Supporting Information

Lewis Base-catalyzed Trifluoromethylsulfinylation of Alcohols and

Phenols: Modular Synthesis of Trifluoromethanesulfinate Esters

Wen Liu ${ }^{\text {ä\# }}$, Shuya Xing ${ }^{\text {a\#, }}$, Shao-Fei $\mathrm{Ni}^{\text {b\# }}$, Cheng Ma ${ }^{\text {b }}$, Qiujin Fan, Zhiyong Ye, Yanchuang Zhao, Ting Ouyang, Ying Baia* and Xinxin Shao ${ }^{\text {a }}$
${ }^{a}$ College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education. Hangzhou Normal University. Hangzhou 311121, Zhejiang, China.
${ }^{b}$ Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province. Shantou University. Shantou 515063, Guangdong, China

Table of Contents

I. General information S2
II. Synthesis of the starting materials S3
III. Optimization of the reaction conditions S7
IV. Substrate scope S8
IV. Synthesis of trifluoromethanesulfinamide 11 S32
V. Scale-up reaction and sustainable utilization of phthalimide S33
VI. Mechanistic studies S35
VII. References S43
VIII. DFT Calculation S45
IX. NMR spectrum of the products S57

I. General information

General procedures. General Information Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. For example, dichloromethane (DCM) was freshly distilled from CaH_{2}; toluene, ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ was dried and distilled from metal sodium and benzophenone. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (200-300 mesh). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in CDCl_{3} or $\mathrm{THF}-d_{8}$ or $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ or $\mathrm{CD}_{3} \mathrm{OD}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$. Multiplicities were given as: s (singlet); d (doublet); dd (doublets of doublet); t (triplet); q (quartet); td (triplet of doublets); tt (triplet of triplets) ddd (doublet of doublet of doublets) or m (multiplets). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer and on a Agilent Technologies micro Q-TOF-spectrometer.

Reagents. The following chemicals were used as received: 1-Adamantanol (EnergyChemical), Benzaldehyde (Energy-Chemical), 1-Boc-3-azetidinone (Energy-Chemical), 3Bromobenzaldehyde (Macklin), 1,4-Benzenedimethanol (Energy-Chemical), 3Bromobenzyl alcohol (leyan.com), 4-Bromobenzyl Alcohol (Energy-Chemical), 4Bromobenzaldehyde (leyan.com), 6-Bromo-1-hexanol (Energy-Chemical), 4-Bromo-1indanone (Energy-Chemical), 5-Bromo-1-indanone (leyan.com), 4-Chlorobenzaldehyde (leyan.com), 4-Chlorobenzyl alcohol (Energy-Chemical), 6-Chloro-1-hexanol (EnergyChemical), 5-Chloro-1-indanone (leyan.com), 6-Chloro-1-hexanol (Energy-Chemical), Cholesterol (Energy-Chemical), β-Citronellol (Adamas), 4-Cyanobenzaldehyde (leyan.com), Dehydroepiandrosterone (Macklin), Diacetone-beta-D-fructose (Adamas), Diethyl (ethoxyacetyl)phosphonate (Adamas), 3,5-Difluorobenzaldehyde (leyan.com), Diisobutylaluminiumhydrid (Energy-Chemical), 3,3-Dimethyl-1-indanone (leyan.com), 1,4-Dioxaspiro[4.5]decan-8-one (Energy-Chemical), 1,4-Dioxaspiro[4.5]decan-8-ol (Energy-Chemical), 1-(Diphenylmethyl)-3-hydroxyazetidine (Energy-Chemical), DLmenthol (Energy-Chemical), 2-Ethyl-1-indanone (leyan.com), Ethylmagnesium bromide (Energy-Chemical), Estrone (Adamas), 4-Fluorobenzaldehyde (leyan.com), 4Fluorobenzyl alcohol (leyan.com), 5-Fluoro-1-indanone (leyan.com), Hept-6-yn-1-ol
(Energy-Chemical), 5-(2-Hydroxyethyl)-4-methylthiazole (leyan.com), Hydrogen peroxide (aladdin), 4-Hydroxymethylbiphenyl (Energy-Chemical), 1-Indanone (EnergyChemical), 2-Indanone (leyan.com), 2-Indanol (Energy-Chemical), 4-Iodobenzyl Alcohol (leyan.com), 4-Iodobenzaldehyde (Adamas), Iodomethane (Energy-Chemical), Isopropenylmagnesium bromide (Energy-Chemica), Methyl 4-Formylbenzoate (EnergyChemical), 2-Methylindan-1-one (Energy-Chemical), Methyl 4-(hydroxymethyl)benzoate (leyan.com), 5-Methyl-1-indanone (Energy-Chemical), 4-(Methylthio)benzaldehyde (leyan.com), 2-Naphthaldehyde (Adamas), 2-Nitrobenzaldehyde (Energy-Chemical), 3Nitrobenzaldehyde (Energy-Chemical), 4-Nitrobenzaldehyde (Adamas), 4-Nitrobenzyl alcohol (Energy-Chemical), N-BOC-4-Hydroxypiperidine (Energy-Chemical), N,NDiethylethanamin (Energy-Chemical), Palladium (Energy-Chemical), Potassium phthalimide (Energy-Chemical), p-phthalaldehyde (leyan.com), 3-Pyridinecarboxaldehyde (Energy-Chemical), Quinoline-3-carboxaldehyde (leyan.com), Ruthenium(III) chloride hydrate (Energy-Chemical), Sodium hydride (Energy-Chemical), Sodium periodate (Energy-Chemical), Sodium tungstate (Adamas), Stigmasterol (Energy-Chemical), tertButyl 2-oxo-7-azaspiro[3.5]nonane-7-carboxylate (Energy-Chemical), tert-Butyl N-(4hydroxycyclohexyl)carbamate (leyan.com), 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2yl)benzaldehyde (leyan.com), 3-Thiophenecarboxaldehyde (Energy-Chemical), 2Tolualdehyde (Energy-Chemical), Trifluoromethanesulfinyl chloride (Energy-Chemical), 3-(Trifluoromethyl)benzaldehyde (Adamas), Tryptophol (leyan.com), 4(Trifluoromethyl)benzaldehyde (Energy-Chemical), 4-(Trifluoromethyl)benzyl alcohol (Energy-Chemical), (Triphenylphosphoranylidene)acetaldehyde (leyan.com), Tryptophol (Energy-Chemical).

II. Synthesis of the starting materials

1. Synthesis of 2-((Trifluoromethyl)sulfinyl)isoindoline-1,3-dione 1

A $120^{\circ} \mathrm{C}$ oven-dried $200-\mathrm{mL}$ glass, equipped with a stir bar, was charged with potassium
phthalimide ($6.11 \mathrm{~g}, 33.0 \mathrm{mmol}, 1.00$ equiv), The mixture was evacuated and backfilled with nitrogen for three times. Then dry DCM $(45.0 \mathrm{~mL})$ was added under N_{2} atmosphere. The mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of trifluoromethanesulfinyl chloride (5.00 g , 33.0 mmol , 1.00 equiv) in DCM (5.00 mL) was added dropwise under N_{2} atmosphere. Then the mixture was slowly warmed up to room temperature and stirred at room temperature for 24 h . The reaction mixture was filtered through a short pad of Celite and concentrated in vacuo. By repeated recrystallization from toluene at $-20^{\circ} \mathrm{C}$. The product was white solid ($4.46 \mathrm{~g}, 16.9 \mathrm{mmol}, 51.4 \%$ yield). Spectra were consistent with literature data ${ }^{1}$. In particular, the purity of the substance will have an important effect on the efficiency of the subsequent reaction.

2. Synthesis of alcohol $2 n$

A $120^{\circ} \mathrm{C}$ oven-dried $100-\mathrm{mL}$ round-bottom flask, equipped with a stir bar, was charged with 2-iodo-4-(tert-butyldimethylsilyloxy)butane ($1.50 \mathrm{~g}, 4.77 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{MeOH}(48.0 \mathrm{~mL})$ were added under nitrogen. Then p-toluenesulfonic acid monohydrate ($182 \mathrm{mg}, 0.950 \mathrm{mmol}, 0.2$ equiv) was added to the mixture and the mixture was allowed to stir at room temperature for 4 h . After the completion of reaction, a saturated aqueous solution of NaHCO_{3} was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50.0 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine (10.0 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography to provide the desired products as a colorless liquid ($712 \mathrm{mg}, 3.56 \mathrm{mmol}, 74.6 \%$ yield). Spectra were consistent with literature data ${ }^{2}$.

3. General Method A: Synthesis of alcohol 2r, 2v

A $120^{\circ} \mathrm{C}$ oven-dried $100-\mathrm{mL}$ glass, equipped with a stir bar, was charged with ketone ($5.00 \mathrm{mmol}, 1.00$ equiv). The mixture was evacuated and backfilled with nitrogen for three
times. Then dry $\mathrm{MeOH}(15.0 \mathrm{~mL})$ was added under N_{2} atmosphere. The mixture was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}\left(283.7 \mathrm{mg}, 7.50 \mathrm{mmol}, 1.50\right.$ equiv) was added under N_{2} atmosphere. The mixture was warmed up to room temperature and stirred at room temperature for 1 h . After the completion of the reaction, the MeOH was removed by rotary evaporation, and $\mathrm{H}_{2} \mathrm{O}$ $(30.0 \mathrm{~mL})$ was added, the aqueous solution was washed with EtOAc $(20.0 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine ($30.0 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography ${ }^{3}$. Compound 2r: (prepared on 10.0 mmol scale, a colorless liquid, $0.961 \mathrm{~g}, 7.16 \mathrm{mmol}, 71.6 \%$ yield), spectra were consistent with literature data ${ }^{4}$. Compound 2 v : a colorless liquid ($0.897 \mathrm{~g}, 4.62 \mathrm{mmol}, 92.3 \%$ yield), spectra were consistent with literature data ${ }^{5}$.

4. General Method B: Synthesis of alcohol 2y

A $120^{\circ} \mathrm{C}$ oven-dried $100-\mathrm{mL}$ glass, equipped with a stir bar, and backfilled with nitrogen for three times. Then dry DCM (40.0 mL), imidazole ($2.70 \mathrm{~g}, 39.6 \mathrm{mmol}, 2.40$ equiv) and butane-1,3-diol ($1.48 \mathrm{~g}, 1.50 \mathrm{~mL}, 16.5 \mathrm{mmol}, 1.00$ equiv) were added under N_{2} atmosphere. Then TBSCl ($2.98 \mathrm{~g}, 19.8 \mathrm{mmol}, 1.20$ equiv) in dry DCM (15.0 mL) was added to the mixture under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. Then mixture was allowed to stirred at room temperature for 12 h . After the completion of the reaction, brine ($30.0 \mathrm{~mL} \times 3$) was added to the mixture, and the aqueous phase was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$). The combined organic phases was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography. The product was isolated as a colorless liquid ($2.94 \mathrm{~g}, 14.4 \mathrm{mmol}, 87.2 \%$ yield). Spectra were consistent with literature data ${ }^{2}$.

5. Synthesis of 1-(Methoxymethyl)-4-nitrobenzene 2a'

A $120^{\circ} \mathrm{C}$ oven-dried $100-\mathrm{mL}$ glass, equipped with a stir bar, was charged with KOH $(1.12 \mathrm{~g}, 20.0 \mathrm{mmol}, 4.00$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then DMSO $(10.0 \mathrm{~mL})$ was added under N_{2} atmosphere. Then a solution of $\mathbf{2 a}(0.766 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) and $\operatorname{MeI}(2.84 \mathrm{~g}, 20.0 \mathrm{mmol}, 4.00$ equiv) in DMSO $(2.50 \mathrm{~mL})$ was dded dropwise under N_{2} atmosphere. The mixture was stirred at room temperature for 12 h . The reaction mixture was extracted with EtOAc ($20.0 \mathrm{~mL} \times 3$). The combined organic layers were washed with $10 \% \mathrm{NaHSO}_{3}(30.0 \mathrm{~mL})$ and water $(20.0 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography. The product was yellow oil ($0.558 \mathrm{~g}, 3.34 \mathrm{mmol}, 66.7 \%$ yield). Spectra were consistent with literature data ${ }^{6}$.

6. Synthesis of 1-Methoxy-2,3-dihydro-1H-indene 6a'

A $120^{\circ} \mathrm{C}$ oven-dried $100-\mathrm{mL}$ glass, equipped with a stir bar, was charged with NaH (60% disp. in mineral, $0.180 \mathrm{~g}, 4.50 \mathrm{mmol}, 1.50$ equiv) and $6 \mathrm{a}(0.403 \mathrm{~g}, 3.00 \mathrm{mmol}$, 1.00 equiv) . The mixture was evacuated and backfilled with nitrogen for three times. Then MeI ($0.511 \mathrm{~g}, 3.60 \mathrm{mmol}, 1.20$ equiv) was added dropwise under N_{2} atmosphere. The mixture was stirred at room temperature for 12 h . The reaction mixture was extracted with EtOAc ($20.0 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (20.0 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography. The product was isolated as a colorless oil ($0.258 \mathrm{~g}, 1.74 \mathrm{mmol}, 58.0 \%$ yield $)$. Spectra were consistent with literature data ${ }^{7}$.

III. Optimization of the reaction conditions

1. Optimization of reaction between 2 a with reagent 1

Table S1. Evaluation of different solvents

Reaction conditions: $\mathbf{2 a}(0.100 \mathrm{mmol}), \mathbf{1}\left(0.120 \mathrm{mmol}^{2}\right), \mathrm{Et}_{3} \mathrm{~N}(0.100$ equiv), solvent $(1.00 \mathrm{~mL})$ at rt for 5 h . ${ }^{\text {a }}$ Yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy in the presence of PhCF_{3} as an internal standard.

Table S2. Evaluation of different bases

Entry	base	Yield of $3 \mathbf{a}(\%)^{\mathbf{a}}$
1	$\mathrm{Et}_{3} \mathrm{~N}$	>99
2	none	no reaction
3	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	39
4	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	38
5	CsF	17
6	DMAP	>99
7	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	trace
8	NaOAc^{2}	DBU
9	${ }^{\text {tBuOK }}$	trace
10	pyridine	>99
11		<10

[^0]Table S3. Evaluation of different temperature and time

Reaction conditions: 2a (0.100 mmol), $\mathbf{1}(0.120 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.0100 \mathrm{mmol}), 2-\mathrm{MeTHF}$ $(1.00 \mathrm{~mL})$ at $\mathrm{T}^{\circ} \mathrm{C}$ for t . ${ }^{\text {a }}$ Yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy in the presence of PhCF_{3} as an internal standard.

IV. Substrate scope

1. General Method C:

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione ($0.360 \mathrm{mmol}, 1.20$ equiv, 94.8 mg). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2-MeTHF ($3.00 \mathrm{~mL}, 0.100 \mathrm{M}$), alcohol or benzyl alcohol ($0.300 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ $\left(0.0300 \mathrm{mmol}, 0.100\right.$ equiv, 3.00 mg) were added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

4-Nitrobenzyl trifluoromethanesulfinate 3a: Prepared according to General Method C (Eluent: 100:1 to 5:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($60.1 \mathrm{mg}, 0.223 \mathrm{mmol}, 74.3 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, J=$ $12.4 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.8 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4$, $140.9,129.1,124.2,123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.8 \mathrm{~Hz}\right), 67.4$. Spectra were consistent with literature date ${ }^{8}$.

4-Fluorobenzyl trifluoromethanesulfinate 3b: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($71.9 \mathrm{mg}, 0.297 \mathrm{mmol}, 99.0 \%$ yield). IR (thin film) 1605 (w), 1513 (m), 1185 (s), 1125 (s), 888 (m), 835 (m), 748 (m) cm ${ }^{-1} ; \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ ($2 \mathrm{H}, \mathrm{dd}, J=3.3,5.3 \mathrm{~Hz}$), $7.10(2 \mathrm{H}, \mathrm{dd}, J=8.6,8.6 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 5.06$ $(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.0(3 \mathrm{~F}, \mathrm{~s}),-111.3--111.4(1 \mathrm{~F}$, $\mathrm{m}) ;{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=249.9 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right)$, $129.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 123.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.7 \mathrm{~Hz}\right), 116.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 69.0 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{~S}$ 243.0103; Found 243.0117.

4-Chlorobenzyl trifluoromethanesulfinate 3c: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($54.2 \mathrm{mg}, 0.210 \mathrm{mmol}, 70.0 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.34(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=$ $11.6 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.0 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6$,
$132.3,130.3,129.3,123.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.3 \mathrm{~Hz}\right), 68.8$. Spectra were consistent with literature data ${ }^{8}$.

4-Bromobenzyl trifluoromethanesulfinate 3d: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($87.3 \mathrm{mg}, 0.288 \mathrm{mmol}, 96.0 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.17(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{d}, J=$ 11.6 Hz); ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.0 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.7$, $132.2,130.5,123.8,123.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.2 \mathrm{~Hz}\right), 68.8$. Spectra were consistent with literature data ${ }^{8}$.

4-Iodobenzyl trifluoromethanesulfinate 3e: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($101.7 \mathrm{mg}, 0.290 \mathrm{mmol}, 96.7 \%$ yield). IR (thin film) 1486 (w), 1182 (s), 1124 (s), 1059 (w), 1009 (w), 890 (m), 843 (m), 797 (m) cm ${ }^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.74(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.12(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 5.02(1 \mathrm{H}, \mathrm{d}$, $J=11.6 \mathrm{~Hz}$); ${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.0 ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.2$, $133.3,130.6,123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.3 \mathrm{~Hz}\right.$), 95.6, 68.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{INaO}_{2} \mathrm{~S} 372.8978$; Found 372.8979.

4-(Trifluoromethyl)benzyl trifluoromethanesulfinate 3f: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($86.8 \mathrm{mg}, 0.297 \mathrm{mmol}, 99.0 \%$ yield). IR (thin film) 1324 (s), 1167 (s), 1121 (s), 1066 (s), 904 (m), 822 (m), 779 (m) cm ${ }^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{d}, J=$
$12.0 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.9(3 \mathrm{~F}, \mathrm{~s}),-78.0$ $(3 \mathrm{~F}, \mathrm{~s}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.8,131.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.5 \mathrm{~Hz}\right), 128.9$, $126.1(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=4.1 \mathrm{~Hz}\right), 123.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.3 \mathrm{~Hz}\right), 123.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.6 \mathrm{~Hz}\right), 68.2 ;$ HRMS (ESI) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{~S}$ 293.0065; Found 293.0061.

[1,1'-Biphenyl]-4-ylmethyl trifluoromethanesulfinate 3g: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil $(66.1 \mathrm{mg}, 0.220 \mathrm{mmol}, 73.3 \%$ yield). IR (thin film) 1488 (w), 1185 (s), 1126 (s), 854 (s), 754 (m), 695 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.67-7.61(4 \mathrm{H}, \mathrm{m}), 7.50-7.47(4 \mathrm{H}, \mathrm{m}), 7.42-7.38(1 \mathrm{H}, \mathrm{m}), 5.44(1 \mathrm{H}, \mathrm{d}, J=$ $11.4 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-78.0 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6,140.3,132.6,129.5,129.0,127.9,127.8,127.3,123.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=340.3 \mathrm{~Hz}$), 69.7; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NaO}_{2} \mathrm{~S} 323.0324$; Found 323.0332 .

4-Cyanobenzyl trifluoromethanesulfinate 3h: Prepared according to General Method C (Eluent: 100:1 to 5:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($74.1 \mathrm{mg}, 0.297 \mathrm{mmol}, 99.1 \%$ yield). IR (thin film) $1185(\mathrm{~s}), 1125(\mathrm{~s})$, $928(\mathrm{~m}), 857(\mathrm{~m}), 820(\mathrm{~m}), 776(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(2 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz}), 7.50(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-77.8 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9,132.8,128.9$, $123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.3 \mathrm{~Hz}\right.$), 118.3, 113.3, 67.7; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$ 250.0144; Found 250.0146.

Methyl 4-((((trifluoromethyl)sulfinyl)oxy)methyl)benzoate 3i: Prepared according to General Method C (Eluent: 100:1 to 10:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($79.6 \mathrm{mg}, 0.282 \mathrm{mmol}, 94.0 \%$ yield). IR 1720 (s), 1437 (w), 1280 (s), 1180 (s), 1126 (s), 923 (m), 865 (m), 809 (m), 749 (s), 695 (m) cm ${ }^{-1}$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.40(1 \mathrm{H}$, d, $J=12.0 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.91(3 \mathrm{H}, \mathrm{s}) ;{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $78.0 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,138.6,131.1,130.2,128.4,123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 340.8 Hz), 68.6, 52.4; MS (FI): m/z (\%) 69, 118, 149, 213, 282. HRMS (FI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$ 282.0163; Found 282.0168.

3-Bromobenzyl trifluoromethanesulfinate 3j: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($65.0 \mathrm{mg}, 0.214 \mathrm{mmol}, 71.3 \%$ yield). IR (thin film) 1185 (s), 1125 (s), $886(\mathrm{~m}), 789(\mathrm{~m}), 685(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.45(2 \mathrm{H}, \mathrm{m}), 7.26$ - $7.20(2 \mathrm{H}, \mathrm{m}), 5.27(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}) ;{ }^{19}$ F NMR (471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-77.9 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.0,132.6,131.7,130.6,127.3,123.1$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=342.7 \mathrm{~Hz}\right), 123.0,68.4 ; \mathbf{M S}(\mathrm{FI}): \mathrm{m} / \mathrm{z}(\%) 69,141,169,205,233,304$. HRMS (FI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{BrS} 301.9216$; Found 301.9218.

1,4-Phenylenebis(methylene) bis(trifluoromethanesulfinate) 3k: Prepared according to General Method C (reagent 12.40 equiv, $\mathrm{Et}_{3} \mathrm{~N} 0.200$ equiv) (Eluent: $50: 1$ to $10: 1$ petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($107.0 \mathrm{mg}, 0.289 \mathrm{mmol}, 96.3 \%$ yield). IR (thin film) 1179 (s), 1123 (s), 893 (m),
$751(\mathrm{~m}) \mathrm{cm}^{-1}{ }^{\mathbf{1}}{ }^{\mathbf{H}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(4 \mathrm{H}, \mathrm{s}), 5.39(2 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 5.10$ $(2 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-78.1 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 135.1,129.3,123.1\left(q, J_{\mathrm{C}-\mathrm{F}}=340.7 \mathrm{~Hz}\right), 69.0$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{NaO}_{4} \mathrm{~S}_{2}$ 392.9660; Found 392.9665.

6-Chlorohexyl trifluoromethanesulfinate 31: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($60.6 \mathrm{mg}, 0.240 \mathrm{mmol}, 80.0 \%$ yield). IR (thin film) 1185 (s), 1127 (s), $894(\mathrm{~m}), 724(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.39-4.11(2 \mathrm{H}, \mathrm{m}), 3.53(2 \mathrm{H}, \mathrm{t}, J$ $=6.6 \mathrm{~Hz}), 1.85-1.70(4 \mathrm{H}, \mathrm{m}), 1.52-1.39(4 \mathrm{H}, \mathrm{m}) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-78.6$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.1 \mathrm{~Hz}\right), 69.0,44.9,32.4,29.7,26.4$, 24.8; MS (FI) $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{m} / \mathrm{z}(\%) 69,83,119,183,253$. HRMS (FI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{ClS}$ 253.0275; Found 253.0271.

6-Bromohexyl trifluoromethanesulfinate 3m: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($88.5 \mathrm{mg}, 0.298 \mathrm{mmol}, 99.3 \%$ yield). IR (thin film) 1185 (s), 1127 (s), $891(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.39-4.10(2 \mathrm{H}, \mathrm{m}), 3.40(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz})$, $1.86(2 \mathrm{H}, \mathrm{p}, J=6.7 \mathrm{~Hz}), 1.76(2 \mathrm{H}, \mathrm{p}, J=6.4 \mathrm{~Hz}), 1.52-1.38(4 \mathrm{H}, \mathrm{m}) ;{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-78.6 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 122.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.1 \mathrm{~Hz}\right)$, 69.0, 33.6, 32.5, 29.6, 27.6, 24.7; MS (FI) [M+H] ${ }^{+}: \mathrm{m} / \mathrm{z}(\%)$ 69, 165, 229, 297. HRMS (FI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{BrS}$ 296.9769; Found 296.9766.

3-Iodobutyl trifluoromethanesulfinate 3n: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($82.1 \mathrm{mg}, 0.260 \mathrm{mmol}, 86.6 \%$ yield, $\mathrm{dr}=1: 1$). IR (thin film) 1186 (s), 1125 (s), 925 (m), 868 (m), 751 (w) cm^{-1}; MS (FI): m/z (\%) 189, 247, 316. HRMS (FI)

Calcd for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{IS} 315.9239$; Found 315.9236.
Isomer 1: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.57-4.17(2 \mathrm{H}, \mathrm{m}), 4.46-4.28(1 \mathrm{H}, \mathrm{m}), 2.24-$ $2.15(1 \mathrm{H}, \mathrm{m}), 2.12-2.01(1 \mathrm{H}, \mathrm{m}), 1.98(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.3 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 122.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.2 \mathrm{~Hz}\right), 68.7,42.3,28.9,22.9$; Isomer 2: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.57-4.17(2 \mathrm{H}, \mathrm{m}), 4.46-4.28(1 \mathrm{H}, \mathrm{m}), 2.24-$ $2.15(1 \mathrm{H}, \mathrm{m}), 2.12-2.01(1 \mathrm{H}, \mathrm{m}), 1.98(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.5 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 122.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.2 \mathrm{~Hz}\right), 69.2,42.1,28.9,22.7$.

Hept-6-yn-1-yl trifluoromethanesulfinate 3o: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($56.9 \mathrm{mg}, 0.249 \mathrm{mmol}, 83.1 \%$ yield). IR (thin film) 1185 (s), 1127 (s), $882(\mathrm{~m}), 633(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.38-4.10(2 \mathrm{H}, \mathrm{m}), 2.25-2.15$ $(2 \mathrm{H}, \mathrm{m}), 1.94-1.93(1 \mathrm{H}, \mathrm{m}), 1.77(2 \mathrm{H}, \mathrm{p}, J=6.7 \mathrm{~Hz}), 1.59-1.47(4 \mathrm{H}, \mathrm{m}) ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.6 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.1 \mathrm{~Hz}\right.$), 83.9, 68.9, 68.7, 29.3, 27.8, 24.5, 18.3; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}$ 229.0510; Found 229.0502.

2-(4-Methylthiazol-5-yl)ethyl trifluoromethanesulfinate 3p: Prepared according to General Method C (Eluent: 50:1 to 3:1 petroleum ether:ethyl acetate) and the title compound was isolated as a colorless oil ($76.6 \mathrm{mg}, 0.295 \mathrm{mmol}, 98.5 \%$ yield). IR (thin film) 1416 (w), 1185 (s), 1125 (s), 912 (m), 867 (m), 743 (w) cm ${ }^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.59(1 \mathrm{H}, \mathrm{s}), 4.49-4.21(2 \mathrm{H}, \mathrm{m}), 3.19(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 2.38(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-78.4 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.7,150.4,125.0,122.8(\mathrm{q}$, $J_{\mathrm{C}-\mathrm{F}}=340.2 \mathrm{~Hz}$), 67.6, 27.0, 14.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}_{2}$ 260.0021; Found 260.0029.

2-(1H-Indol-3-yl)ethyl trifluoromethanesulfinate 3q: Prepared according to General Method C (Eluent: 50:1 to 5:1 petroleum ether:ethyl acetate) and the title compound was isolated as a yellow oil ($41.9 \mathrm{mg}, 0.151 \mathrm{mmol}, 50.4 \%$ yield). IR (thin film) 3286 (w), 1489 (w), 1363 (w), 1153 (s), 1121 (s), 1062 (m), 992 (m), 743 (s) cm ${ }^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.01(1 \mathrm{H}, \mathrm{s}), 7.48(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{dd}, J=$ $6.6,8.2 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{s}), 4.51-4.25(2 \mathrm{H}, \mathrm{m}), 3.12(2 \mathrm{H}, \mathrm{t}$, $J=7.0 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR (471 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-78.6 ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.3$, 127.1, $123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.0 \mathrm{~Hz}\right), 122.9,122.4,119.8,118.4,111.5,110.0,69.1,26.2$; HRMS (ESI) m/z: [M+Na] $]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{~S}$ 300.0277; Found 300.0275.

tert-Butyl 2-(((trifluoromethyl)sulfinyl)oxy)-7-azaspiro[3.5]nonane-7-carboxylate 3r: Prepared according to General Method C (Eluent: 100:1 to $15: 1$ petroleum ether: ethyl acetate) and the title compound was isolated as a white solid ($99.6 \mathrm{mg}, 0.280 \mathrm{mmol}$, 93.4\% yield). M.p. $=63.4-64.5^{\circ} \mathrm{C}$; IR (thin film) $1672(\mathrm{~m}), 1416(\mathrm{~m}), 1244(\mathrm{~m}), 1186$ (s), 1128 (s), 1000 (m), 881 (s$), 817(\mathrm{~m}), 771(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.03$ $(1 \mathrm{H}, \mathrm{p}, J=7.1 \mathrm{~Hz}), 3.31-3.25(4 \mathrm{H}, \mathrm{m}), 2.40-2.33(2 \mathrm{H}, \mathrm{m}), 2.08-1.98(2 \mathrm{H}, \mathrm{m}), 1.55-$ $1.52(2 \mathrm{H}, \mathrm{m}), 1.50-1.47(2 \mathrm{H}, \mathrm{m}), 1.39(9 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.5 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,122.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=338.9 \mathrm{~Hz}\right), 79.5,70.7,40.7,40.4,39.0$, 36.0, 31.8, 28.4; MS (FI): m/z (\%) 57, 302, 357. HRMS (FI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NF}_{3} \mathrm{O}_{4} \mathrm{~S}$ 357.1221; Found 357.1216.

1-Benzhydrylazetidin-3-yl trifluoromethanesulfinate 3s: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($84.1 \mathrm{mg}, 0.237 \mathrm{mmol}, 78.9 \%$ yield). IR (thin film) 1453 (w), 1193 (s), 1127 (s), 854 (m), 795 (m), 744 (s), 702 (s), 636 (m) cm ${ }^{-1}$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(4 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.25(4 \mathrm{H}, \mathrm{dd}, J=7.2,7.7 \mathrm{~Hz}), 7.18$ - $7.14(2 \mathrm{H}, \mathrm{m}), 5.13(1 \mathrm{H}, \mathrm{p}, J=5.7 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{s}), 3.59-3.54(2 \mathrm{H}, \mathrm{m}), 3.20-3.14(2 \mathrm{H}$, m) ; ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.1 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5,128.7$, $127.4,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=339.7 \mathrm{~Hz}\right), 78.2,67.8,60.7,60.5$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$ 356.0927; Found 356.0924.

1,4-Dioxaspiro[4.5]decan-8-yl trifluoromethanesulfinate 3t: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($70.4 \mathrm{mg}, 0.257 \mathrm{mmol}, 85.6 \%$ yield). IR (thin film) 1379 (w), 1190 (s), 1125 (s), 1034 (m), 918 (s), 872 (m), 805 (m), 666 (w) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.66(1 \mathrm{H}, \mathrm{p}, J=5.1 \mathrm{~Hz}), 3.96-3.88(4 \mathrm{H}, \mathrm{m}), 2.02-1.92(4 \mathrm{H}$, m), $1.88-1.77(2 \mathrm{H}, \mathrm{m}), 1.64-1.58(2 \mathrm{H}, \mathrm{m}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.0 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.7 \mathrm{~Hz}\right), 107.4,79.3,64.5,30.8,30.6,30.0$, 29.9; MS (FI): m/z (\%) 69. HRMS (FI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S} 274.0480$; Found 274.0481.

tert-Butyl 4-(((trifluoromethyl)sulfinyl)oxy)piperidine-1-carboxylate 3u: Prepared according to General Method C (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($71.1 \mathrm{mg}, 0.224 \mathrm{mmol}, 74.7 \%$ yield). IR
(thin film) 1691 (m), 1420 (m), 1366 (m), 1168 (s), 1126 (s), 1011 (m), 938 (m), 864 (m), $800(\mathrm{~m}), 608(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.75-4.70(1 \mathrm{H}, \mathrm{m}), 3.70-3.61(2 \mathrm{H}$, m), $3.32-3.26(2 \mathrm{H}, \mathrm{m}), 1.97-1.88(2 \mathrm{H}, \mathrm{m}), 1.85-1.70(2 \mathrm{H}, \mathrm{m}), 1.42(9 \mathrm{H}, \mathrm{s}) ;{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-79.8 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,122.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $337.8 \mathrm{~Hz}), 80.1,78.4,39.9,32.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=17.7 \mathrm{~Hz}\right), 28.4$; MS (FI): m/z (\%) 57, 149, 248, 260, 317. HRMS (FI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S} 317.0905$; Found 317.0903.

4-(Benzo[d][1,3]dioxol-5-yl)butan-2-yl trifluoromethanesulfinate 3v: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil $(91.1 \mathrm{mg}, 0.294 \mathrm{mmol}, 98.0 \%$ yield, $\mathrm{dr}=$ 1:1.5). IR (thin film) 1489 (m), 1443 (w), 1245 (m), 1185 (s), 1126 (s), 1037 (s), 926 (m), 857 (s), $809(\mathrm{~m}) \mathrm{cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}$ 333.0379; Found 333.0369.

Isomer 1: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74(1 \mathrm{H}, \mathrm{s}), 6.64-6.59(2 \mathrm{H}, \mathrm{m}), 5.92(2 \mathrm{H}, \mathrm{s})$, $4.65-4.53(1 \mathrm{H}, \mathrm{m}), 2.75-2.68(2 \mathrm{H}, \mathrm{m}), 2.10-1.84(2 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.7 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.9, 146.1, 134.3, $122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.2 \mathrm{~Hz}\right), 121.2,108.8,108.4,101.0,80.7,39.2,30.9,21.8$;

Isomer 2: ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72(1 \mathrm{H}, \mathrm{s}), 6.69-6.65(2 \mathrm{H}, \mathrm{m}), 5.92(2 \mathrm{H}, \mathrm{s})$, $4.65-4.53(1 \mathrm{H}, \mathrm{m}), 2.65-2.54(2 \mathrm{H}, \mathrm{m}), 2.10-1.84(2 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.2 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.9, 146.0, 134.3, $122.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=336.5 \mathrm{~Hz}\right), 121.4,108.9,108.4,101.0,80.4,38.9,30.9,21.6$.

2,3-Dihydro-1H-inden-2-yl trifluoromethanesulfinate 3w: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($70.9 \mathrm{mg}, 0.299 \mathrm{mmol}, 99.6 \%$ yield). IR (thin
film) 1184 (s), 1125 (s), 995 (w), $853(\mathrm{~m}), 739(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.27-7.18(4 \mathrm{H}, \mathrm{m}), 5.47-5.42(1 \mathrm{H}, \mathrm{m}), 3.41-3.33(2 \mathrm{H}, \mathrm{m}), 3.29-3.16(2 \mathrm{H}, \mathrm{m}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.2 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $17.8 \mathrm{~Hz}), 127.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right), 124.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.1 \mathrm{~Hz}\right), 122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=338.7 \mathrm{~Hz}\right), 82.5$, $40.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=49.5 \mathrm{~Hz}\right.$); HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NaO}_{2} \mathrm{~S} 273.0168$; Found 273.0168.

Tetrahydro-2H-thiopyran-4-yl trifluoromethanesulfinate 3x: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($65.4 \mathrm{mg}, 0.279 \mathrm{mmol}, 93.1 \%$ yield). IR (thin film) 1432 (w), 1183 (s), 1124 (s), 972 (m), 915 (m), 875 (m), 768 (m), 663 (w), 637 $(\mathrm{m}) \mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.63(1 \mathrm{H}, \mathrm{tt}, J=7.6,3.2 \mathrm{~Hz}), 2.91-2.81(2 \mathrm{H}, \mathrm{m})$, $2.59-2.53(2 \mathrm{H}, \mathrm{m}), 2.27-2.16(2 \mathrm{H}, \mathrm{m}), 2.10-1.99(2 \mathrm{H}, \mathrm{m}) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-79.8 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 122.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.5 \mathrm{~Hz}\right.$), 79.4, 33.8, 24.9; MS (FI): $\mathrm{m} / \mathrm{z}(\%) 101,165,234$. HRMS (FI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} 233.9988$; Found 233.9991.

4-((tert-Butyldimethylsilyl)oxy)butan-2-yl trifluoromethanesulfinate 3y: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil $(69.5 \mathrm{mg}, 0.217 \mathrm{mmol}, 72.3 \%$ yield, $\mathrm{dr}=$ 1:1). IR (thin film) 2931 (w), 1194 (s), 1131 (s), 1086 (m), 886 (m), 828 (s), 776 (s) cm^{-1}; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}$ 321.1162; Found 321.1168.

Isomer 1: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.88-4.77(1 \mathrm{H}, \mathrm{m}), 3.77-3.69(2 \mathrm{H}, \mathrm{m}), 1.97-$ $1.87(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.1 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=336.6 \mathrm{~Hz}\right)$, 79.0, 58.4, 40.1, 26.0, 22.2, 18.3, -5.4;

Isomer 2: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.88-4.77(1 \mathrm{H}, \mathrm{m}), 3.68-3.65(2 \mathrm{H}, \mathrm{m}), 1.87-$ $1.77(2 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}), 0.03(3 \mathrm{H}, \mathrm{s}) ;{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.7 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=336.6 \mathrm{~Hz}\right)$, $79.0,58.3,39.9,25.9,21.8,18.3,-5.5$.

2-Oxohexahydro-2H-3,5-methanocyclopenta[b]furan-6-yl trifluoromethanesulfinate

 3z: Prepared according to General Method C (Eluent: 50:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($70.1 \mathrm{mg}, 0.259 \mathrm{mmol}$, 86.4% yield, $\mathrm{dr}=1: 1.6$). IR (thin film) 1782 (s , 1175 (s , 1125 (s , 1037 (m), 1009 (m), 961 (s), 931 (s), 840 (m), 796 (s), 7729 (s), $732(\mathrm{~m}) \mathrm{cm}^{-1}$; HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S} 271.0246$; Found 271.0241 .Isomer 1: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.62(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{s}), 3.29-3.26$ $(1 \mathrm{H}, \mathrm{m}), 2.73(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 2.61-2.57(1 \mathrm{H}, \mathrm{m}), 2.16-2.07(2 \mathrm{H}, \mathrm{m}), 1.76-1.71$ $(2 \mathrm{H}, \mathrm{m}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.4 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.9$, 122.6 ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.9 \mathrm{~Hz}$), 85.0, 84.8, 44.9, 42.7, 37.6, 33.9, 31.3;

Isomer 2: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.72(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{s}), 3.29-3.26$ $(1 \mathrm{H}, \mathrm{m}), 2.61-2.57(2 \mathrm{H}, \mathrm{m}), 2.16-2.07(2 \mathrm{H}, \mathrm{m}), 1.76-1.71(2 \mathrm{H}, \mathrm{m}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-79.2 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.9$, $122.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 338.8 Hz), 84.6, 83.9, 44.9, 42.7, 37.6, 33.8, 31.3.

(3S,5S,7S)-Adamantan-1-yl trifluoromethanesulfinate 3aa: Prepared according to General Method C (Eluent: 200:1 to $50: 1$ petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($37.8 \mathrm{mg}, 0.141 \mathrm{mmol}, 47.0 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.28(3 \mathrm{H}, \mathrm{s}), 2.04(6 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 1.71-1.62(6 \mathrm{H}, \mathrm{m}) ;{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.7 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 122.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=335.0 \mathrm{~Hz}\right)$, $86.7,43.4,35.5,31.4$. Spectra were consistent with literature data ${ }^{8}$.

2. General Method D:

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione (0.750 mmol , 1.50 equiv, 197.4 mg), phenol ($0.500 \mathrm{mmol}, 1.00$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry THF $(5.00 \mathrm{~mL}, 0.100 \mathrm{M})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.250 \mathrm{mmol}, 0.500$ equiv, 25.2 mg) was added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at $50^{\circ} \mathrm{C}$. The solvent was removed by rotary evaporation and the residue was purified by silica gel chromatography.

3. General Method E:

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione ($1.50 \mathrm{mmol}, 1.50$ equiv, 394.8 mg), phenol ($1.00 \mathrm{mmol}, 1.00$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry THF $(5.00 \mathrm{~mL}, 0.100 \mathrm{M})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.500 \mathrm{mmol}, 0.500$ equiv, 50.1 mg) was added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at $50^{\circ} \mathrm{C}$. The solvent was removed by rotary evaporation and petroleum ether $(20 \mathrm{~mL})$ was added. The mixture was filtered and the solvent was removed by rotary evaporation to give the final product.

4-methoxyphenyl trifluoromethanesulfinate 5a: Prepared according to General Method \mathbf{E} and the title compound was isolated as a colorless oil $(195.0 \mathrm{mg}, 0.812 \mathrm{mmol}$, 81.2% yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=$ $9.0 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.4 ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (~} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,145.3,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.3 \mathrm{~Hz}\right), 122.3,115.3,55.7$. Spectra were consistent with literature date ${ }^{9}$.

4-iodophenyl trifluoromethanesulfinate 5b: Prepared according to General Method D (Eluent: 100:0 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($107.2 \mathrm{mg}, 0.319 \mathrm{mmol}, 63.8 \%$ yield). IR (thin film) 2923 (w), 1478 (s), 1191 (s), 1155 (s), 1122 (s), 1055 (m), 1008 (s), 828 (s), 727 (s), 695 (s), 628 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.98(6 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-79.9 ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.8,139.6,123.0,122.8(\mathrm{q}$, $J_{\mathrm{C}-\mathrm{F}}=337.2 \mathrm{~Hz}$), 91.6. MS (FI): m/z (\%) 84, 220, 336. HRMS (FI) Calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{SI}$ 335.8929; Found 335.8922.

4-(benzyloxy)phenyl trifluoromethanesulfinate 5c: Prepared according to General Method D (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid ($138.7 \mathrm{mg}, 0.439 \mathrm{mmol}, 87.7 \%$ yield). M.p. $=58.3-58.9^{\circ} \mathrm{C}$; IR (thin film) 3248 (w), 1503 (s), 1191 (s), 1155 (s), 1119 (s), 1007 (s), 833 (s), 795 (s), 751 (s), 695 (s), $621(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.35(5 \mathrm{H}, \mathrm{m}), 7.16$ $(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 7.00(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 5.08(2 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-79.2 ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7,145.5,136.5,128.8,128.3,127.6,122.3$, $122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=336.6 \mathrm{~Hz}\right), 116.3,70.6$; MS (FI): m/z (\%) 36, 99, 200, 316. HRMS (FI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S} 316.0381$; Found 316.0376.

4-phenoxyphenyl trifluoromethanesulfinate 5d: Prepared according to General Method D (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($105.9 \mathrm{mg}, 0.351 \mathrm{mmol}, 70.1 \%$ yield). IR (thin film) 3047 (w), 1588 (m), 1487 (s), 1193 (s), 1163 (s), 1126 (s), 829 (s), 789 (s), 751 (s), 690 (s) cm ${ }^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(3 \mathrm{H}, \mathrm{dd}, J=7.8,8.0 \mathrm{~Hz}), 7.23-7.12(3 \mathrm{H}, \mathrm{m}), 7.03(4 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.1 ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.7,156.4$, 147.0, 130.1, 124.1, 122.8 ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.2 \mathrm{~Hz}$), 122.6, 120.1, 119.3; MS (FI): m/z (\%) 186, 302. HRMS (FI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S} 302.0224$; Found 302.0219.

4-cyclohexylphenyl trifluoromethanesulfinate 5e: Prepared according to General Method E and the title compound was isolated as a colorless oil ($243.2 \mathrm{mg}, 0.832 \mathrm{mmol}$, 83.2% yield). IR (thin film) 2926 (m), 2853 (m), 1504 (m), 1191 (s), 1127 (s), 837 (s), 773 (s), $708(\mathrm{~m}), 615(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.10$ $(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 2.50(1 \mathrm{H}, \mathrm{t}, J=9.7 \mathrm{~Hz}), 1.84-1.72(5 \mathrm{H}, \mathrm{m}), 1.43-1.22(5 \mathrm{H}, \mathrm{m}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.4 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 150.0, 147.5, 128.7, $122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=336.8 \mathrm{~Hz}\right), 120.7,44.1,34.6,26.9,26.1 ; \mathbf{M S}(\mathrm{FI}): \mathrm{m} / \mathrm{z}(\%) 65,82,186,248$, 292. HRMS (FI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}$ 292.0745; Found 292.0739.

5,6,7,8-tetrahydronaphthalen-2-yl trifluoromethanesulfinate 5f: Prepared according to General Method D (Eluent: 100:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($65.7 \mathrm{mg}, 0.249 \mathrm{mmol}, 49.7 \%$ yield). IR (thin film) 2936 (w), 1493 (m), 1190 (s), 1126 (s), 916 (m), 774 (s), 689 (m) cm ${ }^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.08(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.93-6.91(2 \mathrm{H}, \mathrm{m}), 2.76(4 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 1.80(4 \mathrm{H}$, $\mathrm{p}, J=3.3 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.5 ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.7$, $139.8,136.5,130.9,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.1 \mathrm{~Hz}\right), 121.1,117.9,29.6,29.0,23.0,22.8$; MS (FI): $\mathrm{m} / \mathrm{z}(\%)$ 131, 148, 195, 264. HRMS (FI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}$ 264.0432; Found 264.0426.

[1,1'-biphenyl]-3-yl trifluoromethanesulfinate 5g: Prepared according to General Method E and the title compound was isolated as a colorless oil ($187.2 \mathrm{mg}, 0.654 \mathrm{mmol}$, 65.4% yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.34(3 \mathrm{H}, \mathrm{m}), 7.30-7.20(5 \mathrm{H}, \mathrm{m}), 7.01$ $(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.2 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.5,144.0,139.3,130.7,129.0,128.2,127.2,125.9,122.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.0 \mathrm{~Hz}\right), 119.4$, 119.3. Spectra were consistent with literature data ${ }^{9}$.

3. General Method F:

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione ($0.360 \mathrm{mmol}, 1.20$ equiv, 94.8 mg), alcohol ($0.300 \mathrm{mmol}, 1.00$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2-MeTHF $(3.00 \mathrm{~mL}, 0.100 \mathrm{M})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.0300 \mathrm{mmol}$, 0.100 equiv, 3.00 mg) was added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature. The solvent was removed by rotary evaporation and the residue was purified by silica gel chromatography

1H-indene 7a: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil ($42.8 \mathrm{mg}, 0.368 \mathrm{mmol}, 73.7 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}$, d, $J=9.0 \mathrm{~Hz}), 7.18-7.14(1 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 6.54-6.52(1 \mathrm{H}, \mathrm{m}), 3.37(2 \mathrm{H}$,
s); ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 145.0,143.8,134.3,132.2,126.3,124.7,123.8,121.1$, 39.2. Spectra were consistent with literature date ${ }^{10}$.

6-Fluoro-1H-indene 7b: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil (51.3 mg , $0.382 \mathrm{mmol}, 76.5 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(1 \mathrm{H}, \mathrm{dd}, J=8.3,5.1 \mathrm{~Hz}$), $7.21-7.19(1 \mathrm{H}, \mathrm{m}), 7.03-6.97(1 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 6.55-6.52(1 \mathrm{H}, \mathrm{m})$, $3.40(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=243.2 \mathrm{~Hz}\right), 145.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $8.8 \mathrm{~Hz}), 140.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 131.4,121.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right)$, $113.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.8 \mathrm{~Hz}\right), 111.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.0 \mathrm{~Hz}\right), 39.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right)$. Spectra were consistent with literature data ${ }^{11}$.

6-Chloro-1H-indene 7c: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil (49.0 mg , $0.325 \mathrm{mmol}, 65.1 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(1 \mathrm{H}, \mathrm{s}), 7.33(1 \mathrm{H}, \mathrm{d}, J=$ $8.0 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 6.59-6.57(1 \mathrm{H}, \mathrm{m}), 3.41(2 \mathrm{H}$, $\mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.5,143.4,134.7,131.5,130.7,126.6,124.3,121.7$, 39.2. Spectra were consistent with literature data ${ }^{11}$.

6-Bromo-1H-indene 7d: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil (49.1 mg , $0.252 \mathrm{mmol}, 50.3 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(1 \mathrm{H}, \mathrm{s}), 7.41(1 \mathrm{H}, \mathrm{dd}, J=$ $8.0,1.6 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 6.57-6.54(1 \mathrm{H}, \mathrm{m}), 3.39$ $(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.9,143.8,134.7,131.6,129.4,127.1,122.2$, $118.8,39.2$. Spectra were consistent with literature data ${ }^{11}$.

6-Methyl-1H-indene 7e: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil (41.9 mg , $0.322 \mathrm{mmol}, 64.4 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.12$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 6.52-6.50(1 \mathrm{H}, \mathrm{m}), 3.39(2 \mathrm{H}, \mathrm{s}), 2.43(3 \mathrm{H}$, s); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.1,142.3,134.3,133.3,131.9,127.1,124.8,120.7$, 39.0, 21.6. Spectra were consistent with literature data ${ }^{11}$.

7-Bromo-1H-indene 7f: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil (40.7 mg , $0.209 \mathrm{mmol}, 41.7 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(2 \mathrm{H}, \mathrm{dd}, J=7.6,5.2 \mathrm{~Hz}$), $7.17(1 \mathrm{H}, \mathrm{dd}, J=7.4,5.0 \mathrm{~Hz}), 6.93-6.91(1 \mathrm{H}, \mathrm{m}), 6.63-6.61(1 \mathrm{H}, \mathrm{m}), 3.40(2 \mathrm{H}, \mathrm{t}, J=$ 1.6 Hz); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4,143.9,134.8,132.2,128.3,127.9,120.1$, $119.0,40.9$. Spectra were consistent with literature data ${ }^{11}$.

6-Methyl-1H-indene 7g: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil (45.8 mg , $0.352 \mathrm{mmol}, 70.4 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.29-$ $7.22(2 \mathrm{H}, \mathrm{m}), 7.12(1 \mathrm{H}, \mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{s}), 3.32(2 \mathrm{H}, \mathrm{s}), 2.18(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 146.2,146.0,143.5,127.3,126.3,123.6,123.4,119.8,42.8$, 16.9. Spectra were consistent with literature data ${ }^{12}$.

2-Ethyl-1H-indene 7h: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil (50.2 mg , $0.348 \mathrm{mmol}, 69.6 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.33$ $(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}), 7.17-7.13(1 \mathrm{H}, \mathrm{m}), 6.56(1 \mathrm{H}, \mathrm{s}), 3.36$
$(2 \mathrm{H}, \mathrm{s}), 2.56(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 1.28(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.6,145.8,143.2,126.3,125.3,123.6,123.5,120.0,41.1,24.4,13.4$. Spectra were consistent with literature data ${ }^{13}$.

1,1-dimethyl-1H-indene 7i: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil (36.9 mg , $0.256 \mathrm{mmol}, 51.2 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.29(2 \mathrm{H}, \mathrm{m}), 7.25-7.17$ $(2 \mathrm{H}, \mathrm{m}), 6.63(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 1.32(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 153.5,147.5,142.8,127.8,126.5,125.1,121.3,121.2,49.8,24.6$. Spectra were consistent with literature data ${ }^{10}$.

1,2-Dihydronaphthalene 7j: Prepared according to General Method F (Eluent: 200 mL petroleum ether) and the title compound was isolated as a colorless oil (39.4 mg , $0.303 \mathrm{mmol}, 60.5 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.11(3 \mathrm{H}, \mathrm{m}), 7.05-7.03$ $(1 \mathrm{H}, \mathrm{m}), 6.51-6.47(1 \mathrm{H}, \mathrm{m}), 6.08-6.03(1 \mathrm{H}, \mathrm{m}), 2.82(2 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 2.37-2.31(2 \mathrm{H}$, m); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6,134.2,128.8,127.9,127.6,127.0,126.6,126.0$, 27.6, 23.3. Spectra were consistent with literature data ${ }^{12}$.

4. Modification of complex molecules:

General Method C: A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione ($0.360 \mathrm{mmol}, 1.20$ equiv, 94.8 mg). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2-MeTHF ($3.00 \mathrm{~mL}, 0.100 \mathrm{M}$), alcohol or benzyl alcohol ($0.300 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (0.0500 mmol , 0.500 equiv, 5.00 mg) was added under N_{2} atmosphere. The
mixture was allowed to stir for 5 h at room temperature. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl trifluoromethanesulfinate 9a: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil $(71.7 \mathrm{mg}, 0.263 \mathrm{mmol}, 87.8 \%$ yield, $\mathrm{dr}=$ 1: 1.5).

Isomer 1: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.26(1 \mathrm{H}, \mathrm{dd}, J=9.9,4.5 \mathrm{~Hz}), 2.20-2.00(2 \mathrm{H}$, m), $1.77-1.67(2 \mathrm{H}, \mathrm{m}), 1.54-1.42(2 \mathrm{H}, \mathrm{m}), 1.41-1.27(2 \mathrm{H}, \mathrm{m}), 1.10-0.98(1 \mathrm{H}, \mathrm{m})$, $0.94(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}),, 0.91(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 0.76(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.0 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=336.7 \mathrm{~Hz}\right.$), 85.5, 48.1, 42.9, 33.7, 32.0, 25.3, 23.1, 21.9, 20.8, 15.4;

Isomer 2: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21(\mathrm{dd}, J=10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.00(2 \mathrm{H}$, m), $1.77-1.67(2 \mathrm{H}, \mathrm{m}), 1.54-1.42(2 \mathrm{H}, \mathrm{m}), 1.26-1.20(1 \mathrm{H}, \mathrm{m}), 1.10-0.98(1 \mathrm{H}, \mathrm{m})$, $0.94(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 0.87-0.83(1 \mathrm{H}, \mathrm{m}), 0.79(3 \mathrm{H}, \mathrm{d}, J=$ $6.9 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.6 ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 122.7(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=335.9 \mathrm{~Hz}\right), 84.6,47.9,42.2,33.7,31.9,25.5,23.3,21.9,20.7,15.6$. Spectra were consistent with literature data ${ }^{8}$.

((3aS)-2,2,7,7-Tetramethyltetrahydro-3a \boldsymbol{H}-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3ayl)methyl trifluoromethanesulfinate 9b: Prepared according to General Method C (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($103.4 \mathrm{mg}, 0.275 \mathrm{mmol}, 91.6 \%$ yield, $\mathrm{dr}=1: 1.5$).

Isomer 1: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.62-4.58(1 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{dd}, J=18.8$, $2.6 \mathrm{~Hz}), 4.23-4.17(2 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=5.7,1.8 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.44$ $(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.9 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.2 \mathrm{~Hz}\right), 109.8,109.4,100.8,70.7,70.1,69.9,68.5$, 61.6, 26.6, 25.9, 25.3, 24.0;

Isomer 2: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.62-4.58(1 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz})$, $4.30-4.26(1 \mathrm{H}, \mathrm{m}), 4.23-4.17(1 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=5.7$, $1.8 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.44(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{s}) ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.5 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 122.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.0 \mathrm{~Hz}\right.$), $109.8,109.3,100.8,70.6,70.4,69.9,67.2,61.5,26.5,25.8,25.1,24.0$. Spectra were consistent with literature data ${ }^{14}$.

(R)-3,7-Dimethyloct-6-en-1-yl trifluoromethanesulfinate 9c: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($68.3 \mathrm{mg}, 0.251 \mathrm{mmol}, 83.6 \%$ yield, $\mathrm{dr}=1: 1$).

Isomer 1: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.07(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 4.44-4.35(1 \mathrm{H}, \mathrm{m})$, $4.22-4.13(1 \mathrm{H}, \mathrm{m}), 2.04-1.92(2 \mathrm{H}, \mathrm{m}), 1.83-1.75(1 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{s}), 1.64-1.61$ $(1 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.57-1.49(1 \mathrm{H}, \mathrm{m}), 1.39-1.30(1 \mathrm{H}, \mathrm{m}), 1.24-1.15(1 \mathrm{H}, \mathrm{m}), 0.93$ $(3 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-78.6 ;{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $131.8,124.3,123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.1 \mathrm{~Hz}\right), 67.7,36.9,36.7,29.0,25.8,25.4,19.3,17.7$;
Isomer 2: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 4.44-4.35(1 \mathrm{H}, \mathrm{m})$, $4.22-4.13(1 \mathrm{H}, \mathrm{m}), 2.04-1.92(2 \mathrm{H}, \mathrm{m}), 1.83-1.75(1 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{s}), 1.64-1.61$ $(1 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.57-1.49(1 \mathrm{H}, \mathrm{m}), 1.39-1.30(1 \mathrm{H}, \mathrm{m}), 1.24-1.15(1 \mathrm{H}, \mathrm{m}), 0.91$ $(3 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}) ;{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-78.7 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $131.8,124.3,123.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=340.1 \mathrm{~Hz}\right), 67.6,36.8,36.6,29.0,25.8,25.4,19.2$, 17.7. Spectra were consistent with literature data ${ }^{15}$.

(10R,13R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-$2,3,4,7,8,9,10,11,12,13,14,15,16,17$-tetradecahydro- \mathbf{H}-cyclopenta[a]phenanthren-3yl trifluoromethanesulfinate 9d: Prepared according to General Method C (Eluent: $100: 1$ to $50: 1$ petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil ($141.7 \mathrm{mg}, 0.282 \mathrm{mmol}, 94.0 \%$ yield, $\mathrm{dr}=1: 1$).

Isomer 1: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41(1 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 4.40-4.32(1 \mathrm{H}, \mathrm{m})$, $2.62-2.38(2 \mathrm{H}, \mathrm{m}), 2.03-1.79(6 \mathrm{H}, \mathrm{m}), 1.63-1.43(6 \mathrm{H}, \mathrm{m}), 1.37-1.25(4 \mathrm{H}, \mathrm{m}), 1.20-$ $1.05(7 \mathrm{H}, \mathrm{m}), 1.03(3 \mathrm{H}, \mathrm{s}), 1.00-0.94(3 \mathrm{H}, \mathrm{m}), 0.91(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{d}, J=$ $1.7 \mathrm{~Hz}), 0.85(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 0.67(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.0 ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.7,124.0,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.2 \mathrm{~Hz}\right), 83.2,56.7,56.3,50.0$, $42.4,39.9,39.8,39.6,37.1,36.5,36.3,35.9,32.0,29.7,28.3,28.1,27.0,24.4,24.0,22.9$, $22.7,21.2,19.3,18.8,11.9$;

Isomer 2: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41(1 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 4.40-4.32(1 \mathrm{H}, \mathrm{m})$, $2.62-2.38(2 \mathrm{H}, \mathrm{m}), 2.03-1.78(6 \mathrm{H}, \mathrm{m}), 1.63-1.42(6 \mathrm{H}, \mathrm{m}), 1.37-1.25(4 \mathrm{H}, \mathrm{m}), 1.20-$ $1.05(7 \mathrm{H}, \mathrm{m}), 1.03(3 \mathrm{H}, \mathrm{s}), 1.00-0.94(3 \mathrm{H}, \mathrm{m}), 0.91(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{d}, J=$ $1.7 \mathrm{~Hz}), 0.85(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 0.67(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.1 ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.6,124.0,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.2 \mathrm{~Hz}\right), 83.1,56.7,56.3,50.0$, $42.4,39.9,39.8,39.6,37.0,36.5,36.3,35.9,31.9,29.5,28.3,28.1,27.0,24.4,24.0,22.9$, $22.7,21.2,19.3,18.8,11.9$. Spectra were consistent with literature data ${ }^{8}$.

(10R,13S)-10,13-Dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl trifluoromethanesulfinate 9e: Prepared according to General Method C (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the title
compound was isolated as a white solid ($108.0 \mathrm{mg}, 0.267 \mathrm{mmol}, 89.0 \%$ yield, $\mathrm{dr}=1: 1$). M.p. $=114.8-115.3^{\circ} \mathrm{C}$; IR (thin film) 2935 (w), 1732 (m), 1190 (s), 1130 (s), 927 (m), $883(\mathrm{~m}), 853(\mathrm{~m}), 803(\mathrm{~s}), 635(\mathrm{w}) \mathrm{cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}$ 405.1706; Found 405.1700.

Isomer 1: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.43(1 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}), 4.40-4.31(1 \mathrm{H}, \mathrm{m})$, $2.61-2.41(3 \mathrm{H}, \mathrm{m}), 2.16-1.76(7 \mathrm{H}, \mathrm{m}), 1.67-1.59(3 \mathrm{H}, \mathrm{m}), 1.56-1.42(2 \mathrm{H}, \mathrm{m}), 1.30-$ $1.23(2 \mathrm{H}, \mathrm{m}), 1.17-1.09(1 \mathrm{H}, \mathrm{m}), 1.04(3 \mathrm{H}, \mathrm{s}), 1.02-0.93(1 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{s}) ;{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-79.9 ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.9,123.2,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 338.3 Hz), 82.8, 51.7, 50.1, 47.6, 39.8, 37.0, 36.6, 36.6, 35.9, 31.4, 31.4, 30.8, 29.5, 21.9, 20.4, 19.3, 13.6;

Isomer 2: ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.43(1 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}), 4.40-4.31(1 \mathrm{H}, \mathrm{m})$, $2.61-2.41(3 \mathrm{H}, \mathrm{m}), 2.16-1.76(7 \mathrm{H}, \mathrm{m}), 1.67-1.59(3 \mathrm{H}, \mathrm{m}), 1.56-1.42(2 \mathrm{H}, \mathrm{m}), 1.30-$ $1.23(2 \mathrm{H}, \mathrm{m}), 1.17-1.09(1 \mathrm{H}, \mathrm{m}), 1.04(3 \mathrm{H}, \mathrm{s}), 1.02-0.93(1 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{s}) ;{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.0 ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.9,123.2,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $338.3 \mathrm{~Hz}), 82.7,51.7,50.1,47.6,39.7,36.9,36.6,36.6,35.9,31.4,31.4,30.8,29.4,21.9$, 20.4, 19.3, 13.6.

(10R,13R)-17-((2R,5S,E)-5-Ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-

$\mathbf{2 , 3 , 4 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7}$-tetradecahydro- \mathbf{H}-cyclopenta $[a]$ phenanthren-3-

yl trifluoromethanesulfinate 9f: Prepared according to General Method C (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid $(153.2 \mathrm{mg}, 0.290 \mathrm{mmol}, 96.6 \%$ yield, $\mathrm{dr}=1: 1)$. M.p. $=102.7-103.4^{\circ} \mathrm{C}$; $\mathbf{I R}$ (thin film) 2935 (w), 1464 (w), 1200 (s), 1131 (s), 971 (s), 910 (m), 856 (m), 791 (m) cm ${ }^{-1}$; MS (FI): $\mathrm{m} / \mathrm{z}(\%)$ 528. HRMS (FI) Calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S} 528.3250$; Found 528.3243 .

Isomer 1: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.42(1 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 5.17-4.98(2 \mathrm{H}, \mathrm{m})$, $4.41-4.32(1 \mathrm{H}, \mathrm{m}), 2.62-2.38(2 \mathrm{H}, \mathrm{m}), 2.08-1.81(6 \mathrm{H}, \mathrm{m}), 1.74-1.66(1 \mathrm{H}, \mathrm{m}), 1.59-$
$1.37(9 \mathrm{H}, \mathrm{m}), 1.22-1.06(5 \mathrm{H}, \mathrm{m}), 1.02(6 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 1.00-0.88(2 \mathrm{H}, \mathrm{m}), 0.84(3 \mathrm{H}$, d, $J=6.4 \mathrm{~Hz}), 0.80(6 \mathrm{H}, \mathrm{dd}, J=7.4,6.8 \mathrm{~Hz}), 0.70(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-80.0 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,138.4,124.0,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.2 \mathrm{~Hz}\right.$), 83.2, 56.9, 56.0, 51.4, 50.1, 42.3, 40.7, 39.9, 39.7, 37.1, 36.6, 32.0, 32.0, 31.9, 29.9, 29.7, $29.0,25.6,24.5,21.4,21.2,21.2,19.3,19.1,12.4,12.2$;

Isomer 2: ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42(1 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 5.17-4.98(2 \mathrm{H}, \mathrm{m})$, $4.41-4.32(1 \mathrm{H}, \mathrm{m}), 2.62-2.38(2 \mathrm{H}, \mathrm{m}), 2.08-1.81(6 \mathrm{H}, \mathrm{m}), 1.74-1.66(1 \mathrm{H}, \mathrm{m}), 1.59-$ $1.37(9 \mathrm{H}, \mathrm{m}), 1.22-1.06(5 \mathrm{H}, \mathrm{m}), 1.02(6 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 1.00-0.88(2 \mathrm{H}, \mathrm{m}), 0.84(3 \mathrm{H}$, d, $J=6.4 \mathrm{~Hz}), 0.80(6 \mathrm{H}, \mathrm{dd}, J=7.4,6.8 \mathrm{~Hz}), 0.70(3 \mathrm{H}, \mathrm{s}) ;{ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-80.0 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,138.4,124.0,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.2 \mathrm{~Hz}\right.$), 83.1, 56.9, 56.0, 51.4, 50.1, 42.3, 40.7, 39.8, 39.7, 37.1, 36.5, 32.0, 32.0, 31.9, 29.9, 29.6, 29.0, 25.6, 24.5, 21.4, 21.2, 21.2, 19.3, 19.1, 12.4, 12.2.

(10R,13S, 17S)-17-Acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-
tetradecahydro- $1 H$-cyclopenta $[a]$ phenanthren-3-yl trifluoromethanesulfinate 9 g : Prepared according to General Method D (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid ($106.2 \mathrm{mg}, 0.246 \mathrm{mmol}$, 81.8% yield, $\mathrm{dr}=1: 1$). M.p. $=88.1-88.9^{\circ} \mathrm{C}$; IR (thin film) $2945(\mathrm{w}), 1698(\mathrm{~m}), 1361(\mathrm{w})$, 1192 (s), 1126 (s), $930(\mathrm{~m}), 852(\mathrm{~m}), 801(\mathrm{~m}) \mathrm{cm}^{-1}$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S} 433.2019$; Found 433.2021.

Isomer 1: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.38(1 \mathrm{H}, \mathrm{s}), 4.38-4.30(1 \mathrm{H}, \mathrm{m}), 2.58-2.47$ $(2 \mathrm{H}, \mathrm{m}), 2.45-2.36(1 \mathrm{H}, \mathrm{m}), 2.20-2.13(1 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{s}), 2.03-1.78(5 \mathrm{H}, \mathrm{m}), 1.69$ $-1.38(7 \mathrm{H}, \mathrm{m}), 1.33-1.08(4 \mathrm{H}, \mathrm{m}), 0.99(3 \mathrm{H}, \mathrm{s}), 0.59(3 \mathrm{H}, \mathrm{s}) ;{ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.0(3 \mathrm{~F}, \mathrm{~d}, J=3.6 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.5,138.6,123.7$, 122.7 (q, $J_{\mathrm{C}-\mathrm{F}}=337.7 \mathrm{~Hz}$), $82.9,63.6,56.8,49.8,44.0,39.8,38.7,37.0,36.5,36.4,31.8,31.6,29.5$, 24.5, 22.8, 21.1, 19.2, 13.2;

Isomer 2: ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.38(1 \mathrm{H}, \mathrm{s}), 4.38-4.30(1 \mathrm{H}, \mathrm{m}), 2.58-2.47$ $(2 \mathrm{H}, \mathrm{m}), 2.45-2.36(1 \mathrm{H}, \mathrm{m}), 2.20-2.13(1 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{s}), 2.03-1.78(5 \mathrm{H}, \mathrm{m}), 1.69$ $-1.38(7 \mathrm{H}, \mathrm{m}), 1.33-1.08(4 \mathrm{H}, \mathrm{m}), 0.99(3 \mathrm{H}, \mathrm{s}), 0.59(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.1(3 \mathrm{~F}, \mathrm{~d}, J=3.7 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.5,138.6,123.6,122.7$ (q, $\left.J_{\mathrm{C}-\mathrm{F}}=337.7 \mathrm{~Hz}\right), 82.8,63.6,56.8,49.8,44.0,39.6,38.7,36.9,36.5,36.4,31.8,31.6,29.4$, 24.5, 22.8, 21.1, 19.2, 13.2.

(13S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H
cyclopenta[a]phenanthren-3-yl trifluoromethanesulfinate 9h: Prepared according to General Method D (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid ($171.4 \mathrm{mg}, 0.444 \mathrm{mmol}, 88.7 \%$ yield, $\mathrm{dr}>20: 1$). M.p. $=116.7-117.5^{\circ} \mathrm{C}$; IR (thin film) 3448 (m), 2957 (w), 2828 (m), 2716 (w), 1603 (s), $1364(\mathrm{~s}), 1070(\mathrm{w}), 770(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $7.00-6.90(2 \mathrm{H}, \mathrm{m}), 2.91(2 \mathrm{H}, \mathrm{dd}, J=8.8,4.1 \mathrm{~Hz}), 2.50(1 \mathrm{H}, \mathrm{dd}, J=19.0,8.9 \mathrm{~Hz}), 2.44-$ $2.36(1 \mathrm{H}, \mathrm{m}), 2.29-2.24(1 \mathrm{H}, \mathrm{m}), 2.19-2.01(3 \mathrm{H}, \mathrm{m}), 1.98-1.94(1 \mathrm{H}, \mathrm{m}), 1.66-1.42$ $(6 \mathrm{H}, \mathrm{m}), 0.91(3 \mathrm{H}, \mathrm{s}) ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.4 ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 220.7,149.9,139.3,139.1,127.4,122.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=337.0 \mathrm{~Hz}\right), 120.8,117.9,50.4,47.9$, 44.1, 37.9, 35.9, 31.5, 29.4, 26.2, 25.8, 21.6, 13.8; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SNa} 409.1056$; Found 409.1057.

IV. Synthesis of trifluoromethanesulfinamide 11

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione $\mathbf{1}$ ($263.2 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry EtOAc $(5.00 \mathrm{~mL}, 0.100 \mathrm{M})$, aniline ($0.500 \mathrm{mmol}, 1.00$ equiv) was added under N_{2} atmosphere. The mixture was allowed to stir for 12 h at $80^{\circ} \mathrm{C}$. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography. (Eluent: 100:1 to $10: 1$ petroleum ether: ethyl acetate) and the title compound was isolated as a white solid ($69.0 \mathrm{mg}, 0.330 \mathrm{mmol}, 66.0 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(2 \mathrm{H}, \mathrm{dd}, J=7.7,8.1 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, J=7.4$, $7.5 \mathrm{~Hz}), 7.10(2 \mathrm{H}, \mathrm{dd}, J=7.6 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-77.8 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.1,130.0,125.7,120.5,123.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=334.6 \mathrm{~Hz}\right)$. Spectra were consistent with literature data ${ }^{16}$.

V. Scale-up reaction and sustainable utilization of phthalimide

A $120^{\circ} \mathrm{C}$ oven-dried $100-\mathrm{mL}$ round bottom flask, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione ($6.00 \mathrm{mmol}, 1.20$ equiv, 1.58 g). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2MeTHF ($50.0 \mathrm{~mL}, 0.100 \mathrm{M}$), (4-nitrophenyl)methanol ($5.00 \mathrm{mmol}, 1.00$ equiv, 0.766 g) and $E t_{3} \mathrm{~N}$ ($0.500 \mathrm{mmol}, 0.100$ equiv, 50.6 mg) were added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature. The solvent was removed by rotary evaporation and petroleum ether (100 mL) was added to the mixture. The residue was filtered to give $\mathbf{1 2}$ ($117.0 \mathrm{mg}, 4.35 \mathrm{mmol}, 86.9 \%$ yield) as a white solid and the solvent was removed by rotary evaporation to give $\mathbf{3 a}$ ($898 \mathrm{mg}, 6.10 \mathrm{mmol},>99 \%$ yield) as a colorless
liquid.

A $120^{\circ} \mathrm{C}$ oven-dried $250-\mathrm{mL}$ round bottom flask, equipped with a stir bar, was charged with KOH ($169.7 \mathrm{mmol}, 1.43$ equiv, 9.52 g). The mixture was evacuated and backfilled with nitrogen for three times. Then dry EtOH ($100 \mathrm{~mL}, 1.19 \mathrm{M}$) was added under N_{2} atmosphere. When the solid completed dissolved, the isoindoline-1,3-dione (119 mmol , 1.00 equiv, 17.5 g) was added under N_{2} atmosphere. The mixture was allowed to stir for 1 h at $80^{\circ} \mathrm{C}$. Cooled the mixture to room temperature. Filtered the mixture and washed the solid by absolute EtOH. Dry the mixture to give a white solid ($21.7 \mathrm{~g}, 117 \mathrm{mmol}$, 98.4% yield). Spectra were consistent with literature data ${ }^{17}$.

A $120^{\circ} \mathrm{C}$ oven-dried $200-\mathrm{mL}$ glass, equipped with a stir bar, was charged with potassium phthalimide ($6.11 \mathrm{~g}, 33.0 \mathrm{mmol}, 1.00$ equiv), The mixture was evacuated and backfilled with nitrogen for three times. Then dry DCM $(45.0 \mathrm{~mL})$ was added under N_{2} atmosphere. The mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of trifluoromethanesulfinyl chloride (5.00 g , 33.0 mmol , 1.00 equiv) in $\mathrm{DCM}(5.00 \mathrm{~mL})$ was added dropwise under N_{2} atmosphere. Then the mixture was slowly warmed up to room temperature and stirred at room temperature for 24 h . The reaction mixture was filtered through a short pad of Celite and concentrated in vacuo. By repeated recrystallization from toluene at $-20^{\circ} \mathrm{C}$. The product was white solid $\left(4.01 \mathrm{~g}, 15.2 \mathrm{mmol}, 46.2 \%\right.$ yield). Spectra were consistent with literature data ${ }^{1}$.

VI. Mechanistic studies

1. Control experiments: the effect of hydroxy group (-OH)

$2 a^{\prime}$
1
1.20 equiv

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione $\mathbf{1}(31.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.20$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2MeTHF ($1.00 \mathrm{~mL}, 0.100 \mathrm{M}$), 1-(methoxymethyl)-4-nitrobenzene 2a' $(16.7 \mathrm{mg}, 0.100 \mathrm{mmol}$, 1.00 equiv) and $\mathrm{Et}_{3} \mathrm{~N}\left(1.00 \mathrm{mg}, 0.0100 \mathrm{mmol}, 0.100\right.$ equiv) was added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature, then the reaction was monitored by TLC (5:1 petroleum etherhexanes: ethyl acetate), and no reaction occurred. The solvent was removed by rotary evaporation, the crude mixture was subjected to ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of $\mathrm{CH}_{2} \mathrm{Br}_{2}(17.4 \mathrm{mg}, 0.100 \mathrm{mmol})$.

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione $\mathbf{1}(31.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.20$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2MeTHF ($1.00 \mathrm{~mL}, 0.100 \mathrm{M}$), 1-methoxy-2,3-dihydro- $1 H$-indene $\mathbf{~ 6 a}^{\prime}(14.8 \mathrm{mg}, 0.100 \mathrm{mmol}$, 1.00 equiv) and $E t_{3} \mathrm{~N}\left(1.00 \mathrm{mg}, 0.0100 \mathrm{mmol}, 0.100\right.$ equiv) was added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature, then the reaction was monitored by TLC (5:1 petroleum etherhexanes: ethyl acetate), and no reaction occurred. The solvent was removed by rotary evaporation, the crude mixture was subjected to ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of $\mathrm{CH}_{2} \mathrm{Br}_{2}(17.4 \mathrm{mg}, 0.100 \mathrm{mmol})$.

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione $\mathbf{1}(31.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.20$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2MeTHF ($1.00 \mathrm{~mL}, 0.100 \mathrm{M}$), 1,4-dimethoxybenzene $\mathbf{4 a}$ '($13.8 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($1.00 \mathrm{mg}, 0.0100 \mathrm{mmol}, 0.100$ equiv) was added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature, then the reaction was monitored by TLC (5:1 petroleum etherhexanes: ethyl acetate), and no desired product was formed according to TLC. The solvent was removed by rotary evaporation, the crude mixture was subjected to ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of $\mathrm{CH}_{2} \mathrm{Br}_{2}(17.4 \mathrm{mg}, 0.100 \mathrm{mmol})$.

2. Radical trapping experiment: addition of radical scaveger

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 4-nitrobenzyl alcohol 2a ($15.3 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv), TEMPO (31.2 mg , $0.200 \mathrm{mmol}, 2.00$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then $\mathrm{Et}_{3} \mathrm{~N}(1.00 \mathrm{mg}, 0.0100 \mathrm{mmol}, 0.100$ equiv) and dry 2-MeTHF $(1.00 \mathrm{~mL}$, 0.100 M), was added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature, then the reaction was monitored by TLC (5:1 petroleum etherhexanes: ethyl acetate), and desired product $\mathbf{3 a}$ was formed in $>99 \%$ yield according to ${ }^{19} \mathrm{~F}$ NMR.

3. Evidence on the formation of $\mathrm{O}-(\mathrm{SO}) \mathrm{CF}_{3}$ specie

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with 2-((trifluoromethyl)sulfinyl)isoindoline-1,3-dione ($31.6 \mathrm{mg} 0.120 \mathrm{mmol}, 1.20$ equiv), 2,3-dihydro-1H-inden-1-ol $6 \mathbf{a}$ ($13.4 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.00$ equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2-MeTHF ($1.00 \mathrm{~mL}, 0.100 \mathrm{M}$) and $\mathrm{Et}_{3} \mathrm{~N}\left(1.00 \mathrm{mg}, 0.0100 \mathrm{mmol}, 0.100\right.$ equiv) was added under N_{2} atmosphere. The mixture was allowed to stir for 1 h at $-40{ }^{\circ} \mathrm{C}$. The crude mixture was subjected to ${ }^{19} \mathrm{~F}$ NMR spectroscopy in the presence of $\mathrm{PhCF}_{3}(14.6 \mathrm{mg}, 0.100 \mathrm{mmol})$. Then the mixture was allowed to stir for 12 h at room temperature, then the crude mixture was subjected to ${ }^{19} \mathrm{~F}$ NMR spectroscopy in the presence of $\mathrm{PhCF}_{3}(14.6 \mathrm{mg}, 0.100 \mathrm{mmol})$.

The NMR tube was then placed at room temperature for 12 h :

4. Effect of $\mathrm{CF}_{3} \mathrm{SOCl}$ for $\mathrm{O}-\mathrm{S}(\mathrm{O}) \mathrm{CF}_{3}$ bond formation of (4nitrophenyl)methanol

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with Trifluoromethanesulfinic chloride ($0.600 \mathrm{mmol}, 1.20$ equiv, 91.5 mg). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2-MeTHF (5.00 mL , 0.100 M), (4-nitrophenyl)methanol ($0.500 \mathrm{mmol}, 1.00$ equiv, 76.6 mg) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.0500 \mathrm{mmol}, 0.100$ equiv, 5.06 mg) were added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature. The crude mixture was subjected to ${ }^{19} \mathrm{~F}$ NMR spectroscopy in the presence of $\mathrm{PhCF}_{3}(73.1 \mathrm{mg}, 0.500 \mathrm{mmol})$ as an internal standard. The $3 \mathbf{a}^{19}$ F NMR yield was 65% yield.

5. Effect of $\mathrm{CF}_{3} \mathrm{SOCl}$ for $\mathrm{O}-\mathrm{S}(\mathrm{O}) \mathrm{CF}_{3}$ or $\mathrm{SO}_{2} \mathrm{CF}_{3}$ bond formation of Allylic Alcohols

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with Trifluoromethanesulfinic chloride ($0.600 \mathrm{mmol}, 1.20$ equiv, 91.5 mg). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2-MeTHF (5.00 mL , 0.100 M), 1-phenylprop-2-en-1-ol (0.500 mmol , 1.00 equiv, 68.6 mg) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.0500 \mathrm{mmol}, 0.100$ equiv, 5.06 mg) were added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature. The crude mixture was subjected to ${ }^{19} \mathrm{~F}$ NMR spectroscopy in the presence of $\mathrm{PhCF}_{3}(73.1 \mathrm{mg}, 0.500 \mathrm{mmol})$ as an internal standard. The 15a ${ }^{19}$ F NMR yield was 7% yield.

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with Trifluoromethanesulfinic chloride ($0.600 \mathrm{mmol}, 1.20$ equiv, 91.5 mg). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2-MeTHF (5.00 mL , 0.100 M), 3-phenylprop-2-en-1-ol (0.500 mmol , 1.00 equiv, 67.1 mg) and $\mathrm{Et}_{3} \mathrm{~N}$ $\left(0.0500 \mathrm{mmol}, 0.100\right.$ equiv, 5.06 mg) were added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature. The crude mixture was subjected to ${ }^{19} \mathrm{~F}$ NMR spectroscopy in the presence of $\mathrm{PhCF}_{3}(73.1 \mathrm{mg}, 0.500 \mathrm{mmol})$ as an internal standard. The 15b ${ }^{19}$ F NMR yield was 60% yield.

6. Effect of $\mathrm{CF}_{3} \mathrm{SOCI}$ for double bond formation of Allylic Alcohols

A $120^{\circ} \mathrm{C}$ oven-dried $25-\mathrm{mL}$ glass schlenck, equipped with a stir bar, was charged with Trifluoromethanesulfinic chloride ($0.600 \mathrm{mmol}, 1.20$ equiv, 91.5 mg). The mixture was evacuated and backfilled with nitrogen for three times. Then dry 2-MeTHF (5.00 mL , 0.100 M), 1,2,3,4-tetrahydronaphthalen-1-ol ($0.500 \mathrm{mmol}, 1.00$ equiv, 74.1 mg) and $\mathrm{Et}_{3} \mathrm{~N}$ $\left(0.0500 \mathrm{mmol}, 0.100\right.$ equiv, 5.06 mg) were added under N_{2} atmosphere. The mixture was allowed to stir for 5 h at room temperature. The crude mixture was added 25.0 mL water, extracted by DCM $(25.0 \mathrm{~mL} \times 3)$. The combined organic layers were extracted by brine $(25.0 \mathrm{~mL} \times 2)$, dried over by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed by rotary evaporation. The mixture was subjected to ${ }^{19} \mathrm{~F}$ NMR spectroscopy in the presence of $\mathrm{CH}_{2} \mathrm{Br}_{2}(86.9 \mathrm{mg}, 0.500 \mathrm{mmol})$ as an internal standard. The $7 \mathbf{j}{ }^{1} \mathrm{H}$ NMR yield was 6% yield.

VII. References

1. S. Xing, C. Ma, W. Liu, S.-F. Ni, D. Zhu, L.-W. Xu and X. Shao, Lewis Base-Catalyzed Trifluoromethylsulfinylation of Allylic Alcohols: Stability-Oriented Divergent Synthesis, Org. Lett., 2023, 25, 1066-1071
2. C. Andersen, V. Ferey, M. Daumas, P. Bernardelli, A. Guerinot and J. Cossy, Introduction of Cyclopropyl and Cyclobutyl Ring on Alkyl Iodides through CobaltCatalyzed Cross-Coupling, Org. Lett., 2019, 21, 2285-2289.
3. D. G. Brown, P. R. Bernstein, A. Griffin, S. Wesolowski, D. Labrecque, M. C. Tremblay, M. Sylvester, R. Mauger, P. D. Edwards, S. R. Throner, J. J. Folmer, J. Cacciola, C. Scott, L. A. Lazor, M. Pourashraf, V. Santhakumar, W. M. Potts, S. Sydserff, P. Giguere, C. Levesque, M. Dasser and T. Groblewski, Discovery of Spirofused Piperazine and Diazepane Amides as Selective Histamine-3 Antagonists with in Vivo Efficacy in a Mouse Model of Cognition, J. Med. Chem., 2014, 57, 733-758.
4. Z. Zhang, B. Górski and D. Leonori, Merging Halogen-Atom Transfer (XAT) and Copper Catalysis for the Modular Suzuki-Miyaura-Type Cross-Coupling of Alkyl Iodides and Organoborons, J. Am. Chem. Soc., 2022, 144, 1986-1992.
5. J. E. Roque Peña and E. J. Alexanian, Cobalt-Catalyzed Silylcarbonylation of Unactivated Secondary Alkyl Tosylates at Low Pressure, Org. Lett., 2017, 19, 44134415.
6. M. Bakos, A. Gyomore, A. Domjan and T. Soos, Auto-Tandem Catalysis with Frustrated Lewis Pairs for Reductive Etherification of Aldehydes and Ketones, Angew.

Chem. Int. Ed., 2017, 56, 5217-5221.
7. V. S. Ranade, G. Consiglio and R. Prins, Functional-Group-Directed Diastereoselective Hydrogenation of Aromatic Compounds. 21, J. Org. Chem., 2000, 65, 1132-1138.
8. Y. Sumii, K. Sasaki, O. Matsubara and N. Shibata, Synthesis of Difluoromethanesulfinate Esters by the Difluoromethanesulfinylation of Alcohols, Org. Lett., 2021, 23, 2777-2782.
9. X. M. Chen, M. Tordeux, J. R. Desmurs and C. Wakselman, Thia-Fries Rearrangement of Aryl Triflinates to Trifluoromethanesulfinylphenols, J. Fluor. Chem., 2003, 123, 5156.
10. M. Tobisu, H. Nakai and N. Chatani, Platinum and Ruthenium Chloride-Catalyzed Cycloisomerization of 1-Alkyl-2-ethynylbenzenes: Interception of pi-Activated Alkynes with a Benzylic C-H Bond, J. Org. Chem., 2009, 74, 5471-5475.
11. Y. Lu, M. M. Xu, Z. M. Zhang, J. L. Zhang and Q. Cai, Catalytic Asymmetric Inverse-Electron-Demand Diels-Alder Reactions of 2-Pyrones with Indenes: Total Syntheses of Cephanolides A and B, Angew. Chem. Int. Ed., 2021, 60, 26610-26615.
12. M. Imai, G. R. Morais, B. al-Hindawi, M. A. M. al-Sulaibi, M. Meetani and T. Thiemann, Acid Catalysed Reaction of Indanones, Tetralones and Benzosuberone with Neopentyl Glycol and Other Alkanediols under Forced Conditions, J. Chem. Res., 2010, DOI: 10.3184/030823410x12753214605445, 325-329.
13. M. Adamczyk, D. S. Watt and D. A. Netzel, Synthesis of Biological Markers in Fossil fuels. 2. Synthesis and Carbon-13 NMR Studies of Substituted Indans and Tetralins, J. Org. Chem., 1984, 49, 4226-4237.
14. D. Inschauspe, J. B. Sortais, T. Billard and B. R. Langlois, Trifluoromethanesulfinic Acid Derivatives as Nucleophilic trifluoromethylating reagents, Synlett, 2003, 233-235.
15. T. Billard, A. Greiner and B. R. Langlois, A new equivalent of the $\mathrm{CF}_{3} \mathrm{~S}(\mathrm{O})^{+}$cation. Synthesis of Trifluoromethanesulfinates and Trifluoromethanesulfinamides, Tetrahedron, 1999, 55, 7243-7250.
16. Z. J. Liu and R. C. Larock, Intermolecular C-N addition of amides and S-N addition of sulfinamides to arynes, J. Am. Chem. Soc., 2005, 127, 13112-13113.
17. X. Dong, L. P. Xu, Y. Yang, Y. X. Liu, X. Li, Q. Liu, L. Zheng, F. G. Wang and H. Liu, A palladium $/ \mathrm{Et}_{3} \mathrm{~N}$ Center Dot HI-catalyzed Highly Selective 7-endo Alkyl-Heck-type Reaction of Epoxides and a DFT Study on the Mechanism, Org. Chem. Front., 2021, 8, 6009-6018.

VIII. DFT Calculation

All calculations were performed using Gaussian 16, Revision A. 03 package. ${ }^{1}$ All of the reactants, intermediates, transition states, products were optimized by the DFT with the M06-2X functional. ${ }^{2}$ For geometry optimizations and frequency calculations, we employed $6-31 \mathrm{G}(\mathrm{d})$ basis sets for $\mathrm{H}, \mathrm{C}, \mathrm{O}, \mathrm{S}, \mathrm{F}$, and N. All the stationary structures were characterized with no imaginary frequency and the transition state structures (TSs) were characterized with a single imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were performed on the TSs. The solvent effect of Tetrahydrofuran was evaluated through the SMD method, ${ }^{3}$ in which a better basis system was used. We employed $6-311++G(d, p)$ basis sets for all atoms. All reported energies are free energies at a concentration of 1 M and a temperature of 298.15 K . Because no standard quantummechanics-based approach is available for accurate prediction of the entropy in solution, we adopted the approximate approach proposedby Martin et al. ${ }^{4}$

[^1]
Cartesian coordinates of the optimized structures:

$\mathbf{1}$			
$\mathrm{E}=-1323.075672$ a.u.			
0 l			
C	-2.26669100	1.92735400	2.79915200
C	-0.88342600	1.98492700	2.81442900
C	-0.20281300	3.19545000	2.78331600
C	-0.87167300	4.40705800	2.73518900
C	-2.26709200	4.36175400	2.71981100
C	-2.95266400	3.14270700	2.75121700
H	-2.78437800	0.97434200	2.82225000
H	-0.32623600	5.34436900	2.70915100
H	-2.83244900	5.28704400	2.68156600
H	-4.03763400	3.14448100	2.73690500
C	0.10266400	0.86635200	2.86353200
C	1.26050200	2.92532800	2.79846800
N	1.38056200	1.51014800	2.89449100
O	-0.09300800	-0.31434000	2.87936500
0	2.18170300	3.69409100	2.74242800
S	2.91853400	0.76915000	2.63309300
O	2.78595800	-0.34979400	1.68275700
C	2.97516300	0.00860800	4.33258100
F	4.15511200	-0.59305700	4.44167800
F	2.90104500	0.99005600	5.22630700
F	2.01508900	-0.86756800	4.55003600

P

$\mathrm{E}=-347.6004749$ a.u.
01
C
C
C
C
C
C
H
H
H
H
C
C

H
H
-5.37058100
2. $36398400-0.04965600$
-4. 82425400

1. 41002300
2. 79440300
-3. 44982900
3. 41891900
4. 09077300
-2.61272300
5. 38590900
6. 54136600
-3. 16616600
7. 34372200
-0. 30728700
-4. 53037300
8. 33451700
-0. 60073800
9. 43226600
10. 36100500
-0. 28128900
-1. 55041500
11. 39603100
0.76756500
$-2.52905600 \quad 4.10584300 \quad-0.74535700$
$-4.94207800 \quad 4.08893900-1.26378700$
-3. 17224300
12. 30041300
13. 00110700
-5.47258100
14. 26055900
15. 52532400
-6. 25422900
16. 60019400
17. 21715700
$-5.94974700-0.44882900$
18. 83673800

C	-4.30974000	-0.36474300	2.25594100
H	-4.40971000	-1.23481600	2.89390700
H	-2.19030900	0.06486600	2.39588600

TS4-5

$E=-1526.409606$ a.u.
01
C
C
C
C
C
C
H
H
H
H
C
0
C
H
H

C
H
H
H
S
0
C
F
F
F
N
C
H
H
C
H
H

H
H
C
H
0. 71853700
2. 77299200

1. 94498400
2. 31333500
3. 77948900
4. 71431800

5. 67010200
6. 88037000
7. 06198800
8. 43673600
9. 97871900
10. 68107900
11. 83628900
12. 96732000
13. 90754000
C
14. 49088000
15. 86201700
16. 54006000
-0.33052900
17. 70966500
18. 66935500
19. 47376600
20. 06274100
21. 99169100
H

C
22. 41167900
23. 83200100
24. 59223400
25. $03924600 \quad 4.64568100 \quad 0.93922100$
26. 03726400
0.68657800
27. 82931100
28. 10342200
29. 71498900
30. 69946500
31. 74408300
0.50675400
32. 27766600
33. 16963000
0.73808000
34. 19081500
35. 09625800
-0.03331200
36. 57487100
37. 99708300
-0.23665700
38. 72060600
39. 93300000
-1.09925800
40. 37906000
41. $45388800-0.83688300 \quad$ 2. 42623400
42. 04909600
43. 44525300
44. 12628300
45. 06232900
46. 33178600
47. 74723600
$0.68316400 \quad 1.18006000 \quad 6.18847000$
48. $55962100-0.49752600 \quad 6.99369200$
1.55971900 -1.34139800 6.71144200
$3.61705800-0.86754100 \quad 6.24949300$
49. $89791000-0.68830400 \quad 8.27650000$
50. $72327900-1.43109000 \quad 1.38561300$
51. $88188800-0.33865200 \quad 0.38636900$
52. $08790900 \quad 0.38477300 \quad 0.59850300$
53. $82613800 \quad 0.16255300 \quad 0.62308900$
1.54799600 $-2.31548200 \quad 1.18445000$
1.20983200 $-2.59717000 \quad 2.18914500$
$0.76190100-1.69132300 \quad 0.74847200$
$3.97703500 \quad-2.11442400 \quad 1.79383700$
54. $50161000-1.40248200 \quad 2.44289200$
$3.67836000 \quad-2.95404900 \quad 2.42951000$
2.81944500 $-0.74716100-1.08036600$
55. $97511300 \quad 0.14456200-1.69357800$

3.57967700	-1.48180800	-1.35292000
1.83662800	-1.15155100	-1.33857700
4.91528900	-2.57108800	0.68452400
5.29733900	-1.72277700	0.11048300
5.77451300	-3.06895700	1.14220600
4.44419900	-3.27548400	-0.00424300
1.77202300	-3.57005200	0.34961100
2.49568600	-4.24105400	0.82039000
0.82549800	-4.11220900	0.27436100
2.11339600	-3.34429100	-0.66301500

Int5

$\mathrm{E}=-1526.421065$ a.u.
01
C
0. 68623200
2. 07823700
2. 01267800

C
C
C
C
C
H
H
H
H
C
0
C
H
H
C
H
H
H
S
0
C
F
F
F
N
C
H
H
C

1. 22232300
2. 58861200
3. 13902300
4. 88456200
5. $58861200 \quad 1.18077800 \quad 3.22514600$
6. $41886100 \quad 2.18432600 \quad 2.73072400$
7. $87619100 \quad 3.12001800 \quad 1.85082800$
8. $52778000 \quad 3.06259300 \quad 1.48522700$
$-0.37149300 \quad 2.06718700 \quad 1.76310100$
9. $44842800 \quad 2.25445600 \quad 3.06743100$
10. $50157000 \quad 3.91685400 \quad 1.45965300$
1.12379600 $3.80820200 \quad 0.80709300$
11. $88415300 \quad 0.02386900 \quad 4.08468600$
12. $69174700 \quad 1.84281900 \quad 5.90676200$
$\begin{array}{lll}0.57326800 & 0.03157500 & 3.66830200\end{array}$
$0.08548100 \quad 0.52010900 \quad 4.53150800$
$-0.16103300 \quad-0.57669100 \quad 3.12806800$
1.75322100 $-0.69235300 \quad 4.26341500$
13. $65578000-1.54128700 \quad 4.92943900$
14. $66404000-0.60614500 \quad 2.06387800$
15. $84162500-0.14886100 \quad 4.55687400$
$\begin{array}{lll}2.39515100 & 1.97020100 & 6.66375000\end{array}$
16. $17126300 \quad 1.95041100 \quad 5.78745500$
17. $28967500 \quad 0.19658400 \quad 7.39374700$
18. $09978000-0.38738800 \quad 7.16615700$
19. $23188200-0.64392200 \quad 6.92424700$
20. $45204000 \quad 0.24793500 \quad 8.72752300$
21. $85813700-1.12479000 \quad 1.18640900$
22. $03952700-0.03611000 \quad 0.15803800$
2.30742200 $0.73243400 \quad 0.42288800$
23. $02984600 \quad 0.38739100 \quad 0.34260500$
24. $62161900-1.96529300 \quad 1.02054200$

H
H
C
H
H
C
H
H
H
C
H
H
H
C
H
H
H

1.34430300	-2.25153200	2.03992700
0.85018000	-1.28466800	0.64874300
4.10736600	-1.88354400	1.54532200
4.69098900	-1.18916500	2.15716500
3.78608800	-2.69734600	2.20112900
2.85968500	-0.45990900	-1.28970300
3.04473100	0.41754400	-1.91467300
3.55028100	-1.24516000	-1.60269000
1.83625200	-0.78773700	-1.48998700
4.94568200	-2.38193900	0.38030100
5.34222700	-1.55401100	-0.21245400
5.79986700	-2.92497100	0.79287100
4.40364000	-3.06147900	-0.27946200
1.76332100	-3.20322300	0.15067700
2.46466100	-3.92070500	0.58410600
0.78683400	-3.69220300	0.10456500
2.07349100	-2.97731100	-0.87080400

Int4

$\mathrm{E}=-1526.474977$ a.u.
01

C	0.56839800	2.14597500	1.73008900
C	1.14696200	1.40609700	2.75708800
C	2.47383000	1.64194900	3.11905100
C	3.23456800	2.62088200	2.49160900
C	2.65213200	3.36422600	1.46649300
C	1.32958900	3.12349400	1.08793200
H	-0.46201100	1.96952400	1.43394700
H	4.26250300	2.80118600	2.79384400
H	3.22829200	4.12947400	0.95619100
H	0.88873700	3.70448200	0.28348800
C	2.87406300	0.74914900	4.26162800
O	2.98736600	1.62001400	5.44880100
C	0.53900100	0.33345000	3.62639700
H	-0.10256900	0.78122500	4.39440700
H	-0.06184800	-0.38276700	3.05811800
C	1.77010100	-0.32249800	4.27708600
H	1.55991300	-0.74714800	5.25755200
H	2.13669800	-1.12124300	3.62624600
H	3.87309000	0.31967500	4.16304900
S	2.20324000	1.44751300	6.84920700
O	0.77660400	1.12127600	6.67551700
C	2.97603700	-0.20756100	7.36755900
F	2.03709400	-1.13139400	7.51316300

Int1

$\mathrm{E}=-1615.3143$ a.u.

01
3. $89223900-0.64710800$
3. 56757500
-0.00615200
6. 50809600
2. 84962500
-1. 21643000
8. 54414800
3. $31987000-0.14679200 \quad 0.34434100$
$\begin{array}{lll}2.65655100 & 0.71636800 & 0.48392300\end{array}$
4. $30415200 \quad 0.16111600 \quad 0.72106800$
1.53946400 $-1.76501700 \quad 0.91838800$

1. $07806900-2.07359300 \quad 1.86983200$
$0.92583600 \quad-0.93854200 \quad 0.53530600$
2. $84304600-2.12292800 \quad 1.74845700$
3. $47434900-1.56069300 \quad 2.45438000$
4. $30622300-2.87002500 \quad 2.34821300$
5. $40739300-0.43526300-1.16061400$
6. $83148800 \quad 0.43041900-1.68027200$
$4.02796800-1.30735300-1.38439500$
7. $41141800-0.61125600-1.57990500$
4.77171100 $-2.83832000 \quad 0.75836100$
8. $40593200-2.11926700 \quad 0.23050900$
9. $43136100-3.52893900 \quad 1.29406300$
10. $21057300-3.40742900 \quad 0.01194700$
11. $46531900-2.96154200 \quad-0.04008600$
1.97686700 $-3.83122900 \quad 0.38517600$
12. $42101400 \quad-3.24490200 \quad-0.20834500$
1.92198500 $-2.74070600-1.00852300$
1.00852300

C
H
H
H
C
H
H
H
C
H
H
H
C
C
C
C
C
C
H
H
H
H
C
C
N
0
0
$0.59544500-1.56383900 \quad 1.19706400$
0. $30856400 \quad-2.61958700 \quad 1.22447400$
$-0.29522600 \quad-0.97500100 \quad 0.96459400$
1.30979800 $-1.43992500 \quad 0.37715200$
$-0.74649100 \quad 1.13162300 \quad 2.59808800$
$-1.23702600 \quad 0.15872500 \quad 2.69579100$
$-1.37577800 \quad 1.86810900 \quad 3.10705900$
$-0.70772700 \quad 1.39209600 \quad 1.53813700$
1.74343100 1.49900500 0.47314700
1.20373700 $2.38088300 \quad 0.82971500$
2. $48014200 \quad 1.84191100-0.25959600$

1. $03462000 \quad 0.84181000-0.03732000$
$5.96386400 \quad 5.47589200 \quad 7.04251300$
5.33752900 4.47092900 6.33370000
2. $20122900 \quad 3.19021800 \quad 6.85472500$
3. $68267400 \quad 2.84788300 \quad 8.10386200$
4. $32280500 \quad 3.85971900 \quad 8.83041500$
5. $46086300 \quad 5.14775100 \quad 8.31067900$
6. $06369100 \quad 6.47426100 \quad 6.62913600$
$5.57000700 \quad 1.84492500 \quad 8.50166000$
$\begin{array}{lll}6.71881000 & 3.63974000 & 9.81655100\end{array}$
6.96277200 $\quad 5.90665900 \quad 8.90234400$
$4.68398700 \quad 4.44360500 \quad 4.97169600$
7. $47805000 \quad 2.43968700 \quad 5.79383300$
8. $18957800 \quad 3.12450000 \quad 4.73629900$
9. $58593500 \quad 5.36339500 \quad 4.20449600$
10. $18611000 \quad 1.16710900 \quad 5.98352800$

TS2-3

$E=-2039.320436$ a.u.
01
2. 08821500
0. 84967900
4. 58944000
2. $02149700-0.57190000 \quad 4.96675400$
3.75311800
0.69513600
3. 63138400
4. 67841800
0.32301200
4. 49384400
3. $58834000-0.31813200 \quad 2.76583400$
4. 17149800

1. 74306200
2. 95657100
$0.89743300 \quad 0.82892100$
3. 76866800
$0.64315600-0.62006500$
4. 55560800
5. $56330200-1.15173000$
6. 80019000
$-0.08603400 \quad-0.92450700 \quad 3.31121800$

H

1. 59521500
2. 55291000
3. 66054700

H
2. 09938800
2. 39153100
2. 15233400
2. $34303900 \quad 0.86849600$

1. 25765400
-0. 30018900
-0. 40749100
2. 56839400
3. 26037900
-0. 04978500
4. 33655400
5. 32673700
6. 18445600
7. 62735900
8. 18839400
9. 16116900
10. 05698500
-1.03530800
11. 16279900
-0. 76555600
-2.12144500
12. 86822700
13. 93504700
-0.58507300
14. 40386100
-1. 63098200
-0. 79531500
15. 57735500
-1. 93460100
16. 26586400
17. 71424000
-2. 39305200
. 22489000
18. 04979000
-1. 62730700
0.71966800
19. 04061200
20. 10463400

515500

1. 38903600
2. 14050300
3. 89545000
4. 98547200
5. 34149200

5100
. 98379100
5. 57585400

51500
7. 49528100
6. 49452400
7. 14267000
3. 23424700
9. 55105700
7. 38424300
4. 36121200
9. 03731400
5. 05883000
5. 68562800
7. 32644300
6. 70781000

1. 64412600
2. 16923800
3. 84731100
4. 91676000
5. 56693600
6. 45981700
7. 89869700
8. 66425400
9. 39802000
10. 32203800
11. 59576400
12. 56459600
13. 48632800
14. 43947900
15. 73860000
16. 28244700
17. 33723900
18. 61086400
19. 22864800
20. 84738700
21. 35935600
22. 55105600
23. 53621600
24. 70315600
25. 16422600
26. 07819000
27. 47006300
28. 33107500
29. 63955100
30. 99151300
31. 05734400
32. 68065200
33. 32778700
34. 65297100
35. 98588900
36. 62601600
37. 33362200
38. 81665100
39. 96032200
40. 87138600
41. 73362600
42. 50615100
43. 11820800
44. 26775300
45. 38387100
46. 22267400
47. 26710500
48. 34923400
49. 84379300
50. 04578400
51. 27390100
52. 08684500
53. 75051600
54. 59727300
55. 55117000
56. 75947600
57. 47356000
58. 80642600
59. 30235700
60. 33443100
61. 16482500
62. 45806100
63. 28936000
64. 09438900

H	3.43323700	5.94413900	3.75035900
C	3.25678800	6.00933600	8.04632000
H	3.79177800	7.48603900	6.56281500
H	2.59135700	4.39918800	9.30917000
H	3.76220300	6.52742100	8.85609900
H	0.48920200	3.58160700	4.86808900

Int2			
E =-2039.351682 a.u.			
0 1			
S	2.65462600	1.08140700	4.82211400
O	2.24489400	-0.24041300	5.30927600
C	4.12398700	0.72751700	3.66435600
F	5.27106500	0.59068000	4.31308500
F	3.87229900	-0.40981600	3.02438600
F	4.24029000	1.70739700	2.78046100
N	1.05554000	0.71701800	2.88225400
C	0.81687200	-0.73411400	2.84960600
H	1.78797200	-1.23133400	2.91637700
H	0.29309000	-0.98795200	3.77606200
C	1.56033700	1.31913900	1.63657100
H	2.12389800	2.21069800	1.92032900
H	2.26739100	0.60174300	1.20493200
C	-0.00122700	1.48379300	3.55219600
H	0.06852100	1.25639000	4.62695800
H	0.25989900	2.53959300	3.43195900
C	0.06619600	-1.29948200	1.64175100
H	-0.05057400	-2.37966500	1.77442000
H	-0.92842700	-0.86464100	1.51711300
H	0.62692900	-1.14301200	0.71544800
C	-1.45209500	1.22536400	3.13672100
H	-1.75045800	0.19696800	3.36032500
H	-2.10754400	1.88764700	3.71132900
H	-1.62936400	1.41166700	2.07564000
C	0.53426600	1.75375600	0.58624300
H	-0.07823900	2.57877100	0.96247000
H	1.07050700	2.12622500	-0.29219500
H	-0.12845500	0.94811000	0.26290000
C	5.77806100	4.86450600	7.70518200
C	5.92514600	4.17045600	6.87130000
C	5.30619000	2.99657700	7.27822400
C	6.37089000	3.14842000	9.38720600
C	6.99337100	4.33105400	8.98265000
C			

H
H
H
H
C
C
N
0
0
0
H
C
C
C
C
C
C
H
H
C
C
H
H
H
C
H
H
H
H
7. 25423200
5. 78419500
7. 38078500
5. 01544800

1. 53583700
2. 83907100
3. 56044200
4. 76301000
5. 38385400
6. 65600400
7. 84355800
8. 67274900
9. 42446300
10. 45018800
11. 47782200
12. 45739500
13. 60328900
14. 12329600
15. 51765600
16. 41355600
17. 11054000
18. 72795100
19. 38025400
20. 77590800
21. 76706400
22. 49757200
23. 18025500
24. 20611800
25. 99797800
26. 36626500
27. $08038500 \quad 3.92112300 \quad 3.80125900$
28. 42319800
29. 94987800
30. 07426200
31. 73724900
32. 90919600
33. 55479900
34. 75803500
35. 40595100
36. 69687600
37. 59494100
38. 95933700
39. 89116100
40. 40368400
41. 92940100
42. 48248500
43. 84501700
44. 85215300
45. 69710000
46. 86213200
47. 02216900
48. 83068900
49. 06902100
50. 47182200
51. 65212300
52. 14051000
53. 03001400
54. 17035400
55. 95005300
56. 00070600
57. 76457000
58. 73472300
59. 11585800
60. 21063900
61. 77932700
62. 91559400
63. 94599500
64. 85226300
65. 66804600
66. 30570400
67. 81580300
68. 04350100
69. 10188100
70. 82432600
71. 83198000
72. 43646200
73. 70863700
74. 23978300
75. 50062100
76. 25212800
77. 07874400
78. 09622700
79. 37921200
80. 70488800
81. 84843100

Int3

$\mathrm{E}=-2039.381289$ a.u.
01
S
0
C
F
F
F
N
C
H
H
C

1.75948100	0.50145000	5.41039900
0.55058500	-0.22253300	4.98590900
3.09566400	-0.10181300	4.22546800
3.85582200	-0.95709900	4.90032400
2.52273000	-0.74180600	3.22123600
3.86604400	0.86496100	3.73256100
0.26493400	0.60713700	1.93835700
0.06320700	-0.70549900	1.36688200
0.97902900	-1.29464200	1.51030700
-0.71169900	-1.20079600	1.96462800
1.28204300	1.45188300	1.35542500

1.78993100	1.99677600	2.16636300
2.04006600	0.79054200	0.91677600
-0.86915800	1.23711300	2.57640700
-1.14490600	0.63616500	3.45310000
-0.52440700	2.20282100	2.96640600
-0.31049600	-0.76108100	-0.12132300
-0.46891800	-1.79804600	-0.43686700
-1.22070300	-0.19339700	-0.33554800
0.49569600	-0.34945200	-0.73826400
-2.12027300	1.45793300	1.71407400
-2.54752200	0.50045000	1.39855200
-2.88958500	1.98642300	2.28796000
-1.89958300	2.04112600	0.81487600
0.81972700	2.47053400	0.30492300
0.12537600	3.19492200	0.74577200
1.67459400	3.03031100	-0.08986900
0.30855000	1.98420400	-0.53149000
6.31457000	5.52157000	7.45765500
5.66627700	4.51465100	6.76573500
5.43478800	3.26897400	7.33441100
5.84070200	2.96961300	8.62213400
6.49814700	3.97749400	9.33245600
6.73153900	5.23195900	8.75973000
6.48104200	6.49308300	7.00379300
5.64306600	1.99509400	9.05645300
6.83346000	3.78748100	10.34698700
7.24426800	5.99239300	9.34006600
5.04313500	4.53113800	5.40591900
4.66687000	2.44514400	6.35332300
4.51329400	3.25150000	5.23082500
4.97667800	5.44388700	4.61898300
4.25312800	1.31573600	6.48659700
1.79087700	2.01319100	4.70620200
3.93199900	2.97105100	4.44835700
0.87018100	2.94419800	5.34218800
1.48242500	3.56020200	6.58111200
0.68243700	4.14178900	4.39563300
1.94135700	4.85084100	6.30450900
1.65977200	2.99299400	7.83983000
1.66718900	5.23031200	4.86995200
-0.34691200	4.49936600	4.49690400
0.83403100	3.84504900	3.35536400
2.58831600	5.59071700	7.28973100
2.30633800	3.73719600	8.82674100

H	1.30722500	1.98831900	8.05530200
H	1.24505100	6.23528800	4.77865400
H	2.59753400	5.22652100	4.28946300
C	2.76519200	5.02631800	8.55297400
H	2.95861700	6.58950300	7.07402800
H	2.45534900	3.31008900	9.81341000
H	3.27808600	5.58967500	9.32708100
H	-0.06833800	2.40905600	5.52451000

IX. NMR spectrum of the products

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

3d

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

[^2]

(s)

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

31

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

31

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

$3 m$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

$3 n$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

3n

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

30

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

30

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

30

${ }^{13} \mathrm{C}$ NMR (CDCl_{3}), 101 MHz

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

3r
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

3r
$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{13} \mathrm{C}$ NMR (CDCl_{3}), 101 MHz

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

$3 v$

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

3v

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

$3 v$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

3y
$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{aligned} & \text { No } \\ & 0.0 \\ & 0 \\ & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{N} \end{aligned}$	サへ へ ค NN NㅓNNNNN		운둔운 승

${ }^{13} \mathrm{C}$ NMR（ CDCl_{3} ）， 101 MHz

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

N $\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\top}$
1111

-43.4323
-35.5253
-31.3711
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

3aa

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

5a

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

5b
$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

5c
$20 \begin{array}{llllllllllllllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210 & -2\end{array}$

$\begin{array}{lllllllllllllllllllllllllllllllllll}180 & 175 & 170 & 165 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35\end{array}$

${ }^{1} \mathrm{H}$ NMR (CDCl_{3}), 400 MHz

5d

${ }^{13} \mathrm{C}$ NMR (CDCl_{3}), 101 MHz

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

5e

\circ
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{1}$
i
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR (CDCl_{3}), 101 MHz

$5 f$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

$5 g$

| $\boldsymbol{1}$ | |
| :--- |
| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR (CDCl_{3}), 101 MHz

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

9d
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR (CDCl_{3}), 101 MHz

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

9g

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

9 g

[^3]
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right), 471 \mathrm{MHz}$

9h

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), 101 \mathrm{MHz}$

9h

$\begin{array}{lllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), 400 \mathrm{MHz}$

[^0]: Reaction conditions: 2a (0.100 mmol), $\mathbf{1}(0.120 \mathrm{mmol})$, base $(0.0100 \mathrm{mmol}), 2-\mathrm{MeTHF}(1.00 \mathrm{~mL})$ at rt for 5 h . ${ }^{\text {a }}$ Yield was determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy in the presence of PhCF_{3} as an internal standard.

[^1]: 1 Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. ${ }^{2}$ Y. Zhao, D. G. Truhlar, Theor Chem Account., 2008, 120, 215.
 ${ }^{3}$ A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B., 2009, 113, 6378.
 ${ }^{4}$ R. L. Martin, P. J. Hay, L. R. Pratt, J. Phys. Chem. A, 1998, 102, 3565.

[^2]:

[^3]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

