Supporting Information *for*

An alternative metal-free amination approach to 3-trifluoromethyl anilines: the major products under Kröhnke pyridine synthesis

conditions

Zheng Fang,^{a,b,‡} Biqiong Hong,^{a,c,‡} Wei Wu,*^a and Zhiqiang Weng*^{a,b}

^a Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China.

^b Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

^c Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China.

E-mail: <u>www2856@mju.edu.cn</u>; <u>zweng@mju.edu.cn</u>

Table of Contents

General information
General procedure of the synthesis of α , β -unsaturated ketones 2
General procedure of the synthesis of pyridinium bromides (1 and 1')4
The effect of amount of amine on the reaction
The effect of solvent on the reaction
General procedure of the synthesis of 3-(trifluoromethyl) phenyl acetamides $3a-3t7$
General procedure of the synthesis of 3-(trifluoromethyl) phenyl anilines $4a-4v$ 8
Procedure for gram scale reaction
Follow-up studies
Detection of potential intermediate
Data for compounds
Crystal structure analyses
References
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra

General information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. Coupling constants (*J*) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (CDCl₃ δ 7.26), ¹³C NMR (CDCl₃ δ 77.0), ¹H NMR (DMSO-*d*₆ δ 2.50) and ¹³C NMR (DMSO-*d*₆ δ 39.50). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. HRMS data were recorded on a high-resolution Thermo Scientific Exactive Plus instrument. IR (ATR) were recorded on Nicolet IS50 (Thermo). Unless otherwise mentioned, all solvents and reagents were performed by flash chromatography using Merck silica gel 60.

General procedure of the synthesis of α,β -unsaturated ketones 2:^{1,2}

A solution of aryl aldehyde (10.0 mmol, 1.0 equiv) in acetone (100 mL) was added dropwise 2 M NaOH (aq.) (10 mL, 2.0 equiv) at 0 °C, and then the mixture was stirred at room temprature for 16 hours. The reaction solution was quenched with 20 mL NH₄Cl (aq.) and extracted with EtOAc (50 mL × 3). The organic phase was combined, dried over anhydrous Na₂SO₄ and filtered. The solvent was removed by rotary evaporation. The resulting α , β -unsaturated ketones were purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

General procedure of the synthesis of pyridinium bromides (1 and 1'):^{3,4}

A solution of 3-bromo-1,1,1-trifluoropropan-2-one (1.9 g, 10.0 mmol, 1.0 equiv) or 1-bromopropan-2-one (1.4 g, 10.0 mmol, 1.0 equiv) in acetone (20 mL) was added dropwise pyridine (0.79 g, 10.0 mmol, 1.0 equiv) in acetone (10 mL) at 0 °C, and the mixture was stirred at room temprature for 16 hours. The resulting solid products were filtered, collected, washed with acetone (3 mL \times 3) and dried under vacuum to obtain 1 and 1'.

Br 2	+ CF_3 N + CI	NH ₂ AcOH 120 °C, 24 h Br	CF ₃ CF ₃ CF ₃ C H H H
Entry	Amount of	Temp. (°C)	$\operatorname{Yield}(\%)^b$
	amine (equiv)		
1	3	120	54
2	5	120	65
3	7	120	82
4	10	120	92

The effect of amount of amine on the reaction

^{*a*} Reaction conditions: **1** (0.30 mmol, 3.0 equiv), **2** (0.10 mmol, 1.0 equiv), AcOH (2.0 mL), under air atmosphere. ^{*b*} The yield was determined by ¹⁹F NMR spectroscopy with PhOCF₃ as internal standard.

The effect of solvent on the reaction

0 + 2a	CF ₃ Br 1	NH ₄ OAc solvent 120 °C, 24 h	CF ₃ O H 3a
Entry	Solvent	Additive	$\text{Yield}(\%)^b$
1	HOAc	/	77
2	НСООН	/	0
3	PhMe	/	0
4	DMF	/	0
5	DMSO	/	0
6	Dioxane	/	0
7	PhMe	HOAc ^c	21
8	DMF	HOAc ^c	0
9	DMSO	HOAc ^c	0
10	Dioxane	HOAc ^c	0

^{*a*} Reaction conditions: **1** (0.30 mmol, 3.0 equiv), **2a** (0.10 mmol, 1.0 equiv), solvent (2.0 mL), under air atmosphere. ^{*b*} The yield was determined by ¹⁹F NMR spectroscopy with PhOCF₃ as internal standard.^{*c*} Total volume of acid and solvent was 0.5 mL (1:1).

General procedure of the synthesis of 3-(trifluoromethyl)phenyl acetamides 3a–3t:

To an oven-dried 5 mL pressure tube was added α , β -unsaturated ketones 2 (0.30 mmol, 1.0 equiv), 1-(3,3,3-trifluoro-2-oxopropyl)pyridinium bromides 1 (242.1 mg, 0.90 mmol, 3.0 equiv), NH₄OAc (231.0 mg, 3.0 mmol, 10.0 equiv) and AcOH (2 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 24 h. After the completion of the reaction, the solution was diluted with ethyl acetate (20 mL) and neutralized by cold saturated NaHCO₃ (20 mL) to pH > 7. The mixture solution was extracted with EtOAc (20 mL × 2). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting 3-(trifluoromethyl)phenyl acetamides were purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

General procedure of the synthesis of 3-(trifluoromethyl)phenyl anilines 4a-4v:

To an oven-dried 5 mL pressure tube was added α , β -unsaturated ketones 2 (0.30 mmol, 1.0 equiv), 1-(3,3,3-trifluoro-2-oxopropyl)pyridinium bromides 1 (242.1 mg, 0.90 mmol, 3.0 equiv), amines (3.0 mmol, 10.0 equiv) and AcOH (2 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 24 h. After the completion of the reaction, the solution was diluted with ethyl acetate (20 mL) and neutralized by cold saturated NaHCO₃ (20 mL) to pH > 7. The mixture solution was extracted with EtOAc (20 mL × 2). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting 3-(trifluoromethyl)phenyl anilines were purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

To an oven-dried 100 mL pressure tube was added **2s** (1.1 g, 5.0 mmol, 1.0 equiv), 1-(3,3,3-trifluoro-2-oxopropyl)pyridinium bromides **1** (4.0 g, 15.0 mmol, 3.0 equiv), NH₄OAc (3.9 g, 50.0 mmol, 10.0 equiv) and AcOH (40 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 24 h. After the completion of the reaction, the solution was diluted with ethyl acetate (120 mL) and neutralized by cold saturated NaHCO₃ (150 mL) to pH > 7. The organic phase was collected and the aqueous was extracted with EtOAc (100 mL × 2). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting product was purified by column chromatography on silica gel with petroleum ether : ethyl acetate (20 : 1) to obtain **3s** (1.2 g, 65% yield) as a yellow solid.

Procedure for gram scale reaction for synthesis of 4j:

To an oven-dried 100 mL pressure tube was added **2s** (1.1 g, 5.0 mmol, 1.0 equiv), 1-(3,3,3-trifluoro-2-oxopropyl)pyridinium bromides **1** (4.0 g, 15.0 mmol, 3.0 equiv), 4-bromoaniline (8.6 g, 50.0 mmol, 10.0 equiv) and AcOH (40 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 24 h. After the completion of the reaction, the solution was diluted with ethyl acetate (120 mL) and neutralized by cold saturated NaHCO₃ (150 mL) to pH > 7. The organic phase was collected and the aqueous was extracted with EtOAc (100 mL × 2). The organic phase

was combined, dried over anhydrous Na_2SO_4 , filtered, and the solvent was removed by rotary evaporation. The resulting product was purified by column chromatography on silica gel with petroleum ether : ethyl acetate (20 : 1) to obtain **4j** (1.5 g, 64% yield) as a yellow solid.

Follow-up studies

(1) Synthesis of four-substituted compound 3u

To an oven-dried 5 mL pressure tube was added 1-(p-tolyl)pent-1-en-3-one 2d' (52.2 mg, 0.30 mmol, 1.0 equiv), 1-(3,3,3-trifluoro-2-oxopropyl)pyridinium bromides 1 (242.1 mg, 0.90 mmol, 3.0 equiv), NH₄OAc (231.0 mg, 3.0 mmol, 10.0 equiv) and AcOH (2 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 24 h. After the completion of the reaction, the solution was diluted with ethyl acetate (20 mL) and neutralized by cold saturated NaHCO₃ (20 mL) to pH > 7. The mixture solution was extracted with EtOAc (20 mL \times 2). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered, and the solvent was removed by evaporation. The resulting rotary N-(4,4'-dimethyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide **3u** was purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

To an oven-dried 5 mL pressure tube was added 4-(4-bromophenyl)but-3-en-2-one 2q (67.0 mg, 0.30 mmol, 1.0 equiv), 1-(2-oxopropyl)pyridinium bromides 1' (193.0 mg, 0.90 mmol, 3.0 equiv), NH₄OAc (231.0 mg, 3.0 mmol, 10.0 equiv) and AcOH (2 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 24 h. After the completion of the reaction, the solution was diluted with ethyl acetate (20 mL) and neutralized by cold saturated NaHCO₃ (20 mL) to pH > 7. The mixture solution was extracted with EtOAc (20 mL \times 2). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting product was purified by column chromatography on silica with petroleum ethyl acetate (3 gel ether : 1) to obtain N-(4'-bromo-5-methyl-[1,1'-biphenyl]-3-yl)acetamide **3q'** (39.0 mg, 43% yield) as a white solid.

(3) Synthetic transformation of 3s to 5s

To oven-dried 5 an mL pressure tube was added N-(5-(trifluoromethyl)-[1,1':4',1"-terphenyl]-3-yl)acetamide 3s (35.5 mg, 0.10 mmol, 1.0 equiv), Cp₂ZrHCl (51.5 mg, 0.20 mmol, 2.0 equiv) and THF (2 mL). The tube was sealed with Teflon screw cap and the solution was stirred at room temperature for 20 min. The crude mixture was diluted with ethyl acetate (15 mL) and washed by saturated NH₄Cl (4 mL \times 3). The organic phase was dried over anhydrous Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting product was purified by column chromatography on silica gel with petroleum ether : ethyl acetate (5 : 1) to obtain 5-(trifluoromethyl)-[1,1':4',1"-terphenyl]-3-amine 5s (30.0 mg, 95% yield) as a white solid.

Detection of potential intermediate

To an oven-dried 25 mL pressure tube was added 4-(4-bromophenyl)but-3-en-2-one 2q (110.0 mg, 0.50 mmol, 1.0 equiv), 1-(3,3,3-trifluoro-2-oxopropyl)pyridinium bromides 1 (404.0 mg, 1.5 mmol, 3.0 equiv), NH₄OAc (385.0 mg, 5.0 mmol, 10.0 equiv) and AcOH (4 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 120 °C for 2 h. The solution was diluted with ethyl acetate (30 mL) and neutralized by cold saturated NaHCO₃ (30 mL) to pH 7-8. The organic phase was collected and the aqueous was extracted with EtOAc (30 mL \times 2). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting product was purified by column chromatography on silica gel with petroleum ether : ethyl acetate (from 20 : 1 to 2 : 1) to obtain N-(4'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide **3q** (121 mg, 68%) yield), 4'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine 5q (13 mg, 8% yield), 4'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-ol **6** (8 mg, 5% yield), and bis(4'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)amine 7 (9 mg, 3% yield).

N-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3a)

Obtained as a white solid in 75% yield (63 mg). Mp: 104.2 – 106.0 °C. R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.30. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.98 (s, 1H), 7.81 (s, 1H), 7.59 – 7.52 (m, 3H), 7.46 – 7.39 (m, 3H), 2.23 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 143.0, 139.3, 139.0, 131.7 (q, J = 32.8 Hz), 129.0, 128.2, 127.1, 123.8 (q, J = 272.7 Hz), 121.6, 119.6 (q, J = 3.7 Hz), 115.4 (q, J = 3.9 Hz), 24.5. IR (ATR): v 3063, 2986, 1744, 1671, 1597, 1582, 1519, 1450, 1380, 1360, 1296, 1264, 1224, 1154, 1124, 1098, 1073, 1012, 1001, 984, 956, 934, 878, 861, 842, 817, 756, 729, 708, 686, 675, 632, 615 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₁₃ONF₃ [M + H]⁺: 280.0944; found: 280.0940.

N-(2'-methyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3b) Obtained as a yellow oil in 64% yield (56 mg). R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.36. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.84 (s, 1H), 7.72 (s, 1H), 7.34 – 7.19 (m, 5H), 2.27 (s, 3H), 2.21 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 143.6, 140.0, 138.4, 135.2, 131.1 (q, *J* = 32.5 Hz), 130.5, 129.6, 128.0, 126.0, 123.8 (q, *J* = 273.2 Hz), 123.6, 121.6 (q, *J* = 3.8 Hz), 115.0 (q, *J* = 3.8 Hz), 24.5, 20.3. IR (ATR): v 3282, 3066, 2959, 2928, 1671, 1615, 1563, 1492, 1457, 1360, 1317, 1288, 1253, 1222, 1205, 1167, 1121, 1073, 1035, 1014, 973, 919, 905, 882, 842, 760, 727, 707, 683, 634 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₅ONF₃ [M + H]⁺: 294.1100; found: 294.1097.

N-(3'-methyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3c) Obtained as a yellow oil in 67% yield (59 mg). $R_{\rm f}$ (petroleum ether : ethyl acetate = 3 : 1) = 0.37. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.83 – 7.79 (m, 2H), 7.57 (s, 1H), 7.39 – 7.33 (m, 3H), 7.22 (d, J = 6.9 Hz, 1H), 2.43 (s, 3H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 143.1, 139.3, 138.8, 138.7, 131.7 (q, J = 32.1 Hz), 129.0, 128.9, 127.9, 124.3, 123.8 (q, J = 272.7 Hz), 121.5, 119.6 (q, J = 3.7 Hz), 115.2 (q, J = 3.8 Hz), 24.6, 21.5. IR (ATR): v 3284, 3108, 2925, 1670, 1606, 1564, 1491, 1456, 1359, 1325, 1307, 1268, 1212, 1162, 1120, 1079, 1019, 1002, 975, 926, 873, 784, 738, 716, 699 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₅ONF₃ [M + H]⁺: 294.1100; found: 294.1095.

N-(**4'-methyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3d)** Obtained as a yellow oil in 74% yield (64 mg). $R_{\rm f}$ (petroleum ether : ethyl acetate = 3 : 1) = 0.30. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.89 (s, 1H), 7.78 (s, 1H), 7.56 (s, 1H), 7.48 (d, J = 7.9 Hz, 2H), 7.26 (d, J = 7.0 Hz, 2H), 2.41 (s, 3H), 2.23 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 142.9, 138.9, 138.2, 131.7 (q, J = 32.4 Hz), 129.7, 127.0, 123.7 (q, J = 272.9 Hz), 121.3, 119.4 (q, J = 3.7 Hz), 118.6, 115.0 (q, J = 3.8 Hz), 24.6, 21.1. IR (ATR): v 3401, 3033, 2960, 2934, 2866, 2358, 1685, 1601, 1580, 1516, 1494, 1464, 1393, 1367, 1312, 1276, 1258, 1202, 1166, 1123, 1075, 995, 950, 908, 862, 813, 762, 722, 701, 668, 625, cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₅ONF₃ [M + H]⁺: 294.1100; found: 294.1096.

N-(4'-ethyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3e)

Obtained as a yellow solid in 77% yield (68 mg). Mp: 70.3 – 71.8 °C. R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.42. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.78 (s, 1H), 7.70 (br, 1H), 7.58 – 7.56 (m, 1H), 7.51 (dt, J = 8.1, 2.3 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 2.72 (q, J = 7.6 Hz, 2H), 2.24 (s, 3H), 1.29 (t, J = 7.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 144.6, 143.0, 138.8, 136.7, 131.7 (q, J = 32.2 Hz), 128.5, 127.1, 123.8 (q, J = 273.9 Hz), 121.2, 119.5 (q, J = 3.8 Hz), 118.3, 115.0 (q, J = 3.8 Hz), 28.5, 24.6, 15.5. IR (ATR): v 3281, 3172, 3109, 3032, 2966, 2933, 2874, 1670, 1610, 1564, 1515, 1457, 1435, 1406, 1361, 1321, 1290, 1260, 1164, 1121, 1076, 1012, 968, 919, 879, 828, 768, 737, 701, 683, 653, 619 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₇H₁₇ONF₃ [M + H]⁺: 308.1257; found: 308.1252.

N-(4'-isopropyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3f) Obtained as a yellow oil in 70% yield (68 mg). R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.34. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.87 (br, 1H), 7.80 (s, 1H), 7.57 (s, 1H), 7.51 (dt, J = 8.3, 1.9 Hz, 2H), 7.32 (dt, J = 8.3, 1.9 Hz, 2H), 3.02 – 2.92 (m, 1H), 2.24 (s, 3H), 1.30 (d, J = 7.2, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 149.2, 142.9, 138.9, 136.8, 131.7 (q, J = 32.2Hz), 127.1, 127.1, 123.8 (q, J = 272.3 Hz), 121.3, 119.4 (q, J = 3.9 Hz), 115.0 (q, J = 3.4 3.9 Hz), 33.8, 24.6, 23.9. IR (ATR): v 3283, 3109, 2961, 2929, 2871, 1669, 1615, 1563, 1515, 1458, 1435, 1407, 1361, 1320, 1289, 1260, 1215, 1201, 1164, 1121, 1077, 1054, 1014, 973, 879, 739, 701, 684, 653, 621 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{18}H_{19}ONF_3 [M + H]^+$: 322.1413; found: 322.1409.

N-(4'-cyano-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3g)

Obtained as a yellow solid in 84% yield (77 mg). Mp: 186.2 – 188.0 °C. $R_{\rm f}$ (petroleum ether : ethyl acetate = 2 : 1) = 0.25. ¹H NMR (400 MHz, DMSO- d_6) δ 10.44 (s, 1H), 8.13 (s, 1H), 8.10 (s, 1H), 7.98 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 8.2 Hz, 2H), 7.72 (s, 1H), 2.11 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.3 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.6, 143.5, 141.3, 140.6, 133.5, 130.8 (q, J = 31.6 Hz), 128.4, 124.3 (q, J = 272.9 Hz), 121.3, 119.1, 118.4 (q, J = 3.7 Hz), 115.5 (q, J = 3.9 Hz), 111.4, 24.5. IR (ATR): v 3290, 3031, 2959, 2923, 2866, 1602, 1565, 1515, 1490, 1457, 1387, 1365, 1321, 1277, 1256, 1203, 1164, 1121, 1105, 1069, 1010, 995, 951, 908, 863, 818, 762, 727, 700, 671, 612, 586, 491, 471, 450, 443, 420, 403 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₂ON₂F₃ [M + H]⁺: 305.0896; found: 305.0895.

methyl 3'-acetamido-5'-(trifluoromethyl)-[1,1'-biphenyl]-4-carboxylate (3h) Obtained as a yellow solid in 78% yield (52 mg). Mp: 91.4 – 92.9 °C. R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.33. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.0 Hz, 2H), 8.04 (s, 1H), 7.91 (s, 1H), 7.83 (s, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.59 (s, 1H), 3.96 (s, 3H), 2.25 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 166.9, 143.7, 141.8, 139.1, 132.0 (q, J = 32.5 Hz), 130.3, 129.8, 127.2, 123.6 (q, J = 272.9 Hz), 121.6, 119.6 (q, J = 3.9 Hz), 116.0 (q, J = 4.0 Hz), 52.3, 24.6. IR (ATR): v 3312, 3111, 2954, 1704, 1675, 1609, 1563, 1513, 1459, 1436, 1401, 1363, 1279, 1259, 1167, 1123, 1076, 1017, 970, 910, 884, 853, 815, 773, 731, 703, 670, 648, 584, 543 cm⁻¹. HRMS (ESI) m/z: calcd. for: C₁₇H₁₅F₃NO₃ [M + H]⁺: 338.0998; found: 338.0992.

N-(4'-methoxy-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3i)

Obtained as a white solid in 45% yield (42 mg). Mp: 103.0 – 105.0 °C. R_f (petroleum ether : ethyl acetate = 2 : 1) = 0.31. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.73 (s, 2H), 7.58 – 7.46 (m, 3H), 6.98 (d, J = 8.7, 2H), 3.87 (s, 3H), 2.23 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 159.8, 142.6, 138.8, 131.8, 131.7 (q, J = 32.3 Hz), 128.3, 123.6 (q, J = 272.0 Hz), 121.0, 119.2 (q, J = 3.7 Hz), 114.6 (q, J = 3.9 Hz), 114.4, 55.4, 24.6. IR (ATR): v 3416, 2962, 2931, 2858, 2335, 1989, 1732, 1686, 1665, 1568, 1543, 1492, 1455, 1412, 1389, 1364, 1317, 1261, 1226, 1167, 1125, 1105, 1093, 1076, 1014, 997, 970, 933, 870, 731, 700, 684, 637, 619, 587, 564, 550, 540, 466, 410 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆ H₁₅O₂NF₃ [M + H]⁺: 310.1049; found: 310.1044.

N-(2'-methoxy-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3j)

Obtained as a yellow solid in 54% yield (34 mg). Mp: 96.0 – 97.3 °C. R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.82 (s, 1H), 7.73 (s, 1H), 7.54 (s, 1H), 7.37 (t, J = 8.4 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 8.3 Hz, 1H), 3.83 (s, 3H), 2.21 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 156.3, 140.2, 138.0, 130.9 (q, J = 32.4 Hz), 130.7, 129.6, 128.7, 124.0, 123.8 (q, J = 271.5 Hz), 122.2 (q, J = 3.9 Hz), 121.0, 115.2 (q, J = 4.0 Hz), 111.4, 55.6, 24.5. IR (ATR): v 3415, 3033, 2938, 2836, 1718, 1600, 1586, 1520, 1490, 1464, 1437, 1374, 1317, 1260, 1229, 1162, 1115, 1074, 992, 945, 908, 855, 762, 733, 697, 630, 609 cm⁻¹. HRMS (ESI) m/z: calcd. for: C₁₆H₁₅F₃NO₂ [M + H]⁺: 310.1049; found: 310.1044.

N-(4'-(benzyloxy)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3k) Obtained as a yellow solid in 59% yield (68 mg). Mp: 132.0 – 134.0 °C. R_f (petroleum ether : ethyl acetate = 2 : 1) = 0.30. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.73 (s, 1H), 7.69 (br s, 1H), 7.56 – 7.49 (m, 3H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.06 (d, *J* = 8.1 Hz, 2H), 5.12 (s, 2H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 159.0, 142.6, 138.8, 136.7, 132.0, 131.7 (q, *J* = 32.5 Hz), 128.7, 128.3, 128.1, 127.5, 123.8 (q, *J* = 272.6 Hz), 121.0, 119.1 (q, *J* = 3.8 Hz), 115.3, 114.7 (q, *J* = 3.6 Hz), 70.1, 24.6. IR (ATR): v 3276, 3110, 3038, 2930, 2867, 1670, 1607, 1564, 1514, 1567, 1437, 1407, 1361, 1324, 1285, 1261, 1245, 1202, 1178, 1166, 1120, 1077, 1016, 918, 877, 861, 828, 807, 736, 696, 632, 616, 586, 557, 537, 507, 476, 458, 451, 443, 430, 419, 410, 401 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₂H₁₉O₂NF₃ [M + H]⁺: 386.1362; found: 386.1357.

N-(4'-(dimethylamino)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3l) Obtained as a yellow solid in 42% yield (41 mg). Mp: 97.9 – 99.7 °C. *R*_f (petroleum ether : ethyl acetate = 2 : 1) = 0.30. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.72 (s, 1H), 7.58 (br s, 1H), 7.54 (s, 1H), 7.51 (d, *J* = 8.4 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 2H), 3.03 (s, 6H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 150.3, 142.9, 138.7, 131.6 (q, *J* = 32.4 Hz), 127.8, 127.2, 123.9 (q, *J* = 272.7 Hz), 120.3, 118.7 (q, *J* = 3.7 Hz), 114.0 (q, *J* = 3.6 Hz), 112.9, 40.6, 24.7. IR (ATR): v 3291, 3102, 2895, 1669, 1607, 1565, 1526, 1458, 1440, 1407, 1362, 1314, 1284, 1263, 1228, 1200, 1166, 1120, 1076, 1017, 999, 971, 948, 919, 876, 815, 736, 684, 586, 574, 565, 551, 542, 536, 527, 519, 511, 488, 471, 433, 410, 403 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₇H₁₈ON₂F₃ [M + H]⁺: 323.1366; found: 323.1361.

N-(2',6'-difluoro-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3m) Obtained as a yellow solid in 51% yield (48 mg). Mp: 87.2 – 89.0 °C. R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.37. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.88 (m, 3H), 7.52 (s, 1H), 7.16 – 7.02 (m, 3H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F), -118.3 (d, *J* = 17.8 Hz, 1F), -123.8 (d, *J* = 17.6 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 158.7 (dd, *J* = 243.4, 2.5 Hz), 155.5 (dd, *J* = 244.7, 2.4 Hz), 138.8, 136.4, 131.7 (q, *J* = 32.6 Hz), 128.4 (dd, *J* = 7.8, 15.3 Hz), 123.5 (q, *J* = 273.8 Hz), 123.2 (d, J = 2.0 Hz), 121.3 – 121.2 (m), 117.4 (dd, J = 25.6, 8.5 Hz), 116.5 (dd, J = 24.6, 3.4 Hz), 116.3 (dd, J = 23.9, 8.6 Hz), 116.2 (q, J = 4.1 Hz), 24.5. IR (ATR): v 3285, 3109, 1673, 1615, 1564, 1497, 1458, 1434, 1413, 1354, 1290, 1270, 1243, 1226, 1200, 1164, 1123, 1064, 1037, 1017, 982, 936, 907, 869, 815, 760, 738, 714, 700, 684, 653, 626, 590, 567, 539, 521, 506, 467, 447, 424, 401 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₁₁ONF₅ [M + H]⁺: 316.0755; found: 316.0753.

N-(4'-chloro-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3n)

Obtained as a yellow solid in 63% yield (59 mg). Mp: 117.9 – 119.8 °C. R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.38. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.81 (br s, 1H), 7.75 (s, 1H), 7.52 (s, 1H), 7.50 (dt, J = 8.6, 2.1 Hz, 2H), 7.42 (dt, J = 8.6, 2.0 Hz, 2H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 141.8, 139.0, 137.7, 134.5, 131.9 (q, J = 32.5 Hz), 129.2, 128.4, 123.7 (q, J = 272.8 Hz), 121.3, 119.4 (q, J = 3.7 Hz), 115.5 (q, J = 3.8 Hz), 24.6. IR (ATR): v 3282, 3174, 3104, 1673, 1617, 1609, 1563, 1497, 1456, 1434, 1395, 1361, 1323, 1288, 1203, 1166, 1124, 1094, 1075, 1037, 1013, 973, 909, 880, 738, 719, 701, 682, 649, 434, 617, 484, 642, 522, 480, 462, 449, 425, 413, 405 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₁₂ONClF₃ [M + H]⁺: 314.0554; found: 314.0550.

N-(2'-chloro-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (30) Obtained as a yellow oil in 66% yield (62 mg). R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.35. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (br s, 1H), 7.89 (s, 1H), 7.80 (s, 1H),

7.50 – 7.47 (m, 1H), 7.45 (s, 1H), 7.35 – 7.30 (m, 3H), 2.21 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 140.9, 138.6, 138.3, 132.3, 131.2, 131.1 (q, *J* = 32.4 Hz), 130.1, 129.4, 127.1, 123.9, 123.6 (q, *J* = 272.8 Hz), 121.9 (q, *J* = 3.7 Hz), 115.8 (q, *J* = 3.9 Hz), 24.5. IR (ATR): v 3285, 3114, 1673, 1618, 1593, 1565, 1481, 1455, 1439, 1362, 1318, 1281, 1245, 1202, 1168, 1124, 1089, 1049, 1037, 1014, 973, 920, 882, 836, 757, 736, 704, 682, 651, 628, 589, 548, 516, 468, 435, 425, 417, 405 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₁₂ONClF₃ [M + H]⁺: 314.0554; found: 314.0551.

N-(2'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3p) Obtained as a yellow oil in 68% yield (68 mg). R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.35. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.76 (s, 1H), 7.69 (dd, J = 7.0, 1.0 Hz, 1H), 7.61 (br s, 1H), 7.44 – 7.36 (m, 2H), 7.33 (dd, J = 7.6, 1.9 Hz, 1H), 7.25 (dd, J = 7.4, 1.9 Hz, 1H), 2.23 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 142.6, 140.7, 138.2, 133.3, 131.2 (q, J = 32.6 Hz), 131.1, 129.5, 127.6, 123.7, 123.5 (q, J = 272.5 Hz), 122.3, 122.0 (q, J = 3.7 Hz), 115.7 (q, J = 3.8 Hz), 24.6. IR (ATR): v 3284, 3053 ,1671, 1617, 1565, 1454, 1363, 1264, 1169, 1127, 1087, 1027, 895, 882, 730, 703, 656, 587, 549, 536, 505, 460, 455, 428, 420, 411, 405, 401 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₁₂ONBrF₃ [M + H]⁺: 358.0049; found: 358.0046.

N-(4'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3q)

Obtained as a yellow solid in 71% yield (76 mg). Mp: 143.0 – 145.0 °C. R_f (petroleum ether : ethyl acetate = 4 : 1) = 0.33. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.84 (br s, 1H), 7.76 (s, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.52 (s, 1H), 7.43 (d, J = 8.4 Hz, 2H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 141.8, 139.0, 138.2, 132.1, 131.9 (q, J = 32.4 Hz), 128.7, 123.5 (q, J = 272.8 Hz), 122.7, 121.7, 119.4 (q, J = 3.7 Hz), 114.0 (q, J = 3.6 Hz), 24.6. IR (ATR): v 3280, 3172, 3100, 1671, 1615, 1562, 1491, 1455, 1433, 1390, 1360, 1323, 1288, 1257, 1222, 1204, 1165, 1121, 1070, 1037, 1008, 974, 919, 906, 880, 733, 716, 700, 686, 670, 633, 616, 484, 542, 521, 512, 460, 427, 409 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₁₂ONBrF₃ [M + H]⁺: 358.0049; found: 358.0047.

N-(3-(naphthalen-2-yl)-5-(trifluoromethyl)phenyl)acetamide (3r)

Obtained as a yellow solid in 72% yield (71 mg). Mp: 217.0 – 219.0 °C. R_f (petroleum ether : ethyl acetate = 3 : 1) = 0.40. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 8.05 (s, 1H), 7.97 – 7.86 (m, 3H), 7.82 (s, 1H), 7.75 – 7.69 (m, 2H), 7.62 (br s, 1H), 7.57 – 7.50 (m, 2H), 2.27 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 142.9, 138.9, 136.6, 133.5, 133.0, 131.9 (q, J = 32.5 Hz), 128.8, 128.3, 127.7, 126.6, 126.5, 126.3, 125.1, 123.7 (q, J = 273.5 Hz), 121.7, 119.9 (q, J = 3.8 Hz), 115.3 (q, J = 3.8 Hz), 24.7. IR (ATR): v 3286, 3056, 2965, 2930, 1672, 1611, 1564, 1477, 1457, 140, 1363, 1340, 1324, 1275, 1262, 1233, 1166, 1122, 1074, 1060, 1016, 977, 922, 881, 856, 831, 818, 783, 748, 701, 686, 669, 627, 611, 586, 562, 539, 478, 429, 419, 410 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₉H₁₅ONF₃ [M + H]⁺: 330.1100; found: 330.1096.

N-(5-(trifluoromethyl)-[1,1':4',1''-terphenyl]-3-yl)acetamide (3s)

Obtained as a yellow solid in 76% yield (81 mg). Mp: 188.0 –189.8 °C. R_f (petroleum ether : ethyl acetate = 2 : 1) = 0.28. ¹H NMR (400 MHz, DMSO- d_6) δ 10.41 (s, 1H), 8.13 (s, 1H), 8.07 (s, 1H), 7.86 – 7.71 (m, 6H), 7.68 (s, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.44 – 7.37 (m, 1H), 2.12 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.3 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.5, 141.9, 141.2, 140.5, 139.8, 130.7 (q, J = 31.6 Hz), 129.5, 128.2, 127.9, 127.8, 127.1, 124.4 (q, J = 272.6 Hz), 120.8, 117.8 (q, J = 3.9 Hz), 114.4 (q, J = 4.0 Hz), 24.6. IR (ATR): v 3396, 3030, 2918, 2859, 1699, 1601, 1558, 1504, 1485, 1457, 1444, 1412, 1395, 1364, 1338, 1322, 1270, 1236, 1209, 1164, 1120, 1105, 1035, 1007, 993, 960, 942, 907, 857, 834, 786, 765, 730, 696, 649, 620, 609, 594, 577, 554, 520, 500, 474, 461, 447, 431, 418, 402 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₁H₁₇ONF₃ [M + H]⁺: 356.1257; found: 356.1253.

N-(3-(furan-2-yl)-5-(trifluoromethyl)phenyl)acetamide (3t)

Obtained as a white solid in 80% yield (64 mg). Mp: 116.0 – 118.0 °C. R_f (petroleum ether : ethyl acetate = 2 : 1) = 0.30. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.71 (s, 1H), 7.65 (s, 1H), 7.61 (br s, 1H), 7.50 (s, 1H), 6.75 (d, J = 3.4 Hz, 1H), 6.51 (s, 1H), 2.25 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 152.1, 142.9, 138.9, 132.4, 131.9 (q, J = 32.7 Hz), 123.6 (q, J = 272.7 Hz), 117.6, 116.2 (q, J = 3.8 Hz), 114.9 (q, J = 3.6 Hz), 112.0, 106.8, 24.6. IR (ATR): v 3295, 3169, 3115, 2927, 1767, 1673, 1621, 1584, 1558, 1498, 1460, 1430,

1354, 1323, 1286, 1263, 1168, 1019, 998, 977, 908, 876, 795, 737, 695, 684, 593, 565, 542, 514, 491, 451, 423, 409 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{13}H_{11}O_2NF_3$ [M + H]⁺: 270.0736; found: 270.0733.

N-(4,4'-dimethyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)acetamide (3u) Obtained as a white solid in 27% yield (25 mg). Mp: 182.0–183.6 °C. *R*_f (ethyl acetate) = 0.68. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.70 (s, 1H), 7.89 (s, 1H), 7.72 (s, 1H), 7.57 (d, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 2.35 (s, 3H), 2.31 (s, 3H), 2.12 (s, 3H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -59.3 (s, 3F). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.2, 139.3, 138.5, 138.0, 135.9, 130.2, 129.9, 129.3 (q, *J* = 28.9 Hz), 128.0, 126.9, 124.9 (q, *J* = 274.0 Hz), 120.8 (q, *J* = 5.8 Hz), 23.7, 21.1, 14.0. IR (ATR): v 3382, 3265, 2922, 1661, 1538, 1514, 1368, 1343, 1223, 1133, 1107, 808, 694, 485 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₇H₁₇F₃NO [M + H]⁺: 308.1257; found: 308.1254.

N-(4'-bromo-5-methyl-[1,1'-biphenyl]-3-yl)acetamide (3q')

Obtained as a white solid in 43% yield (39 mg). Mp: 50.5 - 51.7 °C. R_f (petroleum ether : ethyl acetate = 1 : 1) = 0.42. ¹H NMR (400 MHz, DMSO- d_6) δ 9.99 (s, 1H), 7.69 (s, 1H), 7.65 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.42 (s, 1H), 7.15 (s, 1H), 2.34 (s, 3H), 2.06 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.9, 140.4, 140.0, 139.7, 139.2, 132.3, 129.1, 122.6, 121.3, 119.4, 114.9, 24.6, 21.7. IR (ATR): v 3293,

2959, 2920, 2850, 1667, 1611, 1561, 1490, 1457, 1387, 1286, 1073, 1009 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{15}H_{15}BrNO [M + H]^+$: 304.0332; found: 304.0331.

4'-bromo-N-(2,5-dimethylphenyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine

(4a)

Obtained as a yellow oil in 84% yield (105 mg). R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.75. ¹H NMR (400 MHz, CDCl₃)) δ 7.60 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.28 (s, 1H), 7.21 – 7.16 (m, 2H), 7.14 – 7.09 (m, 2H), 6.94 (d, J = 7.7 Hz, 1H), 5.62 (br s, 1H), 2.35 (s, 3H), 2.27 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 146.0, 142.0, 139.2, 139.0, 136.9, 132.3 (q, J = 32.1 Hz), 132.0, 131.2, 128.8, 127.7, 125.0, 123.9 (q, J = 272.4 Hz), 122.3, 117.0, 114.6 (q, J = 3.9 Hz), 111.5 (q, J = 3.8 Hz), 21.1, 17.6. IR (ATR): v 3402, 3021, 2921, 2961, 1733, 1605, 1578, 1523, 1505, 1486, 1454, 1386, 1362, 1321, 1245, 1216, 1164, 1119, 1103, 1067, 1309, 1009, 999, 956, 908, 862, 837, 820, 731, 716, 701, 671, 650, 600, 584, 554, 511, 468, 442, 420, 414, 402 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₁H₁₈NBrF₃ [M + H]⁺: 420.0569; found: 420.0566.

4'-bromo-N-(2,6-diethylphenyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine

(**4b**)

Obtained as a yellow oil in 85% yield (113 mg). R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.28 – 7.26 (m, 2H), 7.20 (s, 1H), 6.80 (d, J = 16.2 Hz, 2H), 5.50 (s, 1H), 2.66 (q, J = 7.5 Hz, 4H), 1.23 (t, J = 7.6 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 142.5, 142.0, 139.3, 135.5, 132.3 (q, J = 31.8 Hz), 132.0, 131.2, 128.3, 127.5, 127.1, 124.2 (q, J =

272.8 Hz), 122.2, 114.1, 113.2 (q, J = 3.9 Hz), 108.8 (q, J = 3.7 Hz), 24.8, 14.8. IR (ATR): v 3403, 2967, 2933, 2873, 1608, 1589, 1564, 1508, 1487, 1454, 1410, 1388, 1363, 1321, 1299, 1273, 1257, 1221, 1162, 1120, 1102, 1067, 1037, 1099, 993, 950, 907, 861, 818, 768, 718, 702, 670, 642, 594, 424, 491, 468, 448, 428, 414 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₃H₂₂NBrF₃ [M + H]⁺: 448.0882; found: 448.0880.

4'-bromo-N-(2-methoxyphenyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine

(4c)

Obtained as a yellow oil in 88% yield (111 mg). R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.71. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 7.45 (s, 1H), 7.40 – 7.36 (m, 2H), 7.33 (s, 1H), 7.02 – 6.96 (m, 3H), 6.36 (br s, 1H), 3.94 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 144.3, 142.0, 138.9, 132.3 (q, J = 31.8 Hz), 132.0, 131.2, 128.8, 124.1 (q, J = 273.7 Hz), 122.4, 121.8, 120.9, 118.5, 116.5, 115.6 (q, J = 3.8 Hz), 112.7 (q, J = 3.8 Hz), 110.9, 55.6. IR (ATR): v 3410, 3034, 1610, 1592, 1565, 1517, 1488, 1456, 1396, 1384, 1363, 1321, 1276, 1205, 1164, 1120, 1104, 1068, 1009, 996, 869, 817, 735, 713, 699, 670, 645, 629, 620, 600, 584, 523, 513, 696, 468, 447, 436, 425, 415, 404 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₀H₁₆ONBrF₃ [M + H]⁺: 422.0362; found: 422.0360.

4'-bromo-N-(4-chlorophenyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4d)

Obtained as a yellow solid in 90% yield (115 mg). Mp: 82.8 – 84.5 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.71. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 7.33 – 7.30 (m, 4H), 7.23 (s, 1H), 7.09 (d, J = 8.8 Hz, 2H), 5.92 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 142.3, 140.2, 138.7, 132.5 (q, J = 32.2 Hz), 132.1, 129.7, 128.7, 127.5, 123.8 (q, J = 272.8 Hz), 122.5, 120.5, 118.0, 115.6 (q, J = 3.8 Hz), 112.4 (q, J = 3.8 Hz). IR (ATR): v 3409, 2943, 2838, 1731, 1593, 1565, 1529, 1486, 1455, 1416, 1389, 1323, 1278, 1244, 1221, 1162, 1115, 1103, 1067, 1047, 1026, 1009, 995, 953, 868, 818, 785, 740, 717, 700, 671, 646, 630, 594, 586, 558, 549, 541, 524, 516, 508, 481, 464, 456, 448, 442, 434, 418, 406 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₉H₁₃BrClF₃N [M + H]⁺: 425.9867; found: 425.9870.

N-(*m*-tolyl)-5-(trifluoromethyl)-[1,1':4',1''-terphenyl]-3-amine (4e)

Obtained as a yellow solid in 72% yield (87 mg). Mp: 74.0 – 76.0 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 6H), 7.53 – 7.47 (m, 2H), 7.46 (s, 1H), 7.44 – 7.38 (m, 2H), 7.28 – 7.27 (m, 2H), 7.04 – 7.00 (m, 2H), 6.90 (d, J = 7.6 Hz, 1H), 5.92 (br s, 1H), 2.39 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 142.8, 141.7, 140.9, 140.5, 139.7, 138.8, 132.2 (q, J = 32.1 Hz), 129.5, 128.9, 127.7, 127.6, 127.5, 127.1, 124.0 (q, J = 274.0 Hz), 123.4, 120.1, 118.1, 116.3, 115.7 (q, J = 3.8 Hz), 112.0 (q, J = 3.8 Hz), 21.6. IR (ATR): v 3402, 3032, 2961, 2922, 2683, 1702, 1601, 1589, 1531, 1518, 1488, 1458, 1444, 1387, 1365, 1311, 1277, 1259, 1217, 1164, 1122, 1075, 1077, 996, 961, 913, 866, 836, 765, 731, 695, 637, 624, 606, 584, 511, 494, 477, 460,

441, 424, 405 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{26}H_{21}NF_3$ [M + H]⁺: 404.1620; found: 404.1621.

N-(2,6-dimethylphenyl)-5-(trifluoromethyl)-[1,1':4',1''-terphenyl]-3-amine (4f) Obtained as a yellow oil in 80% yield (100 mg). $R_{\rm f}$ (petroleum ether : ethyl acetate = 20 : 1) = 0.80. ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.64 (m, 6H), 7.51 – 7.55 (m, 2H), 7.46 – 7.41 (m, 1H), 7.33 (s, 1H), 7.25 – 7.22 (m, 3H), 6.92 (t, *J* = 1.9 Hz, 1H), 6.80 (t, *J* = 1.9 Hz, 1H), 5.49 (br s, 1H), 2.33 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 142.7, 140.8, 140.6, 139.2, 137.0, 136.2, 132.3 (q, *J* = 31.4 Hz), 128.9, 128.8, 128.2, 127.6, 127.5, 127.1, 126.6, 124.3 (q, *J* = 272.5 Hz), 114.5, 113.6 (q, *J* = 4.0 Hz), 108.8 (q, *J* = 3.8 Hz), 18.4. IR (ATR): v 3395, 3030, 2948, 2919, 2856, 1716, 1607, 1591, 1557, 1526, 1505, 1486, 1457, 1444, 1412, 1395, 1322, 1272, 1258, 1230, 1200, 1118, 1074, 1035, 1007, 993, 968, 946, 917, 861, 835, 763, 731, 695, 644, 619, 608, 592, 579, 558, 558, 531, 521, 512, 501, 492, 483, 472, 462, 453, 444, 433, 414, 406 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₇H₂₃F₃N [M + H]⁺: 418.1777; found: 418.1768.

N-mesityl-5-(trifluoromethyl)-[1,1':4',1''-terphenyl]-3-amine (4g)

Obtained as a yellow oil in 77% yield (99 mg). $R_{\rm f}$ (petroleum ether : ethyl acetate = 20 : 1) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.66 (m, 6H), 7.57 – 7.50 (m, 2H), 7.45 (t, J = 7.3 Hz, 1H), 7.33 (s, 1H), 7.07 (s, 2H), 6.92 (s, 1H), 6.79 (s, 1H), 5.42 (br s, 1H), 2.41 (s, 3H), 2.30 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 142.7, 140.7, 140.6, 139.3, 136.3, 136.1, 134.3, 132.2 (q, J = 31.7 Hz), 129.6, 128.9, 127.6 (2C), 127.1, 124.4 (q, J = 272.8 Hz), 114.3, 113.3 (q, J = 3.9 Hz), 108.5 (q, J = 3.9 Hz), 21.0, 18.3. IR (ATR): v 3396, 3030, 2918, 2859, 1699, 1601, 1558, 1504, 1485, 1457, 1444, 1395, 1364, 1338, 1322, 1310, 1270, 1236, 1209, 1120, 1073, 1035, 1007, 993, 960, 942, 907, 857, 834, 786, 765, 730, 649, 620, 609, 594, 577, 520, 499, 474, 447, 418, 402 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₈H₂₅NF₃ [M + H]⁺: 432.1934; found: 432.1935.

N-(4-(trifluoromethoxy)phenyl)-5-(trifluoromethyl)-[1,1':4',1''-terphenyl]-3-amin e (4h)

Obtained as a yellow solid in 78% yield (111 mg). Mp: 147.0 – 148.9 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.62 (m, 6H), 7.50 (t, J = 7.5 Hz, 2H), 7.46 (s, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.27 (s, 1H), 7.23 – 7.16 (m, 4H), 5.97 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.2 (s, 3F), -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 143.9 (q, J = 1.9 Hz), 143.1, 141.1, 140.7, 140.4, 138.6, 132.4 (q, J = 32.2 Hz), 128.9, 127.7, 127.6, 127.5, 127.1, 123.9 (q, J = 272.0 Hz), 122.6, 120.5 (q, J = 255.0 Hz), 119.7, 118.5, 116.5 (q, J = 3.9 Hz), 112.5 (q, J = 3.8 Hz). IR (ATR): v 3399, 3084, 2982, 2947, 2933, 2920, 1601, 1508, 1488, 1463, 1405, 1367, 1256, 1224, 1024, 1074, 1008, 996, 954, 920, 836, 792, 766, 752, 742, 698, 677, 658, 609, 592, 547, 538, 528, 518, 479, 471, 460, 447, 432,

432, 418, 405 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{26}H_{18}ONF_6$ [M + H]⁺: 474.1287; found: 474.1282.

N-(4-(benzyloxy)phenyl)-5-(trifluoromethyl)-[1,1':4',1''-terphenyl]-3-amine (4i) Obtained as a yellow solid in 75% yield (112 mg). Mp: 161.2 – 162.8 °C. $R_{\rm f}$ (petroleum ether : ethyl acetate = 20 : 1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.62 (m, 6H), 7.52 – 7.49 (m, 4H), 7.46 – 7.38 (m, 4H), 7.34 (s, 1H), 7.29 (s, 1H), 7.17 (d, *J* = 6.8 Hz, 2H), 7.11 (s, 1H), 7.03 (d, *J* = 7.8 Hz, 2H), 5.77 (br s, 1H), 5.11 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 155.4, 146.4, 142.8, 140.9, 140.5, 139.0, 137.0, 134.5, 132.3 (q, *J* = 31.9 Hz), 128.9, 128.7, 128.1, 127.6 (2C), 127.5, 127.1, 124.0 (q, *J* = 273.5 Hz), 123.5, 116.3, 116.0, 114.6 (q, *J* = 3.9 Hz), 110.3 (q, *J* = 3.8 Hz), 70.5. HRMS (ESI) m/z: calcd. for C₃₂H₂₅ONF₃ [M + H]⁺: 496.1883; found: 496.1878.

N-(4-bromophenyl)-5-(trifluoromethyl)-[1,1':4',1''-terphenyl]-3-amine (4j) Obtained as a yellow solid in 70% yield (98 mg). Mp: 159.3–161.0 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.71 (m, 2H), 7.67 – 7.64 (m, 4H), 7.52 – 7.45 (m, 7H), 7.25 (s, 1H), 7.06 (d, *J* = 8.9 Hz, 2H), 5.92 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 143.0, 141.1, 141.0, 140.4, 138.6, 132.6, 132.3 (q, J = 31.7 Hz), 128.9, 127.7, 127.6, 127.5, 127.1, 123.9 (q, J = 272.5 Hz), 120.5, 118.5, 116.4 (q, J = 3.9 Hz), 114.5, 112.5 (q, J = 3.9 Hz). IR (ATR): v 3400, 3019, 2919, 2959, 1735, 1607, 1579, 1505, 1488, 1455, 1360, 1319, 1244, 1120, 1066, 1000, 956, 908, 860, 839, 818, 731, 715, 699, 673, 585, 554, 420, 413, 403 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₅H₁₈BrF₃N [M + H]⁺: 468.0569; found: 468.0573.

N-decyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4k)

Obtained as a yellow solid in 85% yield (96 mg). Mp: 83.4 – 85.0 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.44 – 7.40 (m, 1H), 7.19 (s, 1H), 6.97 (s, 1H), 6.84 (s, 1H), 3.96 (br s, 1H), 3.22 (t, J = 7.1 Hz, 2H), 1.74 – 1.66 (m, 2H), 1.54 – 1.25 (m, 14H), 0.95 (t, J = 6.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 143.1, 140.6, 132.0 (q, J = 31.5 Hz), 128.8, 127.8, 127.2, 124.4 (q, J = 272.6 Hz), 114.3, 112.6 (q, J = 4.0 Hz), 107.7 (q, J = 3.8 Hz), 43.9, 32.0, 29.6, 29.6, 29.5, 29.4 (2C), 27.2, 22.7, 14.2. IR (ATR): v 3425, 2924, 2854, 1609, 1579, 1520, 1494, 1446, 1412, 1364, 1317, 1277, 1261, 1120, 992, 908, 853, 699, 626 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₃H₃₁F₃N [M + H]⁺: 378.2403; found: 378.2399.

N-octyl-5-(trifluoromethyl)-[1,1':4',1''-terphenyl]-3-amine (4l)

Obtained as a yellow solid in 83% yield (106 mg). Mp: 168.0 – 169.7 °C. $R_{\rm f}$ (petroleum ether : ethyl acetate = 20 : 1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.66 (m, 6H), 7.52 – 7.47 (m, 2H), 7.42 – 7.38 (m, 1H), 7.21 (s, 1H), 7.01 (s, 1H), 6.84 (s, 1H), 4.21 (br s, 1H), 3.24 – 3.20 (m, 2H), 1.76 – 1.66 (m, 2H), 1.48 – 1.44 (m, 2H), 1.39 – 1.29 (m, 8H), 0.94 – 0.90 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 148.8, 142.6, 140.7, 140.6, 139.4, 132.1 (q, *J* = 31.8 Hz), 128.9, 127.5 (2C), 127.1, 124.4 (q, *J* = 272.2 Hz), 114.3, 112.7, 108.0, 44.1, 31.8, 29.4, 29.3, 29.3, 27.1, 22.7, 14.1. IR (ATR): v 3426, 2926, 2853, 1518, 1490, 1445, 1361, 1318, 1118, 1077, 993, 910, 855, 733, 700, 673, 625, 419 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₇H₃₁F₃N [M + H]⁺: 426.2403; found: 426.2408.

N-neopentyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4m)

Obtained as a yellow solid in 84% yield (76 mg). Mp: 84.0 – 85.8 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 7.18 (s, 1H), 7.00 (s, 1H), 6.87 (s, 1H), 4.00 (br s, 1H), 3.03 (s, 2H), 1.08 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.6, 143.1, 140.7, 132.0 (q, J = 31.5 Hz), 128.8, 127.8, 127.2, 124.4 (q, J = 272.7 Hz), 114.3, 112.5 (q, J = 4.0 Hz), 107.7 (q, J = 3.9 Hz), 55.6, 32.0, 27.6. IR (ATR): v 3430, 2956, 2868, 1609, 1579, 1523, 1495, 1446, 1414, 1377, 1347, 1317, 1277, 1261, 1230, 1120, 1075, 991, 936, 853, 760, 711, 697, 634 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₈H₂₁F₃N [M + H]⁺: 308.1621; found: 308.1616.

N-(pentan-3-yl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4n)

Obtained as a yellow solid in 75% yield (69 mg). Mp: 87.3 – 89.0 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 7.15 (s, 1H), 6.95 (s, 1H), 6.82 (s, 1H), 3.78 (br s, 1H), 3.42 – 3.36 (m, 1H), 1.77 – 1.64 (m, 2H), 1.62 – 1.52 (m, 2H), 1.02 (t, J = 7.5 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 148.8, 143.1, 140.7, 132.1 (q, J = 31.8 Hz), 128.8, 127.8, 127.2, 124.5 (q, J = 272.2 Hz), 114.5, 112.1 (q, J = 4.0 Hz), 108.0 (q, J = 4.0 Hz), 55.5, 26.8, 10.1. IR (ATR): v 3413, 2965, 2932, 2877, 1601, 1578, 1521, 1495, 1465, 1442, 1412, 1375, 1319, 1267, 1227, 1117, 1076, 1000, 933, 852, 761, 713, 699, 644, 624 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₈H₂₁F₃N [M + H]⁺: 308.1621; found: 308.1616.

N-cyclopentyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (40)

Obtained as a yellow solid in 81% yield (74 mg). Mp: 96.0 – 97.6 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.7 Hz, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.46 (d, J = 7.3 Hz, 1H), 7.23 (s, 1H), 7.00 (s, 1H), 6.88 (s, 1H), 4.01 (br s, 1H), 3.97 – 3.90 (m, 1H), 2.19 – 2.11 (m, 2H), 1.88 – 1.79 (m, 2H), 1.78 – 1.76 (m, 2H), 1.62 – 1.54 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 143.1, 140.7, 132.0 (q, J = 31.7 Hz), 128.9, 127.8, 127.2, 124.5 (q, J = 272.5 Hz), 114.7, 112.4 (q, J = 4.0 Hz), 108.3 (q, J = 4.0 Hz), 54.7, 33.5, 24.1. IR (ATR): v 3416, 2957, 2870, 1609, 1578, 1518, 1493, 1464, 1444, 1411, 1376, 1309, 1277, 1260, 1231, 1161, 1116, 1075, 991, 907, 852, 732, 714,

698, 650, 629 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{18}H_{19}F_3N$ [M + H]⁺: 306.1464; found: 306.1459.

N-(cyclohexylmethyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4p)

Obtained as a yellow solid in 80% yield (80 mg). Mp: 99.3 – 100.9 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.1 Hz, 1H), 7.17 (s, 1H), 6.95 (s, 1H), 6.82 (s, 1H), 3.80 (br s, 1H), 3.07 (d, J = 6.7 Hz, 2H), 1.90 – 1.86 (m, 2H), 1.83– 1.97 (m, 2H), 1.76 – 1.72 (m, 1H), 1.68 – 1.59 (m, 1H), 1.40 – 1.19 (m, 3H), 1.11 – 1.01 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 143.1, 140.7, 132.0 (q, J = 31.2 Hz), 128.8, 127.8, 127.2, 124.4 (q, J = 271.0 Hz), 114.2, 112.4 (q, J = 3.9 Hz), 107.7 (q, J = 4.0 Hz), 50.5, 37.7, 31.3, 26.5, 25.9. IR (ATR): v 3431, 2923, 2851, 1698, 1609, 1578, 1520, 1494, 1465, 1447, 1413, 1385, 1358, 1318, 1231, 1117, 1076, 1026, 991, 942, 907, 853, 761, 732, 698, 627 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₀H₂₃F₃N [M + H]⁺: 334.1777; found: 334.1772.

N-(2-methylbenzyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4q)

Obtained as a yellow solid in 76% yield (78 mg). Mp: 110.0 – 111.8 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.68. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.43 (d, J = 7.3 Hz, 1H), 7.39 (d, J = 7.3 Hz, 1H), 7.30 – 7.25 (m, 4H), 7.00 (s, 1H), 6.89 (s, 1H), 4.39 (s, 2H), 4.15 (br s, 1H), 2.45 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ
148.8, 143.2, 140.5, 136.5, 136.2, 132.1 (q, J = 31.0 Hz), 130.7, 128.9, 128.5, 127.9 (2C), 127.2, 126.3, 124.4 (q, J = 272.7 Hz), 114.3, 113.0 (q, J = 3.9 Hz), 107.8 (q, J = 3.9 Hz), 46.4, 19.0. IR (ATR): v 3409, 3028, 2925, 1695, 1610, 1579, 1518, 1493, 1462, 1445, 1376, 1350, 1317, 1277, 1261, 1165, 1117, 1073, 991, 950, 855, 762, 730, 699, 649, 627, 604 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₁H₁₉F₃N [M + H]⁺: 342.1464; found: 342.1462.

N-(2-methoxybenzyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4r)

Obtained as a white solid in 73% yield (78 mg). Mp: 113.9 – 115.7 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.2 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.21 (s, 1H), 7.06 – 6.92 (m, 3H), 6.91 – 6.84 (m, 2H), 4.41 (s, 2H), 3.85 (s, 3H), NH was not observed. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 148.6, 143.1, 140.5, 140.2, 132.0 (q, J = 31.0 Hz), 129.9, 128.8, 127.9, 127.2, 124.3 (q, J = 270.1 Hz), 119.8, 114.4, 113.2, 113.1 (q, J = 3.7 Hz), 113.0, 108.0 (q, J = 3.8 Hz), 55.3, 48.2. IR (ATR): v 3415, 2938, 2836, 1718, 1599, 1519, 1490, 1464, 1436, 1414, 1374, 1317, 1075, 1047, 995, 908, 855, 762, 733, 697, 630 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₁H₁₉OF₃N [M + H]⁺: 358.1413; found: 358.1408.

N-methyl-*N*-(*o*-tolyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4s) Obtained as a yellow solid in 60% yield (61 mg). Mp: 153.2 – 155.0 °C. $R_{\rm f}$ (petroleum ether : ethyl acetate = 20 : 1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.55 –

7.52 (m, 2H), 7.45 (t, J = 8.0 Hz, 2H), 7.40 – 7.36 (m, 2H), 7.33 – 7.28 (m, 2H), 7.22 – 7.20 (m, 2H), 6.84 (s, 1H), 6.78 (s, 1H), 3.34 (s, 3H), 2.21 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.6, 145.7, 142.9, 140.8, 136.6, 131.9 (q, J = 31.6 Hz), 131.7, 128.8, 128.3, 127.9, 127.7, 127.3, 127.2, 124.3 (q, J = 272.6 Hz), 114.3, 112.4 (q, J = 3.9 Hz), 107.6 (q, J = 3.9 Hz), 39.3, 17.8. IR (ATR): v 2960, 2829, 1717, 1600, 1501, 1491, 1410, 1371, 1310, 1076, 1045, 996, 907, 855, 763, 734, 699, 629 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₁H₁₉F₃N [M + H]⁺: 342.1464; found: 342.1461.

N,*N*-dibenzyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4t)

Obtained as a yellow solid in 61% yield (76 mg). Mp: 161.0 – 163.0 °C. $R_{\rm f}$ (petroleum ether : ethyl acetate = 20 : 1) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.34 (m, 9H), 7.30 – 7.28 (m, 6H), 7.17 (s, 1H), 7.09 (s, 1H), 6.99 (s, 1H), 4.75 (s, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.7, 143.1, 140.8, 137.2, 132.0 (q, J = 31.6 Hz), 128.9, 128.8, 127.8, 127.3 (2C), 126.7, 124.4 (q, J = 272.4 Hz), 114.3, 112.5 (q, J = 3.9 Hz), 107.7 (q, J = 3.9 Hz), 54.4. IR (ATR): v 3030, 2923, 1605, 1578, 1494, 1482, 1452, 1403, 1354, 1327, 1297, 1260, 1219, 1166, 1120, 1076, 1051, 1028, 989, 962, 855, 763, 733, 696, 632 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₇H₂₃F₃N [M + H]⁺: 418.1777; found: 418.1770.

N-methyl-N-pentyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4u) 38

Obtained as a yellow solid in 52% yield (50 mg). Mp: 110.2 – 112.0 °C. R_f (petroleum ether : ethyl acetate = 20 : 1) = 0.78. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.14 (s, 1H), 7.02 (s, 1H), 6.89 (s, 1H), 3.42 (t, J = 7.5 Hz, 2H), 3.05 (s, 3H), 1.69 – 1.62 (m, 2H), 1.44 – 1.32 (m, 4H), 0.95 (t, J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.6, 143.0, 141.2, 131.9 (q, J = 31.3 Hz), 128.8, 127.7, 127.3, 124.6 (q, J = 270.5 Hz), 113.6, 111.4, 107.2, 52.8, 38.6, 29.3, 26.4, 22.6, 14.4. IR (ATR): v 2956, 2928, 2860, 1605, 1578, 1455, 1427, 1392, 1319, 1256, 1197, 1166, 1116, 1075, 1031, 995, 964, 849, 761, 699, 631, 610 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₉H₂₃F₃N [M + H]⁺: 322.1777; found: 322.1772.

N,*N*-diheptyl-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (4v)

Obtained as a yellow solid in 42% yield (55 mg). Mp: 127.3 – 129.1 °C. $R_{\rm f}$ (petroleum ether : ethyl acetate = 20 : 1) = 0.77. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.6 Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 7.08 (s, 1H), 6.95 (s, 1H), 6.83 (s, 1H), 3.36 (t, J = 7.7 Hz, 4H), 1.66 – 1.60 (m, 4H), 1.39 – 1.29 (m, 16H), 0.92 (t, J = 6.6 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 148.5, 143.0, 141.3, 131.9 (q, J = 31.1 Hz), 128.8, 127.7, 127.3, 124.5 (q, J = 272.4 Hz), 113.3, 110.7, 106.8, 51.1, 31.8, 29.1, 27.1, 22.6, 14.1. IR (ATR): v 2926, 2856, 1609, 1579, 1490, 1468, 1427, 1392, 1319, 1258, 1166, 1119, 1076, 995, 950, 761, 701, 631 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₇H₃₉F₃N [M + H]⁺: 434.3029; found: 434.3026.

4'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-amine (5q)

Obtained as a yellow oil in 8% yield (13 mg). R_f (petroleum ether : ethyl acetate = 4 : 1) = 0.54. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.18 (s, 1H), 6.98 (s, 1H), 6.92 (s, 1H), 3.97 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 147.3, 142.0, 139.0, 132.3 (q, J = 32.0 Hz), 132.0, 128.7, 124.1 (q, J = 272.6 Hz), 122.2, 116.3, 113.7 (q, J = 3.9 Hz), 110.6 (q, J = 3.8 Hz). IR (ATR): v 3479, 3389, 2958, 2922, 2850, 1625, 1607, 1453, 1372, 1163, 1119, 1086, 1009, 864, 820, 717 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₃H₁₀BrF₃N [M + H]⁺: 315.9944; found: 315.9941.

5-(trifluoromethyl)-[1,1':4',1''-terphenyl]-3-amine (5s)

Obtained as a white solid in 95% yield (30 mg). Mp: 115.8 – 117.2 °C. R_f (petroleum ether : ethyl acetate = 4 : 1) = 0.52. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.56 (m, 7H), 7.47 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 7.07 (s, 1H), 6.90 (s, 1H), 3.94 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 147.1, 142.7, 140.8, 140.5, 138.9, 132.1 (q, J = 31.9 Hz), 128.8, 127.5 (3C), 127.0, 124.2 (q, J = 272.5 Hz), 116.4, 114.0 (q, J = 4.0 Hz), 110.3 (q, J = 3.9 Hz). IR (ATR): v 3380, 3031, 2929, 1622, 1457, 1375, 1269, 1166, 1122, 836, 766 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₉H₁₅F₃N [M + H]⁺: 314.1152; found: 314.1148.

4'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-ol (6)

Obtained as a yellow oil in 5% yield (8 mg). R_f (petroleum ether : ethyl acetate = 4 : 1) = 0.59. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 7.38 (s, 1H), 7.20 (s, 1H), 7.10 (s, 1H), 5.60 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.3, 142.7, 138.4, 132.6 (q, J = 32.4 Hz), 132.1, 128.7, 123.7 (q, J = 272.5 Hz), 122.6, 117.2, 116.2 (q, J = 3.9 Hz), 111.5 (q, J = 3.8 Hz). IR (ATR): v 3357, 2958, 2925, 2853, 1698, 1605, 1448, 1367, 1269, 1167, 1126, 1103, 1010, 931, 821, 718 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₃H₉BrF₃O [M + H]⁺: 316.9784; found: 316.9781.

bis(4'-bromo-5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)amine (7)

Obtained as a yellow solid in 3% yield (9 mg). Mp: $50.5 - 52.2 \,^{\circ}C. R_f$ (petroleum ether : ethyl acetate = 10 : 1) = 0.68. ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.57 (m, 4H), 7.50 – 7.41 (m, 8H), 7.37 (s, 2H), 6.14 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 142.6, 138.4, 132.8 (q, J = 32.4 Hz), 132.2, 128.7, 123.8 (q, J = 272.7 Hz), 122.7, 119.5, 117.2 (q, J = 3.9 Hz), 113.8 (q, J = 3.8 Hz). IR (ATR): v 3411, 2917, 2849, 1599, 1455, 1386, 1362, 1263, 1167, 1125, 1069, 1010, 969, 821 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₆H₁₆Br₂F₆N [M + H]⁺: 615.9528; found: 615.9519.

Crystal structure analyses

The crystal samples of **3g** and **4j** were prepared by slow volatilization in a $CH_2Cl_2/CDCl_3$ (3:1) solvent mixture. The suitable crystals of **3g** (CCDC 2180121) and **4j** (CCDC 2170084) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at -50 °C, using MoK α radiation (λ 0.71073 Å). The data was corrected for Lorentz and polarisation effect with the **SMART** suite of programs and for absorption effects with SADABS.⁵ Structure solution and refinement were carried out with the SHELXTL suite of programs. The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

Compound	3 g (CCDC 2180121)	4j (CCDC 2170084)
Empirical formula	$C_{16}H_{11}F_3N_2O$	$C_{25}H_{17}BrF_3N$
Formula weight	304.27	468.31
Temperature/K	296	296
Wavelength/Å	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
a/Å	12.9125(12)	9.9303(7)
b/Å	7.5482(8)	16.2965(11)
c/Å	15.0653(17)	12.8568(9)
$\alpha/^{\circ}$	90	90
β/°	104.114(4)	98.523(2)
$\gamma/^{\circ}$	90	90
Volume/Å ³	1424.0(3)	2057.6(2)
Ζ	4	4
Density (calc.)/cm ³	1.419	1.512
Absorption coefficient /mm ⁻¹	0.117	2.036
F(000)	624.0	944.0
Crystal size/mm	$0.1 \times 0.1 \times 0.1$	$0.10 \times 0.10 \times 0.05$
Theta range for data collection / $^{\circ}$	4.77 to 50.18	4.06 to 50.14
Reflections collected	13918	33763
Independent reflections	2514 [Rint = 0.0691]	3657 [Rint = 0.0576]
Data/restraints/parameters	2514/0/200	3657/6/271
Goodness-of-fit on F ²	1.027	1.053
Final R indexes $[I \ge 2\sigma(I)]$	1.027	0.0888
Final R indexes [all data]	wR ₂ =0.1287	wR2 = 0.1474
Largest diff. peak and hole / e $\mbox{\AA}^{-3}$	0.26/-0.23	1.05/-0.83

Crystal data and structure refinement for 3g and 4j.

ORTEP diagram of compound 3g. Thermal ellipsoids are drawn at 40% probability

ORTEP diagram of compound 4j. Thermal ellipsoids are drawn at 40% probabilityReferences

References

- H.-Y. Hao, Y.-J. Mao, Z.-Y. Xu, S.-J. Lou and D.-Q. Xu, Selective Cross-Dehydrogenative C(sp3)–H Arylation with Arenes, *Org. Lett.*, 2020, 22, 2396-2402.
- J. Li and J. He, Synthesis of Sequence-Regulated Polymers: Alternating Polyacetylene through Regioselective Anionic Polymerization of Butadiene Derivatives, ACS Macro Letters, 2015, 4, 372-376.
- N. C. Lungu, A. D épret, F. Delattre, G. G. Surpateanu, F. Cazier, P. Woisel, P. Shirali and G. Surpateanu, Synthesis of a new fluorinated fluorescent β-cyclodextrin sensor, *J. Fluorine Chem.*, 2005, **126**, 385-388.
- Y. Fukazawa, V. Y. Vaganov, S. A. Shipilovskikh, A. E. Rubtsov and A. V. Malkov, Stereoselective Synthesis of Atropisomeric Bipyridine N,N'-Dioxides by Oxidative Coupling, *Org. Lett.*, 2019, **21**, 4798-4802.
- 5. SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.

Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra

¹H NMR spectrum of **3a** in CDCl₃

¹⁹F NMR spectrum of **3b** in CDCl₃

¹H NMR spectrum of **3c** in CDCl₃

¹³C NMR spectrum of **3c** in CDCl₃

 ^{19}F NMR spectrum of **3d** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H NMR spectrum of **3e** in CDCl₃

¹⁹F NMR spectrum of **3e** in CDCl₃

---62.7

¹³C NMR spectrum of **3e** in CDCl₃

¹⁹F NMR spectrum of **3f** in CDCl₃

 13 C NMR spectrum of **3f** in CDCl₃

¹H NMR spectrum of 3g in DMSO- d_6

¹³C NMR spectrum of **3g** in DMSO- d_6

¹⁹F NMR spectrum of **3h** in CDCl₃

11 (Phu)

 ^{13}C NMR spectrum of **3h** in CDCl₃

¹H NMR spectrum of **3i** in CDCl₃

¹⁹F NMR spectrum of **3i** in CDCl₃

---62.7

¹³C NMR spectrum of **3i** in CDCl₃

¹⁹F NMR spectrum of **3j** in CDCl₃

¹H NMR spectrum of **3k** in CDCl₃

 ^{19}F NMR spectrum of 3k in CDCl₃

---62.7

¹³C NMR spectrum of **3k** in CDCl₃

¹⁹F NMR spectrum of **3l** in CDCl₃

¹³C NMR spectrum of **3l** in CDCl₃

¹H NMR spectrum of 3m in CDCl₃

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹³C NMR spectrum of **3m** in CDCl₃

 ^{19}F NMR spectrum of **3n** in CDCl₃

 ^1H NMR spectrum of 3o in CDCl_3

¹³C NMR spectrum of **30** in CDCl₃

 ^{19}F NMR spectrum of 3p in CDCl₃

 ^{13}C NMR spectrum of 3p in CDCl_3

¹H NMR spectrum of **3q** in CDCl₃

 ^{19}F NMR spectrum of 3q in CDCl₃

---62.7

¹³C NMR spectrum of **3q** in CDCl₃

¹H NMR spectrum of **3r** in CDCl₃

^{19}F NMR spectrum of $3\mathbf{r}$ in CDCl₃

 ^{13}C NMR spectrum of 3r in CDCl_3

¹H NMR spectrum of **3s** in DMSO- d_6

¹⁹F NMR spectrum of **3s** in DMSO- d_6

---61.3

¹³C NMR spectrum of **3s** in DMSO- d_6

¹⁹F NMR spectrum of **3t** in CDCl₃

¹³C NMR spectrum of **3t** in CDCl₃

¹H NMR spectrum of 3u in DMSO- d_6

¹⁹F NMR spectrum of $3\mathbf{u}$ in DMSO- d_6

Ĉ

¹³C NMR spectrum of **3u** in DMSO- d_6

¹H NMR spectrum of **3q'** in DMSO- d_6

¹³C NMR spectrum of **3q'** in DMSO- d_6

¹H NMR spectrum of 4a in CDCl₃

¹⁹F NMR spectrum of **4a** in CDCl₃

1 H NMR spectrum of **4b** in CDCl₃

 ^{19}F NMR spectrum of **4b** in CDCl₃

---62.7

¹³C NMR spectrum of **4b** in CDCl₃

¹H NMR spectrum of 4c in CDCl₃

 ^{19}F NMR spectrum of 4c in CDCl₃

 ^{13}C NMR spectrum of 4c in CDCl_3

 ^1H NMR spectrum of 4d in CDCl_3

¹³C NMR spectrum of **4d** in CDCl₃

Ŧ

 ¹⁹F NMR spectrum of **4e** in CDCl₃

¹H NMR spectrum of **4f** in CDCl₃

¹³C NMR spectrum of **4f** in CDCl₃

¹⁹F NMR spectrum of **4g** in CDCl₃

^1H NMR spectrum of 4h in CDCl_3

 ^{19}F NMR spectrum of **4h** in CDCl₃

¹³C NMR spectrum of **4h** in CDCl₃

¹H NMR spectrum of **4i** in CDCl₃

¹⁹F NMR spectrum of **4i** in CDCl₃

¹³C NMR spectrum of **4i** in CDCl₃

¹H NMR spectrum of **4j** in CDCl₃

¹⁹F NMR spectrum of **4j** in CDCl₃

¹³C NMR spectrum of **4j** in CDCl₃

¹⁹F NMR spectrum of **4k** in CDCl₃

¹³C NMR spectrum of **4k** in CDCl₃

¹H NMR spectrum of **4l** in CDCl₃

¹⁹F NMR spectrum of **4l** in CDCl₃

¹³C NMR spectrum of **4l** in CDCl₃

 ^{19}F NMR spectrum of 4m in CDCl_3

¹³C NMR spectrum of **4m** in CDCl₃

¹H NMR spectrum of 4n in CDCl₃

¹³C NMR spectrum of **4n** in CDCl₃

¹⁹F NMR spectrum of **40** in CDCl₃

¹H NMR spectrum of 4p in CDCl₃

 $7.7.5 \\ 7.7.7 \\ 7.7.$

¹³C NMR spectrum of **4p** in CDCl₃

 ^{19}F NMR spectrum of 4q in CDCl₃

^{13}C NMR spectrum of 4q in CDCl_3

 ^1H NMR spectrum of 4r in CDCl_3

 $= \underbrace{\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n}$

 ^{19}F NMR spectrum of $4\mathbf{r}$ in CDCl₃

¹³C NMR spectrum of **4r** in CDCl₃

¹⁹F NMR spectrum of **4s** in CDCl₃

¹³C NMR spectrum of **4s** in CDCl₃

¹H NMR spectrum of **4t** in CDCl₃

¹⁹F NMR spectrum of **4t** in CDCl₃

¹³C NMR spectrum of **4t** in CDCl₃

 ^{19}F NMR spectrum of **4u** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H NMR spectrum of **4v** in CDCl₃

 ^{19}F NMR spectrum of 4v in CDCl_3

---62.7

¹³C NMR spectrum of **4v** in CDCl₃

 ^{19}F NMR spectrum of 5q in CDCl₃

 ^{13}C NMR spectrum of 5q in CDCl_3

¹H NMR spectrum of **5s** in CDCl₃

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹³C NMR spectrum of **5s** in CDCl₃

400MHz ¹H NMR spectrum of **6** in CDCl₃

¹⁹F NMR spectrum of **6** in CDCl₃

¹³C NMR spectrum of **6** in CDCl₃

¹H NMR spectrum of **7** in CDCl₃

-6.14

¹⁹F NMR spectrum of **7** in CDCl₃

---62.90

¹³C NMR spectrum of **7** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)