Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Alkyne/Thio Umpolung Tactic Replacement: Synthesis of Alkynyl Sulfides via Capturing the in-situ Formed Alkynylthiolate Anion

Donghui Xing, Mengxia Feng, Yuzhen Zheng, Bin Huang, Huanfeng Jiang, Liangbin Huang*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. E-mail: huanglb@scut.edu.cn.

Table of Contents

General Information	3
Reagents and Solvents	3
Analytical Methods	3
Part 1: General Procedures for the Synthesis of 1,2,3-thiadiazoles	4
Part 2: Palladium-Catalyzed Cross-Coupling of Thiadiazoles with Aryl lodides	6
2.1. Optimization of the Reaction Parameters	6
2.2. General Procedure for Palladium-catalyzed Alkynylthiolation of Aryl lodides	8
Part 3: Copper-Catalyzed Cross-Coupling of Thiadiazoles with Bromoalkyne	15
3.1. Synthesis of Bromoalkyne	15
3.2. Optimization of the Reaction Parameters	15
3.3. General Procedure for Copper-catalyzed Alkynylthiolation of Bromoalkyne	17
Part 4: Further Elaboration for Synthetic Potential of Thiadiazoles	24
4.1. Late-stage Alkynylthiolation of Unactivated Alkyl Bromide	24
4.2. Concise Method for Synthesis of Difluoromethanethiated Alkyne from Thiadiazoles .	27
Part 5: Product Derivatizations	33
NMR Spectra	39
References	143

General Information

Reagents and Solvents

Unless otherwise noted, all chemicals used in the preparation of starting materials were commercially available and were used as received without further purifications. Metal catalysts and ligands were purchased from Acros, Laajoo, Energy Chemical, Bidepharm, and Accela. Other chemicals were purchased from Macklin, Adamas, and Innochem, and were directly used without further purifications.

Anhydrous THF and DMSO were purchased from Energy Chemical. Toluene was distilled from sodium/benzophenone and stored under nitrogen before use.

Analytical Methods

¹H, ¹³C and ¹⁹F NMR spectra were recorded using a Bruker DRX-400 spectrometer or a Bruker DRX-500 spectrometer using CDCl₃ as solvent. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively, and chloroform is solvent with TMS as the internal standard. Chemical shifts are reported in parts per million (ppm), multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Coupling constants (J) are reported in Hertz. Melting points were measured using a melting point instrument. Mass spectra were recorded on a Thermo Scientific ISQ gas chromatograph-mass spectrometer. GC analyses were performed on an Agilent 7890B GC equipped with HP-5 columns (30 m × 320 μ m × 0.25 μ m), FID detectors, and hydrogen as the carrier gas. GC/MS analyses were performed on a Shimadzu GCMS-QP2010SE equipped with an RTX-5MS column (30 m × 0.25 mm × 0.25 μ m) with a quadrupole mass analyzer using helium as the carrier gas. TLC was performed by using commercially prepared 100-400 mesh silica gel plates and visualization was effected at 254 nm.

Part 1: General Procedures for the Synthesis of 1,2,3-thiadiazoles

All compounds were synthesized following the reported methods. For the analysis data of 1,2,3-thiadiazoles, please refer to our previous article.¹⁻²

General Procedure A:³

p-Toluenesulfonylhydrazide (1.86 g, 10 mmol) was placed in a round-bottom boiling flask equipped with a reflux condenser in 10 mL of dry methanol; the ketone (10 mmol) was added slowly, and the mixture was heated in an oil bath at 60 °C. Within 5–60 min, N- tosylhydrazone began to precipitate. The mixture was cooled to 0 °C, and the product was collected on a Büchner funnel, washed with petroleum ether, and then dried in vacuo to afford the pure product quantatively.

A sealed tube was charged with *N*-tosylhydrazone (3 mmol), sulfur (15 mmol), TBAI (0.6 mmol), $K_2S_2O_8$ (6 mmol), and DMAC (30 mL). The mixture was stirring under air at 100 °C for 2 h. The mixture was washed with water and extracted by ethyl acetate and then concentrated in vacuum, and the residue was purified by preparative TLC (petroleum ether /ethyl acetate) to afford the desired product. **General Procedure B:**⁴

$$\begin{array}{c} H_2NNHCO_2Et \\ 0 \\ R \\ \hline Me \end{array} \xrightarrow{\begin{array}{c} 1 \text{ drop HCl aq.} \\ CHCl_3, 80 \ ^\circ C \end{array}} \begin{array}{c} NNHCO_2Et \\ R \\ \hline Me \end{array} \xrightarrow{\begin{array}{c} 0 \ ^\circ C - r.t. \end{array}} \begin{array}{c} N=N \\ 0 \ ^\circ C - r.t. \end{array}$$

A mixture of acetophenone (1 equiv) and ethyl hydrazine carboxylate (1.2 equiv) was dissolved in dry, hot chloroform. When the reaction mixture started refluxing, one drop of concentrated hydrochloric acid were added and the mixture was then refluxed overnight with continuous removal of the water generated. The solvent was removed under vacuum and the residue was washed several times with diethyl ether or chloroform to remove excess reactants. Next, An excess amount of thionyl chloride was stirred at 0 °C and the hydrazones were added in several portions. The mixtures were stirred at room temperature overnight until no more hydrogen chloride was produced. The remaining thionyl chloride was evaporated under vacuum and the residue was washed with diethyl ether to give good yields of the corresponding 1,2,3-thiadiazoles as fine powders. A recrystallization from chloroform or dimethylsulfoxide was carried out when necessary.

General Procedure C:5

$$\begin{array}{c} O \\ R \\ \hline Me \end{array} + TsNHNH_2 + KSCN \end{array} \xrightarrow{ \begin{array}{c} 50 \text{ mol}\% \text{ CuCl}_2 \\ 2 \text{ equiv } l_2 \end{array} } \\ \hline DMSO, 100 \ ^\circ\text{C}, 8 \text{ h} \end{array} \xrightarrow{ \begin{array}{c} N \\ R \end{array} \xrightarrow{ \begin{array}{c} N \\ S \end{array} } } S$$

A sealed tube was charged with ketone (1.0 mmol), p-toluenesulfonylhydrazide (1.0 mmol), and potassiumthiocyanate (97.2 mg, 1.0 mmol), iodine (507.6 mg, 2.0 mmol) at room temperature, and DMSO (3 mL) was added. The resulting mixture was stirred at 100 °C for 1h. After the reaction completed, the mixture was quenched with saturation $Na_2S_2O_3$ solution (50 mL), extracted with EtOAc (3×50 mL). The combined organiclayers were washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatographyonsilicagel (petroleum ether/EtOAc = 20:1) to give the product.

Part 2: Palladium-Catalyzed Cross-Coupling of Thiadiazoles with Aryl lodides

2.1. Optimization of the Reaction Parameters

Table S1. Details of Optimization of the Reaction Conditions^[a]

N=N Ph	+ ¹ ^t Bu ^t Bu	Ph S tBu
1a	2a	3a
Entry	Variation from the standard conditions	Yield of 3a (%)
1	none	84 (77) ^b
2	K₃PO₄ instead of KO ^t Bu	n.d.
3	K ₂ CO ₃ instead of KO ^t Bu	n.d.
4	Cs ₂ CO ₃ instead of KO ^t Bu	36
5	NaO ^t Bu instead of KO ^t Bu	70
6	LiO ^t Bu instead of KO ^t Bu	17
7	NEt₃ instead of KO ^t Bu	n.d.
8	DIEPA instead of KO ^t Bu	n.d.
9	without NiXantphos	n.d.
10	DPPP instead of NiXantphos	n.d.
11	Xantphos instead of NiXantphos	76
12	DPEphos instead of NiXantphos	21
13	$Pd(PPh_3)_4$ instead of $Pd(dba)_2$	73
14	Pd(OAc) ₂ instead of Pd(dba) ₂	66
15	PdCl ₂ (PPh ₃) ₂ instead of Pd(dba) ₂	76
16	rt instead of 90 °C	trace
17	110 °C instead of 90 °C	36
18	THF instead of PhMe	16
19	Dioxane instead of PhMe	67
20	MeCN instead of PhMe	9
21	DMSO instead of PhMe	trace
22	DMF instead of PhMe	trace

^[a]Conditions: **1a** (0.12 mmol), **2a** (0.1 mmol), Pd(dba)₂ (5 mol%), NiXantphos (5 mol%), KO^tBu (1.5 equiv) in PhMe (1 mL) at 90 °C for 16 h. Yield of **3a** was determined by GC using dodecane as the internal standard. n.d. = not detected. ^bIsolated yield.

General Procedure for the Optimization Reactions: In glove box, palladium catalyst (5 mol%) and ligand (5 mol%) was stirred in solvent (0.5 ml) for 10 minutes in advance. A 10 mL oven-dried Schlenk tube equipped with a magnetic stirring bar, 4-phenyl-1,2,3-thiadiazole **1a** (0.12 mmol, 1.2 equiv.), 1-(tert-butyl)-4-iodobenzene **2a** (0.1 mmol, 1.0 equiv.) and base was added. Then the solvent (0.5 ml) was added and resulting mixture was stirred at specified temperature for 24 h. After the reaction completed, the mixture was cooled down to room temperature, several drops of solution were passed through a short plug of silica gel with ethyl acetate washings. The filtrate was analyzed by GC to determine calibrated GC yields.

2.2. General Procedure for Palladium-catalyzed Alkynylthiolation of Aryl lodides

In glove box, $Pd(dba)_2$ (5 mol%) and NiXantphos (5 mol%) was stirred in PhMe (1.5 ml) for 10 minutes in advance. A 10 mL oven-dried Schlenk tube equipped with a magnetic stirring bar, 1,2,3-thiadiazole **1** (0.36 mmol, 1.2 equiv.), iodobenzene **2** (0.3 mmol, 1.0 equiv.) and KO⁴Bu (0.45 mmol, 1.5 equiv) was added. Then PhMe (1.5 ml) was added and resulting mixture was stirred at 90 °C for 16 h. After the reaction completed, the reaction mixture was then diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (2×20 mL), the combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford the corresponding products.

(4-(tert-butyl)phenyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave **3a** in 77% yield (61 mg) as a yellow oil (flash column chromatography eluent, petrol ether). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.56 – 7.52 (m, 2H), 7.48 (dd, *J* = 8.5, 2.0 Hz, 2H), 7.42 (dd, *J* = 8.4, 1.6 Hz, 2H), 7.39 – 7.35 (m, 3H),

1.36 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 149.92, 131.62, 129.26, 128.45, 128.33, 126.35, 126.18, 123.03, 97.20, 76.13, 34.48, 31.24. Spectroscopic data for **3a** match those previously reported in the literature.⁶

(4-(tert-butyl)phenyl)((4-methoxyphenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **3b** in 78% yield (69 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2960, 2164, 1602, 1501, 1252, 1027, 826 cm⁻¹. **¹H NMR** (500 MHz, Chloroform-*d*) δ 7.52 – 7.37 (m, 6H), 6.88 (d, *J* =

8.8 Hz, 2H), 3.83 (s, 3H), 1.34 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 159.97, 149.75, 133.63, 129.74, 126.28, 126.17, 115.11, 113.99, 97.18, 74.14, 55.26, 34.46, 31.24. **HRMS** (ESI) calculated 297.1308 for C₁₉H₂₁OS [M+H]⁺, found 297.1301.

(4-(tert-butyl)phenyl)((4-(methylthio)phenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **3c** in 63% yield (71 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3469, 2959, 2164, 1591, 1488, 1088, 819 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.48 – 7.38 (m, 6H), 7.21

(d, J = 8.4 Hz, 2H), 2.50 (s, 3H), 1.34 (s, 9H). ¹³**C** NMR (126 MHz, Chloroform-d) δ 149.87, 139.81,

132.02, 129.29, 126.32, 126.27, 125.74, 119.17, 96.92, 76.00, 34.44, 31.21, 15.25. **HRMS** (ESI) calculated 313.1079 for $C_{19}H_{21}S_2$ [M+H]⁺, found 313.1074.

(4-(tert-butyl)phenyl)((4-(trifluoromethoxy)phenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **3d** in 52% yield (55 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3456, 2960, 2168, 1597, 1259, 1168, 830 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 8.7 Hz, 2H),

7.46 – 7.37 (m, 4H), 7.18 (d, J = 8.3 Hz, 2H), 1.32 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 150.25, 149.00 (q, J = 2.2 Hz), 133.14, 128.83, 126.58, 126.46, 121.84, 120.87, 120.38 (q, J = 258.3 Hz), 95.55, 77.59, 34.54, 31.25. ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -57.79. **HRMS** (ESI) calculated 351.1025 for C₁₉H₁₈F₃OS [M+H]⁺, found 351.1018.

((4-(benzyloxy)phenyl)ethynyl)(4-(tert-butyl)phenyl)sulfane

According to the general procedure, the reaction gave **3e** in 76% (85 mg) yield as a white solid (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3441, 2959, 2165, 1599, 1498, 1240, 827 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.52 – 7.38 (m, 11H), 6.98

(d, J = 8.5 Hz, 2H), 5.11 (s, 2H), 1.36 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 159.09, 149.70, 136.44, 133.61, 129.66, 128.58, 128.05, 127.40, 126.27, 126.13, 115.32, 114.86, 97.15, 74.25, 69.96, 34.43, 31.22. **HRMS** (ESI) calculated 373.1621 for C₂₅H₂₅OS [M+H]⁺, found 373.1615.

5-(((4-(tert-butyl)phenyl)thio)ethynyl)benzo[d][1,3]dioxole

According to the general procedure, the reaction gave **3f** in 81% yield (75 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3450, 2960, 1598, 1489, 1250, 1039, 816 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.45 – 7.38 (m, 4H),

7.07 (dd, J = 8.0, 1.6 Hz, 1H), 6.97 (d, J = 1.5 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 5.99 (s, 2H), 1.34 (s, 9H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 149.82, 148.23, 147.38, 129.48, 126.87, 126.30, 126.22, 116.20, 111.85, 108.42, 101.34, 97.03, 74.15, 34.45, 31.22. HRMS (ESI) calculated 311.1100 for $C_{19}H_{19}O_2S$ [M+H]⁺, found 311.1096.

(4-(tert-butyl)phenyl)((4-(trifluoromethyl)phenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **3g** in 43% (mg) yield as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3432, 2960, 2166, 1607, 1322, 1123, 831 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.61 – 7.55 (m, 4H), 7.47 –

7.38 (m, 4H), 1.33 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 150.45, 131.43, 129.89 (q, *J* = 32.6 Hz),

128.45, 126.86, 126.74, 126.53, 125.30 (q, J = 3.8 Hz), 123.89 (q, J = 272.2 Hz), 95.74, 79.85, 34.57, 31.24. ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -62.81. **HRMS** (ESI) calculated 335.1076 for C₁₉H₁₈F₃S [M+H]⁺, found 335.1069.

methyl 4-(((4-(tert-butyl)phenyl)thio)ethynyl)benzoate

According to the general procedure, the reaction gave **3h** in 46% (46 mg) yield as a yellow solid (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3462, 2958, 2163, 1722, 1600, 1277, 823 cm⁻¹. ¹H **NMR** (500 MHz,

Chloroform-*d*) δ 8.00 (d, *J* = 8.5 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.45 – 7.39 (m, 4H), 3.92 (s, 3H), 1.32 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.48, 150.39, 131.01, 129.53, 129.39, 128.57, 127.72, 126.68, 126.51, 96.50, 80.35, 52.21, 34.56, 31.24. **HRMS** (ESI) calculated 325.1257 for C₂₀H₂₁O₂S [M+H]⁺, found 325.1255.

4-(((4-(tert-butyl)phenyl)thio)ethynyl)benzonitrile

According to the general procedure, the reaction gave **3i** in 61% yield (53 mg) as a yellow solid (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3461, 2960, 2164, 1598, 1492, 1269, 830 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 (d,

J = 8.4 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.42 (s, 4H), 1.32 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 150.65, 132.03, 131.41, 128.01, 127.87, 126.86, 126.57, 118.44, 111.25, 95.52, 82.56, 34.56, 31.20. HRMS (ESI) calculated 292.1154 for C₁₉H₁₈NS [M+H]⁺, found 292.1149.

(4-(tert-butyl)phenyl)((4-fluorophenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **3j** in 65% yield (55 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3479, 2961, 2166, 1599, 1498, 1233, 827 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.53 – 7.48 (m, 2H), 7.42 (q, *J* = 8.7

Hz, 4H), 7.04 (t, J = 8.7 Hz, 2H), 1.33 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.65 (d, J = 250.1 Hz), 150.06, 133.76 (d, J = 8.4 Hz), 129.12, 119.15 (d, J = 3.5 Hz), 115.66 (d, J = 22.1 Hz), 95.94, 75.96, 34.50, 31.24. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -110.12 (tt, J = 8.6, 5.3 Hz). HRMS (ESI) calculated 285.1108 for C₁₈H₁₈FS [M+H]⁺, found 285.1103.

(4-(tert-butyl)phenyl)((4-chlorophenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **3k** in 71% yield (66 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3463, 2960, 2166, 1596, 1486, 1087, 822 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.46 – 7.38 (m,

6H), 7.31 (d, J = 8.4 Hz, 2H), 1.33 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 150.16, 134.48, 132.79, 128.88, 128.69, 126.52, 126.43, 121.53, 95.89, 77.55, 34.52, 31.24. **HRMS** (ESI) calculated 301.0812 for C₁₈H₁₈CIS [M+H]⁺, found 301.0808.

((4-bromophenyl)ethynyl)(4-(tert-butyl)phenyl)sulfane

According to the general procedure, the reaction gave **3I** in 77% yield (73 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 2960, 2167, 1468, 1266, 1018, 822, 747 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.7 Hz, 1H),

7.48 (td, J = 8.2, 7.8, 1.7 Hz, 3H), 7.38 (d, J = 8.6 Hz, 2H), 7.26 – 7.23 (m, 1H), 7.14 (td, J = 7.9, 1.6 Hz, 1H), 1.31 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 150.06, 133.02, 132.40, 129.28, 128.75, 127.00, 126.37, 124.96, 95.91, 81.39, 34.51, 31.25. **HRMS** (ESI) calculated 345.0307 for C₁₈H₁₈BrS [M+H]⁺, found 345.0301.

phenyl(phenylethynyl)sulfane

According to the general procedure, the reaction gave **3m** in 79% yield (50 mg) as a yellow oil (flash column chromatography eluent, petrol ether). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 – 7.45 (m, 4H), 7.42 – 7.32 (m, 5H), 7.26 – 7.20 (m, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 132.91, 131.72,

129.25, 128.62, 128.38, 126.50, 126.17, 122.87, 97.88, 75.39. Spectroscopic data for **3m** match those previously reported in the literature.⁷

(4-methoxyphenyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave **3n** in 51% yield as a yellow oil (flash column chromatography eluent, petrol ether). ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.52 – 7.41 (m, 4H), 7.36 – 7.29 (m, 3H), 6.95 – 6.89 (m, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-

d) δ 159.00, 131.60, 128.89, 128.41, 128.32, 123.04, 122.99, 115.04, 96.24, 55.40. Spectroscopic data for **3n** match those previously reported in the literature.⁷

(phenylethynyl)(4-(trifluoromethoxy)phenyl)sulfane

According to the general procedure, the reaction gave **3o** in 76% yield (67 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3469, 2925, 1593, 1488, 1260, 1167, 753 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 – 7.47 (m,

4H), 7.38 – 7.31 (m, 4H), 7.24 – 7.18 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 147.89 (q, *J* = 1.7 Hz), 132.45, 131.81, 128.89, 128.43, 127.52, 122.55, 121.95, 120.42 (q, *J* = 258.6 Hz), 98.40, 74.68. ¹⁹**F**

NMR (376 MHz, Chloroform-*d*) δ -58.02. **HRMS** (ESI) calculated 295.0399 for C₁₅H₁₀F₃OS [M+H]⁺, found 295.0394.

(4-bromophenyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave **3p** in 71% yield (61 mg) as a colorless liquid (flash column chromatography eluent, petrol ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.53 – 7.48 (m, 2H), 7.48 – 7.46 (m, 1H), 7.46 – 7.44 (m, 1H), 7.37 – 7.31 (m, 5H). ¹³**C**

NMR (101 MHz, Chloroform-*d*) δ 132.27, 132.23, 131.77, 128.84, 128.41, 127.67, 122.55, 120.25, 98.50, 74.59. Spectroscopic data for **3p** match those previously reported in the literature.⁷

(4-fluorophenyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave **3q** in 65% yield (44 mg) as a yellow oil (flash column chromatography eluent, petrol ether). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.52 – 7.45 (m, 4H), 7.36 – 7.34 (m, 3H), 7.11 – 7.04 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 161.84 (d, *J* =

246.5 Hz), 131.74, 128.73, 128.40, 128.33, 127.84 (d, J = 3.3 Hz), 122.71, 116.45 (d, J = 22.5 Hz), 97.52, 75.62. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -115.35 – -115.46 (m). Spectroscopic data for **3q** match those previously reported in the literature.⁸

(4-chlorophenyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave **3r** in 67% yield as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 – 7.48 (m, 2H), 7.45 – 7.39 (m, 2H), 7.38 – 7.30 (m, 5H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ

132.49, 131.79, 131.55, 129.37, 128.85, 128.43, 127.45, 122.60, 98.37, 74.75. Spectroscopic data for **3r** match those previously reported in the literature.⁹

(phenylethynyl)(4-(trifluoromethyl)phenyl)sulfane

According to the general procedure, the reaction gave **3s** in 53% yield (44 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 – 7.57 (m, 4H), 7.56 – 7.52 (m, 2H), 7.39 – 7.35 (m, 3H). ¹³**C NMR** (101 MHz,

Chloroform-*d*) δ 138.37, 131.87, 130.98, 129.06, 128.48, 126.24 (q, *J* = 3.7 Hz), 126.03 (q, *J* = 3.8 Hz), 125.80, 123.97 (q, *J* = 272.7 Hz), 99.42, 73.56. Spectroscopic data for **3s** match those previously reported in the literature.¹⁰

ethyl 4-((phenylethynyl)thio)benzoate

According to the general procedure, the reaction gave **3t** in 65% yield (54 mg) as a yellow solid (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3460, 1715, 1594, 1274, 1108, 1017, 754 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.08 – 7.97 (m,

2H), 7.58 – 7.50 (m, 4H), 7.40 – 7.34 (m, 3H), 4.38 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 165.96, 139.40, 131.80, 130.23, 128.94, 128.47, 128.43, 125.22, 122.43, 99.35, 73.76, 61.01, 14.26. **HRMS** (ESI) calculated 283.0787 for C₁₇H₁₅O₂S [M+H]⁺, found 283.0782.

1-(4-((phenylethynyl)thio)phenyl)ethan-1-one

According to the general procedure, the reaction gave **3u** in 76% yield (57 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3467, 1679, 1590, 1356, 1261, 1083, 753 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.96 – 7.90 (m,

2H), 7.58 - 7.51 (m, 4H), 7.41 - 7.33 (m, 3H), 2.59 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 196.93, 139.94, 135.10, 131.83, 129.06, 129.02, 128.45, 125.37, 122.36, 99.48, 73.55, 26.46. **HRMS** (ESI) calculated 253.0682 for C₁₆H₁₃OS [M+H]⁺, found 253.0678.

(2-nitrophenyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave 3v in 93% yield (74 mg) as a yellow solid (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3461, 2422, 2329, 1607, 1354, 1046, 739 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 8.35 – 8.30 (m, 1H), 8.22 – 8.16 (m, 1H), 7.72 – 7.65 (m, 1H), 7.60 – 7.54 (m, 2H), 7.42 – 7.36 (m, 4H). ¹³C

NMR (101 MHz, Chloroform-*d*) δ 144.24, 134.48, 134.33, 131.96, 129.30, 128.47, 128.44, 126.37, 126.01, 122.03, 101.29, 75.06. **HRMS** (ESI) calculated 255.0354 for C₁₄H₁₀NO₂S [M+H]⁺, found 255.0357.

(4-chloro-2-methoxyphenyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave **3w** in 81% yield (66 mg) as a yellow solid (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 2928, 1580, 1474, 1248, 1061, 1020, 751 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 2.5 Hz, 1H), 7.59 – 7.52 (m, 2H), 7.39 – 7.35 (m, 3H), 7.18 – 7.13 (m, 1H), 6.77 (d, *J* = 8.6

Hz, 1H), 3.88 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 153.70, 131.78, 128.80, 128.42, 126.80, 126.67, 125.91, 123.79, 122.62, 111.20, 99.55, 74.07, 56.22. **HRMS** (ESI) calculated 275.0292 for C₁₅H₁₂CIOS [M+H]⁺, found 275.0286.

(4-chloro-2-methylphenyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave **3x** in 68% yield (67 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3462, 3064, 2923, 2168, 1566, 1436, 760 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 7.9 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.42 – 7.37 (m, 3H), 7.32 – 7.28 (m, 1H), 7.24 – 7.17 (m,

1H), 2.46 (s, 3H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 134.97, 134.38, 132.65, 131.79, 128.81, 128.39, 127.35, 127.30, 125.03, 122.63, 98.41, 75.03, 16.51. **HRMS** (ESI) calculated 259.0343 for C₁₅H₁₂CIS [M+H]⁺, found 259.0337.

2-methoxy-3-((phenylethynyl)thio)pyridine

According to the general procedure, the reaction gave **3y** in 62% yield (44 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 2935, 2353, 1563, 1462, 1400, 1247, 1021 cm⁻¹. **1H NMR** (400 MHz, Chloroform-*d*) δ 8.01 (dd, *J* = 5.0, 1.7 Hz, 1H), 7.90 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.40 – 7.33 (m, 3H), 6.96 (m, 2H), 7.50 (m, 2H)

5.0 Hz, 1H), 4.03 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 159.01, 143.88, 134.50, 131.82, 128.87, 128.42, 122.56, 117.70, 117.43, 99.27, 73.77, 53.88. **HRMS** (ESI) calculated 242.0634 for C₁₄H₁₂NOS [M+H]⁺, found 242.0630.

2-fluoro-5-((phenylethynyl)thio)pyridine

According to the general procedure, the reaction gave **3z** in 56% yield as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3456, 1583, 1463, 1359, 1248, 748, 639 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.28 (d, *J* = 2.4 Hz, 1H), 7.94 – 7.85 (m, 1H), 7.50 –

7.44 (m, 2H), 7.35 – 7.30 (m, 3H), 6.93 (dd, J = 8.6, 3.0 Hz, 1H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 162.81 (d, J = 240.0 Hz), 145.46 (d, J = 15.4 Hz), 139.80 (d, J = 7.9 Hz), 131.84, 129.09, 128.47, 127.32 (d, J = 4.8 Hz), 122.20, 110.35 (d, J = 38.4 Hz), 97.71, 73.75. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ - 70.49. **HRMS** (ESI) calculated 230.0434 for C₁₃H₉FNS [M+H]⁺, found 230.0430.

6-((phenylethynyl)thio)quinoline

According to the general procedure, the reaction gave **3aa** in 49% yield (38 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3488, 3430, 3059, 2923, 1588, 1489, 745 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.93 – 8.84 (m, 1H), 8.16

- 8.04 (m, 2H), 7.90 (d, *J* = 2.1 Hz, 1H), 7.79 - 7.74 (m, 1H), 7.60 - 7.53 (m, 2H), 7.42 - 7.34 (m, 4H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 150.24, 147.01, 135.07, 131.85, 131.66, 130.36, 128.90, 128.64, 128.43, 127.50, 123.90, 122.57, 121.85, 98.65, 74.67. **HRMS** (ESI) calculated 262.0685 for C₁₇H₁₂NS [M+H]⁺, found 262.0680.

Part 3: Copper-Catalyzed Cross-Coupling of Thiadiazoles with Bromoalkyne

3.1. Synthesis of Bromoalkyne

According to the literature procedures,¹¹ Ethynyltriisopropylsilane (10 mmol, 1.0 equiv) was first dissolved in acetone (20 mL). Then, *N*-bromosuccinimide (1.2 equiv) and AgNO₃ (10 mol%) were added to the resulting solution sequently and the mixture was stirred at room temperature for 4 h. The crude product was filtered and the organic extracts were concentrated. The residue was dissolved in hexane (30 mL) and filtered again. The filtrate was concentrated under reduced pressure and the bromoalkyne was obtained as a colorless liquid (2.55 g, 98%) without further purification.

3.2. Optimization of the Reaction Parameters

Table S2. Details of Optimization of the Reaction Conditions^[a]

Entry	Variation from the standard conditions	Yield of 5a (%)
1	none	90 (84) ^b
2	Without CuCl	n.d.
3	CuCl ₂ instead of CuCl	88
4	Cul instead of CuCl	77
5	$Cu(acac)_2$ instead of CuCl	41
6	Without L3	35
7	Xantphos instead of L3	9
8	bpy instead of L3	41
9	L1 instead of L3	12
10	L2 instead of L3	14
11	1,10-Phen instead of L3	84
12	L4 instead of L3	68
13	Without Cs ₂ CO ₃	n.d.
14	K ₃ PO₄ instead of Cs₂CO ₃	trace
15	K ₂ CO ₃ instead of Cs ₂ CO ₃	trace
16	NEt ₃ instead of Cs ₂ CO ₃	n.d.
17	DIEPA instead of Cs ₂ CO ₃	n.d.

18	THF instead of PhMe	50
19	Dioxane instead of PhMe	74
20	DMSO instead of PhMe	30
21	DMF instead of PhMe	25

^[a]Conditions: **1a** (0.1 mmol), **4a** (0.12 mmol), CuCl (10 mol%), **L3** (10 mol%), Cs₂CO₃ (2 equiv) in PhMe (1 mL) at 90 °C for 24 h. Yield of **5a** was determined by GC using dodecane as the internal standard. n.d. = not detected. ^bIsolated yield.

General Procedure for the Optimization Reactions. The procedure was conducted in a N_2 -filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with Copper catalyst (10 mol%, 0.01 mmol), ligand (10 mol%, 0.01 mmol), base, 4-phenyl-1,2,3-thiadiazole **1a** (0.1 mmol, 1.0 equiv), (bromoethynyl)triisopropylsilane **4a** (0.12 mmol, 1.2 equiv) and solvent (1 ml). The reaction tube was sealed and removed from the glove box. The reaction mixture was stirred at an appreciate temperature for 24 h. After the reaction completed, the mixture was cooled down to room temperature, several drops of solution were passed through a short plug of silica gel with ethyl acetate washings. The filtrate was analyzed by GC to determine calibrated GC yields using n-dodecane as the internal standard.

3.3. General Procedure for Copper-catalyzed Alkynylthiolation of Bromoalkyne

In a N₂-filled glove box, to a reaction tube equipped with a magnetic stir bar was charged with CuCl (10 mol%), L1 (10 mol%), Cs₂CO₃ (0.6 mmol, 2.0 equiv), 1,2,3-thiadiazole 1 (0.3 mmol, 1.0 equiv), (bromoethynyl)triisopropylsilane 4a (0.36 mmol, 1.2 equiv) and PhMe (3 ml). The reaction tube was sealed and removed from the glove box. The reaction mixture was stirred at an appreciate temperature for 24 h. After the reaction completed, the reaction mixture was then diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (2×20 mL), the combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford the corresponding products.

triisopropyl(((phenylethynyl)thio)ethynyl)silane

According to the general procedure, the reaction gave **5a** in 84% yield (79 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2944, 2870, 2353, 2101, 1464, 842, 672 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 6.2 Hz, 2H), 7.31 (d, *J* = 6.3 Hz, 3H),

1.09 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 131.6, 128.8, 128.3, 122.3, 100.4, 94.9, 87.6, 72.2, 18.5, 11.2. **HRMS** (ESI) calculated 313.1452 for C₁₉H₂₇SSi [M-H]⁺ , found 313.1449.

triisopropyl(((naphthalen-1-ylethynyl)thio)ethynyl)silane

According to the general procedure, the reaction gave **5b** in 85% yield (93 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2864, 2099, 1586, 1461, 1392, 1014 cm⁻¹. **1H NMR** (500 MHz, Chloroform-d) δ 8.18 (dd, J = 8.3, 1.4 Hz, 1H), 7.75 – 7.70 (m, 2H), 7.55 (dd, J = 7.1, 1.2 Hz, 1H), 7.43 (dddd, J = 17.8, 8.2,

6.8, 1.5 Hz, 2H), 7.30 (dd, J = 8.3, 7.1 Hz, 1H), 1.03 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 133.20, 133.07, 130.35, 129.21, 128.27, 126.93, 126.52, 125.98, 125.09, 119.97, 100.53, 93.47, 87.65, 76.97, 18.56, 11.28. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₂₃H₂₉SSi 365.1754; found: 365.1750.

triisopropyl(((naphthalen-2-ylethynyl)thio)ethynyl)silane

According to the general procedure, the reaction gave **5c** in 84% yield (91 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2864, 2359, 2341, 2099, 1461, 1382 cm⁻¹. **¹H NMR** (400 MHz, Chloroform-d) δ 8.01 (d, J = 1.7 Hz, 1H), 7.83 (td,

 $J = 8.7, 3.7 \text{ Hz}, 3\text{H}, 7.53 \text{ (ddd, } J = 10.1, 5.7, 2.4 \text{ Hz}, 3\text{H}), 1.18 \text{ (s, 21H)}. {}^{13}\text{C NMR} \text{ (101 MHz, Chloroform-d)} \delta 133.00, 132.79, 131.81, 128.03, 128.00, 127.81, 127.73, 126.96, 126.63, 119.59, 100.51, 95.37 \text{ (d, } J = 1.7 \text{ Hz}), 87.61 \text{ (d, } J = 2.5 \text{ Hz}), 72.51, 18.54, 11.27. HRMS-ESI (m/z): [M+H]+ Calcd. for C₂₃H₂₉SSi 365.1754; found: 365.1760.$

((([1,1'-biphenyl]-4-ylethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5d** in 68% yield (80 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2864, 2359, 2101, 2099, 1458, 1394 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.62 – 7.55 (m, 4H), 7.52 (d, *J* =

8.2 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 1.13 (s, 21H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 141.59, 140.14, 132.10, 128.86, 127.75, 127.00, 121.19, 100.45, 94.82, 87.56, 72.82, 18.54, 11.25. HRMS-ESI (m/z): [M+H]+ Calcd. for C₂₅H₃₁SSi 391.1910 found:391.1907.

triisopropyl(((o-tolylethynyl)thio)ethynyl)silane

According to the general procedure, the reaction gave **5e** in 70% yield (69 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2943, 2865, 2100, 1638, 1482, 1461, 1382 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.30 (d, *J* = 7.6 Hz, 1H), 7.15 – 7.09 (m, 2H), 7.05

(t, J = 7.4 Hz, 1H), 2.34 (s, 3H), 1.02 (s, 21H). ¹³**C** NMR (126 MHz, Chloroform-d) δ 140.47, 131.65, 129.46, 128.71, 125.53, 122.17, 100.12, 94.06, 87.85, 75.72, 20.50, 18.52, 11.23. HRMS-ESI (m/z): [M+H]+ Calcd. for C₂₀H₂₉SSi 329.1754; found: 329.1751.

((((4-fluorophenyl)ethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5f** in 70% yield (70 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2943, 2865, 2100, 1652, 1600, 1540, 1505 cm⁻¹. **¹H NMR** (500 MHz, Chloroform-*d*) δ 7.46 – 7.41 (m, 2H), 7.05 – 6.99 (m,

2H), 1.10 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 162.84 (d, *J* = 250.7 Hz), 133.80 (d, *J* = 8.6 Hz), 118.46 (d, *J* = 3.5 Hz), 115.70 (d, *J* = 22.2 Hz), 100.50, 93.80, 87.36, 72.04, 18.52, 11.24. **HRMS-ESI** (m/z): [M+H]⁺ Calcd. for C₁₉H₂₆FSSi 333.1503; found: 333.1505.

((((2-fluorophenyl)ethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5g** in 81% yield (81 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2943, 2865, 2101, 1489, 1452, 1249, 1212 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.42 (t, *J* = 7.3 Hz, 1H), 7.32 (q, *J* = 6.4 Hz, 1H),

7.13 – 7.05 (m, 2H), 1.10 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 162.78 (d, J = 252.8 Hz), 133.42, 130.57 (d, J = 7.9 Hz), 123.94 (d, J = 3.7 Hz), 115.56 (d, J = 20.7 Hz), 111.05 (d, J = 15.6 Hz), 100.77, 88.38, 86.92, 77.70 (d, J = 3.3 Hz), 18.50, 11.23. ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -109.30 – -109.48 (m). **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₁₉H₂₆FSSi 333.1503; found: 333.1506.

((((4-chlorophenyl)ethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5f** in 58% yield (61 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2943, 2865, 2100, 1683, 1652, 1540, 1488 cm⁻¹. **¹H NMR** (500 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J*

= 8.6 Hz, 2H), 1.10 (s, 21H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 134.95, 132.82, 128.71, 120.81, 100.70, 93.77, 87.09, 73.56, 18.52, 11.23. HRMS-ESI (m/z): [M+H]⁺ Calcd. for C₁₉H₂₆CISSi 349.1135; found: 349.1201.

((((4-bromophenyl)ethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5j** in 74% yield (87 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2865, 2100, 1652, 1485, 1458, 1394 cm⁻¹. **¹H NMR** (500 MHz, Chloroform-*d*) δ 7.48 – 7.43 (m, 2H), 7.33 – 7.26

(m, 2H), 1.10 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 132.97, 131.64, 123.19, 121.26, 100.73, 93.84, 87.02, 73.79, 18.52, 11.23. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₁₉H₂₆BrSSi 393.0702; found: 393.0710.

((((2-bromophenyl)ethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5k** in 75% yield (88 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2864, 2101, 1635, 1464, 1433, 1046 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.48 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.34 (dd, *J* = 7.8, 1.7

Hz, 1H), 7.17 (td, J = 7.6, 1.2 Hz, 1H), 7.08 (td, J = 7.8, 1.7 Hz, 1H), 1.02 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 133.02, 132.43, 129.68, 126.95, 125.12, 124.59, 100.79, 93.60, 86.72, 77.40, 18.54, 11.24. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₁₉H₂₆BrSSi 393.0702 found:393.0695.

((((4-iodophenyl)ethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5I** in 58% yield (77 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2864, 2100, 1652, 1606, 1481, 1458 cm⁻¹. **¹H NMR** (500 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J*

= 8.4 Hz, 2H), 1.10 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 137.52, 132.94, 121.79, 100.74, 94.91, 93.98, 86.99, 74.08, 18.52, 11.22. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₁₉H₂₆ISSi 441.0564; found: 441.0569.

triisopropyl((((4-methoxyphenyl)ethynyl)thio)ethynyl)silane

According to the general procedure, the reaction gave **5m** in 72% yield (74 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2864, 2359, 2098, 1603, 1540, 1507 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.40 (d, *J* = 8.8 Hz,

2H), 6.84 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 1.10 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 160.18, 133.61, 114.43, 113.97, 99.97, 94.90, 88.10, 70.29, 55.27, 18.53, 11.25. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₂₀H₂₉OSSi 345.1703; found: 345.1709.

triisopropyl((((4-(methylthio)phenyl)ethynyl)thio)ethynyl)silane

According to the general procedure, the reaction gave **5n** in 81% yield (87 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2943, 2864, 2099, 1683, 1652, 1540, 1488 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 8.4 Hz,

2H), 7.16 (d, J = 8.4 Hz, 2H), 2.48 (s, 3H), 1.10 (s, 21H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 140.38, 132.00, 125.58, 118.42, 100.29, 94.68, 87.62, 72.02, 18.50, 15.15, 11.21. HRMS-ESI (m/z): [M+H]+ Calcd. for C₂₀H₂₉S₂Si 361.1474; found: 361.1476.

triisopropyl((((4-(trifluoromethoxy)phenyl)ethynyl)thio)ethynyl)silane

According to the general procedure, the reaction gave **50** in 60% yield (72 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2944, 2866, 2101, 1633, 1505, 1285, 1219 cm⁻¹. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.46 (d, *J* = 8.3 Hz,

2H), 7.17 (d, J = 8.3 Hz, 2H), 1.10 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 149.28, 133.21, 121.09, 120.83, 120.34 (q, J = 258.2 Hz), 100.79, 93.45, 87.00, 73.59, 18.52, 11.24. ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -57.81. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₂₀H₂₆F₃OSSi 399.1420; found:399.1412.

triisopropyl((((4-(trifluoromethyl)phenyl)ethynyl)thio)ethynyl)silane

According to the general procedure, the reaction gave **5p** in 80% yield (92 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2944, 2866, 2102, 1615, 1463, 1322, 1169 cm⁻¹. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J*

= 8.2 Hz, 2H), 1.11 (s, 21H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 131.56, 130.39 (q, J = 32.8 Hz), 126.12, 125.31 (q, J = 3.8 Hz), 123.80 (q, J = 272.3 Hz), 101.16, 93.64, 86.62, 75.77, 18.52, 11.27. **HRMS-ESI (m/z):** [M+H]⁺ Calcd. for C₂₀H₂₆F₃SSi 383.1471; found: 383.1470.

4-((((triisopropylsilyl)ethynyl)thio)ethynyl)benzonitrile

According to the general procedure, the reaction gave **5q** in 47% yield (48 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2943, 2865, 2359, 2341, 2228, 2101, 1771 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 8.1 Hz, 3H), 7.48 (d,

J = 8.1 Hz, 2H), 1.10 (s, 21H). ¹³**C** NMR (101 MHz, Chloroform-d) δ 132.05, 131.59, 127.07, 118.26, 111.91, 101.51, 93.44, 86.06, 78.27, 18.50, 11.21. HRMS-ESI (m/z): [M+H]+ Calcd. for C₂₀H₂₆NSSi 340.1550; found: 340.1549.

methyl 4-((((triisopropylsilyl)ethynyl)thio)ethynyl)benzoate

According to the general procedure, the reaction gave **5r** in 52% yield (58 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2944, 2865, 2100, 1729, 1605, 1540, 1457 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.3 Hz,

2H), 7.47 (d, J = 8.3 Hz, 2H), 3.91 (s, 3H), 1.10 (s, 21H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 166.32, 131.12, 129.82, 129.48, 126.87, 101.01, 94.29, 86.70, 76.12, 52.23, 18.50, 11.21. HRMS-ESI (m/z): [M+H]+ Calcd. for C₂₁H₂₉O₂SSi 373.1652; found: 373.1653.

(((benzo[d][1,3]dioxol-5-ylethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5s** in 71% yield (76 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2943, 2865, 2099, 1504, 1488, 1248, 1040 cm⁻¹. **¹H NMR** (400 MHz, Chloroform-*d*) δ 6.99 (dd, *J* = 8.0, 1.4 Hz, 2H),

6.89 (d, J = 1.3 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 5.97 (s, 2H), 1.09 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 148.51, 147.37, 126.97, 115.53, 111.76, 108.43, 101.40, 100.16, 94.78, 87.81, 70.27, 18.51, 11.23. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₂₀H₂₇O₂SSi 359.1495; found: 359.1499.

((((3,4-dichlorophenyl)ethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5t** in 66% yield (76 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2944, 2866, 2101, 1633, 1505, 1285, 1219 cm⁻¹. **¹H NMR** (500 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 1.9 Hz, 1H), 7.39 (d,

J = 8.3 Hz, 1H), 7.24 (dd, J = 8.3, 2.0 Hz, 1H), 1.10 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 133.30, 133.07, 132.66, 130.58, 130.40, 122.21, 101.12, 92.57, 86.48, 75.13, 18.52, 11.22. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₁₉H₂₆Cl₂SSi 383.0818; found: 383.0828.

((benzofuran-2-ylthio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5u** in 58% yield (57 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2865, 2100, 1635, 1462, 1445, 1252 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 1H), 7.21

- 7.13 (m, 2H), 6.79 (s, 1H), 1.01 (s, 21H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.46, 145.66, 128.33, 124.57, 123.14, 120.50, 111.08, 109.13, 101.19, 88.14, 18.54, 11.24. HRMS-ESI (m/z): [M+H]+ Calcd. for C₁₉H₂₇OSSi 331.1546; found: 331.1551.

triisopropyl((((thiophen-3-ylethynyl)thio)ethynyl)silane

According to the general procedure, the reaction gave **5v** in 77% yield (74 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2865, 2099, 1770, 1652, 1462, 1383 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 2.6 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.13

(d, J = 5.0 Hz, 1H), 1.10 (s, 21H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 130.37, 129.90, 125.40, 121.43, 100.33, 90.03, 87.48, 71.72, 18.53, 11.24. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₁₇H₂₅S₂Si 321.1161; found: 321.1160.

(((furan-2-ylethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5w** in 67% yield (61 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2943, 2865, 2100, 1653, 1647,1458, 1206 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 1.2 Hz, 1H), 6.74 – 6.70 (m, 1H), 6.41

(dd, J = 3.4, 1.9 Hz, 1H), 1.08 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 144.70, 136.22, 118.28, 111.00, 100.60, 86.17, 85.11, 78.16, 18.21, 11.04. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₁₇H₂₅OSSi 305.1390; found: 305.1398.

2-((((triisopropylsilyl)ethynyl)thio)ethynyl)pyridine

According to the general procedure, the reaction gave **5f** in 45% yield (43 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2941, 2864, 2099, 1716, 1697, 1652, 1577 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.57 (d, *J* = 4.7 Hz, 1H), 7.65 (td, *J* = 7.8, 1.8 Hz,

1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.25 – 7.22 (m, 1H), 1.09 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 150.03, 142.45, 136.19, 126.97, 123.14, 101.29, 94.25, 86.04, 73.85, 18.51, 11.20. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₁₈H₂₆NSSi 316.1550; found: 316.1552.

(((benzofuran-2-ylethynyl)thio)ethynyl)triisopropylsilane

According to the general procedure, the reaction gave **5f** in 60% yield (64 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2943, 2866, 1764, 1743, 1658, 1553, 1540 cm⁻¹. **¹H NMR** (500 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 7.8 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.39 – 7.33 (m, 1H), 7.28 – 7.23 (m, 1H), 7.06 (s, 1H),

1.10 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 155.08, 137.85, 127.22, 126.30, 123.43, 121.50, 114.19, 111.40, 101.41, 85.59, 85.51, 80.22, 18.51, 11.21. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₂₁H₂₇OSSi 355.1546; found: 355.1551.

(E)-triisopropyl(((4-phenylbut-3-en-1-yn-1-yl)thio)ethynyl)silane

According to the general procedure, the reaction gave **5z** in 50% yield (61 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2942, 2864, 2098, 1772, 1490, 1460, 1448 cm⁻¹. ¹H

NMR (500 MHz, Chloroform-*d*) δ 7.41 – 7.37 (m, 2H), 7.36 – 7.30 (m, 3H), 6.98 (d, *J* = 16.3 Hz, 1H), 6.24 (d, *J* = 16.2 Hz, 1H), 1.11 (s, 21H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 142.37, 135.83, 128.95, 128.74, 126.38, 107.19, 100.38, 94.61, 87.61, 73.96, 18.54, 11.26. **HRMS-ESI (m/z):** [M+H]+ Calcd. for C₂₁H₂₉SSi 341.1754; found: 341.1753.

Part 4: Further Elaboration for Synthetic Potential of Thiadiazoles

4.1. Late-stage Alkynylthiolation of Unactivated Alkyl Bromide

General Procedure. Cs_2CO_3 (0.6 mmol, 2.0 equiv) and thiadiazoles (0.3 mmol, 1.0 equiv) in DMSO (3 mL) were added unactivated alkyl bromides (0.6 mmol, 2.0 equiv). After stirring under air for 16 h at room temperature, the mixture was quenched by 1 mL 1N-HCl. Then the reaction mixture was diluted with ethyl acetate (20.0 mL), washed with water (3×10 mL), the organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford the corresponding products.

methyl 4-(((3-chloropropyl)thio)ethynyl)benzoate

According to the general procedure, the reaction gave **7a** in 70% yield (56 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 3486, 3428, 2952, 2161, 1718, 1601, 1274 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 3.89 (s, 3H), 3.73 (t,

J = 6.1 Hz, 2H), 2.95 (s, 2H), 2.31 – 2.22 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.35, 130.77, 129.40, 129.04, 127.79, 92.96, 82.57, 52.11, 42.59, 32.44, 31.75. **HRMS** (ESI) calculated 269.0398 for C₁₃H₁₄ClO₂S [M+H]⁺, found 269.0392.

methyl 4-(((4-methoxy-4-oxobutyl)thio)ethynyl)benzoate

According to the general procedure, the reaction gave **7b** in 65% yield (57 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 3436, 2947, 2160, 1719, 1599, 1268, 757 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 8.6 Hz, 2H),

7.41 (d, J = 8.6 Hz, 2H), 3.88 (s, 3H), 3.66 (s, 3H), 2.85 (t, J = 7.0 Hz, 2H), 2.52 (t, J = 7.2 Hz, 2H), 2.17 – 2.09 (m, 2H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 173.05, 166.40, 130.78, 129.38, 128.96, 127.94, 92.83, 82.89, 52.10, 51.61, 34.79, 31.91, 24.38. HRMS (ESI) calculated 293.0842 for C₁₅H₁₇O₄S [M+H]⁺, found 293.0835.

methyl 4-(((2-(1,3-dioxolan-2-yl)ethyl)thio)ethynyl)benzoate

According to the general procedure, the reaction gave **7c** in 80% yield (70 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 2977, 2382,

2170, 1719, 1281, 1117, 765 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 5.02 (t, *J* = 4.4 Hz, 1H), 3.99 – 3.94 (m, 2H), 3.88 (s, 3H), 3.87 – 3.82 (m, 2H), 2.95 – 2.88 (m, 2H), 2.21 – 2.14 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.41, 130.76, 129.37, 128.90, 127.98, 102.50, 93.06, 83.15, 64.96, 52.09, 33.59, 29.94. **HRMS** (ESI) calculated 293.0842 for C₁₅H₁₇O₄S [M+H]⁺, found 293.0836.

methyl 4-((but-3-yn-1-ylthio)ethynyl)benzoate

According to the general procedure, the reaction gave **7d** in 85% yield (61 mg) as a white solid (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 3486, 3272, 2161, 1713, 1601, 1278, 692 cm⁻¹. **¹H NMR** (400 MHz, Chloroform-*d*) δ

7.95 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 3.89 (s, 3H), 2.94 (t, J = 7.3 Hz, 2H), 2.74 – 2.68 (m, 2H), 2.09 (t, J = 2.6 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.36, 130.86, 129.41, 129.11, 127.74, 93.59, 82.03, 81.31, 70.18, 52.13, 34.11, 19.42. **HRMS** (ESI) calculated 245.0631 for C₁₄H₁₃O₂S [M+H]⁺, found 245.0626.

but-3-en-1-yl(phenylethynyl)sulfane

According to the general procedure, the reaction gave **7e** in 82% yield (47 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3457, 2923, 2164, 1596, 916, 752, 689 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.46 – 7.40 (m, 2H), 7.34 – 7.28 (m, 3H), 5.97 – 5.80 (m,

1H), 5.24 – 5.08 (m, 2H), 2.87 (t, J = 7.3 Hz, 2H), 2.62 – 2.53 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 135.56, 131.38, 128.23, 127.98, 123.40, 116.78, 93.28, 79.10, 34.84, 33.41. **HRMS** (ESI) calculated 189.0732 for C₁₂H₁₃S [M+H]⁺, found 189.0729.

2-(((phenylethynyl)thio)methyl)oxirane

According to the general procedure, the reaction gave **7f** in 76% yield (44 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 3456, 2994, 2166, 1596, 1485, 1073, 754 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.44 – 7.38 (m, 2H), 7.34 – 7.28 (m, 3H), 3.41 –

3.32 (m, 1H), 3.04 – 2.97 (m, 1H), 2.94 (t, J = 4.4 Hz, 1H), 2.88 – 2.80 (m, 1H), 2.77 – 2.73 (m, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 131.31, 128.22, 128.20, 122.92, 93.09, 78.09, 50.61, 47.36, 37.68. **HRMS** (ESI) calculated 191.0525 for C₁₁H₁₁OS [M+H]⁺, found 191.0521.

(2-phenoxyethyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave **7g** in 76% yield (44 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 100/1). **IR** (KBr) v_{max} : 2923, 2348, 2165, 1483, 1234, 1029,

750 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.45 – 7.35 (m, 2H), 7.33 – 7.15 (m, 5H), 7.00 – 6.87 (m, 3H), 4.30 (t, J = 6.6 Hz, 2H), 3.11 (t, J = 6.6 Hz, 2H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 158.22, 131.45, 129.47, 128.24, 123.04, 121.12, 114.59, 93.25, 78.31, 65.98, 34.37. **HRMS** (ESI) calculated 255.0838 for C₁₆H₁₅OS [M+H]⁺, found 255.0833.

tert-butyl (3-((phenylethynyl)thio)propyl)carbamate

According to the general procedure, the reaction gave **7h** in 85% yield (74 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 5/1). **IR** (KBr) v_{max} : 3347, 2970, 2354, 1700, 1516, 1259, 1168 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.42 – 7.38 (m, 2H), 7.30 – 7.27 (m, 3H), 4.72 (s, 1H), 3.33 – 3.25 (m,

2H), 2.82 (t, J = 7.0 Hz, 2H), 2.02 – 1.95 (m, 2H), 1.43 (s, 9H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 155.91, 131.37, 128.23, 128.05, 123.22, 93.21, 79.26, 78.96, 38.86, 32.92, 29.60, 28.33. **HRMS** (ESI) calculated 290.1220 for C₁₆H₂₂NO₂S [M+H]⁺, found 290.1214.

but-3-en-1-yl((2-nitrophenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **7i** in 93% yield (65 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 2829, 2353, 2153, 1603, 1354, 916, 766 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 8.06 (d, *J* = 8.1 Hz, 1H), 7.58 – 7.49 (m, 2H), 7.40 – 7.33 (m, 1H), 5.93 – 5.81 (m, 1H), 5.24 – 5.06

(m, 2H), 2.93 (t, J = 7.3 Hz, 2H), 2.62 (q, J = 7.1 Hz, 2H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 148.13, 135.31, 133.33, 132.93, 127.40, 124.66, 119.20, 117.04, 90.55, 90.40, 35.20, 33.28. **HRMS** (ESI) calculated 234.0583 for C₁₂H₁₂NO₂S [M+H]⁺, found 234.0576.

((2-nitrophenyl)ethynyl)(pent-4-en-1-yl)sulfane

According to the general procedure, the reaction gave **7j** in 76% yield (56 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 2925, 2353, 2153, 1610, 1522, 1345, 744 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 8.06 (d, *J* = 8.5 Hz, 1H), 7.56 - 7.48 (m, 2H), 7.40 - 7.32 (m, 1H), 5.86 - 5.76 (m, 1H), 5.11 -

4.97 (m, 2H), 2.88 (t, J = 7.2 Hz, 2H), 2.24 (q, J = 7.1 Hz, 2H), 2.03 – 1.94 (m, 2H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 148.14, 137.15, 133.35, 132.90, 127.35, 124.66, 119.26, 115.64, 90.81, 90.06, 35.31, 32.02, 28.21. **HRMS** (ESI) calculated 248.0740 for C₁₃H₁₄NO₂S [M+H]⁺, found 248.0732.

methyl 4-((cyclohexylthio)ethynyl)benzoate

According to the general procedure, the reaction gave **7k** in 66% yield (54 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 3432, 2932, 2855, 2160,

1722, 1277, 1107 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 3.90 (s, 3H), 3.11 – 2.97 (m, 1H), 2.18 – 2.06 (m, 2H), 1.90 – 1.78 (m, 2H), 1.61 – 1.51 (m, 2H), 1.43 – 1.25 (m, 4H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.57, 130.73, 129.43, 128.75, 128.42, 94.07, 82.92, 52.15, 47.83, 33.03, 25.98, 25.36. **HRMS** (ESI) calculated 275.1100 for C₁₆H₁₉O₂S [M+H]⁺, found 275.1094.

methyl 4-((isopropylthio)ethynyl)benzoate

According to the general procedure, the reaction gave **7I** in 78% yield (55 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 3425, 2962, 2159, 1721, 1276, 1106, 765 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 3.89 (s, 3H), 3.32 – 3.21 (m, 1H), 1.43 (d,

J = 6.7 Hz, 6H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 166.47, 130.65, 129.40, 128.77, 128.29, 94.46, 82.84, 52.10, 39.98, 22.92. HRMS (ESI) calculated 235.0787 for C₁₃H₁₅O₂S [M+H]⁺, found 235.0782.

4.2. Concise Method for Synthesis of Difluoromethanethiated Alkyne from Thiadiazoles

4.2.1. Optimization of the Reaction Parameters

Table S3. Details of Optimization of the Reaction Conditions^[a]

N=N	+ TMSCE ₂ Br NaO ^r Bu (3 equiv)	S CF ₂ H
Ph	THF, 80 °C, 24 h	Ph
1a		8a
Entry	Variation from the standard conditions	Yield of 5a (%)
1	none	83(77) ^b
2	K₃PO₄ instead of NaOtBu	n.d.
3	K ₂ CO ₃ instead of NaOtBu	n.d.
4	Cs ₂ CO ₃ instead of NaO <i>t</i> Bu	n.d.
5	NEt₃ instead of NaO <i>t</i> Bu	n.d.
6	DIEPA instead of NaOtBu	n.d.
7	toluene instead of THF	14
8	Dioxane instead of THF	76
9	DMSO instead of THF	65
10	1 equiv of NaOtBu	29
11	rt	trace

^[a]Conditions: **1a** (0.1 mmol), TMSCF₂Br (0.2 mmol), NaO*t*Bu (3 equiv) in THF (1 mL) at 80 °C for 24 h. Yield of **8a** was determined by GC using dodecane as the internal standard. n.d. = not detected. ^bIsolated yield.

General Procedure for the Optimization Reactions. The procedure was conducted in a N₂-filled glove box. To a reaction tube equipped with a magnetic stir bar was charged with 4-phenyl-1,2,3-thiadiazole **1a** (0.1 mmol, 1.0 equiv), TMSCF₂Br (0.2 mmol, 2 equiv), base (0.3 mmol, 3 equiv) and solvent (1 ml). The reaction tube was sealed and removed from the glove box. The reaction mixture was stirred at an appreciate temperature for 24 h. After the reaction completed, the mixture was cooled down to room temperature, several drops of solution were passed through a short plug of silica gel with ethyl acetate washings. The filtrate was analyzed by GC to determine calibrated GC yields using n-dodecane as the internal standard.

4.2.2 General Procedure for Alkynylthiolation with $\mathsf{TMSCF}_2\mathsf{Br}$

General Procedure. NaO^tBu (0.9 mmol, 3.0 equiv) and thiadiazoles (0.3 mmol, 1.0 equiv) in THF (3 mL) were added TMSCF₂Br (0.6 mmol, 2.0 equiv). After stirring under N₂ for 24 h at 80 °C, the mixture was quenched by 1 mL 1N-HCI. Then the reaction mixture was diluted with ethyl acetate (20.0 mL), washed with water (3×8 mL), the organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford the corresponding products.

(difluoromethyl)(phenylethynyl)sulfane

According to the general procedure, the reaction gave **8a** in 77% yield (43 mg) as a yellow oil (flash column chromatography eluent, petrol ether). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 7.1 Hz, 2H), 7.42 – 7.29 (m, 3H), 6.95 (t, *J* = 56.9 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 131.98, 129.26,

128.40, 121.99, 119.62 (t, J = 281.3 Hz), 98.80 (t, J = 1.9 Hz), 68.95 (t, J = 6.5 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -92.8 (d, J = 57.0 Hz). Spectroscopic data for **8a** match those previously reported in the literature.¹²

(difluoromethyl)(naphthalen-2-ylethynyl)sulfane

According to the general procedure, the reaction gave **8b** in 85% yield (60 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3480, 3059, 2166, 1496, 1284, 1076, 741 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 8.03 (s, 1H), 7.86 – 7.79 (m, 3H), 7.57 – 7.50 (m,

3H), 7.01 (t, J = 56.9 Hz, 1H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 133.15, 132.73, 132.33, 128.11, 128.10, 127.85, 127.74, 127.16, 126.71, 119.66 (t, J = 281.5 Hz), 119.22, 99.29, 69.22 (t, J = 6.4 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -92.7 (d, J = 56.9 Hz). HRMS (ESI) calculated 235.0388 for C₁₃H₉F₂S [M+H]⁺, found 235.0380.

([1,1'-biphenyl]-4-ylethynyl)(difluoromethyl)sulfane

According to the general procedure, the reaction gave **8c** in 81% yield (70 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3417, 2925, 2169, 1602, 1244, 1072, 739 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.5 – 7.2 (m, 7H), 7.0 – 6.7 (m, 3H), 5.0 (s, 2H). ¹³C

NMR (126 MHz, Chloroform-*d*) δ 159.6, 136.3, 134.0, 128.6, 128.1, 127.4, 119.7 (t, *J* = 281.2 Hz), 114.9, 114.3, 98.8 (t, *J* = 1.9 Hz), 70.0, 67.4 (t, *J* = 6.5 Hz). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -93.0 (d, *J* = 56.9 Hz). **HRMS** (ESI) calculated 291.0650 for C₁₆H₁₃F₂OS [M+H]⁺, found 291.0644.

(difluoromethyl)((4-methoxyphenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **8d** in 48% yield (31 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 2927, 2349, 1628, 1505, 1256, 1072, 830 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 8.1 Hz, 2H), 7.09 – 6.75 (m,

3H), 3.82 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 160.49, 134.03, 119.78 (t, *J* = 281.1 Hz), 114.02, 113.99, 98.86, 67.24 (t, *J* = 6.6 Hz), 55.27. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -93.07 (d, *J* = 57.0 Hz). **HRMS** (ESI) calculated 215.0264 for C₁₀H₉F₂OS [M+H]⁺, found 215.0268.

(difluoromethyl)((4-(methylthio)phenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **8e** in 72% yield (50 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3450, 2924, 2171, 1591, 1286, 1077, 819 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.38 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.5

Hz, 2H), 6.93 (t, J = 56.9 Hz, 1H), 2.48 (s, 3H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 141.01, 132.37, 125.56, 119.62 (t, J = 281.4 Hz), 118.02, 98.62, 68.84 (t, J = 6.4 Hz), 15.07. ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -92.6 - -93.2 (m). **HRMS** (ESI) calculated 231.0108 for C₁₀H₉F₂S₂ [M+H]⁺, found 231.0104.

2-(4-(((difluoromethyl)thio)ethynyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

According to the general procedure, the reaction gave **8f** in 65% yield (60 mg) as a white solid (flash column chromatography eluent, petrol ether/EtOAc = 10/1). **IR** (KBr) v_{max} : 3490, 2980, 2927, 1606, 1362, 1146,

1080 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.77 (d, J = 7.9 Hz, 2H), 7.46 (d, J = 7.8 Hz, 2H), 6.95 (t, J = 56.9 Hz, 1H), 1.35 (s, 12H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 134.60, 130.84, 124.56, 119.58 (t, J = 281.4 Hz), 98.98, 84.04, 70.37 (t, J = 6.4 Hz), 24.83. ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -92.7 (d, J = 57.3 Hz). **HRMS** (ESI) calculated 310.1119 for C₁₅H₁₈BF₂O₂S [M+H]⁺, found 310.1114.

(difluoromethyl)((4-iodophenyl)ethynyl)sulfane

According to the general procedure, the reaction gave **8g** in 63% yield (59 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3457, 2928, 2169, 1718, 1477, 1283, 1070 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.94

(t, J = 56.8 Hz, 1H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 137.63, 133.26, 121.50, 119.37 (t, J = 281.7 Hz), 97.91 (t, J = 2.0 Hz), 95.44, 70.71 (t, J = 6.4 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -92.7 (d, J = 56.9 Hz). HRMS (ESI) calculated 308.9052 for C₉H₄F₂IS [M-H]⁺, found 308.9055.

4-(((difluoromethyl)thio)ethynyl)benzonitrile

According to the general procedure, the reaction gave **8h** in 46% yield (29 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 6.96 (t, *J* = 56.6 Hz, 1H). ¹³**C NMR** (101

MHz, Chloroform-*d*) δ 132.08, 131.89, 126.75, 119.03 (t, *J* = 282.4 Hz), 118.15, 112.29, 97.26 (t, *J* = 1.9 Hz), 74.44 (t, *J* = 6.2 Hz). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -92.46 (d, *J* = 56.6 Hz). Spectroscopic data for **8h** match those previously reported in the literature.¹²

methyl 4-(((difluoromethyl)thio)ethynyl)benzoate

According to the general procedure, the reaction gave **8i** in 56% yield (60 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 6.96 (t, *J* = 56.8 Hz, 1H), 3.91 (s,

3H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 166.27, 131.46, 130.23, 129.52, 126.54, 119.31 (t, *J* = 282.0 Hz), 98.13 (t, *J* = 1.8 Hz), 72.50 (t, *J* = 6.3 Hz), 52.26. ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -92.6 (d, *J* = 56.7 Hz). Spectroscopic data for **8i** match those previously reported in the literature.¹²

ethyl (E)-3-(4-(((difluoromethyl)thio)ethynyl)phenyl)acrylate

According to the general procedure, the reaction gave **8j** in 63% yield (53 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 3458, 2997, 2383, 1719, 1183, 1079, 744 cm⁻¹. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.64 (d,

J = 16.0 Hz, 1H), 7.50 – 7.44 (m, 4H), 6.95 (t, J = 56.8 Hz, 1H), 6.44 (d, J = 16.0 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (126 MHz, Chloroform-*d*) δ 166.61, 143.21, 135.07, 132.18, 127.91, 123.63, 119.53, 119.41 (t, J = 281.8 Hz), 98.38 (t, J = 1.9 Hz), 71.30 (t, J = 6.4 Hz), 60.61, 14.24. ¹⁹**F** NMR (471 MHz, Chloroform-*d*) δ -92.72 (d, J = 56.9 Hz). HRMS (ESI) calculated 283.0599 for C₁₄H₁₃F₂O₂S [M+H]⁺, found 283.0592.

5-(((difluoromethyl)thio)ethynyl)benzo[d][1,3]dioxole

According to the general procedure, the reaction gave **8k** in 74% yield (51 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3486, 2903, 2164, 1604, 1490, 1073, 815 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.08 – 6.71 (m, 4H), 5.99 (s, 2H). ¹³C **NMR** (101

MHz, Chloroform-*d*) δ 148.85, 147.43, 127.51, 119.67 (t, *J* = 281.4 Hz), 115.11, 112.06, 108.47, 101.49, 98.72 (t, *J* = 1.7 Hz), 67.17 (t, *J* = 6.6 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -93.0 (d, *J* = 57.0 Hz). **HRMS** (ESI) calculated 229.0129 for C₁₀H₇F₂O₂S [M+H]⁺, found 229.0124.

((3,4-dichlorophenyl)ethynyl)(difluoromethyl)sulfane

According to the general procedure, the reaction gave **8I** in 61% yield (45 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1). **IR** (KBr) v_{max} : 3469, 2926, 2163, 1590, 1254, 1065, 733 cm⁻¹. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 7.11 (d, *J* = 1.4 Hz, 1H),

7.05 – 6.78 (m, 3H), 3.89 (s, 3H), 3.87 (s, 3H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 150.46, 148.62, 126.10, 119.72 (t, J = 281.2 Hz), 114.84, 114.05, 110.91, 98.99 (t, J = 2.0 Hz), 67.20 (t, J = 6.5 Hz), 55.89, 55.87. ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -93.02. **HRMS** (ESI) calculated 245.0442 for C₁₁H₁₁F₂O₂S [M+H]⁺, found 245.0438.

((5-bromo-2-fluoro-4-methoxyphenyl)ethynyl)(difluoromethyl)sulfane

According to the general procedure, the reaction gave **8m** in 48% yield (67 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3457, 2921, 2166, 1605, 1491, 1074, 738 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 7.5 Hz, 1H), 6.93 (t, *J* = 56.9 Hz, 1H), 6.66 (d, *J* = 10.7 Hz, 1H), 3.91 (s, 3H). ¹³**C NMR** (126 MHz,

Chloroform-*d*) δ 163.50 (d, *J* = 253.9 Hz), 157.99 (d, *J* = 9.8 Hz), 137.11 (d, *J* = 2.2 Hz), 119.47 (t, *J* = 281.9 Hz), 105.89 (d, *J* = 3.5 Hz), 103.79 (d, *J* = 17.0 Hz), 100.15 (d, *J* = 26.4 Hz), 90.80 (t, *J* = 2.0 Hz), 74.24 - 73.77 (m), 56.65.¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -92.72, -106.29. **HRMS** (ESI) calculated 310.9348 for C₁₀H₇BrF₃OS [M+H]⁺, found 310.9345.

(E)-(difluoromethyl)(4-phenylbut-3-en-1-yn-1-yl)sulfane

According to the general procedure, the reaction gave **8n** in 65% yield (41 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3467, 2927, 2148, 1285, 1074, 953, 745 cm⁻¹. ¹H NMR (500 MHz,

Chloroform-*d*) δ 7.44 – 7.29 (m, 5H), 7.02 (d, *J* = 16.2 Hz, 1H), 6.88 (t, *J* = 57.0 Hz, 1H), 6.24 (d, *J* = 16.2 Hz, 1H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 143.30, 135.62, 129.17, 128.78, 126.46, 119.57 (t, *J* = 281.4 Hz), 106.91, 98.41 (t, *J* = 2.0 Hz), 70.66 (t, *J* = 6.4 Hz). ¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ - 92.9 (d, *J* = 56.9 Hz). **HRMS** (ESI) calculated 211.0388 for C₁₁H₉F₂S [M+H]⁺, found 211.0384.

2-(((difluoromethyl)thio)ethynyl)benzo[b]thiophene

According to the general procedure, the reaction gave **80** in 51% yield (34 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3444, 2922, 2161, 1602, 1292, 1076, 741 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 7.8 Hz, 1H), 7.50 (d, *J* = 8.3 Hz, 1H),

7.45 – 7.38 (m, 1H), 7.32 – 7.27 (m, 1H), 7.17 – 6.82 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 155.17, 137.47, 127.09, 126.60, 123.54, 121.66, 119.27, 116.45, 114.97, 111.45, 89.35 (t, *J* = 2.2 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -92.29 (d, *J* = 56.8 Hz). **HRMS** (ESI) calculated 225.0180 for $C_{11}H_7F_2OS [M+H]^+$, found 225.0175.

Part 5: Product Derivatizations

(((3,3-difluoro-2-phenylcycloprop-1-en-1-yl)thio)ethynyl)triisopropylsilane (9a):

According to the literature procedures,¹³ triisopropyl(((phenylethynyl)thio)ethynyl)silane (**5a**, 94.2 mg, 0.3 mmol), TMSCF₃ (85.2 mg, 0.6 mmol), NaI (98.9 mg, 0.66 mmol), and THF (1.0 mL) were mixed into a pressure tube at room temperature. Then the reaction mixture was heated at 110 °C for 2 h. The reaction was quenched by adding saturated Na₂CO₃ solution (5 mL), followed by extraction with Et₂O (20 mL x 2). The organic phase was dried over anhydrous K₂CO₃. After the removal of solvent under vacuum, the residue was subjected to silica gel column chromatography with petroleum ether. The product **9a** was obtained in 82% yield (89 mg) as a yellow oil (flash column chromatography eluent, petrol ether). **IR** (KBr) v_{max} : 3458, 2948, 2864, 2182, 2101, 1292, 1036 cm⁻¹.

¹H NMR (400 MHz, Chloroform-d) δ 7.72 – 7.66 (m, 2H), 7.46 – 7.40 (m, 3H), 1.13 (s, 21H).

¹³**C NMR** (126 MHz, Chloroform-*d*) δ 130.78, 130.39, 128.91, 127.35, 123.52, 118.06, 103.34, 102.72 (t, *J* = 268.7 Hz), 86.55, 18.49, 11.28.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -106.7.

HRMS (ESI) calculated 364.1493 for $C_{20}H_{27}F_2SSi [M+H]^+$, found 364.1497.

3,6-diphenyl-7-(((triisopropylsilyl)ethynyl)thio)-1,3,5-triazabicyclo[3.2.0]hept-6-ene-2,4-dione (9b):

According to the literature procedures,¹⁴ to a flame dried round bottom flask equipped with a stir bar was added a solution of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) (52.5 mg, 0.3 mmol) in dry acetonitrile (1.5 mL). To this stirring solution was added dropwise a solution of **5a** (122.5 mg, 0.39 mmol) in dry acetonitrile (1 mL). Then the round bottom flask was attached to a water cooled condenser and the mixture was refluxed for 24 h. The resultant mixture was concentrated under reduced pressure and purified via flash chromatography to afford the corresponding product **9b** in 68% yield (100 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1).

IR (KBr) v_{max}: 2938, 2863, 2354, 1750, 1374, 1216, 681 cm⁻¹.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.88 (m, 2H), 7.52 – 7.43 (m, 8H), 1.03 (s, 21H).

¹³**C NMR** (126 MHz, Chloroform-*d*) δ 155.44, 154.65, 146.69, 130.71, 129.32, 129.22, 128.83, 126.39, 125.56, 125.47, 121.72, 100.12, 86.08, 18.44, 11.13.

HRMS (ESI) calculated 490.1979 for $C_{27}H_{32}N_3O_2SSi \ [M+H]^+$, found 490.1970.

1-benzyl-4-phenyl-5-(((triisopropylsilyl)ethynyl)thio)-1H-1,2,3-triazole (9c):

According to the literature procedures,¹⁵ in a glove box, to an oven-dried 5-mL vial was added **5a** (94.2 mg, 0.3 mmol), the azide (79.8 mg, 0.6 mmol), $[Ir(cod)Cl]_2$ (7 mg, 3 mol%), and DCM (3.0 mL). The vial was capped and removed from the glove box. The reaction mixture was stirred at room temperature overnight, and then concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography to give the desired product **9c** in 67% yield (90 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1).

IR (KBr) v_{max}: 3468, 2947, 2864, 2097, 1462, 841, 729 cm⁻¹.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 – 8.07 (m, 2H), 7.50 – 7.44 (m, 2H), 7.43 – 7.31 (m, 6H), 5.77 (s, 2H), 0.99 (s, 21H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 149.17, 134.44, 129.71, 128.83, 128.66, 128.47, 128.42, 127.86, 127.49, 120.65, 98.21, 88.41, 52.50, 18.38, 11.00.

HRMS (ESI) calculated 448.2237 for $C_{26}H_{34}N_3SSi \ [M+H]^+$, found 448.2231.

triisopropyl((E)-2-(((E)-styryl)thio)vinyl)silane (9d):

According to the literature procedures,¹⁶ **5a** (94.2 mg, 0.3 mmol) was dissolved in dry tetrahydrofuran (1 mL) and LiAlH₄ (0.6 mmol, 2.0 equiv.) was then added in one portion. The mixture was stirred at 60 °C for 2 hour. The crude mixture was cooled to 0 °C and 1M HCl was added dropwise until a neutral pH was obtained. Diethyl ether was added to the mixture and following extraction, the combined organic phases were dried with anhydrous magnesium sulfate. The resulting suspension was filtered and the filtrate was concentrated under vacuum to provide a crude reaction mixture which was purified by column chromatography. The product **9d** was obtained in 85% yield (81 mg) as a yellow oil (flash column chromatography eluent, petrol ether).

IR (KBr) v_{max}: 3444, 2944, 2862, 1593, 947, 740, 659 cm⁻¹.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.41 – 7.35 (m, 4H), 7.31 – 7.26 (m, 1H), 6.93 – 6.88 (m, 1H), 6.78 – 6.69 (m, 2H), 5.96 (d, *J* = 18.3 Hz, 1H), 1.14 (s, 21H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 137.45, 136.57, 130.93, 128.65, 127.48, 125.94, 124.03, 121.70, 18.57, 10.94.

HRMS (ESI) calculated 319.1910 for C₁₉H₃₁SSi [M+H]⁺, found 319.1903.

(E)-but-3-en-1-yl(1-chloro-2-phenylvinyl)sulfane (9e):

According to the literature procedures,¹⁷ to a solution of **7e** (56.4 mg, 0.3 mmol) in EtOAc (1 mL) was added HCl (0.3 mL, 6 M). The resulting solution was stirred at room temperature. Progress of the reaction was monitored periodically by TLC. The reaction mixture was quenched with saturated aqueous NaHCO₃-solution and then the solution was extracted with EtOAc three times, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography to give the desired product **9e** in 89% yield (60 mg) as a yellow oil (flash column chromatography eluent, petrol ether).

IR (KBr) v_{max}: 3457, 2923, 1638, 1594, 915, 744, 691 cm⁻¹.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 7.7 Hz, 2H), 7.39 – 7.32 (m, 2H), 7.29 – 7.25 (m, 1H), 7.01 (s, 1H), 5.86 – 5.70 (m, 1H), 5.11 – 4.96 (m, 2H), 2.98 (t, *J* = 7.4 Hz, 2H), 2.42 – 2.35 (m, 2H).

¹³**C NMR** (126 MHz, Chloroform-*d*) δ 135.82, 134.82, 134.70, 129.28, 129.15, 128.16, 127.85, 116.62, 33.61, 33.14.

HRMS (ESI) calculated 225.0499 for $C_{12}H_{14}CIS [M+H]^+$, found 225.0498.

((but-3-en-1-ylsulfonyl)ethynyl)benzene (9f):

According to the literature procedures,¹⁸ 3 equiv of *m*-CPBA acid was added to a solution of **7e** (56.4 mg, 0.3 mmol) in DCM (2 mL) cooled at 0 °C. The reaction mixture was stirred for 1 h at the same temperature and then for 12 h at room temperature. Upon completion, the reaction mixture was washed with saturated NaHCO₃ solution, dried over MgSO₄ and concentrated. The residue was purified by silica gel flash column chromatograph to give the desired product **9f** in 78% yield (51 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1).

IR (KBr) v_{max}: 3470, 2947, 2863, 1752, 1377, 1216, 684 cm⁻¹.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.62 – 7.56 (m, 2H), 7.56 – 7.49 (m, 1H), 7.46 – 7.38 (m, 2H), 5.92 – 5.80 (m, 1H), 5.24 – 5.11 (m, 2H), 3.39 – 3.32 (m, 2H), 2.77 – 2.68 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 133.19, 132.82, 131.74, 128.77, 117.62, 117.47, 92.61, 83.09, 57.35, 27.10.

HRMS (ESI) calculated 221.0631 for $C_{12}H_{13}O_2S$ [M+H]⁺, found 221.0626.

(Z)-but-3-en-1-yl(2-phenylpenta-1,4-dien-1-yl)sulfane (9g):

According to the literature procedures,¹⁹ to a mixture of $Cu(OAc)_2$ (11.0 mg, 0.06 mmol) and **7e** (56.4 mg, 0.3 mmol) in 1.6 mL of MeOH/THF (v/v = 1:3) was added allylboronate (100.8 mg, 0.6 mmol) under a nitrogen atmosphere. After stirring at 25 °C for 12 h, the reaction mixture was concentrated and purified by column chromatography on silica gel. The product **9g** was obtained in 72% yield (50 mg) as a yellow oil (flash column chromatography eluent, petrol ether).

IR (KBr) v_{max}: 3477, 3071, 2919, 2182, 1638, 1433, 915 cm⁻¹.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.38 – 7.30 (m, 4H), 7.27 – 7.19 (m, 1H), 6.01 (s, 1H), 5.88 – 5.73 (m, 2H), 5.10 – 4.97 (m, 4H), 3.24 – 3.16 (m, 2H), 2.70 (t, *J* = 7.5 Hz, 2H), 2.40 – 2.32 (m, 2H).

¹³**C NMR** (126 MHz, Chloroform-*d*) δ 139.88, 136.69, 136.31, 135.89, 128.03, 127.86, 127.08, 123.31, 116.47, 116.10, 42.64, 34.31, 34.01.

HRMS (ESI) calculated 231.1202 for $C_{15}H_{19}S$ [M+H]⁺, found 231.1199.

S-(but-3-en-1-yl) 2-phenylethanethioate (9h):

According to the literature procedures,²⁰ to a 5-mL vial was added **7e** (56.4 mg, 0.3 mmol), 2.5 mL of DCM, TFA (51 mg, 0.45 mmol) and 0.2 g of silica. The resulting suspension was heated at 40 °C for 24 h, the reaction mixture was concentrated and purified by column chromatography on silica gel. The product **9h** was obtained in 56% yield (31 mg) as a yellow oil (flash column chromatography eluent, petrol ether/EtOAc = 20/1).

IR (KBr) ν_{max} : 3476, 2924, 1688, 1445, 999, 706, 606 cm⁻¹.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37 – 7.27 (m, 5H), 5.82 – 5.70 (m, 1H), 5.10 – 5.00 (m, 2H), 3.82 (s, 2H), 2.94 (t, *J* = 7.3 Hz, 2H), 2.35 – 2.28 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 197.22, 135.94, 133.64, 129.48, 128.59, 127.33, 116.44, 50.49, 33.43, 28.43.

HRMS (ESI) calculated 207.0838 for $C_{12}H_{15}OS \ [M+H]^+$, found 207.0835.

but-3-en-1-yl(1-chloro-3-phenylnaphthalen-2-yl)sulfane (9i):

According to the literature procedures,¹⁹ in a glove box, to an oven-dried 10-mL vial was added CuCl₂ (78 mg, 0.6 mmol), **7e** (56.4 mg, 0.3 mmol), 2-(phenylethynyl)benzaldehyde (61.8 mg, 0.3 mmol) and DCE (3.0 mL). The reaction mixture was stirred at 80 °C for 12 h, then the mixture was diluted with DCM (20 mL) and washed with saturated NH₄Cl (20 mL). The organic phase was separated, dried with MgSO₄, concentrated under vacuum and purified by column chromatography on silica gel. The product **9i** was obtained in 66% yield (64 mg) as a yellow oil (flash column chromatography eluent, petrol ether).

IR (KBr) v_{max}: 3063, 2922, 1485, 1436, 1266, 900, 758 cm⁻¹.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.38 (d, *J* = 8.5 Hz, 1H), 7.86 – 7.81 (m, 1H), 7.73 (s, 1H), 7.65 – 7.51 (m, 4H), 7.49 – 7.41 (m, 3H), 5.71 – 5.54 (m, 1H), 4.97 – 4.85 (m, 2H), 2.62 (t, *J* = 7.5 Hz, 2H), 2.13 – 2.03 (m, 2H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 144.08, 141.44, 137.99, 136.30, 133.40, 130.98, 130.71, 129.69, 128.18, 128.00, 127.76, 127.41, 127.36, 127.31, 125.31, 115.79, 34.68, 33.54.

HRMS (ESI) calculated 325.0812 for $C_{20}H_{18}CIS \ [M+H]^+$, found 325.0806.

(Z)-2-(1-(but-3-en-1-ylthio)-2-phenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9j):

According to the literature procedures,²¹ to a mixture of CuCl (3 mg, 10 mol%), Xantphos (17 mg, 10 mol%), and NaO*t*Bu (5.8 mg, 20 mol%) in 0.5 mL of toluene was added neat HBpin (90 μ L, 0.6 mmol) under a nitrogen atmosphere. After stirring at 0 °C for 15 min, **7e** (0.3 mmol) was added at 0 °C, followed by stirring at 25 °C for 12 h, then the reaction mixture was concentrated and purified by column chromatography on silica gel. The product **9j** was obtained in 68% yield (64 mg) as a yellow oil (flash column chromatography eluent, petroleum ether/EtOAc = 20:1).

IR (KBr) ν_{max} : 3453, 2979, 2926, 1331, 1143, 993, 693 cm $^{\text{-1}}.$

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 7.7 Hz, 2H), 7.37 – 7.31 (m, 3H), 7.27 – 7.24 (m, 1H), 5.87 – 5.71 (m, 1H), 5.05 – 4.94 (m, 2H), 3.01 – 2.96 (m, 2H), 2.33 – 2.26 (m, 2H), 1.33 (s, 12H).

¹³**C NMR** (126 MHz, Chloroform-*d*) δ 141.53, 136.96, 136.64, 130.07, 127.87, 127.69, 115.70, 84.09, 34.75, 32.71, 24.71.

HRMS (ESI) calculated 316.1777 for $C_{18}H_{26}BO_2S$ [M+H]⁺, found 316.1773.

2,3,3a,4-tetrahydro-11H-thieno[2',3':3,4]isoxazolo[2,3-a]indol-11-one (7i-a):

In a glove box, K_3PO_4 (0.6 mmol, 2.0 equiv) and **1ae** (0.3 mmol, 1.0 equiv) in MeCN (3 mL) were added 4-bromobut-1-ene (0.6 mmol, 2.0 equiv). After stirring under N₂ for 16 h at 70 °C, the mixture was cooled to room temperature. Then, to this mixture, $Pd(MeCN)_4(BF_4)_2$ (5 mol%) was added. After 3 hours of stirring at room temperature, full conversion of **1ae** was observed via TLC. The reaction was then quenched by the addition of water (20 mL) and extracted with ethyl acetate (3x20 mL). The organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford the corresponding product **7i-a** in 69% yield (48 mg) as a yellow solid. Spectroscopic data for **7i-a** match the previously reported in the literature.²²

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 – 7.67 (m, 2H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 3.88 (d, *J* = 9.2 Hz, 1H), 3.74 (dd, *J* = 9.2, 5.8 Hz, 1H), 3.31 – 3.14 (m, 3H), 2.57 – 2.49 (m, 1H), 2.35 – 2.26 (m, 1H).

¹³**C NMR** (126 MHz, Chloroform-*d*) δ 197.45, 160.23, 137.50, 126.17, 125.19, 123.82, 118.44, 93.37, 72.45, 57.82, 37.25, 35.94.

3,4,4a,5-tetrahydro-2H,12H-thiopyrano[2',3':3,4]isoxazolo[2,3-a]indol-12-one (7j-a):

In a glove box, K_3PO_4 (0.6 mmol, 2.0 equiv) and **1ae** (0.3 mmol, 1.0 equiv) in MeCN (3 mL) were added 5-bromopent-1-ene (0.6 mmol, 2.0 equiv). After stirring under N₂ for 16 h at 70 °C, the mixture was cooled to room temperature. Then, to this mixture, Pd(MeCN)₄(BF₄)₂ (5 mol%) was added. After 3 hours of stirring at room temperature, full conversion of **1ae** was observed via TLC. The reaction was then quenched by the addition of water (20 mL) and extracted with ethyl acetate (3x20 mL). The organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to afford the corresponding product **7j-a** in 55% yield (41 mg) as a yellow solid.

IR (KBr) v_{max}: 2924, 2836, 2349, 1719, 1602, 1361, 769 cm⁻¹.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.70 – 7.60 (m, 2H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 4.99 – 4.90 (m, 1H), 3.12 – 3.01 (m, 1H), 2.98 – 2.89 (m, 1H), 2.72 (d, *J* = 13.6 Hz, 1H), 2.57 – 2.47 (m, 1H), 2.39 – 2.28 (m, 1H), 2.27 – 2.18 (m, 1H), 2.15 – 2.06 (m, 1H), 1.57 – 1.48 (m, 1H).

¹³**C NMR** (126 MHz, Chloroform-*d*) δ 194.35, 162.41, 137.31, 125.37, 124.75, 120.89, 117.95, 83.86, 83.22, 41.58, 34.68, 29.72, 26.80.

HRMS (ESI) calculated 248.0740 for C₁₃H₁₄NO₂S [M+H]⁺, found 248.0734.

NMR Spectra

References

1. Lu, C.; Li, X.; Chang, S.; Zhang, Y.; Xing, D.; Wang, S.; Lin, Y.; Jiang, H.; Huang, L., Thioamide synthesis via copper-catalyzed C-H activation of 1,2,3-thiadiazoles enabled by slow release and capture of thioketenes. *Org. Chem. Front.* **2022**, *9*, 2382-2389.

2. Feng, M.; Jiang, H.; Huang, L., Silver-mediated annulation between 5-H-1,2,3-thiadiazoles and 1,3-dicarbonyl compounds to construct polysubstituted furans. *Org. Chem. Front.* **2022**, *9*, 5864-5871.

3. Chen, J.; Jiang, Y.; Yu, J.; Cheng, J., TBAI-Catalyzed Reaction between N-Tosylhydrazones and Sulfur: A Procedure toward 1,2,3-Thiadiazole. *J. Org. Chem.* **2016**, *81*, 271-275.

4. Al-Smadi, M.; Ratrout, S., New 1,2,3-Selenadiazole and 1,2,3-thiadiazole derivatives. Molecules 2004, 9, 957-967.

5. Wang, C.; Geng, X.; Zhao, P.; Zhou, Y.; Wu, Y.-D.; Cui, Y.-F.; Wu, A.-X., I₂/CuCl₂-promoted one-pot three-component synthesis of aliphatic or aromatic substituted 1,2,3-thiadiazoles. *Chem. Commun.* **2019**, *55*, 8134-8137.

6. Ni, Z.; Wang, S.; Mao, H.; Pan, Y., A concise synthetic strategy to alkynyl sulfides via transition-metal-free catalyzed C-S coupling of 1,1-dibromo-1-alkenes with thiophenols. *Tetrahedron Lett.* **2012**, *53*, 3907-3910.

7. Gao, W.-C.; Shang, Y.-Z.; Chang, H.-H.; Li, X.; Wei, W.-L.; Yu, X.-Z.; Zhou, R., N-Alkynylthio phthalimide: a shelf-stable alkynylthio transfer reagent for the synthesis of alkynyl thioethers. *Org. Lett.* **2019**, *21*, 6021-6024.

8. Song, T.; Ren, P.; Xiao, J.; Yuan, Y.; Yang, Y., Highly dispersed Ni2P nanoparticles on N,P-codoped carbon for efficient cross-dehydrogenative coupling to access alkynyl thioethers. *Green Chem.* **2020**, *22*, 651-656.

9. Yang, Y.; Dong, W.; Guo, Y.; Rioux, R. M., Cu(I)-catalyzed aerobic cross-dehydrogenative coupling of terminal alkynes with thiols for the construction of alkynyl sulfides. *Green Chem.* **2013**, *15*, 3170-3175.

10. Liu, F.; Yi, W., A thiol-free synthesis of alkynyl chalcogenides by the copper-catalyzed C-X (X = S, Se) cross-coupling of alkynyl carboxylic acids with Bunte salts. *Org. Chem. Front.* **2018**, *5*, 428-433.

11. Li, M.; Fang, S.; Zheng, J.; Jiang, H.; Wu, W., Direct Assembly of Polysubstituted Propiolamidinates via Palladium-Catalyzed Multicomponent Reaction of Isocyanides. *Org. Lett.* **2019**, *21*, 8439-8443.

12. Zhu, D.; Gu, Y.; Lu, L.; Shen, Q., N-difluoromethylthiophthalimide: a shelf-stable, electrophilic reagent for difluoromethylthiolation. *J. Am. Chem. Soc.* **2015**, *137*, 10547-10553.

13. Wang, F.; Luo, T.; Hu, J.; Wang, Y.; Krishnan, H. S.; Jog, P. V.; Ganesh, S. K.; Prakash, G. K. S.; Olah, G. A., Synthesis of gem-difluorinated cyclopropanes and cyclopropenes: trifluoromethyltrimethylsilane as a difluorocarbene source. *Angew. Chem., Int. Ed.* **2011**, *50*, 7153-7157.

14. Narangoda, C. J.; Lex, T. R.; Moore, M. A.; McMillen, C. D.; Kitaygorodskiy, A.; Jackson, J. E.; Whitehead, D. C., Accessing the rare diazacyclobutene motif. *Org. Lett.* **2018**, *20*, 8009-8013.

15. Ding, S.; Jia, G.; Sun, J., Iridium-catalyzed intermolecular azide-alkyne cycloaddition of internal thioalkynes under mild conditions. *Angew. Chem., Int. Ed.* **2014**, *53*, 1877-1880.

16. Santandrea, J.; Minozzi, C.; Cruche, C.; Collins, S. K., Photochemical Dual-Catalytic Synthesis of Alkynyl Sulfides. *Angew. Chem. Int. Ed.* **2017**, *56*, 12255-12259.

17. Cao, W.; Chen, P.; Wang, L.; Wen, H.; Liu, Y.; Wang, W.; Tang, Y., A highly regio- and stereoselective syntheses of α-halo

enamides, vinyl thioethers, and vinyl ethers with aqueous hydrogen halide in two-phase systems. Org. Lett. 2018, 20, 4507-4511.

18. Chen, H.; Zhang, L., A desulfonylative approach in oxidative gold catalysis: regiospecific access to donor-substituted acyl gold carbenes. *Angew. Chem., Int. Ed.* **2015**, *54*, 11775-11779.

19. Kong, W.; Che, C.; Kong, L.; Zhu, G., Copper-catalyzed regio- and stereoselective hydroallylation of thioalkynes with allylboronates: a facile and convenient synthesis of 1,4-dienes. *Tetrahedron Lett.* **2015**, *56*, 2780-2782.

20. Braga, A. L.; Martins, T. L. C.; Silveira, C. C.; Rodrigues, O. E. D., Synthesis of chalcogenol esters from chalcogenoacetylenes. *Tetrahedron* **2001**, *57*, 3297-3300.

21. Zhu, G.; Kong, W.; Feng, H.; Qian, Z., Synthesis of (Z)-1-thio- and (Z)-2-thio-1-alkenyl boronates via copper-catalyzed regiodivergent hydroboration of thioacetylenes: an experimental and theoretical study. *J. Org. Chem.* **2014**, *79*, 1786-1795.

22. Marien, N.; Reddy, B. N.; De Vleeschouwer, F.; Goderis, S.; Van Hecke, K.; Verniest, G., Metal-free cyclization of orthonitroaryl ynamides and ynamines towards spiropseudoindoxyls. *Angew. Chem., Int. Ed.* **2018**, *57*, 5660-5664.