Cu-Catalyzed Decarboxylative Annulation of Proline Derivatives: Multi-component Synthesis of Functionalized Chromeno[2,3-c]pyrrol-9(1*H*)-one Derivatives

Li Chen, Jin-Mei Qi, Shu Yang, Si-Nuo Sun and Sheng-Jiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.

Supporting Information

Table of Contents:

General Information	S3
General Procedure for the Preparation of 3 & 3'	S3
Spectroscopic Data of 3a-3u '	S4
Figure S1. X-Ray crystal structure of 3j	S20
Table S1. Crystal data and structure refinement for 3j	S20
Table S2. Bond Lengths [Å] for 3j.	S21
Figure S2. X-Ray crystal structure of 3p'	S22
Table S3. Crystal data and structure refinement for 3p'	S22
Table S4. Bond Lengths [Å] for 3p'	S23
Figure S3. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3a	S24
Figure S4. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3a	S25
Figure S5. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3b	S26
Figure S6. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3b	S27
Figure S7. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3c'	S28
Figure S8. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3c'	S29
Figure S9. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3d'	S30
Figure S10. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3d'	S31
Figure S11. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 3e'	S32
Figure S12. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 3e'	S33
Figure S13. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3f	S34
Figure S14. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3f	S35
Figure S15. ¹⁹ F NMR (470 MHz, CDCl ₃) spectra of compound 3f	S36
Figure S16. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3f '	S37
Figure S17. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3f'	S38
Figure S18. ¹⁹ F NMR (470 MHz, CDCl ₃) spectra of compound 3f'	S39
Figure S19. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3g	S40
Figure S20. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3g	S41
Figure S21. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3g'	S42
Figure S22. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3g'	S43
Figure S23. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3h	S44
Figure S24. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3h	S45

Figure S25. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3h'	S46
Figure S26. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3h'	S47
Figure S27. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3i	S48
Figure S28. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3i	S49
Figure S29. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3j	S50
Figure S30. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3j	S51
Figure S31. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3k	S52
Figure S32. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3k	S53
Figure S33. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 31	S54
Figure S34. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 31	S55
Figure S35. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3l'	S56
Figure S36. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3l'	S57
Figure S37. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3m	S58
Figure S38. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3m	S59
Figure S39. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3m'	S60
Figure S40. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3m'	S61
Figure S41. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3n'	S62
Figure S42. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3n'	S63
Figure S43. ¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 3n'	S64
Figure S44. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 30'	S65
Figure S45. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 30'	S66
Figure S46. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3p'	S67
Figure S47. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3p'	S68
Figure S48. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 3q'	S69
Figure S49. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 3q'	S70
Figure S50. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3r'	S71
Figure S51. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3r'	S72
Figure S52. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3s'	S73
Figure S53. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3s'	S74
Figure S54. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3t'	S75
Figure S55. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3t'	S76
Figure S56. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3u'	S77
Figure S57. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3u'	S78
Figure S58. HPLC of the reaction mixture	S79
Figure S59. HRMS of intermediate 1d	S80
Figure S60. HRMS of intermediate 2b	S81
Figure S61. HRMS of intermediate 4i	S82
Figure S62. HRMS of intermediate 5i	S83
Figure S63. HRMS of intermediate 7i/8i/9i	S84
Figure S64. HRMS of intermediate 7i/8i/9i	S85
Figure S65. HRMS of intermediate 7i/8i/9i	S86
Figure S66. HRMS of intermediate 10i	S87
Figure S67. HRMS of intermediate 3i	S88
References and Notes	S89

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX600, Bruker DRX500 or Bruker DRX400. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated CDCl₃ was used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh). The 3-formylchromones 1 and proline derivatives 2 were commercially available reagents.

Chromone-3-carboxaldehydes 1 (1.0 mmol) was charged into a round-bottom flask. Then, toluene (3mL), proline 2 (0.8 mmol) and CuBr (15%) were added to the mixture. The mixture was stirred at reflux under oxygen atmosphere for approximately 10 hours. The mixture was cooled to room temperature. Then, the reaction mixture was extracted with ethyl acetate (3×15 mL), washed with water and brine, and then dried over MgSO₄. The combined organic phases were evaporated under reduced pressure to afford the crude product. Finally, the product 3 or 3' was obtained in the pure form by column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (8:1-12:1, v/v) as the eluent.

Spectroscopic Data of 3a-3u'

(3a*R*,3b*S*,9a*S*,10*S*)-7-Fluoro-10-(6-fluoro-4-oxo-4*H*-chromen-3-yl)-2,3,3a,3b,9a,10 -hexahydro-1*H*,9*H*-chromeno[2,3-*a*]pyrrolizin-9-one (3a)

White solid (127 mg, 62%); Mp: 157.0-157.7 °C; IR (KBr): 3441, 3079, 2968, 1688, 1649, 1587, 1483, 1395, 1303, 1275, 1185, 1120, 899, 831, 722, 630, 601 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.32$ (t, J = 6.5 Hz, 1H, CH₂), 1.70-1.74 (m, 2H, CH₂), 1.87 (t, J = 2.6 Hz, 1H, CH₂), 2.97-3.02 (m, 2H, CH₂), 3.23 (s, 1H, CH), 4.01 (t, J = 7.0 Hz, 1H, CH), 4.62 (s, 1H, CH), 4.95 (d, J = 4.4 Hz, 1H, CH), 6.97-6.99 (m, 1H, ArH), 7.14-7.19 (m, 1H, ArH), 7.31-7.35 (m, 1H, ArH), 7.41-7.46 (m, 2H, ArH), 7.75-7.77 (m, 1H, ArH), 8.14 (s, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 27.0$, 28.9, 49.5, 56.3, 67.3, 70.0, 86.6, 110.4 (d, $J_2 = 22.5$ Hz), 111.5 (d, $J_2 = 23.8$ Hz), 120.3 (d, $J_3 = 7.5$ Hz), 120.4 (d, $J_3 = 7.5$ Hz), 122.1(d, $J_2 = 20.0$ Hz), 122.1, 122.2, 124.0 (d, $J_2 = 23.8$ Hz), 124.9 (d, $J_3 = 7.5$ Hz), 155.2, 152.9, 156.7, 157.5 (d, $J_1 = 241.3$ Hz), 159.6 (d, $J_1 = 246.3$ Hz), 176.5, 191.1. HRMS (TOF ES⁺): m/z calcd for C₂₃H₁₈F₂NO₄ [(M+H)⁺], 410.1198; found, 410.1194.

(3a*R*,3b*S*,9a*S*,10*S*)-10-(4-Oxo-4*H*-chromen-3-yl)-2,3,3a,3b,9a,10-hexahydro-1*H*,9 *H*-chromeno[2,3-*a*]pyrrolizin-9-one (3b)

Yellow solid (110 mg, 59%); Mp: 133.8-134.5 °C; IR (KBr): 3443, 2926, 2324, 1685, 1638, 1610, 1470, 1400, 1313, 1220, 1149, 1034, 910, 855, 760, 631 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.43$ (t, J = 7.8 Hz, 1H, CH₂), 1.77-1.82 (m, 3H, CH₂), 3.09-3.13 (m, 2H, CH₂), 3.32 (s, 1H, CH), 4.12 (t, J = 7.1 Hz, 1H, CH), 4.74 (s, 1H, CH), 5.06 (d, J = 3.9 Hz, 1H, CH), 7.03-7.08 (m, 2H, ArH), 7.43 (t, J = 3.9 Hz, 1H, CH), 7.03-7.08 (t, J = 3.9 Hz, 1H, CH), 7.03-

= 7.3 Hz, 1H, ArH), 7.49-7.54 (m, 2H, ArH), 7.69 (t, J = 7.6 Hz, 1H, ArH), 7.89 (d, J = 7.7 Hz, 1H, ArH), 8.23 (t, J = 7.9 Hz, 2H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 27.0$, 28.9, 49.9, 56.3, 67.4, 70.1, 86.4, 118.2, 118.7, 121.7, 123.5, 123.8, 123.8, 125.2, 125.7, 126.5, 133.7, 136.4, 154.9, 156.6, 160.6, 177.3, 191.9. HRMS (TOF ES⁺): m/z calcd for C₂₃H₂₀NO₄ [(M+H)⁺], 374.1387; found, 374.1385.

(5*R*,5a*R*,11a*R*,11b*S*)-9-Methyl-5-(6-methyl-4-oxo-4*H*-chromen-3-yl)-2,3,5,5a,11a, 11b-hexahydrochromeno[3,2-*a*]pyrrolizin-11(1*H*)-one (3c')

Yellow solid (128 mg, 64%); Mp: 81.2-81.9 °C; IR (KBr): 3433, 2932, 1670, 1643, 1611, 1489, 1410, 1379, 1300, 1241, 1142, 847, 739, 711, 606 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.83-2.00 (m, 2H, CH₂), 2.01-2.05 (m, 2H, CH₂), 2.26 (s, 3H, CH₃), 2.48 (s, 3H, CH₃), 2.62-2.66 (m, 1H, CH₂), 2.80-2.83 (m, 1H, CH₂), 2.96-3.01 (m, 1H, CH), 3.79-3.84 (m, 1H, CH), 4.32 (d, *J* = 2.0 Hz, 1H, CH), 5.36 (t, *J* = 3.4 Hz, 1H, CH), 6.68 (d, *J* = 8.5 Hz, 1H, ArH), 7.18-7.20 (m, 1H, ArH), 7.43 (d, *J* = 8.6 Hz, 1H, ArH), 7.50-7.52 (m, 1H, ArH), 7.65 (d, *J* = 1.7 Hz, 1H, ArH), 8.03 (s, 1H, ArH), 8.30 (d, *J* = 1.0 Hz, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): δ = 20.4, 21.0, 25.0, 31.1, 54.6, 56.3, 66.2, 67.7, 82.7, 118.0, 118.1, 118.8, 120.8, 123.4, 125.0, 126.3, 130.9, 134.8, 135.0, 137.2, 154.9, 155.7, 158.7, 177.7, 192.6. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₅H₂₄NO₄ [(M+H)⁺], 402.1700; found, 402.1701.

(5*R*,5a*R*,11a*R*,11b*S*)-9-Chloro-5-(6-chloro-7-methyl-4-oxo-4*H*-chromen-3-yl)-8-m ethyl-2,3,5,5a,11a,11b-hexahydrochromeno[3,2-*a*]pyrrolizin-11(1*H*)-one (3d')

White solid (124 mg, 53%); Mp: 127.2-128.7 °C; IR (KBr): 3454, 2948, 2788, 1690, 1636, 1600, 1456, 1411, 1347, 1300, 1222, 1119, 884, 762, 700, 616 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.85$ -1.93 (m, 2H, CH₂), 1.99-2.03 (m, 2H, CH₂), 2.26 (s, 3H, CH₃), 2.52 (s, 3H, CH₃), 2.61-2.65 (5m, 1H, CH₂), 2.79-2.81 (m, 1H, CH₂), 2.97-3.00 (m, 1H, CH), 3.76-3.79 (m, 1H, CH), 4.29 (d, J = 1.7 Hz, 1H, CH), 5.37 (t, J = 3.0 Hz, 1H, CH), 6.68 (s, 1H, ArH), 7.41 (s, 1H, ArH), 7.79 (s, 1H, ArH), 8.18 (s, 1H, ArH), 8.26 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 20.6$, 20.7, 25.1, 31.0, 54.7, 55.9, 66.2, 67.7, 83.0, 118.2, 120.0, 120.3, 121.0, 122.8, 125.4, 126.5, 127.7, 131.8, 142.8, 145.1, 154.9, 155.6, 158.7, 176.4, 190.8. HRMS (TOF ES⁺): m/z calcd for C₂₅H₂₂Cl₂NO₄ [(M+H)⁺], 470.0920; found, 470.0918.

(5*R*,5a*R*,11a*R*,11b*S*)-7,9-Dichloro-5-(6,8-dichloro-4-oxo-4*H*-chromen-3-yl)-2,3,5,5 a,11a,11b-hexahydrochromeno[3,2-*a*]pyrrolizin-11(1*H*)-one (3e')

White solid (127 mg, 50%); Mp: 227.8-228.6 °C; IR (KBr): 3454, 2942, 2789, 1668, 1599, 1489, 1405, 1390, 1300, 1236, 1116, 894, 765, 623 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.87$ -2.05 (m, 4H, CH₂), 2.63-2.68 (m, 1H, CH₂), 2.86-2.89 (m, 1H, CH₂), 2.98-3.04 (m, 1H, CH), 3.77-3.83 (m, 1H, CH), 4.37-4.38 (m, 1H, CH), 5.43 (t, J = 3.5 Hz, 1H, CH), 7.47 (d, J = 2.6 Hz, 1H, ArH), 7.74-7.76 (m, 2H, ArH), 8.12 (d, J = 2.5 Hz, 1H, ArH), 8.43 (d, J = 1.2 Hz, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 25.1$, 30.9, 54.7, 55.6, 66.2, 67.5, 83.5, 120.5, 121.4, 123.8, 124.3, 124.6, 124.9, 125.3, 126.7, 130.8, 133.9, 135.8, 151.0, 154.5, 156.2, 175.9, 190.3. HRMS (TOF ES⁺): m/z calcd for C₂₃H₁₆Cl₄NO₄ [(M+H)⁺], 509.9828; found, 509.9832.

(5a*S*,5b*R*,6a*S*,10a*S*,12*S*,12a*S*)-2-Fluoro-12-(6-fluoro-4-oxo-4*H*-chromen-3-yl)-5a, 5b,6a,7,8,9,10,10a,12,12a-decahydro-6*H*,13*H*-chromeno[2',3':3,4]pyrrolo[1,2-*a*]in dol-13-one (3f)

White solid (123 mg, 53%); Mp: 227.1-227.9 °C; IR (KBr): 3445, 2923, 1661, 1605, 1457, 1244, 1200, 1136, 1054, 957, 877, 803, 633 cm⁻¹; $[\alpha]_D^{25.4} = -190.2$ (c = 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): δ = 1.24-1.31 (m, 2H, CH₂), 1.47-1.71 (m, 7H, CH₂), 1.98-2.04 (m, 1H, CH₂), 2.18-2.23 (m, 1H, CH), 2.88 (t, *J* = 4.8 Hz, 1H, CH), 3.48 (t, *J* = 6.6 Hz, 1H, CH), 4.05-4.08 (m, 1H, CH), 4.56 (d, *J* = 6.9 Hz, 1H, CH), 4.78-4.80 (m, 1H, CH), 6.66-6.68 (m, 1H, ArH), 6.89-6.93 (m, 1H, ArH), 7.27-7.36 (m, 3H, ArH), 7.68-7.70 (m, 1H, ArH), 8.07 (s, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): δ = 21.5, 23.6, 26.9, 29.0, 35.3, 37.6, 49.5, 63.0, 65.3, 68.1, 86.0, 110.4 (d, *J*₂ = 23.8 Hz), 111.7 (d, *J*₂ = 23.8 Hz), 119.0 (d, *J*₃ = 7.5 Hz), 119.8 (d, *J*₃ = 7.5 Hz), 121.3, 121.5 (d, *J*₂ = 25.0 Hz), 123.1 (d, *J*₂ = 25.0 Hz), 123.5, 124.2 (d, *J*₃ = 6.3 Hz), 152.3, 154.7, 155.3, 157.0 (d, *J*₁ = 241.3 Hz), 159.3 (d, *J*₁ = 243.8 Hz), 176.2, 189.7; ¹⁹F NMR (470 MHz, CDCl₃): δ = -115.6, -121.8. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₄F₂NO₄ [(M+H)⁺], 464.1668; found, 496.1664.

(5a*R*,6*R*,7a*R*,11a*R*,12a*S*,12b*R*)-2-Fluoro-6-(6-fluoro-4-oxo-4*H*-chromen-3-yl)-5a,7 a,8,9,10,11,11a,12,12a,12b-decahydrochromeno[3',2':3,4]pyrrolo[1,2-*a*]indol-13(6 *H*)-one (3f')

Yellow solid (67 mg, 29%); Mp: 109.8-111.3 °C; IR (KBr): 3447, 2947, 1696, 1646, 1574, 1467, 1412, 1362, 1300, 1221, 1156, 876, 757, 710, 627 cm⁻¹; $[\alpha]_D^{27.1}$ = -398.5 (c = 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): δ = 1.26-1.31 (m, 2H, CH₂), 1.43-1.47 (m, 1H, CH₂), 1.52-1.60 (m, 5H, CH₂), 1.94-2.00 (m, 2H, CH₂), 2.30-2.34 (m, 1H, CH), 2.85-2.91 (m, 2H, CH), 3.96-4.00 (m, 1H, CH), 4.42 (t, *J* = 2.5 Hz, 1H, CH), 5.33 (t, *J* = 3.4 Hz, 1H, CH), 6.74-6.77 (m, 1H, ArH), 7.09-7.13 (m, 1H, ArH), 7.42-7.46 (m, 1H, ArH), 7.49-7.51 (m, 1H, ArH),

7.53-7.56 (m, 1H, ArH), 7.87-7.90 (m, 1H, ArH), 8.41 (d, J = 0.8 Hz, 1H, ArH) ; ¹³C NMR (125 MHz, CDCl₃): $\delta = 22.2$, 23.2, 27.5, 28.7, 34.7, 38.5, 56.9, 65.3, 65.9, 66.8, 83.4, 110.5 (d, $J_2 = 23.8$ Hz), 111.2 (d, $J_2 = 23.8$ Hz), 119.7 (d, $J_3 = 6.3$ Hz), 120.0 (d, $J_3 = 7.5$ Hz), 120.4 (d, $J_3 = 7.5$ Hz), 121.3, 121.8 (d, $J_2 = 25.0$ Hz), 123.6 (d, $J_2 = 23.8$ Hz), 124.8 (d, $J_3 = 7.5$ Hz), 152.8, 156.0, 156.6, 157.3 (d, $J_1 = 241.3$ Hz), 159.6 (d, $J_1 = 245.0$ Hz), 176.6, 191.5; ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -115.3$, -121.1. HRMS (TOF ES⁺): m/z calcd for C₂₇H₂₄F₂NO₄ [(M+H)⁺], 464.1668; found, 464.1668.

(5a*S*,5b*R*,6a*S*,10a*S*,12*S*,12a*S*)-2-Chloro-12-(6-chloro-4-oxo-4*H*-chromen-3-yl)-5a, 5b,6a,7,8,9,10,10a,12,12a-decahydro-6*H*,13*H*-chromeno[2',3':3,4]pyrrolo[1,2-*a*]in dol-13-one (3g)

Yellow solid (116 mg, 47%); Mp: 135.8-136.2 °C; IR (KBr): 3455, 2930, 2343, 1691, 1639, 1609, 1468, 1277, 1209, 1157, 1107, 1044, 937, 867, 818, 634 cm⁻¹; $[\alpha]_D^{25.5} = -177.84$ (c = 0.125, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): δ = 1.31 (s, 2H, CH₂), 1.51-1.69 (m, 7H, CH₂), 2.00-2.04 (m, 1H, CH₂), 2.22 (s, 1H, CH), 2.89 (d, J = 3.6 Hz, 1H, CH), 3.49 (t, J = 6.0 Hz, 1H, CH), 4.09 (s, 1H, CH), 4.53 (d, J = 6.7 Hz, 1H, CH), 4.81 (s, 1H, CH), 6.63 (d, J = 8.8 Hz, 1H, ArH), 7.09 (d, J = 8.6 Hz, 1H, ArH), 7.31 (d, J = 8.9 Hz, 1H, ArH), 7.54 (d, J = 8.8 Hz, 1H, ArH), 8.03 (s, 1H, ArH), 8.07 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 21.5, 23.6, 27.0, 29.0, 35.3, 37.6, 49.6, 63.1, 65.3, 68.3, 86.0, 119.0, 119.5, 121.7, 124.0, 124.2, 125.1, 126.2, 126.8, 130.8, 133.5, 135.3, 154.4, 154.6, 157.6, 172.9, 189.4. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₄Cl₂NO₄ [(M+H)⁺], 496.1077; found, 496.1068.

(5a*R*,6*R*,7a*R*,11a*R*,12a*S*,12b*R*)-2-Chloro-6-(6-chloro-4-oxo-4*H*-chromen-3-yl)-5a, 7a,8,9,10,11,11a,12,12a,12b-decahydrochromeno[3',2':3,4]pyrrolo[1,2-*a*]indol-13(6*H*)-one (3g')

Yellow solid (84 mg, 34%); Mp: 225.0-225.9 °C; IR (KBr): 3443, 2938, 2301, 1697, 1626, 1600, 1476, 1408, 1336, 1208, 1188, 1065, 919, 854, 744, 604 cm⁻¹; $[\alpha]_D^{25.5} = -385.8$ (c = 0.04, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): δ = 1.27-1.32 (m, 2H, CH₂), 1.45-1.47 (m, 1H, CH₂), 1.55-1.67 (m, 5H, CH₂), 1.95-2.02 (m, 2H, CH₂), 2.34 (d, *J* = 5.6 Hz, 1H, CH), 2.88-2.92 (m, 2H, CH), 3.98 (s, 1H, CH), 4.44 (s, 1H, CH), 5.36 (s, 1H, CH), 6.75 (d, *J* = 8.8 Hz, 1H, ArH), 7.34 (d, *J* = 8.7 Hz, 1H, ArH), 7.51 (d, *J* = 8.9 Hz, 1H, ArH), 7.67 (d, *J* = 8.6 Hz, 1H, ArH), 7.83 (s, 1H, ArH), 8.42 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 22.2, 23.2, 27.5, 28.7, 34.7, 38.5, 56.8, 65.4, 65.9, 66.8, 83.4, 119.98, 120.0, 120.0, 122.0, 124.6, 125.2, 126.1, 127.1, 131.1, 133.8, 135.9, 154.9, 155.9, 158.8, 176.2, 191.1. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₄Cl₂NO₄ [(M+H)⁺], 496.1077; found, 496.1078.

(5a*S*,5b*R*,6a*S*,10a*S*,12*S*,12a*S*)-2-Bromo-12-(6-bromo-4-oxo-4*H*-chromen-3-yl)-5a, 5b,6a,7,8,9,10,10a,12,12a-decahydro-6*H*,13*H*-chromeno[2',3':3,4]pyrrolo[1,2-*a*]in dol-13-one (3h)

Yellow solid (164 mg, 56%); Mp: 268.9-269.7 °C; IR (KBr): 3475, 2932, 2301, 1697, 1646, 1568, 1406, 1298, 1202, 1155, 1111, 1043, 931, 862, 808, 629 cm⁻¹; $[\alpha]_D^{25.4} = -77.7$ (c = 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): $\delta = 1.26$ -1.30 (m, 2H, CH₂), 1.49-1.67 (m, 7H, CH₂), 1.97-2.02 (m, 1H, CH₂), 2.19 (t, J = 4.7 Hz, 1H, CH), 2.71 (t, J = 4.6 Hz, 1H, CH), 3.45-3.48 (m, 1H, CH), 4.05-4.09 (m, 1H, CH), 4.56 (d, J = 6.8 Hz, 1H, CH), 4.77-4.79 (m, 1H, CH), 6.54 (d, J = 8.8 Hz, 1H, ArH), 7.18-7.23 (m, 2H, ArH), 7.64-7.67 (m, 1H, ArH), 7.75 (d, J = 2.5 Hz, 1H, ArH), 8.04 (d, J = 1.0 Hz, 1H, ArH), 8.17 (d, J = 2.4 Hz, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 21.4$, 23.7, 27.0, 29.0, 35.4, 37.7, 49.6, 63.1, 65.3, 68.5,

86.0, 113.9, 118.3, 119.2, 119.7, 122.2, 124.3, 124.3, 128.4, 129.3, 136.2, 138.1, 154.5, 154.8, 158.0, 175.7, 189.3. HRMS (TOF ES⁺): *m/z* calcd for C₂₇H₂₄Br₂NO₄ [(M+H)⁺], 584.0067; found, 584.0069.

(5a*R*,6*R*,7a*R*,11a*R*,12a*S*,12b*R*)-2-Bromo-6-(6-bromo-4-oxo-4*H*-chromen-3-yl)-5a, 7a,8,9,10,11,11a,12,12a,12b-decahydrochromeno[3',2':3,4]pyrrolo[1,2-*a*]indol-13(6*H*)-one (3h')

Yellow solid (122 mg, 42%); Mp: 208.6-209.7 °C; IR (KBr): 3456, 2938, 1699, 1635, 1600, 1493, 1411, 1339, 1210, 1180, 1063, 912, 845, 748, 624 cm⁻¹; $[\alpha]_D^{25.8} = -287.0$ (c = 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): $\delta = 1.25$ -1.30 (m, 2H, CH₂), 1.39-1.59 (m, 6H, CH₂), 1.92-2.02 (m, 2H, CH₂), 2.28-2.33 (m, 1H, CH), 2.84-2.91 (m, 2H, CH), 3.93-3.98 (m, 1H, CH), 4.41 (d, J = 2.9 Hz, 1H, CH), 5.34 (d, J = 3.3 Hz, 1H, CH), 6.67 (d, J = 8.9 Hz, 1H, ArH), 7.42-7.46 (m, 2H, ArH), 7.77-7.79 (m, 1H, ArH), 7.96 (d, J = 2.4 Hz, 1H, ArH), 8.37 (d, J = 2.3 Hz, 1H, ArH), 8.39 (s, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 22.2$, 23.2, 27.4, 28.7, 34.7, 38.5, 56.8, 65.3, 65.9, 66.8, 83.3, 114.2, 118.5, 120.26, 120.33, 120.5, 122.1, 125.0, 128.4, 129.2, 136.5, 138.7, 155.3, 155.9, 159.2, 176.1, 191.0. HRMS (TOF ES⁺): m/z calcd for C₂₇H₂₄Br₂NO₄ [(M+H)⁺], 584.0067; found, 584.0065.

(5a*S*,5b*R*,6a*S*,10a*S*,12*S*,12a*S*)-12-(4-Oxo-4*H*-chromen-3-yl)-5a,5b,6a,7,8,9,10,10a, 12,12a-decahydro-6*H*,13*H*-chromeno[2',3':3,4]pyrrolo[1,2-*a*]indol-13-one (3i)

Yellow solid (124 mg, 58%); Mp: 123.8-124.5 °C; IR (KBr): 3444, 2936, 2305, 1695, 1630, 1601, 1495, 1410, 1334, 1209, 1178, 1064, 913, 855, 740, 634 cm⁻¹;

[α]_D^{25.4} = -125.6 (c = 0.1, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): δ = 1.18-1.22 (m, 2H, CH₂), 1.42-1.61 (m, 7H, CH₂), 1.91-1.95 (m, 1H, CH₂), 2.13 (t, *J* = 4.6 Hz, 1H, CH), 2.83 (t, *J* = 4.6 Hz, 1H, CH), 3.42 (t, *J* = 5.6 Hz, 1H, CH), 4.02-4.05 (m, 1H, CH), 4.52 (d, *J* = 6.9 Hz, 1H, CH), 4.72-4.73 (m, 1H, CH), 6.59-6.62 (m, 2H, ArH), 7.07 (t, *J* = 7.2 Hz, 1H, ArH), 7.18-7.20 (m, 1H, ArH), 7.24 (d, *J* = 8.4 Hz, 1H, ArH), 7.47 (t, *J* = 7.1 Hz, 1H, ArH), 7.58 (d, *J* = 7.8 Hz, 1H, ArH), 7.96 (d, *J* = 8.0 Hz, 1H, ArH), 8.00 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 21.4, 23.7, 27.0, 29.1, 35.4, 37.7, 49.8, 63.1, 65.3, 68.4, 85.9, 117.2, 117.7, 121.0, 121.0, 123.1, 124.2, 124.6, 125.7, 126.8, 133.0, 135.5, 154.5, 156.1, 159.2, 176.9, 191.5. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₆NO₄ [(M+H)⁺], 428.1856; found, 428.1850.

(5a*S*,5b*R*,6a*S*,10a*S*,12*S*,12a*S*)-2-Methyl-12-(6-methyl-4-oxo-4*H*-chromen-3-yl)-5a ,5b,6a,7,8,9,10,10a,12,12a-decahydro-6*H*,13*H*-chromeno[2',3':3,4]pyrrolo[1,2-*a*]i ndol-13-one (3j)

Yellow solid (145 mg, 63%); Mp: 110.2-110.8 °C; IR (KBr): 3422, 2928, 2860, 1686, 1625, 1491, 1441, 1305, 1224, 1160, 1045, 942, 868, 815, 530 cm⁻¹; $[\alpha]_D^{26.2}$ = -99.3 (c = 0.1, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): δ = 1.19 (d, *J* = 10.1 Hz, 2H, CH₂), 1.43-1.57 (m, 7H, CH₂), 1.90-1.93 (m, 1H, CH₂), 1.96 (s, 3H, CH₃), 2.11 (d, *J* = 3.8 Hz, 1H, CH), 2.31 (s, 3H, CH₃), 2.82 (d, *J* = 3.8 Hz, 1H, CH), 3.37 (t, *J* = 5.6 Hz, 1H, CH), 4.02 (s, 1H, CH), 4.52 (d, *J* = 6.7 Hz, 1H, CH), 4.68 (d, *J* = 2.6 Hz, 1H, CH), 6.45 (d, *J* = 8.3 Hz, 1H, ArH), 6.84 (d, *J* = 8.2 Hz, 1H, ArH), 7.13 (d, *J* = 8.4 Hz, 1H, ArH), 7.28 (d, *J* = 8.3 Hz, 1H, ArH), 7.36 (s, 1H, ArH), 7.73 (s, 1H, ArH), 7.96 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 20.0, 20.8, 21.4, 23.8, 27.1, 29.1, 35.5, 37.8, 49.9, 63.2, 65.3, 68.6, 85.8, 116.9, 117.4, 120.7, 122.8, 124.0, 125.0, 126.4, 130.3, 134.1, 134.2, 136.4, 154.3, 154.4, 157.2, 177.0, 190.9. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₉H₃₀NO₄ [(M+H)⁺], 456,2169; found, 456.2159.

(5a*S*,5b*R*,6a*S*,10a*S*,12*S*,12a*S*)-2-Isopropyl-12-(6-isopropyl-4-oxo-4*H*-chromen-3-y l)-5a,5b,6a,7,8,9,10,10a,12,12a-decahydro-6*H*,13*H*-chromeno[2',3':3,4]pyrrolo[1, 2-*a*]indol-13-one (3k)

Yellow solid (156 mg, 61%); Mp: 91.0-92.3 °C; IR (KBr): 3421, 2922, 2858, 1690, 1627, 1500, 1431, 1309, 1221, 1158, 1042, 941, 860, 805, 523 cm⁻¹; $[\alpha]_D^{25.1} = -87.6$ (c = 0.1, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): $\delta = 0.96$ (t, J = 6.0 Hz, 6H, CH₃), 1.23 (t, J = 7.0 Hz, 6H, CH₃), 1.26-1.30 (m, 2H, CH₂), 1.47-1.67 (m, 7H, CH₂), 1,95-1.99 (m, 1H, CH₂), 2.18 (d, J = 3.8 Hz, 1H, CH), 2.58-2.63 (m, 1H, CH), 2.90-2.97 (m, 2H, CH), 3.47 (t, J = 5.7 Hz, 1H, CH), 4.11-4.14 (m, 1H, CH), 4.60 (d, J = 7.0 Hz, 1H, CH), 4.77-4.78 (m, 1H, CH), 6.60 (d, J = 8.5 Hz, 1H, ArH), 7.02-7.04 (m, 1H, ArH), 7.23 (d, J = 8.6 Hz, 1H, ArH), 7.39-7.41 (m, 1H, ArH), 7.49 (d, J = 2.2 Hz, 1H, ArH), 7.89 (d, J = 2.0 Hz, 1H, ArH), 8.04 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 21.3$, 23.6, 23.7, 23.8, 23.85, 23.94, 27.0, 29.1, 33.0, 33.7, 35.4, 37.8, 49.9, 63.3, 65.5, 68.8, 85.9, 117.0, 117.6, 120.6, 122.4, 122.8, 123.6, 124.1, 131.9, 134.2, 141.4, 145.3, 154.4, 154.5, 157.5, 177.0, 190.9. HRMS (TOF ES⁺): m/z calcd for C₃₃H₃₈NO₄ [(M+H)⁺], 512.2795; found, 512.2797.

(5a*S*,5b*R*,6a*S*,10a*S*,12*S*,12a*S*)-2-Chloro-12-(6-chloro-7-methyl-4-oxo-4*H*-chrome n-3-yl)-3-methyl-5a,5b,6a,7,8,9,10,10a,12,12a-decahydro-6*H*,13*H*-chromeno[2',3':3,4]pyrrolo[1,2-*a*]indol-13-one (3l)

Yellow solid (126 mg, 48%); Mp: 269.1-269.7 °C; IR (KBr): 3434, 2926, 2855, 1696, 1648, 1605, 1459, 1416, 1344, 1288, 1183, 1156, 1110, 1064, 912, 833, 704, 657, 626 cm⁻¹; $[\alpha]_D^{26.9} = -182.6$ (c = 0.1, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): $\delta = 1.25 \cdot 1.28$ (m, 2H, CH₂), 1.48 \cdot 1.67 (m, 7H, CH₂), 1.97 \cdot 2.01 (m, 1H, CH₂), 2.11 (s, 1H, CH₃), 2.19 (t, *J* = 4.6 Hz, 1H, CH), 2.45 (s, 3H, CH₃), 2.86 (d, *J* = 4.3 Hz, 1H, CH), 3.44 (t, *J* = 6.0 Hz, 1H, CH), 4.02 \cdot 4.05 (m, 1H, CH), 4.55 (d, *J* = 6.8 Hz, 1H, CH), 4.75 (t, *J* = 4.9 Hz, 1H, CH), 6.53 (s, 1H, ArH), 7.20 (s, 1H, ArH),

7.59 (s, 1H, ArH), 7.99 (s, 1H, ArH), 7.99 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 20.4$, 20.6, 21.5, 23.6, 27.0, 29.0, 35.3, 37.6, 49.5, 63.1, 65.2, 68.2, 85.9, 119.2, 119.4, 120.1, 122.2, 124.0, 125.5, 126.6, 127.5, 131.5, 142.2, 144.5, 154.2, 154.4, 157.4, 175.8, 189.1. HRMS (TOF ES⁺): m/z calcd for C₂₉H₂₈Cl₂NO₄ [(M+H)⁺], 524.1390; found, 524.1384.

(5a*R*,6*R*,7a*R*,11a*R*,12a*S*,12b*R*)-2-Chloro-6-(6-chloro-7-methyl-4-oxo-4*H*-chromen -3-yl)-3-methyl-5a,7a,8,9,10,11,11a,12,12a,12b-decahydrochromeno[3',2':3,4]pyr rolo[1,2-*a*]indol-13(6*H*)-one (3l')

Yellow solid (81 mg, 31%); Mp: 179.8-180.4 °C; IR (KBr): 3438, 2922, 2856, 1699, 1644, 1606, 1449, 1412, 1349, 1280, 1181, 1110, 1038, 911, 832, 708, 654 cm⁻¹; $[\alpha]_D^{26.9} = -385.7$ (c = 0.1, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): $\delta = 1.28-1.31$ (m, 2H, CH₂), 1.44-1.46 (m, 1H, CH₂), 1.54-1.60 (m, 5H, CH₂), 1.93-2.02 (m, 2H, CH₂), 2.28 (s, 3H, CH₃), 2.31-2.33 (m, 1H, CH), 2.54 (s, 3H, CH₃), 2.87 (t, J = 2.9 Hz, 2H, CH), 3.95 (t, J = 10.5 Hz, 2H, CH), 4.41 (s, 1H, CH), 5.33 (s, 1H, CH), 6.68 (s, 1H, ArH), 7.42 (s, 1H, ArH), 7.80 (s, 1H, ArH), 8.20 (s, 1H, ArH), 8.36 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 20.6, 20.8, 22.2, 23.2, 27.5, 28.7, 34.7, 38.5, 56.8, 65.4, 65.9, 66.8, 83.3, 118.2, 120.0, 120.3, 121.8, 122.7, 125.4, 126.4, 127.7, 131.8, 142.8, 145.1, 154.9, 155.7, 158.6, 176.2, 191.0. HRMS (TOF ES⁺): <math>m/z$ calcd for C₂₉H₂₈Cl₂NO₄ [(M+H)⁺], 524.1390; found, 524.1394.

(5a*S*,5b*R*,6a*S*,10a*S*,12*S*,12a*S*)-2,4-Dichloro-12-(6,8-dichloro-4-oxo-4*H*-chromen-3 -yl)-5a,5b,6a,7,8,9,10,10a,12,12a-decahydro-6*H*,13*H*-chromeno[2',3':3,4]pyrrolo[1,2-*a*]indol-13-one (3m)

White solid (124 mg, 44%); Mp: 215.5-216.3 °C; IR (KBr): 3443, 2933, 2301, 1676, 1628, 1594, 1488, 1404, 1327, 1211, 1175, 1062, 903, 854, 733, 636 cm⁻¹; $[\alpha]_D^{25.4} = -233.0$ (c = 0.1, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): δ = 1.24-1.33 (m, 2H, CH₂), 1.55-1.71 (m, 7H, CH₂), 2.03-2.07 (m, 1H, CH₂), 2.19-2.22 (m, 1H, CH), 2.90 (d, *J* = 5.4 Hz, 1H, CH), 3.48 (t, *J* = 6.4 Hz, 1H, CH), 4.17-4.21 (m, 1H, CH), 4.58 (d, *J* = 6.8 Hz, 1H, CH), 4.88-4.89 (m, 1H, CH), 7.17 (d, *J* = 2.5 Hz, 1H, ArH), 7.65 (d, *J* = 2.4 Hz, 1H, ArH), 7.87 (d, *J* = 2.4 Hz, 1H, ArH), 8.18 (s, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): δ = 21.2, 23.8, 27.0, 29.0, 35.3, 37.8, 49.4, 63.2, 65.3, 68.9, 86.5, 122.4, 123.2, 123.7, 124.1, 124.4, 124.6, 124.9, 126.5, 130.6, 133.5, 134.7, 150.4, 153.3, 154.6, 175.2, 188.6. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₂Cl₄NO₄ [(M+H)⁺], 564.0297; found, 564.0294.

(5a*R*,6*R*,7a*R*,11a*R*,12a*S*,12b*R*)-2,4-Dichloro-6-(6,8-dichloro-4-oxo-4*H*-chromen-3 -yl)-5a,7a,8,9,10,11,11a,12,12a,12b-decahydrochromeno[3',2':3,4]pyrrolo[1,2-*a*]in dol-13(6*H*)-one (3m')

Yellow solid (70 mg, 25%); Mp: 167.3-168.4 °C; IR (KBr): 3453, 2936, 2300, 1686, 1621, 1595, 1489, 1413, 1326, 1210, 1178, 1052, 908, 853, 734, 635 cm⁻¹; $[\alpha]_D^{28.1} = -389.6$ (c = 0.1, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃): $\delta = 1.32$ -1.37 (m, 3H, CH₂), 1.51-1.58 (m, 1H, CH₂), 1.60-1.69 (m, 4H, CH₂), 1.98-2.01 (m, 1H, CH₂), 2.02-2.09 (m, 1H, CH₂), 3.37 (t, J = 5.5 Hz, 1H, CH), 2.96-3.01 (m, 2H, CH), 4.01-4.05 (m, 1H, CH), 4.55 (d, J = 2.8 Hz, 1H, CH), 5.46 (t, J = 3.5 Hz, 1H, CH), 7.52 (d, J = 2.6 Hz, 1H, ArH), 7.79 (d, J = 2.6 Hz, 1H, ArH), 7.81 (d, J = 2.5 Hz, 1H, ArH), 8.19 (d, J = 2.5 Hz, 1H, ArH), 8.56 (s, 1H, ArH); ¹³C NMR (150

MHz, CDCl₃): δ = 22.0, 23.4, 27.6, 28.5, 34.9, 39.0, 56.5, 65.6, 65.9, 66.5, 84.0, 120.6, 122.3, 123.9, 124.2, 124.5, 124.8, 125.3, 126.7, 130.8, 133.8, 135.7, 151.0, 154.3, 156.1, 175.7, 190.2. HRMS (TOF ES⁺): m/z calcd for C₂₇H₂₂Cl₄NO₄ [(M+H)⁺], 564.0297; found, 564.0305.

(5a*R*,6*R*,11a*S*,11b*R*)-2-Fluoro-6-(6-fluoro-4-oxo-4*H*-chromen-3-yl)-5a,6,8,9,10,11, 11a,11b-octahydro-12*H*-chromeno[3,2-*a*]indolizin-12-one (3n')

White solid (142 mg, 67%); Mp: 154.2-155.4 °C; IR (KBr): 3460, 2944, 2775, 1688, 1661, 1624, 1459, 1409, 1372, 1301, 1211, 1158, 873, 756, 711, 600 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.25$ -1.43 (m, 3H, CH₂), 1.59 (d, J = 13.1 Hz, 1H, CH₂), 1.86-1.90 (m, 2H, CH₂), 1.99 (d, J = 12.8 Hz, 1H, CH₂), 2.58-2.61 (m, 1H, CH₂), 2.97 (t, J = 11.3 Hz, 1H, CH), 3.34 (t, J = 8.0 Hz, 1H, CH), 4.09 (d, J = 6.9 Hz, 1H, CH), 5.33-5.35(m, 1H, CH), 6.32-6.35 (m, 1H, ArH), 6.93-6.96 (m, 1H, ArH), 7.41-7.47 (m, 3H, ArH), 7.50 (d, J = 0.6 Hz, 1H, ArH), 7.91-7.93 (m, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): $\delta = 24.7$, 25.0, 27.8, 50.0, 52.8, 66.1, 66.8, 77.6, 110.6 (d, $J_2 = 24.0$ Hz), 111.4 (d, $J_2 = 22.5$ Hz), 118.4, 119.0 (d, $J_3 = 6.0$ Hz), 120.2 (d, $J_3 = 9.0$ Hz), 122.0 (d, $J_2 = 25.5$ Hz), 122.4 (d, $J_3 = 6.0$ Hz), 123.1 (d, $J_2 = 24.0$ Hz), 124.8 (d, $J_3 = 7.5$ Hz), 152.4, 155.4, 156.9 (d, $J_1 = 240.0$ Hz), 156.8, 159.6 (d, $J_1 = 246.0$ Hz), 176.7, 190.5; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = -114.9$, -121.4. HRMS (TOF ES⁺): m/z calcd for C₂₄H₂₀F₂NO₄ [(M+H)⁺], 424.1355; found, 424.1358.

(5a*R*,6*R*,11a*S*,11b*R*)-2-Chloro-6-(6-chloro-4-oxo-4*H*-chromen-3-yl)-5a,6,8,9,10,11 ,11a,11b-octahydro-12*H*-chromeno[3,2-*a*]indolizin-12-one (30')

Yellow solid (144 mg, 63%); Mp: 303.1-303.9 °C; IR (KBr): 3452, 2940, 2788,

1689, 1643, 1621, 1488, 1406, 1387, 1301, 1223, 1146, 874, 766, 712, 605 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.26-1.42 (m, 3H, CH₂), 1.59 (d, *J* = 12.8 Hz, 1H, CH₂), 1.87 (t, *J* = 11.1 Hz, 2H, CH₂), 1.98 (d, *J* = 10.0 Hz, 1H, CH₂), 2.59 (t, *J* = 8.5 Hz, 1H, CH₂), 2.97 (d, *J* = 11.1 Hz, 1H, CH), 3.35 (t, *J* = 8.1 Hz, 1H, CH), 4.08 (d, *J* = 6.7 Hz, 1H, CH), 5.34 (t, *J* = 7.6 Hz, 1H, CH), 6.34 (d, *J* = 8.8 Hz, 1H, ArH), 7.16 (t, *J* = 1.8 Hz, 1H, ArH), 7.42 (d, *J* = 8.9 Hz, 1H, ArH), 7.51 (s, 1H, ArH), 7.64 (d, *J* = 9.0 Hz, 1H, ArH), 7.71 (s, 1H, ArH), 8.24 (s, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): δ = 24.7, 25.0, 27.8, 50.0, 52.7, 66.2, 66.8, 77.8, 119.0, 119.1, 119.9, 122.7, 124.5, 125.2, 125.7, 126.6, 131.2, 134.0, 135.5, 154.5, 155.4, 159.0, 176.3, 190.2. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₄H₂₀Cl₂NO₄ [(M+H)⁺], 456.0764; found, 456.0766.

(5a*R*,6*R*,11a*S*,11b*R*)-2-Bromo-6-(6-bromo-4-oxo-4*H*-chromen-3-yl)-5a,6,8,9,10,11 ,11a,11b-octahydro-12*H*-chromeno[3,2-*a*]indolizin-12-one (3p')

Yellow solid (171 mg, 63%); Mp: 165.1-166.7 °C; IR (KBr): 3455, 2944, 2765, 1688, 1642, 1617, 1463, 1414, 1389, 1320, 1212, 1138, 867, 765, 703, 609 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.27-1.36 (m, 2H, CH₂), 1.38-1.42 (m, 1H, CH₂), 1.59 (d, *J* = 13.1 Hz, 1H, CH₂), 1.85-1.89 (m, 2H, CH₂), 1.97 (d, *J* = 8.6 Hz, 1H, CH₂), 2.58 (t, *J* = 10.1 Hz, 1H, CH₂), 2.97 (d, *J* = 11.2 Hz, 1H, CH), 3.35 (t, *J* = 8.1 Hz, 1H, CH), 4.07 (d, *J* = 6.7 Hz, 1H, CH), 5.34 (t, *J* = 7.3 Hz, 1H, CH), 6.29 (d, *J* = 8.8 Hz, 1H, ArH), 7.29-7.31 (m, 1H, ArH), 7.36 (d, *J* = 8.9 Hz, 1H, ArH), 7.52 (s, 1H, ArH), 7.77-7.78 (m, 1H, ArH), 7.86 (d, *J* = 2.3 Hz, 1H, ArH), 8.40 (d, *J* = 2.2 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 24.7, 25.0, 27.8, 50.0, 52.7, 66.2, 66.9, 77.8, 113.7, 118.7, 119.1, 119.4, 120.1, 123.1, 124.9, 128.5, 128.8, 136.7, 138.3, 155.0, 155.4, 159.4, 176.2, 189.9. HRMS (TOF ES⁺): *m*/z calcd for C₂₄H₂₀Br₂NO₄ [(M+H)⁺], 543.9754; found, 543.9753.

(5a*R*,6*R*,11a*S*,11b*R*)-6-(4-Oxo-4*H*-chromen-3-yl)-5a,6,8,9,10,11,11a,11b-octahydr o-12*H*-chromeno[3,2-*a*]indolizin-12-one (3q')

Yellow solid (114 mg, 59%); Mp: 156.3-157.4 °C; IR (KBr): 3457, 2938, 2795, 1681, 1649, 1611, 1468, 1416, 1382, 1307, 1221, 1148, 877, 760, 713, 606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.25-1.40 (m, 3H, CH₂), 1.57 (d, *J* = 12.8 Hz, 1H, CH₂), 1.84-1.91 (m, 2H, CH₂), 1.97-2.01 (m, 1H, CH₂), 2.59 (t, *J* = 8.2 Hz, 1H, CH₂), 2.98 (d, *J* = 11.4 Hz, 1H, CH), 3.36 (t, *J* = 8.1 Hz, 1H, CH), 4.11 (d, *J* = 6.6 Hz, 1H, CH), 5.32-5.36 (m, 1H, CH), 6.38 (d, *J* = 8.4 Hz, 1H, ArH), 6.92 (t, *J* = 7.2 Hz, 1H, ArH), 7.20-7.24 (m, 1H, ArH), 7.42-7.47 (m, 2H, ArH), 7.51 (s, 1H, ArH), 7.67-7.71 (m, 1H, ArH), 7.75-7.77 (m, 1H, ArH), 8.29-8.31 (m, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ = 24.8, 25.0, 27.8, 50.3, 52.6, 66.1, 66.8, 77.5, 117.5, 118.1, 118.8, 121.1, 122.1, 123.7, 125.2, 125.8, 126.2, 133.6, 135.7, 155.5, 156.2, 160.7, 177.6, 191.4. HRMS (TOF ES⁺): *m*/z calcd for C₂₄H₂₂NO₄ [(M+H)⁺], 388.1543; found, 388.1537.

(5a*R*,6*R*,11a*S*,11b*R*)-2-Methyl-6-(6-methyl-4-oxo-4*H*-chromen-3-yl)-5a,6,8,9,10,1 1,11a,11b-octahydro-12*H*-chromeno[3,2-*a*]indolizin-12-one (3r')

Yellow solid (120 mg, 57%); Mp: 99.1-99.2 °C; IR (KBr): 3444, 2988, 1660, 1605, 1543, 1469, 1356, 1259, 1168, 1036, 931, 834, 786, 644 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.18-1.31 (m, 3H, CH₂), 1.48 (d, *J* = 12.5 Hz, 1H, CH₂), 1.78 (t, *J* = 10.2 Hz, 2H, CH₂), 1.90 (d, *J* = 10.6 Hz, 1H, CH₂), 2.18 (s, 3H, CH₃), 2.41 (s, 3H, CH₃), 2.49 (t, *J* = 9.1 Hz, 1H, CH₂), 2.89 (d, *J* = 10.8 Hz, 1H, CH), 3.26 (t, *J* = 8.1 Hz, 1H, CH₂), 4.00 (d, *J* = 6.5 Hz, 1H, CH), 5.21 (t, *J* = 7.4 Hz, 1H, CH), 6.19 (d, *J* = 8.3 Hz, 1H, ArH), 6.95 (d, *J* = 8.3 Hz, 1H, ArH), 7.25 (d, *J* = 8.5 Hz, 1H, ArH), 7.41 (s, 1H, ArH), 7.46 (s, 1H, ArH), 7.99 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 20.4, 21.0, 24.8, 25.0, 27.9, 50.4, 52.6, 66.3, 66.9, 77.3, 117.3, 117.8, 118.6, 121.7, 123.4, 125.1, 125.8, 130.4, 134.8, 135.1, 136.7, 154.5, 155.4, 158.7, 177.7, 191.6. HRMS (TOF ES⁺): *m*/z calcd for C₂₆H₂₆NO₄

(5a*R*,6*R*,11a*S*,11b*R*)-2-Isopropyl-6-(6-isopropyl-4-oxo-4*H*-chromen-3-yl)-5a,6,8,9 ,10,11,11a,11b-octahydro-12*H*-chromeno[3,2-*a*]indolizin-12-one (3s')

Yellow solid (141 mg, 60%); Mp: 95.1-96.2 °C; IR (KBr): 3448, 2967, 1679, 1602, 1545, 1465, 1359, 1277, 1162, 1033, 931, 835, 796, 643 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.20 (s, 3H, CH₃), 1.21 (s, 3H, CH₃), 1.26-1.32 (m, 2H, CH₂), 1.33 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.40 (d, *J* = 12.3 Hz, 1H, CH₂), 1.56 (d, *J* = 13.1 Hz, 1H, CH₂), 1.83-1.90 (m, 1H, CH₂), 1.99 (d, *J* = 11.2 Hz, 1H, CH₂), 2.60 (d, *J* = 8.6 Hz, 1H, CH₂), 2.82-2.85 (m, 1H, CH), 2.97 (d, *J* = 11.1 Hz, 1H, CH), 3.05-3.08 (m, 1H, CH), 3.34 (t, *J* = 8.3 Hz, 1H, CH), 4.10 (d, *J* = 6.4 Hz, 1H, CH), 5.25-5.28 (m, 1H, CH), 6.35 (d, *J* = 8.5 Hz, 1H, ArH), 7.10-7.13 (m, 1H, ArH), 7.36 (d, *J* = 8.6 Hz, 1H, ArH), 7.53-7.60 (m, 3H, ArH), 8.13 (d, *J* = 2.1 Hz, 1H, ArH); ¹³C NMR (125 MHz, CDCl₃): δ = 23.8, 23.9, 23.95, 23.98, 24.9, 25.0, 27.9, 33.2, 33.8, 50.3, 52.5, 65.9, 66.9, 77.3, 117.4, 117.9, 118.4, 121.4, 122.5, 123.1, 123.5, 132.5, 134.4, 141.5, 146.0, 154.7, 155.6, 159.0, 177.8, 191.6. HRMS (TOF ES⁺): *m*/*z* calcd for C₃₀H₃₄NO₄ [(M+H)⁺], 472.2482; found, 472.2487.

(5a*R*,6*R*,11a*S*,11b*R*)-2-Chloro-6-(6-chloro-7-methyl-4-oxo-4*H*-chromen-3-yl)-3-m ethyl-5a,6,8,9,10,11,11a,11b-octahydro-12*H*-chromeno[3,2-*a*]indolizin-12-one (3t')

White solid (126 mg, 52%); Mp: 189.2-190.1 °C; IR (KBr): 3455, 2999, 1677, 1607, 1566, 1465, 1346, 1239, 1167, 1034, 933, 831, 726, 639 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.25-1.39 (m, 3H, CH₂), 1.58 (d, *J* = 12.8 Hz, 1H, CH₂), 1.84-1.90 (m, 2H, CH₂), 1.97 (d, *J* = 9.7 Hz, 1H, CH₂), 2.13 (s, 3H, CH₃), 2.52 (s, 3H, CH₃), 2.58 (t, *J* = 8.6 Hz, 1H, CH₂), 2.96 (d, *J* = 11.0 Hz, 1H, CH), 3.30 (t, *J* = 8.1 Hz, 1H, CH), 4.07 (d, *J* = 6.5 Hz, 1H, CH), 5.29 (t, *J* = 7.4 Hz, 1H, CH), 6.25 (s, 1H, ArH), 7.33 (s, 1H, ArH), 7.48 (s, 1H, ArH), 7.70 (s, 1H, ArH), 8.23 (s, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 20.4, 20.8, 24.8, 25.0, 27.8, 49.9, 52.6, 65.9, 66.8, 77.8, 118.7, 119.4, 119.7, 120.9, 122.8, 125.5, 126.0, 127.2, 132.0, 143.0, 144.7, 154.5, 155.3, 158.9, 176.3, 189.8. HRMS (TOF ES⁺): *m/z* calcd for C₂₆H₂₄Cl₂NO₄ [(M+H)⁺], 484.1077; found, 484.1077.

(5a*R*,6*R*,11a*S*,11b*R*)-2,4-Dichloro-6-(6,8-dichloro-4-oxo-4*H*-chromen-3-yl)-5a,6,8, 9,10,11,11a,11b-octahydro-12*H*-chromeno[3,2-*a*]indolizin-12-one (3u')

White solid (155 mg, 59%); Mp: 211.0-212.3 °C; IR (KBr): 3442, 2982, 1678, 1621, 1546, 1458, 1354, 1255, 1170, 1032, 933, 837, 790, 634 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.21-1.47 (m, 3H, CH₂), 1.67 (d, *J* = 12.8 Hz, 1H, CH₂), 1.93 (t, *J* = 9.5 Hz, 2H, CH₂), 2.03 (d, *J* = 12.6 Hz, 1H, CH₂), 2.66 (t, *J* = 9.1 Hz, 1H, CH₂), 3.07 (d, *J* = 11.3 Hz, 1H, CH), 3.50 (t, *J* = 8.3 Hz, 1H, CH), 4.13 (d, *J* = 6.5 Hz, 1H, CH), 5.55 (t, *J* = 7.9 Hz, 1H, CH), 7.44 (d, *J* = 2.2 Hz, 1H, ArH), 7.66 (s, 1H, ArH), 7.71 (d, *J* = 2.2 Hz, 1H, ArH), 7.81 (d, *J* = 2.1 Hz, 1H, ArH), 8.21 (d, *J* = 2.1 Hz, 1H, ArH); ¹³C NMR (150 MHz, CDCl₃): δ = 24.6, 24.8, 27.9, 50.1, 52.8, 66.6, 67.1, 78.7, 119.0, 123.6, 123.6, 123.9, 124.4, 124.4, 125.6, 126.4, 130.9, 133.8, 135.1, 150.7, 154.5, 155.2, 175.8, 189.5. HRMS (TOF ES⁺): *m/z* calcd for C₂₄H₁₈Cl₄NO₄ [(M+H)⁺], 523.9984; found, 523.9989.

Figure S1. X-Ray crystal structure of 3j

Table S1. Crystal data and structure refinement for 3j

Identification code	1	
Empirical formula	$C_{39}H_{29}NO_4$	
Formula weight	455.53	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, P2(1)	
Unit cell dimensions	a = 6.8138(6) Å	$\alpha = 90.0$ °.
	b = 10.4409(11) Å	$\beta = 93.287(4)$ °.
	c = 16.4586(19) Å	$\gamma = 90.0$ °.
Volume	$1169.0(2) \text{ Å}^3$	
Z	2	
Density (calculated)	1.294 Mg/m^3	
Absorption coefficient	0.086 mm^{-1}	
F(000)	484	
Theta range for data collection	2.311 to 28.297 °.	
Crystal size	0.420 x 0.210 x 0.180 r	nm
Limiting indices	-9<=h<=8, -13<=k<=13	3, -19<=l<=21
Reflections collected / unique	15794 / 6022 [R(int) =	0.0618]
Independent reflections	6522 [R(int) = 0.0207,	R(sigma) = 0.0549]
Completeness to theta $= 25.242$	99.9 %	
Absorption correction	Semi-empirical from ec	juivalents
Refinement method	Full-matrix least-square	es on F^2
Data / restraints / parameters	5940 / 1 / 310	
Goodness-of-fit on F^2	1.055	
Final R indexes [I>=2sigma(I)]	$R_1 = 0.0569, wR_2 = 0.1$	112
Final R indexes (all data)	$R_1 = 0.1172, wR_2 = 0.1$	449
Extinction coefficient	0.055(5)	
Largest diff. peak and hole	$0.162 \text{ and } -0.229 \text{ e.Å}^{-3}$	

 Atom	Atom	Length/Å	Atom	Atom	Length/Å
 O(1)	C(4)	1.349(5)	C(13)	H(3)	0.9300
O (1)	C(3)	1.372(5)	C(14)	C(15)	1.394(6)
O(2)	C(8)	1.221(5)	C(14)	H(29)	0.9300
O(3)	C(26)	1.233(4)	C(16)	C(17)	1.526(5)
O(4)	C(15)	1.360(5)	C(16)	H(28)	0.9800
O(4)	C(16)	1.445(5)	C(17)	C(24)	1.533(6)
N(1)	C(6)	1.459(5)	C(17)	H(27)	0.9800
N(1)	C(18)	1.475(5)	C(18)	C(23)	1.512(6)
N(1)	C(17)	1.497(5)	C(18)	C(19)	1.516(6)
C(1)	C(2)	1.371(7)	C(18)	H(19)	0.9800
C(1)	C(28)	1.380(7)	C(19)	C(20)	1.526(6)
C(1)	H(1)	0.9300	C(19)	C(24)	1.535(6)
C(2)	C(3)	1.388(6)	C(19)	H(18)	0.9800
C(2)	H(22)	0.9300	C(20)	C(21)	1.521(7)
C(3)	C(25)	1.381(5)	C(20)	H(14)	0.9700
C(4)	C(5)	1.337(5)	C(20)	H(15)	0.9700
C(4)	H(21)	0.9300	C(21)	C(22)	1.509(7)
C(5)	C(26)	1.453(5)	C(21)	H(12)	0.9700
C(5)	C(6)	1.506(6)	C(21)	H(13)	0.9700
C(6)	C(7)	1.576(6)	C(22)	C(23)	1.510(6)
C(6)	H(20)	0.9800	C(22)	H(8)	0.9700
C(7)	C(8)	1.509(6)	C(22)	H(11)	0.9700
C(7)	C(16)	1.512(5)	C(23)	H(10)	0.9700
C(7)	H(7)	0.9800	C(23)	H(9)	0.9700
C(8)	C(9)	1.463(6)	C(24)	H(16)	0.9700
C(9)	C(10)	1.394(6)	C(24)	H(17)	0.9700
C(9)	C(15)	1.398(5)	C(25)	C(27)	1.385(5)
C(10)	C(11)	1.384(6)	C(25)	C(26)	1.467(6)
C(10)	H(4)	0.9300	C(27)	C(28)	1.383(7)
C(11)	C(13)	1.391(6)	C(27)	H(26)	0.9300
C(11)	C(12)	1.496(7)	C(28)	C(29)	1.509(7)
C(12)	H(5)	0.9600	C(29)	H(25)	0.9600
C(12)	H(2)	0.9600	C(29)	H(24)	0.9600
C(12)	H(6)	0.9600	C(29)	H(23)	0.9600
C(13)	C(14)	1.372(6)			

Table S2. Bond Lengths [Å] for 3j

Figure S2. X-Ray crystal structure of 3p'

Identification code	1	
Empirical formula	$C_{24}H_{19}Br_2NO_4$	
Formula weight	545.22	
Temperature	150.00 K	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 11.9588(12) Å	$\alpha = 90$ °.
	b = 14.9466(14) Å	$\beta = 110.475(5)$ °.
37.1	c = 12.5105(14) A	$\gamma = 90$ °.
volume	2094.9(4) Å	
Z	4	
Density (calculated)	1.729g/cm ²	
Absorption coefficient	3.902 mm^{-1}	
F(000)	1088	
Theta range for data collection	2.028 to 28.331 °.	
Index ranges	-15<=h<=14, -19<=k<=1	9, -16<=l<=16
Reflections collected	28620	
Reflections unique	5157 [R(int) = 0.0955]	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	5157 / 0 / 280	
Goodness-of-fit on F^2	1.040	
Final R indexes [I>=2sigma(I)]	$R_1 = 0.0440, wR_2 = 0.090$	09
Final R indexes (all data)	$R_1 = 0.1054, wR_2 = 0.113$	88
Extinction coefficient	n/a	
Largest diff. peak and hole	$0.770 \text{ and } -0.848 \text{ e.\AA}^{-3}$	

Table S3. Crystal data and structure refinement for 3p'

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br(1)	C(1)	1.896(4)	C(10)	C(16)	1.495(5)
Br(2)	C(23)	1.899(4)	C(11)	H(11A)	0.9900
O(1)	C(4)	1.368(5)	C(11)	H(11B)	0.9900
O(1)	C(9)	1.435(5)	C(11)	C(12)	1.516(5)
O(2)	C(7)	1.217(4)	C(12)	H(12A)	0.9900
O(3)	C(17)	1.357(4)	C(12)	H(12B)	0.9900
O(3)	C(18)	1.370(4)	C(12)	C(13)	1.523(6)
O(4)	C(20)	1.227(4)	C(13)	H(13A)	0.9900
N(1)	C(10)	1.459(4)	C(13)	H(13B)	0.9900
N(1)	C(11)	1.466(5)	C(13)	C(14)	1.526(6)
N(1)	C(15)	1.474(5)	C(14)	H(14A)	0.9900
C(1)	C(2)	1.380(6)	C(14)	H(14B)	0.9900
C(1)	C(6)	1.373(6)	C(14)	C(15)	1.518(5)
C(2)	H(2)	0.9500	C(15)	H(15)	1.0000
C(2)	C(3)	1.378(6)	C(16)	C(17)	1.335(5)
C(3)	H(3)	0.9500	C(16)	C(20)	1.456(5)
C(3)	C(4)	1.391(5)	C(17)	H(17)	0.9500
C(4)	C(5)	1.386(5)	C(18)	C(19)	1.387(5)
C(5)	C(6)	1.404(6)	C(18)	C(21)	1.392(5)
C(5)	C(7)	1.474(5)	C(19)	C(20)	1.468(5)
C(6)	H(6)	0.9500	C(19)	C(24)	1.401(5)
C(7)	C(8)	1.512(5)	C(21)	H(21)	0.9500
C(8)	H(8)	1.0000	C(21)	C(22)	1.370(6)
C(8)	C(9)	1.549(5)	C(22)	H(22)	0.9500
C(8)	C(15)	1.543(6)	C(22)	C(23)	1.390(6)
C(9)	H(9)	1.0000	C(23)	C(24)	1.373(5)
C(9)	C(10)	1.559(5)	C(24)	H(24)	0.9500
C(10)	H(10)	1.0000			

Table S4. Bond Lengths [Å] for 3p'

DEPT135

DEPT135

Figure S11. ¹H NMR (400 MHz, CDCl₃) spectra of compound 3e'

Figure S15. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 3f

YunNan University AVANCEHDIII 500M CLF-51-1 Oct17-2022-chenli F19CPD CDCl3

Figure S18. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 3f'

Figure S24. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3h

Figure S27. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3i

S49

Figure S29. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3j

Figure S33. ¹H NMR (600 MHz, CDCl₃) spectra of compound 31

S57

Figure S37. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3m

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLF-49 Apr26-2022-chenli F19CPD CDCl3

Figure S43. ¹⁹F NMR (564 MHz, CDCl₃) spectra of compound 3n'

Figure S46. ¹H NMR (600 MHz, CDCl₃) spectra of compound **3p'**

DEPT135

DEPT135

Figure S58. HPLC of the reaction mixture

Figure S59. HRMS of intermediate 1d

Figure S60. HRMS of intermediate 2b

Figure S61. HRMS of intermediate 4i

Figure S62. HRMS of intermediate 5i

Figure S63. HRMS of intermediate 7i/8i/9i

Figure S64. HRMS of intermediate 7i/8i/9i

Figure S65. HRMS of intermediate 7i/8i/9i

Figure S66. HRMS of intermediate 10i

Figure S67. HRMS of intermediate 3i

References and Notes

1. CCDC 2182166 and 2181908 contains the supplementary crystallographic data for compounds **3j** and **3p'**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>