamoyl)cyclohexane-1-carboxylate (5e)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 37.9 mg, 67%. The two rotamers' ratio is about 90:10. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (t, *J* = 1.9 Hz, 0.10H), 7.66 (t, *J* = 1.8 Hz, 0.85H), 7.51 – 7.35 (m, 3.08H), 7.31 – 7.27 (m, 0.97H), 7.25 – 7.18 (m, 1.09H), 7.17 (t, *J* = 1.7 Hz, 0.88H), 4.09 – 3.89 (m, 2.16H), 3.73 (td, *J* = 11.4, 3.2 Hz, 0.99H), 3.66 (s, 2.63H), 3.60 (s, 0.27H), 2.84 (td, *J* = 11.3, 3.9 Hz, 0.90H), 2.68 (td, *J* = 11.3, 3.4 Hz, 0.10H), 2.21 – 2.09 (m, 1.03H), 2.02 – 1.92 (m, 0.93H), 1.87 – 1.73 (m, 2.05H), 1.43 – 1.21 (m, 3.26H), 1.22 – 1.02 (m, 4.08H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.2, 175.9, 153.1, 142.0, 137.6, 136.3, 136.1, 135.8, 134.7, 129.8, 129.4, 128.6, 128.4, 93.7, 63.2, 51.9, 46.3, 45.4, 29.4, 29.1, 25.7, 25.4, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₅ClINO₅Na⁺ [M+Na⁺] 592.0358, found 592.0357.

methyl 2'-((1*R*,2*R*)-N-(ethoxycarbonyl)-2-(methoxycarbonyl)cyclohexane-1-carboxamido)-5-iodo-[1,1'-biphenyl]-3-carboxylate (5f)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 39.0 mg, 66%. The two rotamers' ratio is about 91:9. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 – 8.30 (m, 0.96H), 7.88 (t, *J* = 1.6 Hz, 0.15H), 7.84 (t, *J* = 1.6 Hz, 0.85H), 7.78 (t, *J* = 1.7 Hz, 0.12H), 7.72 (t, *J* = 1.7 Hz, 0.88H), 7.47 – 7.37 (m, 2.05H), 7.34 – 7.28 (m, 0.99H), 7.24 – 7.17 (m, 0.89H), 4.05 – 3.92 (m, 1.99H), 3.89 (s, 2.93H), 3.76 – 3.62 (m, 3.75H), 3.51 (s, 0.22H), 2.81 (td, *J* = 11.3, 3.8 Hz, 0.91H), 2.62 (td, *J* = 11.3, 3.9 Hz, 0.09H), 2.19 – 2.08 (m, 1.01H), 1.95 – 1.85 (m, 0.96H), 1.83 – 1.71 (m, 1.98H), 1.39 – 1.21 (m, 3.38H), 1.16 – 1.00 (m, 3.83H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.1, 175.9, 165.4, 153.2, 141.6, 141.0, 138.0, 137.6, 136.3, 131.8, 129.9, 129.4, 129.3, 129.2, 128.6, 93.5, 63.2, 52.5, 51.9, 46.3, 45.4, 29.4, 29.1, 25.7, 25.4, 14.1. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₂₈INO₇Na⁺ [M+Na⁺] 616.0803, found 616.0796.

methyl (1*R*,2*R*)-2-((ethoxycarbonyl)(3'-iodo-5'-methyl-[1,1'-biphenyl]-2vl)carbamoyl)cyclohexane-1-carboxylate (5g)

Purified by PTLC (preparative thin layer chromatography). White solid, M.p.: 87.4 - 88.5 °C; yield: 36.5 mg, 66%. The two rotamers' ratio is about 87:13. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (s, 0.13H), 7.49 (s, 0.86H), 7.42 - 7.27 (m, 4.02H), 7.21 - 7.16 (m, 0.86H), 7.08 (s, 0.13H), 7.02 - 6.94 (m, 0.98H), 4.06 - 3.89 (m, 2.22H), 3.72 (td, J = 11.4, 3.2 Hz, 1.03H), 3.67 (s, 2.60H), 3.61 (s, 0.35H), 2.83 (td, J = 11.4, 3.8 Hz, 0.87H), 2.73 (td, J = 11.4, 3.7 Hz, 0.13H), 2.38 (s, 0.32H), 2.27 (s, 2.674H), 2.20 - 2.04 (m, 1.18H), 2.02 - 1.94 (m, 0.87H), 1.87 - 1.71 (m, 2.07H), 1.41 - 1.26 (m, 3.16H), 1.18 - 0.99 (m, 4.00H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.1, 175.9, 153.3, 140.6, 139.9, 139.0, 137.2, 136.3, 134.6, 130.0, 129.2, 128.9, 128.8, 128.5, 94.0, 63.0, 51.9, 46.3, 45.4, 29.3, 29.1, 25.7, 25.4, 21.0, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₅H₂₈INO₅Na⁺ [M+Na⁺] 572.0904, found 572.0900.

methyl

(1*R*,2*R*)-2-((ethoxycarbonyl)(3'-iodo-5'-methoxy-[1,1'-biphenyl]-2e-1-carboxylate (5h)

yl)carbamoyl)cyclohexane-1-carboxylate (5h)

Purified by PTLC (preparative thin layer chromatography). Pale yellow sticky oil; yield: 36.3 mg, 64%. The two rotamers' ratio is about 88:12. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.34 (m, 2.02H), 7.33 – 7.27 (m, 0.98H), 7.24 – 7.15 (m, 2.01H), 7.12 (s, 0.83H), 6.79 (s, 0.12H), 6.71 (s, 0.84H), 4.07 – 3.97 (m, 1.92H), 3.79 (s, 0.36H), 3.70 (d, *J* = 35.2 Hz, 6.19H), 3.57 (s, 0.29H), 2.81 (td, *J* = 11.4, 3.8 Hz, 0.88H), 2.68 (td, *J* = 11.5, 3.7 Hz, 0.12H), 2.21 – 2.07 (m, 1.01H), 2.01 – 1.91 (m, 0.90H), 1.87 – 1.72 (m, 2.02H), 1.41 – 1.25 (m, 3.16H), 1.20 – 1.01 (m, 3.95H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.0, 175.9, 159.8, 153.3, 141.7, 138.8, 136.3, 129.9, 129.2, 128.9, 128.5, 122.1, 114.6, 93.9, 63.1, 55.6, 51.9, 46.3, 45.4, 29.3, 29.2, 25.7, 25.4, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₅H₂₈INO₆Na⁺ [M+Na⁺] 588.0854, found 588.0851.

methyl

(1*R*,2*R*)-2-((ethoxycarbonyl)(3'-iodo-4'-methyl-[1,1'-biphenyl]-2-

yl)carbamoyl)cyclohexane-1-carboxylate (5i)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 26.0 mg, 47%. The two rotamers' ratio is about 83:17. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 1.8 Hz, 0.14H), 7.64 (d, *J* = 1.7 Hz, 0.77H), 7.42 – 7.33 (m, 2.15H), 7.33 – 7.27 (m, 0.98H), 7.22 – 7.14 (m, 1.83H), 7.08 (dd, *J* = 7.8, 1.8 Hz, 0.83H), 7.03 – 6.98 (m, 0.17H), 4.05 – 3.90 (m, 2.18H), 3.77 – 3.64 (m, 3.44H), 3.63 (s, 0.45H), 2.88 – 2.72 (m, 1.05H), 2.50 – 2.36 (m, 2.97H), 2.20 – 2.05 (m, 1.17H), 2.02 – 1.94 (m, 0.83H), 1.86 – 1.73 (m, 1.99H), 1.42 – 1.23 (m, 3.27H), 1.17 – 0.97 (m, 3.96H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.1, 175.9, 153.4, 140.7, 138.7, 138.1, 136.4, 130.1, 129.3, 129.2, 128.7, 128.6, 128.5,

100.8, 63.1, 51.9, 46.3, 45.5, 29.3, 29.2, 27.9, 25.7, 25.4, 14.2. HRMS (m/z, ESI-TOF): Calcd for $C_{25}H_{28}INO_5Na^+$ [M+Na⁺] 572.0904, found 572.0903.

2.4 Unsuccessful substrates

Reaction conditions: **1** (0.1 mmol), **2** (0.3 mmol), $Pd(OAc)_2$ (0.01 mmol), 3-nitropyridin-2-ol (0.005 mmol), AgOTFA (0.05 mmol), K₂HPO₄ (0.05 mmol), HFIP (1.0 mL), 90 °C, 36 h; Then MeI (0.1 mL), K₂CO₃ (0.5 mmol), acetone (2.0 mL), 60 °C, 2 h.^a15% unknown iodinated product was detected. ^bmost starting material decomposed.

2.5 Gram-scale synthesis

To an oven-dried 120 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with **11** (1.16 g, 3.08 mmol, 1 equiv), 4-iodo-3-nitroanisole (2.57 g, 9.24 mmol, 3 equiv), Pd(OAc)₂ (70 mg, 0.31 mmol, 10 mol%), **L1** (3-nitropyridin-2-ol, 21.6 mg, 0.15 mmol, 5 mol%), AgOTFA (339 mg, 1.54 mmol, 0.5 equiv) and K₂HPO₄ (268 mg, 1.54 mmol, 0.5 equiv) sequentially. HFIP (30 mL) was added to the mixture along the inside wall of the tube. The tube was then capped and placed into a preheated oil bath (90 °C). The reaction was stirred for 36 h and cooled to room temperature. After the solvent was removed under reduced pressure, MeI (2 mL, 30.8 mmol, 10 equiv), K₂CO₃ (2.1 g, 15.4 mmol, 5 equiv) were added sequentially. Acetone (45 mL) was added to the mixture along the inside wall of the tube. The mixture along the inside wall of C for 2 h and then cooled to room temperature. The crude reaction mixture was diluted with EA (20 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 150 mL of EA. The filtrate was concentrated in vacuo, and the resulting residue was purified by flash silica gel chromatography using PE/EA (40/1 to 20/1) as the eluent to give the desired product (**3**].

2.6 Removal of Directing Group (DG)

2.6.1 Hydrolysis DG by a one-pot protocol:

To an oven-dried 38 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with substrate **11** or **4h** (0.2 mmol, 1 equiv), 4-iodo-3-nitroanisole (168 mg, 0.6 mmol, 3 equiv), Pd(OAc)2 (4.5 mg, 0.02 mmol, 10 mol%), **L1** (3-nitropyridin-2-ol, 1.4 mg, 0.01 mmol, 5 mol%), AgOTFA (22 mg, 0.1 mmol, 0.5 equiv) and K2HPO₄ (17.4 mg, 0.1 mmol, 0.5 equiv) sequentially. HFIP (2 mL) was added to the mixture along the inside wall of the tube. The tube was then capped and placed into a preheated oil bath (90 °C) or hotplate (90 °C). The reaction was stirred for 36 h and cooled to room temperature. Then the volatile matter was removed under reduced pressure, NaH (as a 60% dispersion in mineral oil, 1 mmol, 5 equiv) was added, THF (3 mL) was charged follow and stirred at room temperature for another 6 h, The crude reaction mixture was diluted with EA (5 mL) and filtered through a short pad of silica gel. The sealed tube and silica gel pad were washed with an additional 25 mL of EA. The filtrate was concentrated in vacuo, and the resulting residue was purified by preparative thin layer chromatography using PE/EA (15/1) as the eluent to give the desired product.

ethyl (3-iodo-5-methoxyphenethyl)carbamate (6)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 43.4 mg, 62%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 (s, 1H), 7.09 (s, 1H), 6.67 (s, 1H), 4.76 (s, 1H), 4.09 (q, *J* = 7.2 Hz, 2H), 3.75 (s, 3H), 3.38 (q, *J* = 6.8 Hz, 2H), 2.71 (t, *J* = 7.1 Hz, 2H), 1.22 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.3, 156.7, 142.3, 130.3, 121.1, 114.6, 94.6, 60.9, 55.5, 41.9, 35.8, 14.7. HRMS (m/z, ESI-TOF): Calcd for C₁₂H₁₆INO₃Na⁺ [M+Na⁺] 372.0067, found 372.0067.

ethyl (3'-iodo-5'-methoxy-[1,1'-biphenyl]-2-yl)carbamate (7)

Purified by PTLC (preparative thin layer chromatography). Colorless sticky oil; yield: 37.1 mg, 47%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 8.4 Hz, 1H), 7.36 (td, *J* = 8.0, 1.7 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.17 (d, *J* = 7.2 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.85 (s, 1H), 6.55 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.4, 153.7, 141.2, 134.9, 130.6, 129.9, 129.1, 123.5, 122.8, 120.4 – 119.8 (m), 114.8, 95.2, 61.4, 55.7, 14.7. HRMS (m/z, ESI-TOF): Calcd for C₁₆H₁₆INO₃Na⁺ [M+Na⁺] 420.0067, found 420.0067.

2.6.2 Hydrolysis by a stepwise protocol:

Step 1:To an oven-dried 38 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with substrate 11 (0.1 mmol, 1 equiv), 4-iodo-3-nitroanisole (84 mg, 0.3 mmol, 3 equiv), Pd(OAc)2 (2.3 mg, 0.01 mmol, 10 mol%), L1 (3-nitropyridin-2-ol, 0.7 mg, 0.005 mmol, 5 mol%), AgOTFA (11 mg, 0.05 mmol, 0.5 equiv) and K2HPO4 (8.72 mg, 0.05 mmol, 0.5 equiv) sequentially. HFIP (1 mL) was added to the mixture along the inside wall of the tube. The tube was then capped and placed into a preheated hotplate (90 °C). The reaction was stirred for 36 h and cooled to room temperature. Then, acidize by HOAc (50 µl) with stirred for another 10 min. The crude reaction mixture was diluted with EA (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EA. The filtrate was concentrated in vacuo, and the resulting residue was purified by preparative thin layer chromatography using PE/EA (5/1 and 0.5% of HOAc) as the eluent to give the desired product **3l**acid. Brown sticky oil; yield: 39.3 mg, 78%. ¹H NMR (400 MHz, Chloroform-d) & 7.12 (s, 1H), 7.08 (s, 1H), 6.68 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.94 - 3.80 (m, 2H), 3.74 (s, 3H), 3.65 (td, J)= 11.3, 3.2 Hz, 1H), 2.82 (td, J = 11.4, 3.6 Hz, 1H), 2.67 (t, J = 7.5 Hz, 2H), 2.22 - 2.03 (m, 2H), 1.87 -1.73 (m, 2H), 1.40 – 1.24 (m, 6H), 1.22 – 1.11 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 181.5, 178.2, 160.2, 154.0, 142.3, 130.5, 121.2, 114.5, 94.4, 63.1, 55.5, 46.3, 45.6, 45.4, 34.4, 29.5, 29.2, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₂₅INO₆⁻ [M-H⁺] 502.0732, found 502.0738.

Step 2: To an oven-dried 38 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with $3I_{acid}$ (0.066 mmol, 1 equiv),NaH (as a 60% dispersion in mineral oil, 0.33 mmol, 5 equiv) was added, THF (1.5 mL) was charged follow and stirred at room temperature for 6 h, The crude reaction mixture was diluted with EA (5 mL) and filtered through a short pad of silica gel. The sealed tube and silica gel pad were washed with an additional 25 mL of EA. The filtrate was concentrated in vacuo, and the resulting residue was purified by preparative thin layer chromatography using PE/EA (15/1) as the eluent to give the desired product 6 (18.5 mg, 80%).

2.6.3 Other hydrolysis conditions by one-pot protocol:

	$\sim N = 0$ 0	Pd(OAc) ₂ (10 3-nitropyridin-2-ol .NO ₂ AgOTFA (0.5	Pd(OAc) ₂ (10 mol%) 3-nitropyridin-2-ol (5 mol%) hydrolysis 2 AgOTFA (0.5 equiv) condition		CO ₂ Et	
OM	e 0Me 0Me	K ₂ HPO ₄ (0.5 HFIP, 90 °C,	equiv) , 36 h	OMe 6		
entry	acid or base	solvent	Т	t	6 (%)	
1	K ₂ CO ₃	THF	rt	6 h	ND	
2	КОН	THF	rt	6 h	34	
3	КОН	MeOH	110 °C	24 h	trace	
4	conc. HCl	MeOH	110 °C	24 h	40	

The experimental procedures were similar to **2.6.1**, entry 4 should alkalization before filtration. Yield was determined by ¹H NMR with CH_2Br_2 as internal standard. ND = no product detected.

2.7 Further elaborations

To an oven-dried 38 mL sealed tube equipped with a magnetic stir bar was charged with **31** (51.7 mg, 0.1 mmol), CuCN (17.9 mg, 0.2 mmol), L-Proline (11.5 mg, 0.1 mmol) and DMF (1 mL). Then the tube was capped and placed into a preheated hotplate (120 °C). The reaction was stirred for 48 h and cooled to room temperature. The mixture was filtered through a short pad of Celite. The filtrate was concentrated under vacuum. Afterwards, the residue was purified by preparative thin layer chromatography using PE/EA (10/1) as the eluent to afford **8**. Colorless sticky oil; yield: 33.3 mg, 80%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.09 (s, 1H), 6.99 (s, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.99 – 3.82 (m, 2H), 3.81 (s, 3H), 3.67 (td, *J* = 11.4, 3.2 Hz, 1H), 3.63 (s, 3H), 2.87 – 2.70 (m, 3H), 2.19 – 2.02 (m, 2H), 1.88 – 1.72 (m, 2H), 1.37 – 1.17 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 159.9, 153.9, 142.2, 125.1, 120.0, 118.9, 115.1, 113.1, 63.1, 55.7, 51.8, 46.5, 45.6, 45.4, 34.5, 29.6, 29.2, 25.7, 25.5, 14.3. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₈N₂O₆Na⁺ [M+Na⁺] 439.1840, found 439.1842.

To an oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **31** (51.7 mg, 0.1 mmol), boronic acid (25 mg, 0.2 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol) and Na₂CO₃ (21.2 mg, 0.2 mmol) under Ar atmosphere. Then acetone/H₂O (0.5 mL/0.5 mL) was added and the reaction was heated at 110 °C for 24 h. After cooled to room temperature, the mixture was diluted with H₂O (5 mL) and the aqueous phase was extracted with EA (5 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. Afterwards, the residue was purified by preparative thin layer chromatography using PE/EA (10/1) as the eluent to afford **9**. Colorless sticky oil; yield: 39.2 mg,

84%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.03 (s, 1H), 6.98 (s, 1H), 6.77 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.98 (hept, *J* = 6.9, 6.4 Hz, 2H), 3.85 (s, 3H), 3.73 (td, *J* = 11.2, 3.2 Hz, 1H), 3.64 (s, 3H), 2.85 (q, *J* = 7.7 Hz, 3H), 2.13 (t, *J* = 6.8 Hz, 2H), 1.87 – 1.74 (m, 2H), 1.40 – 1.21 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 160.1, 154.2, 142.9, 141.1, 141.0, 128.8, 127.5, 127.3, 120.6, 113.4, 111.1, 63.0, 55.4, 51.8, 46.6, 46.0, 45.7, 35.1, 29.6, 29.3, 25.7, 25.5, 14.2. HRMS (m/z, ESI-TOF): Calcd for C₂₇H₃₃NO₆Na⁺ [M+Na⁺] 490.2200, found 490.2206.

To an oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **31** (51.7 mg, 0.1 mmol), Pd(PPh₃)₄ (5.8 mg, 0.005 mmol) and CuI (1.0 mg, 0.005 mmol) under Ar atmosphere. Then anhydrous MeCN (1 mL), Et₃N (42 µL, 0.3 mmol) and trimethylsilylacetylene (42 µL, 0.3 mmol) was added sequentially to the mixture. The reaction was stirred at 30 °C for 24 h. The mixture was filtered through a short pad of Celite and the filtrate was concentrated under vacuum. Afterwards, the residue was purified by preparative thin layer chromatography using PE/EA (10/1) as the eluent to afford **10**. Colorless sticky oil; yield: 47.6 mg, 98%. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.92 (s, 1H), 6.82 (s, 1H), 6.71 (s, 1H), 4.23 – 4.11 (m, 2H), 3.95 – 3.82 (m, 2H), 3.76 (s, 3H), 3.68 (td, *J* = 11.2, 3.2 Hz, 1H), 3.62 (s, 3H), 2.82 (td, *J* = 11.3, 3.8 Hz, 1H), 2.71 (t, *J* = 7.7 Hz, 2H), 2.10 (dd, *J* = 10.5, 5.1 Hz, 2H), 1.85 – 1.74 (m, 2H), 1.38 – 1.18 (m, 7H), 0.23 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 175.9, 159.4, 154.1, 140.5, 125.3, 124.0, 116.2, 114.6, 105.1, 93.9, 63.0, 55.4, 51.8, 46.5, 45.7, 45.7, 34.6, 29.6, 29.3, 25.7, 25.5, 14.2, 0.1. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₃₇NO₆SiNa⁺ [M+Na⁺] 510.2282, found 510.2281.

2.8 The reduced (C–I -> C–H) by-product from iodinating reagents

To an oven-dried 38 mL sealed tube (with a Teflon cap) equipped with a magnetic stir bar was charged with substrate **1a** (0.1 mmol, 1 equiv), 4-iodo-3-nitroanisole (84 mg, 0.3 mmol, 3 equiv), Pd(OAc)₂ (2.3 mg, 0.01 mmol, 10 mol%), **L1** (3-nitropyridin-2-ol, 0.7 mg, 0.005 mmol, 5 mol%), AgOTFA (11 mg, 0.05 mmol, 0.5 equiv) and K₂HPO₄ (8.72 mg, 0.05 mmol, 0.5 equiv) sequentially. HFIP (1 mL) was added to the mixture along the inside wall of the tube. The tube was then capped and placed into a preheated hotplate (90 °C). The reaction was stirred for 36 h and cooled to room temperature. After the solvent was removed under reduced pressure, MeI (0.1 mL), K₂CO₃ (70 mg, 0.5 mmol, 5 equiv) were added sequentially. Acetone (2 mL) was added to the mixture along the inside would be not the mixture along the tube. The was stirred at 60 °C for 2 h and then cooled to room temperature. The crude reaction mixture was diluted with EA (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad
were washed with an additional 25 mL of EA. The filtrate was concentrated in vacuo, and the resulting residue was purified by preparative thin layer chromatography using PE/EA (30/1) as the eluent to give product **S1**. Yellow sticky oil; yield: 15mg, 98% (part of **S1** might be removed in vacuo). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (dd, J = 8.1, 2.4 Hz, 1H), 7.73 (t, J = 2.3 Hz, 1H), 7.43 (t, J = 8.2 Hz, 1H), 7.23 (dd, J = 8.3, 2.5 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.2, 149.3, 130.1, 121.5, 115.9, 108.2, 56.0. The data are consistent with reference^[S4].

2.9 References

- [S1] A. Berkessel, K. Glaubitz, J. Lex, Enantiomerically Pure β-Amino Acids: A Convenient Access to Both Enantiomers of trans-2-Aminocyclohexanecarboxylic Acid, *Eur. J. Org. Chem.* 2002, 2948-2952.
- [S2] S. S. Kinderman, M. M. Wekking, J. H. van Maarseveen, H. E. Schoemaker, H. Hiemstra, F. P. Rutjes, Catalytic *N*-sulfonyliminium ion-mediated cyclizations to alpha-vinyl-substituted isoquinolines and beta-carbolines and applications in metathesis, *J. Org. Chem.*, 2005, 70, 5519-5527.
- [S3] C. Liu, Y. Zhang, N. Liu, J. Qiu, A simple and efficient approach for the palladium-catalyzed ligand-free Suzuki reaction in water, *Green Chem.*, 2012, 14, 2999-3003.
- [S4] H. Yang, Y. Li, M. Jiang, J. Wang, H. Fu, General copper-catalyzed transformations of functional groups from arylboronic acids in water, *Chem. Eur. J.*, 2011, 17, 5652-5660.

3. NMR spectra of compounds

3.1 NMR spectra of substrates

7,175 7,175 1,172 7,175 7,175 1,133 7,175 7,164 1,120 7,175 7,164 1,120 7,175 7,164 1,120 7,175 1,120 1,125 7,175 1,125 1,125 7,175 1,125 1,125 7,175 1,170 1,170 7,105 1,170 1,125 7,105 1,170 1,125 1,170 1,125 1,125 1,125 1,125 1,125

(7) 5.60 (7) 5.60 (7) 5.60 (7) 5.60 (7) 7.560 (7) 7.560 (7) 7.560 (7) 7.560 (7) 7.560 (7) 7.560 (7) 7.40 (7) 7.40 (7) 7.420 (7) 7.730 (4,107) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730 (4,117) (7) 7.730

7.145 7.7134 7.7134 7.7134 7.7134 7.7112 7.7112 7.7112 7.71108 7.711108 7.71108 7.

7,7256 7,7187 7,1165 7,1175 7,

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 r1 (ppm)

y1-L-4-OMe.1.fid

7.2.6 (6.6.7) (6.7.7)

7.715 7.7515 7.6535 7.7535 7.7535 7.7535 7.7535 7.7535 7.7535 7.7535 7.7535 7.7535 7.7535 7.7555

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

7/126/ 7/112/ 7/112/ 7/112/ 7/112/ 7/112/ 7/112/ 6/097/ 6/007/

7, 2000 7, 200

8.000 9.000

7.238 (* 7.2

3.2 NMR spectra of products

$\sum_{i=1}^{5} \frac{1}{1,2} \sum_{i=1}^{5} \frac{1}{1,2$

Al-Mon-qri 1: 1230 Al-Mon-qri 1: 2230 Al-1220 Al-1220

7.350 7.437 7.437 7.447 7.

7.35% 7.75% 7.

7.7.38% 7.7.7.28% 7.7.7.28% 7.7.7.28% 7.7.28% 6.6.913 7.7.28% 6.6.913 7.7.28% 6.6.913 7.7.28% 6.6.913 7.7.28% 6.6.914 7.7.28% 6.6.913 7.7.28% 7.7.28% 7.7.28% 7.7.28% 7.8.82%

y1-3-Br.6.fid

$\begin{array}{c} 7.58 \\ 7.58 \\ 7.58 \\ 7.71 \\ 7.$

、1565章 「1455」 「1455」 「1455」 「1565 「15566 「15566 「15566 「15566 「155

7,1416 7,7126 7,71416 7,71416 7,71416 7,7141 7,7141 7,7141 7,7141 7,7141 7,7141 7,7141 7,7141 7,7141 7,7141 7,7141 7,1261 7,8164 7,817 7,8164 7,916477,91647 7,91647 7,916477,9

y1-4-0Me.3.fid

7.266 (6.654) (6.655) (6.654) (

7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.75 7.55

8000% 80

(† 17.585) († 7.758)

7.134 7.134 7.1740 7.141 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1740 7.1751 7.1730 7.1751 7.1730 7.1752 7.1720 7.1752 7.1720 7.1752 7.1720 7.1753 7.1720 7.1753 7.1720 7.1753 7.1720 7.1753 7.1720 7.1753 7.1720 7.1753 7.1720 7.1753 7.1753 7.1753 7.1753 7.1753 7.1753 7.1754 7.1754 7.1755 7.1754 7.1756 7.1754 7.1757 7.1754 7.1757 7.1754 7.1757 7.1754 7.1126

7, 1645 7, 1565 7, 1565 7, 1565 7, 1565 7, 1565 7, 15866 7, 15866 7, 15866 7, 15866 7, 15866 7, 15866 7, 158

$\begin{array}{c} 7.260_{[6]}\\ 7.120_{[6]}$

$\begin{array}{c} 7.260\\ 7.260\\ 6.597\\ -6.597\\ -6.597\\ -6.597\\ -6.597\\ -6.5934\\ -6.597\\ -5.966\\ -5.936\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.9366\\ -5.956\\ -5.9$

$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$\sum_{i=1}^{n} 2.6_{i=1}^{n} \sum_{i=1}^{n} 2.6_{i=1}^{n} \sum_{i=1}^{n} 2.6_{i=1}^{n} \sum_{i=1}^{n} 2.6_{i=1}^{n} \sum_{i=1}^{n} 2.0_{i=1}^{n} 2.0_{i=1}^{n} \sum_{i=1}^{n} 2.0_{i=1}^{n} 2.0_{i=1}^{n} \sum_{i=1}^{n} 2.0_{i=1}^{n} 2.0_{i=1}^{n} \sum_{i=1}^{n} 2.0_{i=1}^{n} 2.0_{i=1}^{n} 2.0_{i=1}^{n} 2.0_{i=1}^{n} 2.0_{i=1}^{n} 2.0_{i=1}^{n} 2.0_{i=1$

