Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

> Iodine (III)-Mediated Dehydroaromatization of Cyclohexanones with Primary Amines and CD₃SSO₃Na to Access *ortho*-SCD₃ Anilines

Hui Wu,^{a†} Youqing He,^{a†} Kai Sun,^b Yaling Xu,^a Wenting Wang,^a Ge Wu,^{*a,c}

^aSchool of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China

^bCollege of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, China

^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

*E-mail: wuge@wmu.edu.cn

Table of Contents

(1) General considerations, experimental data	S2-S28
(2) References for known compounds	S29
(3) ¹ H, ¹³ C and ¹⁹ F NMR spectra of products	\$30-\$72
(4) HRMS spectra of products	73-92

General Information

Hypervalent iodine compounds¹ were prepared from known literatures. All other reagents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros, and Meryer and used without further purification. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra were recorded in CDCl₃ and DMSO-D6 solutions using a Burker AVANCE 500 spectrometer. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and 1200 LC. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300–400 m).

Table 1 Reaction optimization^a

entry	catalyst	solvent	additive	yield (%) ^b
1	I_2	CH ₃ CN		0
2	NIS	CH ₃ CN		0
3	PhIO	CH ₃ CN		trace
4	PhI(OAc) ₂	CH ₃ CN		40
5	PhI(TFA) ₂	CH ₃ CN		34
6	I	CH ₃ CN		45
7	II	CH ₃ CN		40
8	III	CH ₃ CN		50
9	IV	CH ₃ CN		38
10	V	CH ₃ CN		60
11°	VI	CH ₃ CN		65
12	VII	CH ₃ CN		48
13	VIII	CH ₃ CN		73
14	VIII	CH ₃ CN	$MgSO_4$	89
15	VIII	CH ₃ CN	AcOH	82
16	VIII	DMSO	$MgSO_4$	11
17	VIII	DMF	$MgSO_4$	32
18	VIII	dioxane	$MgSO_4$	76
19	VIII	toluene	$MgSO_4$	81
20	VIII	H_2O	$MgSO_4$	0
21c	VIII	CH ₃ CN	$MgSO_4$	67
22d	VIII	CH ₃ CN	$MgSO_4$	80

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), CD₃SSO₃Na (0.6 mmol), iodine reagent (0.2 mmol), additive (0.6 mmol) and CH₃CN (1.5 ml) under O₂, heated at 80 °C for 24 h. ^b Isolated yield. ^c Under N₂ atmosphere. ^d Under air atmosphere.

General Experimental Procedures

General Procedure of Hypervalent Iodine(III)-Mediated Oxidative Thioamination of Cyclohexanones with Anilines and CD₃SSO₃Na:

A 25 mL Schlenk tube equipped with a stir bar was charged with substituted cyclohexanone (0.2 mmol), anilines (0.6 mmol), CD₃SSO₃Na (0.6 mmol), hypervalent iodine(III) compound (0.2 mmol), MgSO₄ (0.6 mmol) and 2.0 mL CH₃CN. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 80 °C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the same solvent (20 mL), concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

Mechanistic Studies

A 25 mL Schlenk tube equipped with a stir bar was charged with 1-tetralone (0.2 mmol), aniline (0.4 mmol), hypervalent iodine(III) compound (0.2 mmol), MgSO₄ (0.6 mmol) and 2.0 mL CH₃CN. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 80 $^{\circ}$ C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), a large amount of 1-tetralone and aniline were remained, none of imine was detected by GC-MS, and only N-Phenyl-1-naphthylamine **6b** was detected by GC-MS, but only trace on the TLC plate.

A 25 mL Schlenk tube equipped with a stir bar was charged with 1-tetralone (0.2 mmol), CD₃SSO₃Na (0.6 mmol), hypervalent iodine(III) compound (0.2 mmol), MgSO₄ (0.6 mmol) and 2.0 mL CH₃CN. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 80 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), a large amount of 2-((methyl-d3)thio)-3,4-dihydronaphthalen-1(2H)-one was detected by TLC plate, and confirmed by HRMS. However, the polarity of remained 1-tetralone was similar to ortho-thiolated product, making it difficult to separate.

A 25 mL Schlenk tube equipped with a stir bar was charged with 1-tetralone (0.2 mmol), hypervalent iodine(III) compound (0.2 mmol), MgSO₄ (0.6 mmol) and 2.0 mL CH₃CN. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 80 $^{\circ}$ C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), a large amount of 1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl adamantane-1-carboxylate was observed on TLC plate, and confirmed by HRMS. However, the polarity of remained 1-tetralone was similar to ortho- acetoxylated product, making it difficult to separate.

wg2_230109154716 #8 RT: 0.09 AV: 1 NL: 2.34E5 T: FTMS {1,2} - p APCI corona Full ms [50.00-1000.00]

A 25 mL Schlenk tube equipped with a stir bar was charged with N-Phenyl-1-naphthylamine (0.2 mmol), CD₃SSO₃Na (0.6 mmol), hypervalent iodine(III) compound (0.2 mmol), MgSO₄ (0.6 mmol) and 2.0 mL CH₃CN. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 80 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), N-Phenyl-1-naphthylamine almost completely remained, and no thiolation product **3z** was observed by TLC and HRMS.

A 25 mL Schlenk tube equipped with a stir bar was charged with N-phenyl-3,4dihydronaphthalen-1(2H)-imine (0.2 mmol), CD₃SSO₃Na (0.6 mmol), hypervalent iodine(III) compound (0.2 mmol), MgSO₄ (0.6 mmol) and 2.0 mL CH₃CN. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 80 °C for

24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), N-phenyl-3,4-dihydronaphthalen-1(2H)-imine almost completely remained, and no thiolation product **3z** was observed by TLC and HRMS.

A 25 mL Schlenk tube equipped with a stir bar was charged with 1-tetralone (0.2 mmol), CD₃SSO₃Na (0.6 mmol), hypervalent iodine(III) compound (0.2 mmol), MgSO₄ (0.6 mmol) and 2.0 mL CH₃CN. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 80 °C for 24 h. After the reaction mixture was cooled to room temperature, the addition of aniline (0.4 mmol) into the reaction system, then continued heating at 80 °C for 12 h. Then, the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), 64% of desired product **3z** was isolated.

A 25 mL Schlenk tube equipped with a stir bar was charged with ethene-1,1-diyldibenzene (0.2 mmol), aniline (0.2 mmol), hypervalent iodine(III) compound (0.2 mmol), MgSO₄ (0.6 mmol) and 2.0 mL CH₃CN. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 80 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), no amination product **6e** was observed by TLC and HRMS.

A 25 mL Schlenk tube equipped with a stir bar was charged with ethene-1,1-diyldibenzene (0.2 mmol), CD₃SSO₃Na (0.2 mmol), hypervalent iodine(III) compound (0.2 mmol), MgSO₄ (0.6

mmol) and 2.0 mL CH₃CN. The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times, then the septum was replaced by a Teflon screwcap under oxygen flow. The reaction mixture was stirred at 80 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), the corresponding thiolation product **6f** was isolated in 90% yield. Using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (41.2 mg, 90% yield). ¹**H** NMR (400 MHz, CDCl₃): δ 7.47-7.42 (m, 2H), 7.39-7.35 (m, 3H), 7.33-7.25 (m, 5H), 6.61 (s, 1H); ¹³**C** NMR (100 MHz, CDCl₃): δ 141.82, 139.56, 129.76, 128.39, 128.31, 127.59, 127.05, 126.92; **HRMS** (ESI): calcd for C₁₅H₁₁D₃S [M + H]⁺ 229.09990, found 229.10063.

Synthesis of CD₃SSO₃Na reagent:

A flask was charged with deuterated iodomethane (60mmol), sodium thiosulfate (120 mmol), water (50.0 mL) and MeOH (100 mL). The reaction mixture was stirred at room temperature for 12 h. Then, the solution concentrated on a rotovap at a bath temperature of 50 °C to remove the MeOH and water. The resultant solid was treated with MeOH (100mL), let it stand at room temperature for 6 hours, and filtered through a frit funnel. The filtrate was concentrated to a solid, trituration with hexanes, filtration, and drying under vacuum to give CD₃SSO₃Na reagent.

HRMS (ESI): calcd for CD₃S₂O₃Na₂ [M + Na]⁺ 175.95018, found 175.95003.

Characterization of Products in Details :

2-((methyl-d₃)thio)-N-phenylaniline

3a

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (38.8 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.51 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.37 (q, *J* = 8.5 Hz, 3H), 7.24-7.20 (m, 3H), 7.07 (t, *J* = 7.3 Hz, 1H), 6.93 (t, *J* = 8.1 Hz, 1H), 6.62 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.73, 142.62, 132.99, 129.48, 128.44, 124.22, 122.00, 120.66, 119.50, 115.40. HRMS (ESI): calcd for C₁₃H₁₁D₃NS [M + H]⁺ 219.1035, found 219.1026.

2-methyl-N-(2-((methyl-d₃)thio)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (41.8 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 2H), 7.30-7.21 (m, 2H), 7.11 (t, *J* = 7.3 Hz, 1H), 7.04 (d, *J* = 8.1 Hz, 1H), 6.91 (t, *J* = 7.4 Hz, 1H), 6.56 (brs, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.78, 140.61, 133.38, 131.18, 130.48, 128.75, 126.94, 123.27, 123.02, 121.12, 119.87, 114.63, 18.10. HRMS (ESI): calcd for C₁₄H₁₃D₃NS [M + H]⁺ 233.1192, found 233.1187.

methyl 2-((2-((methyl- d₃)thio)phenyl)amino)benzoate

3c

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (45.3 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.55 (brs, 1H), 8.03-8.01 (m, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.38-7.33 (m, 2H), 7.17 (dq, *J* = 16.7, 7.3 Hz, 3H), 6.79 (t, *J* = 7.5 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 168.84, 147.55, 139.14, 134.06, 132.27, 131.72, 128.31, 126.11, 124.32, 122.25, 117.54, 114.39, 112.64, 51.97. HRMS (ESI): calcd for C₁₅H₁₃D₃NO₂S [M + H]⁺ 277.1090, found 277.1097.

2,4-dimethyl-N-(2-((methyl-d3)thio)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (46.2 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.51 (dd, J = 7.7, 1.6 Hz, 1H), 7.22-7.14 (m, 3H), 7.07 (dd, J = 8.1, 2.1 Hz, 1H), 6.86-6.80 (m, 2H), 6.47 (brs, 1H), 2.39 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.73, 137.69, 133.66, 133.46, 131.83, 131.67, 128.89, 127.44, 122.85, 121.83, 119.05, 113.61, 20.91, 17.95; HRMS (ESI): calcd for C₁₅H₁₅D₃NS [M + H]⁺ 247.1348, found 247.1337.

N-(2-((methyl- d₃)thio)phenyl)-[1,1'-biphenyl]-2-amine

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (45.3 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.32 (m, 10H), 7.21 (td, J = 7.7, 1.6 Hz, 1H), 7.12 (td, J = 7.4, 1.3 Hz, 1H), 6.90 (td, J = 7.5, 1.4 Hz, 1H), 6.56 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.61, 139.61, 139.10, 133.16, 132.64, 131.01, 129.32, 128.82, 128.27, 128.25, 127.52, 124.98, 121.99, 120.69, 119.14, 115.55. HRMS (ESI): calcd for C₁₉H₁₅D₃NS [M + H]⁺ 295.1348, found 295.1348.

2,6-diisopropyl-N-(2-((methyl- d₃)thio)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (48.9mg, 81% yield), Mp = 47-48 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (dd, J = 7.6, 1.6 Hz, 1H), 7.37 (dd, J = 8.7, 6.6 Hz, 1H), 7.29 (d, J = 8.2 Hz, 2H), 7.1-7.06(m, 1H), 6.72 (td, J = 7.5, 1.4 Hz, 1H), 6.44 (brs, 1H), 6.19 (dd, J = 8.2, 1.4 Hz, 1H), 3.17 (p, J = 6.9 Hz, 2H), 1.25 (d, J = 6.9 Hz, 6H), 1.18 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 148.45, 147.55, 135.36, 134.42, 129.51, 127.44, 123.94, 118.93, 117.60, 111.36, 28.45, 24.71, 23.02. HRMS (ESI): calcd for C₁₉H₂₃D₃NS [M + H]⁺ 303.1974, found 303.1963.

2-((2-((methyl- d₃)thio)phenyl)amino)benzonitrile

3g

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (29.6 mg, 61% yield), Mp = 89-90 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.43 (ddd, *J* = 15.4, 8.2, 1.6 Hz, 2H), 7.34 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.24 (td, *J* =

7.6, 1.6 Hz, 1H), 7.19-7.11 (m, 2H), 6.93 (td, J = 7.6, 1.1 Hz, 1H), 6.83 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.79, 139.27, 133.92, 133.25, 130.56, 130.23, 127.27, 124.41, 120.50, 120.00, 117.47, 115.22, 99.82. HRMS (ESI): calcd for C₁₄H₁₀D₃N₂S [M + H]⁺ 244.0988, found 244.0982.

N-(2-((methyl- d₃)thio)phenyl)naphthalen-1-amine

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (48.3 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.11-8.09 (m, 1H), 7.95-7.93 (m, 1H), 7.69 (dd, *J* = 7.4, 2.1 Hz, 1H), 7.59-7.45 (m, 5H), 7.18-7.13 (m, 1H), 7.07 (BRs, 1H), 6.98 (dd, *J* = 8.2, 1.4 Hz, 1H), 6.88 (td, *J* = 7.5, 1.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.68, 138.19, 134.85, 133.66, 128.89, 128.74, 128.62, 126.31, 126.09, 126.03, 124.01, 122.75, 122.32, 119.91, 118.01, 114.94. HRMS (ESI): calcd for C₁₇H₁₃D₃NS [M + H]⁺ 269.1192, found 269.1177.

1-(4-((2-((methyl- d₃)thio)phenyl)amino)phenyl)ethan-1-one

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (45.2 mg, 87% yield), Mp = 73-74°C. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.42 (dd, *J* = 12.4, 8.0 Hz, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.07 (dd, *J* = 16.6, 8.2 Hz, 3H), 6.64 (brs, 1H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.51, 148.09, 140.04, 130.89, 130.66, 129.50, 128.92, 127.50, 123.67, 119.85, 115.20, 26.27. HRMS (ESI): calcd for

2-((methyl- d₃)thio)-N-(p-tolyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (43.6 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.22-7.15 (m, 4H), 7.12-7.09 (m, 2H), 6.86 (td, *J* = 7.3, 1.7 Hz, 1H), 6.56 (brs, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.64, 139.75, 133.34, 131.97, 129.98, 128.61, 123.05, 120.57, 119.88, 114.39, 20.82; HRMS (ESI): calcd for C₁₄H₁₃D₃NS [M + H]⁺ 233.1192, found 233.1186.

N-(4-fluorophenyl)-2-((methyl- d₃)thio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (37.3 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.51 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.23-7.14 (m, 4H), 7.11-7.06 (m, 2H), 6.91 (td, *J* = 7.4, 1.6 Hz, 1H), 6.56 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.71 (d, *J* = 241.2 Hz), 144.58, 138.45 (d, *J* = 2.6 Hz), 133.20, 128.64, 123.36, 122.39 (d, *J* = 7.9 Hz), 120.33, 116.14 (d, *J* = 22.5 Hz), 114.33. ¹⁹F NMR (375 MHz, CDCl₃) δ -120.49 (1F); HRMS (ESI): calcd for C₁₃H₁₀D₃NFS [M + H]⁺ 237.0941, found 237.0939.

N-(4-chlorophenyl)-2-((methyl- d₃)thio)aniline

31

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (42.3 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.31-7.21 (m, 4H), 7.10 (d, *J* = 8.8 Hz, 2H), 6.95 (td, *J* = 7.4, 1.6 Hz, 1H), 6.52 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.03, 141.36, 132.66, 129.44, 128.33, 126.52, 124.95, 121.29, 120.35, 115.83. HRMS (ESI): calcd for C₁₃H₁₀D₃NSCl [M + H]⁺ 253.0646, found 253.0645.

2-((methyl- d₃)thio)-N-(4-((trifluoromethyl)thio)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (54.0 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.2 Hz, 2H), 7.48 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 7.25 (t, *J* = 7.7 Hz, 1H), 7.12-7.04 (m, 3H), 6.53 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.00, 140.81, 138.23, 131.53, 129.76 (q, *J* = 308.4 Hz), 127.78, 127.69, 123.01, 118.58, 117.31, 113.90. ¹⁹F NMR (375 MHz, CDCl₃) δ -43.92 (3F); HRMS (ESI): calcd for C₁₄H₁₀D₃NF₃S₂ [M + H]⁺ 319.0630, found 319.0621.

2-((methyl- d₃)thio)-N-(4-(methylsulfonyl)phenyl)aniline

3n

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (46.8 mg, 79% yield), Mp = 96-97 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.26 (t, *J* = 7.7 Hz, 1H), 7.12 (dd, *J* =

19.3, 7.8 Hz, 3H), 6.55 (brs, 1H), 3.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 148.69, 139.25, 130.64, 130.51, 129.90, 129.45, 127.38, 124.42, 120.59, 115.32, 44.97. HRMS (ESI): calcd for C₁₄H₁₃D₃NO₂S₂ [M + H]⁺ 297.0811, found297.0802.

2-((methyl- d₃)thio)-N-(4-(trifluoromethoxy)phenyl)aniline

30

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (48.9 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.25-7.15 (m, 5H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.56 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.52, 142.91, 141.64, 132.55, 128.29, 125.22, 122.44, 121.49, 120.74 (q, *J* = 226.4 Hz), 119.75, 116.02. ¹⁹F NMR (375 MHz, CDCl₃) δ -58.16 (3F); HRMS (ESI): calcd for C₁₄H₁₀D₃NOF₃S [M + H]⁺ 303.0858, found 303.0845.

2-((methyl- d₃)thio)-N-(4-(trifluoromethyl)phenyl)aniline

3p

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (40.0 mg, 70% yield), Mp = 41-42 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.4 Hz, 2H), 7.50 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.41 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.27 (td, *J* = 7.6, 1.6 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.08 (td, *J* = 7.5, 1.4 Hz, 1H), 6.52 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.44, 140.91, 131.50, 128.75, 127.79, 126.81 (q, *J* = 3.7 Hz), 124.71(q, *J* = 269.6 Hz) 123.06, 122.34 (q, *J* = 32.4 Hz), 118.60, 116.39. ¹⁹F NMR (375 MHz, CDCl₃) δ -61.37 (3F); HRMS (ESI): calcd for C₁₄H₁₀D₃NF₃S [M + H]⁺ 287.0909, found 287.0910.

2-((methyl- d₃)thio)-N-(4-phenoxyphenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (49.6 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.20-7.17 (m, 4H), 7.12 (t, *J* = 7.3 Hz, 1H), 7.05 (t, *J* = 7.1 Hz, 4H), 6.87 (dt, *J* = 8.2, 4.3 Hz, 1H), 6.58 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.06, 152.15, 144.63, 138.04, 133.28, 129.78, 128.64, 123.07, 122.88, 122.19, 120.46, 120.07, 118.22, 114.25. HRMS (ESI): calcd for C₁₉H₁₅D₃NOS [M + H]⁺ 311.1297, found 311.1284.

 $N-(2-((methyl- d_3)thio)phenyl)pyridin-3-amine$

3r

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (39.0 mg, 89% yield), Mp = 103-104°C. ¹H NMR (400 MHz, CDCl₃): δ 8.49 (s, 1H), 8.26 (s, 1H), 7.47 (dd, *J* = 7.8, 1.7 Hz, 2H), 7.26-7.20 (m, 3H), 6.97 (td, *J* = 7.4, 1.6 Hz, 1H), 6.53 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 142.73, 142.23, 141.34, 139.35, 132.48, 128.24, 125.72, 125.16, 123.86, 121.94, 116.01. HRMS (ESI): calcd for C₁₂H₁₀D₃N₂S [M + H]⁺ 220.0988, found 220.0978.

2-((methyl- d₃)thio)-N-(4-(trifluoromethyl)benzyl)aniline

3s

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (32.4 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 8.1 Hz, 2H), 7.51

(d, J = 8.0 Hz, 2H), 7.46 (dd, J = 7.6, 1.4 Hz, 1H), 7.16 (td, J = 7.7, 1.6 Hz, 1H), 6.73 (td, J = 7.5, 1.3 Hz, 1H), 6.53 (dd, J = 8.2, 1.3 Hz, 1H), 5.49 (brs, 1H), 4.53 (d, J = 4.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 147.70, 143.59, 134.08, 129.46, 129.37, 127.33, 127.23, 125.69(q, J = 3.8 Hz), 121.49(d, J = 280.0 Hz), 117.76, 110.45, 47.61. ¹⁹F NMR (375 MHz, CDCl₃) δ -62.38 (3F); HRMS (ESI): calcd for C₁₅H₁₂D₃NF₃S [M + H]⁺ 301.1066, found 301.1072.

4-methyl-2-((methyl- d_3)thio)-N-phenylaniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (40.8 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.30 (m, 3H), 7.26-7.24 (m, 1H), 7.14-7.12 (m, 2H), 7.04-6.98 (m, 2H), 6.37 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.38, 140.61, 132.70, 130.71, 129.43, 128.77, 125.32, 121.20, 118.33, 116.81, 20.68. HRMS (ESI): calcd for C₁₄H₁₃D₃NS [M + H]⁺ 233.1192, found 233.1190.

4-ethyl-2-((methyl- d₃)thio)-N-phenylaniline

3u

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (39.9 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.33 (m, 3H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.17-7.15 (m, 2H), 7.07 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.01 (t, *J* = 7.3 Hz, 1H), 6.40 (brs, 1H), 2.66 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.32, 140.96, 137.17, 131.79, 129.44, 127.70, 125.06, 121.28, 118.48, 116.64, 28.20, 15.86. HRMS (ESI): calcd for C₁₅H₁₅D₃NS [M + H]⁺ 247.1348, found 247.1346.

 $2-((methyl - d_3)thio)-N-phenyl-4-propylaniline$

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (42.6 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.25 (m, 4H), 7.15-7.13 (m, 2H), 7.04-6.97 (m, 2H), 6.41 (brs, 1H), 2.57 (t, *J* = 7.7 Hz, 2H), 1.68 (h, *J* = 7.4 Hz, 2H), 1.01 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.28, 140.93, 135.59, 132.32, 129.41, 128.25, 124.90, 121.25, 118.47, 116.45, 37.34, 24.76, 13.91. HRMS (ESI): calcd for C₁₆H₁₇D₃NS [M + H]⁺ 261.1505, found 261.1506.

4-(tert-butyl)-2-((methyl- d₃)thio)-N-phenylaniline

3w

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (46.6 mg, 85% yield), Mp = 54-55 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, *J* = 2.2 Hz, 1H), 7.37-7.24 (m, 4H), 7.18-7.16 (m, 2H), 7.01 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.52 (brs, 1H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 143.79, 143.09, 141.17, 130.16, 129.41, 125.60, 123.86, 121.43, 118.80, 115.65, 34.32, 31.50. HRMS (ESI): calcd for C₁₇H₁₉D₃NS [M + H]⁺ 275.1661, found 275.1672.

5-((methyl- d₃)thio)-N-phenylbenzo[b]thiophen-4-amine

3x

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (37.3 mg, 68% yield), Mp = 88-89°C. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.4

Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 5.5 Hz, 1H), 7.26 (t, J = 7.7 Hz, 2H), 7.06 (d, J = 5.6 Hz, 1H), 6.96 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 6.54 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.30, 140.64, 137.51, 134.40, 129.23, 128.21, 125.99, 125.18, 123.10, 120.65, 118.21, 116.91. HRMS (ESI): calcd for C₁₅H₁₁D₃ NS₂ [M + H]⁺ 275.0756, found 275.0764.

3-((methyl- d₃)thio)-N-phenyl-[1,1'-biphenyl]-4-amine

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (51.1 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.79-7.78 (m, 1H), 7.63 (d, *J* = 7.4 Hz, 2H), 7.51-7.46 (m, 3H), 7.42-7.38 (m, 4H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.71 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.15, 142.38, 140.55, 133.52, 131.77, 129.54, 128.89, 127.25, 126.84, 126.58, 124.29, 122.21, 119.74, 115.33. HRMS (ESI): calcd for C₁₉H₁₅D₃NS [M + H]⁺ 295.1348, found 295.1355.

2-((methyl- d₃)thio)-N-phenylnaphthalen-1-amine

3z

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (38.1 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 8.7 Hz, 1H), 7.56 (d, *J* = 8.7 Hz, 1H), 7.50-7.43 (m, 2H), 7.21 (t, *J* = 7.7 Hz, 2H), 6.86 (t, *J* = 7.4 Hz, 1H), 6.67 (d, *J* = 8.0 Hz, 2H), 6.00 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.71, 135.54, 132.88, 131.71, 130.56, 129.27, 128.32, 126.63, 126.26, 125.74, 125.71, 124.06, 119.44, 114.98. HRMS (ESI): calcd for C₁₇H₁₃D₃ NS [M + H]⁺ 269.1192, found 269.1199.

ethyl 4-((2-((methyl- d₃)thio)phenyl)amino)benzoate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (46.4 mg, 80% yield), Mp = 63-64 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.5 Hz, 2H), 7.43 (dd, *J* = 17.6, 7.9 Hz, 2H), 7.24 (t, *J* = 7.7 Hz, 1H), 7.06 (dd, *J* = 13.1, 7.5 Hz, 3H), 6.60 (brs, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.53, 147.54, 140.66, 131.47, 131.41, 127.98, 127.71, 123.12, 122.20, 118.99, 115.59, 60.57, 14.51. HRMS (ESI): calcd for C₁₆H₁₅D₃ NO₂S [M + H]⁺ 291.1247, found 291.1246.

N-(2-((methyl- d₃)thio)phenyl)-6-(trifluoromethoxy)benzo[d]thiazol-2-amine

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (55.3 mg, 77% yield), Mp = 133-134 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, *J* = 8.1 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.57-7.55 (m, 2H), 7.41 (t, *J* = 7.8 Hz, 1H), 7.27 (d, *J* = 8.8 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 163.54, 153.16, 150.75, 144.59, 139.52, 132.84, 131.23, 128.93, 126.51, 124.43, 120.50, 119.96, 119.62, 113.95. ¹⁹F NMR (375 MHz, CDCl₃) δ -58.14 (3F); HRMS (ESI): calcd for C₁₅H₉D₃N₂OF₃S₂ [M + H]⁺ 360.0531, found 360.0530.

 $4-((2-((methyl - d_3)thio)phenyl)amino)benzenesulfonamide$

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (50.5 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.11 (s, 1H), 7.59 (d, *J* = 8.7 Hz, 2H), 7.36-7.34 (m, 1H), 7.26-7.20 (m, 1H), 7.05 (s, 2H), 6.78 (d, *J* = 8.8 Hz, 2H), 3.39 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 149.33, 138.33, 135.39, 133.14, 127.82, 126.78, 126.21, 126.04, 125.37, 113.73. HRMS (ESI): calcd for C₁₃H₁₂D₃N₂O₂S₂ [M + H]⁺ 298.0763, found 298.0774.

N-(4-((4-aminophenyl)sulfonyl)phenyl)-2-((methyl- d₃)thio)aniline

4d

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (62.7 mg, 84% yield), Mp = 135-136°C. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.7 Hz, 2H), 7.71 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.8 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.22 (t, *J* = 7.7 Hz, 1H), 7.09-7.02 (m, 3H), 6.67 (d, *J* = 8.6 Hz, 2H), 6.51 (brs, 1H), 4.16 (q, *J* = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ δ 150.84, 147.56, 139.79, 133.21, 130.85, 130.58, 129.46, 129.14, 129.04, 127.49, 123.86, 119.85, 115.64, 114.23. HRMS (ESI): calcd for C₁₉H₁₆D₃N₂O₂S₂ [M + H]⁺ 374.1076, found 374.1086.

5-methoxy-N,2-dimethyl-4-((2-((methyl- d₃)thio)phenyl)amino)benzenesulfonamide

4e

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (48.3 mg, 68% yield), Mp = 120-121 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (s, 1H), 7.43 (ddd, *J* = 7.8, 4.0, 1.5 Hz, 2H), 7.26 (td, *J* = 7.7, 1.6 Hz, 1H), 7.10 (td, *J* = 7.5, 1.3 Hz, 1H), 7.02 (s, 1H), 6.85 (brs, 1H), 4.56 (q, *J* = 5.5 Hz, 1H), 4.00 (s, 3H), 2.65 (d, *J* = 5.5 Hz, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.10, 139.43, 137.45, 130.86, 130.11, 129.96, 127.11,

125.27, 123.79, 120.37, 115.50, 112.36, 56.31, 29.06, 19.92. **HRMS** (ESI): calcd for $C_{16}H_{17}D_3N_2$ O₃NaS₂ [M + Na]⁺ 378.1001, found 378.1007.

N-(5,6-dimethoxypyrimidin-4-yl)-4-((2-((methyl- d₃)thio)phenyl)amino)benzenesulfonamide

4f

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (44.4 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.23 (s, 1H), 8.04 (d, *J* = 8.7 Hz, 2H), 7.79 (s, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 8.7 Hz, 2H), 6.54 (brs, 1H), 4.02 (s, 3H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 160.86, 151.22, 150.11, 148.37, 139.42, 130.69, 129.40, 129.22, 127.44, 126.38, 124.16, 120.23, 114.81, 110.46, 60.60, 54.17. HRMS (ESI): calcd for C₁₉H₁₇D₃N₄O₄NaS₂ [M + Na]⁺ 458.1012, found 458.1017.

3-(4-((2-((methyl- d₃)thio)phenyl)amino)-1-oxoisoindolin-2-yl)piperidine-2,6-dione

4g

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (68.4 mg, 89% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.03 (s, 1H), 7.54 (s, 1H), 7.36-7.32 (m, 2H), 7.22-7.16 (m, 3H), 7.10-7.08 (m, 1H), 6.81 (d, *J* = 7.9 Hz, 1H), 5.14 (dd, *J* = 13.3, 5.1 Hz, 1H), 4.27 (q, *J* = 17.2 Hz, 2H), 2.97-2.88 (m, 1H), 2.65-2.60 (m, 1H), 2.35 (qd, *J* = 13.1, 4.4 Hz, 1H), 2.08-2.01 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 173.43, 171.71, 168.94, 141.02, 139.76, 133.59, 133.32, 129.92, 129.49, 127.35, 126.27, 125.11, 123.80, 118.70, 114.45,

52.11, 46.54, 31.76, 23.16. HRMS (ESI): calcd for $C_{20}H_{16}D_3N_3O_3NaS [M + Na]^+ 407.1233$, found 407.1236.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-((2-((methyl- d₃)thio)phenyl)amino)benzoate

4h

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (49.6 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, *J* = 8.7 Hz, 2H), 7.44 (ddd, *J* = 17.1, 7.9, 1.5 Hz, 2H), 7.24 (td, *J* = 7.7, 1.6 Hz, 1H), 7.10-7.03 (m, 3H), 6.62 (s, 1H), 4.95 (td, *J* = 10.9, 4.3 Hz, 1H), 2.19-2.15 (m, 1H), 2.02 (td, *J* = 7.0, 2.6 Hz, 1H), 1.78-1.75 (m, 2H), 1.58 (ddt, *J* = 13.9, 10.7, 3.1 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 1H), 1.20-1.11 (m, 2H), 0.96 (dd, *J* = 6.9, 2.8 Hz, 6H), 0.85 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.99, 147.49, 140.68, 131.49, 131.39, 128.01, 127.71, 123.12, 122.55, 119.02, 115.60, 74.31, 47.41, 41.18, 34.46, 31.52, 26.60, 23.78, 22.18, 20.88, 16.69. HRMS (ESI): calcd for C₂₄H₂₈D₃NO₂NaS [M + Na]⁺ 423.2161, found 423.2158.

2-methoxy-4-(3-oxobutyl)phenyl 4-((2-((methyl- d₃)thio)phenyl)amino)benzoate

4i

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (69.2 mg, 79% yield), Mp = 102-103 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 8.7 Hz, 2H), 7.45 (t, *J* = 8.3 Hz, 2H), 7.26 (t, *J* = 7.7 Hz, 1H), 7.09 (dd, *J* = 11.8, 8.4 Hz, 4H), 6.87 (brs, 1H), 6.82 (d, *J* = 9.5 Hz, 1H), 6.64 (s, 1H), 3.83 (s, 3H), 2.94 (t, *J* = 7.4 Hz, 2H), 2.82 (t, *J* =

7.4 Hz, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 208.00, 164.75, 151.35, 148.27, 140.24, 139.89, 138.48, 132.35, 131.14, 128.62, 127.63, 123.54, 123.02, 120.73, 120.43, 119.61, 115.40, 112.85, 55.99, 45.28, 30.22, 29.72. HRMS (ESI): calcd for C₂₅H₂₂D₃NO₄NaS [M + Na]⁺ 461.1590, found 461.1596.

 $(S)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)chroman-6-yl 4-((2-((methyl-d_3)thio)phenyl)amino)benzoate 4-((2-((methyl-d_3)thio)phenyl)amino)b$

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (118.7 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (d, *J* = 8.7 Hz, 2H), 7.49 (ddd, *J* = 8.2, 4.1, 1.4 Hz, 2H), 7.31-7.29 (m, 1H), 7.16-7.09 (m, 3H), 6.66 (brs, 1H), 2.68 (t, *J* = 6.9 Hz, 2H), 2.19 (s, 3H), 2.13 (s, 3H), 2.09 (s, 3H), 1.87 (dtd, *J* = 20.1, 13.0, 6.3 Hz, 2H), 1.61 (dq, *J* = 19.9, 6.4 Hz, 4H), 1.46 (dq, *J* = 10.1, 5.3, 4.8 Hz, 4H), 1.38-1.32 (m, 11H), 1.24-1.12 (m, 7H), 0.94 (d, *J* = 6.6 Hz, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 165.05, 148.23, 140.32, 132.23, 131.23, 128.59, 127.67, 127.20, 125.39, 123.53, 123.10, 121.03, 119.59, 117.49, 115.49, 75.11, 40.49, 39.74, 39.48, 37.56, 37.39, 32.90, 31.39, 28.08, 24.92, 24.56, 24.29, 23.82, 22.84, 22.75, 21.14, 20.74, 19.87, 19.78, 13.18, 12.33, 11.96. HRMS (ESI): calcd for C₄₃H₅₈D₃NO₃NaS [M + Na]⁺ 697.4458, found 697.4464.

(3S,8S,9S,10R,13S,14S,17S)-17-acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-((2-((methyl- *d*₃)thio)phenyl)amino)benzoate

4k

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (84.0 mg, 75% yield), Mp = 153-154°C. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 8.7 Hz, 2H), 7.45 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.40 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.23 (td, *J* = 7.7, 1.5 Hz, 1H), 7.08-7.02 (m, 3H), 6.60 (brs, 1H), 5.44 (d, *J* = 4.9 Hz, 1H), 4.89-4.83 (m, 1H), 2.58 (t, *J* = 8.9 Hz, 1H), 2.49 (d, *J* = 7.6 Hz, 2H), 2.23-2.21 (m, 1H), 2.16 (s, 3H), 2.11-1.92 (m, 4H), 1.81-1.50 (m, 8H), 1.32-1.19 (m, 4H), 1.10-1.09 (m, 4H), 0.67 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 209.74, 165.89, 147.48, 140.66, 139.89, 131.48, 131.41, 127.92, 127.71, 123.10, 122.39, 118.91, 115.59, 73.98, 63.76, 56.91, 49.96, 44.08, 38.87, 38.34, 37.14, 36.74, 31.90, 31.87, 31.66, 28.00, 24.56, 22.88, 21.13, 19.46, 13.31. HRMS (ESI): calcd for C₃₅H₄₀D₃NO₃NaS [M + Na]⁺ 583.3050, found 583.3063.

5-isopropyl-2-methylphenyl 4-((2-((methyl- d₃)thio)phenyl)amino)benzoate

41

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (48.1 mg, 61% yield), Mp = 99-100°C. ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, *J* = 8.8 Hz, 2H), 7.48 (ddd, *J* = 7.3, 5.5, 1.5 Hz, 2H), 7.31-7.23 (m, 2H), 7.16-7.09 (m, 4H), 6.66 (brs, 1H), 2.96 (p, *J* = 6.9 Hz, 1H), 2.25 (s, 3H), 1.31 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.81, 149.72, 148.37, 148.11, 140.17, 132.25, 131.11, 130.95, 128.76, 127.63, 124.05, 123.65, 120.86, 120.16, 119.73, 115.41, 33.70, 24.06, 16.00. HRMS (ESI): calcd for C₂₄H₂₂D₃NO₂SNa [M + Na]⁺ 417.1692, found 417.1697.

(2,2-diphenylvinyl)(methyl-d3)sulfane

Ph SCD₃ Ρh 6f

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow solid (48.1 mg, 95% yield), Mp = 99-100°C. ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, J = 8.8 Hz, 2H), 7.48 (ddd, J = 7.3, 5.5, 1.5 Hz, 2H), 7.31-7.23 (m, 2H), 7.16-7.09 (m, 4H), 6.66 (brs, 1H), 2.96 (p, J = 6.9 Hz, 1H), 2.25 (s, 3H), 1.31 (d, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.81, 149.72, 148.37, 148.11, 140.17, 132.25, 131.11, 130.95, 128.76, 127.63, 124.05, 123.65, 120.86, 120.16, 119.73, 115.41, 33.70, 24.06, 16.00. HRMS (ESI): calcd for C₂₄H₂₂D₃NO₂SNa [M + Na]⁺ 417.1692, found 417.1697.

References:

(1) AtmuriOrcid, N. D. P., Reilley, D. J., D. Lubell, W. Org. Lett. 2017, 19, 19, 5066–5069

¹H, ¹³C and ¹⁹F NMR spectra of products

S32

S35

1.25

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

wg1120.1.1.1r

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

pdata/1

142.73 141.24 141.34 141.34 139.35 132.48 14.48 14.4

3s ¹H NMR (400 MHz, CDCl₃)

pdata/1

pdata/1

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

150.84 147.56 133.77 133.77 133.77 133.75 133.75 133.85 114.73 141 123.86 11123.86 11123.86 11123.86

-4.02

8,11 8,11 8,11 8,11 8,11 1,12 1,22

10

0 -10 -20 -30

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl (ppm)

pdata/1

HRMS of Products

S81

