Supporting Information

for

Cross-Coupling of Aldehydes and α-Bromophosphonates to Modularly Access α-Substituted- $\boldsymbol{\beta}$-Ketophosphonates under Dual Nickel/Photoredox Catalysis

Xinxuan Lit ‡, Hepan Wang ${ }^{\neq}$, and Tao XU
Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China
Email:.taoxu@tongji.edu.cn

1. General Considerations S2
2. Reaction Optimization S3
3. Supplementary Methods S7
4. The characterization of the compounds S11
5. Supplimentary References S33
6. Spectra data for the compounds S34

1. General Considerations

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on a Bruker Avance 400,600 spectrometers, and CDCl_{3} was purchased from $\mathrm{J} \& K$. Chemical shifts are given in ppm with the internal standards as TMS (0 ppm for ${ }^{1} \mathrm{H}$) and CDCl_{3} (77.0 ppm for ${ }^{13} \mathrm{C}$). Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. GC spectra were recorded on Agilent Technologies 7890A spectrometer; GC-MS spectra were conducted on Shimadzu GC-MS-QP2010 SE W spectrometer; High-resolution mass spectra HRMS-ESI were obtained from a Bruker microTOF-II instrument;

The 390nm LEDs were purchased from www.taobao.com. The reaction tubes were positioned $4-6 \mathrm{~cm}$ from the LEDs (Figure S1), and the temperature was controlled between $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ using fans and an air conditioner.

Figure S1. Photochemical Setup
α-bromophosphonates, α-bromosulfonamides and α-bromosulfones were conveniently synthesized in gram scale according to the literature ${ }^{[\mathrm{S} 1-3]}$. The aldehydes were purified before using, and other reagents and starting materials were purchased from commercial sources and used without further purification. TBADT and TBPDT were prepared according to the literature ${ }^{[S 4,5]}$. All reactions were performed under a N_{2} atmosphere using dried solvents which were dried and purified according to the procedure from 'Purification of Laboratory Chemicals book'. For the NMR spectra, data are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet; coupling constants in Hz ; integration.

2. Reaction Optimization

General procedure for Reaction Optimization

All optimization reactions were set up in a glove box under a N_{2} atmosphere.
An oven-dried $10-\mathrm{mL}$ Schlenk tube containing a Teflon stir bar was charged with TBADT ($0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$), Ni-catalyst ($0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$), ligand (0.012 $\mathrm{mmol}, 12 \mathrm{~mol} \%$), base ($0.25 \mathrm{mmol}, 2.5$ equiv.), and solvent (1 mL). Then aldehyde $\mathbf{1}$ ($0.15 \mathrm{mmol}, 1.5$ equiv.) and $2(0.1 \mathrm{mmol}, 1.0$ equiv.) were added via micro-syringes. Once added, the tube was sealed, and the reaction mixture was stirred and irradiated under LED lamps ($\lambda=390-395 \mathrm{~nm}$) for 12 hours, while the temperature was controlled at approximately $18{ }^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$ by cooling with fans and an air-conditioner. Upon completion, the reaction mixture was quenched with water and diluted with EtOAc before the internal standard (n-dodecane) was added. The yield was determined by GC analysis.
Supplementary Table 1. Screening results on ligand

L6

L7

L9

L10

L15

Entry	Ni-cat	Ligand	solvent	base	PC	3 Yield (\%)	4 Yield (\%)
$\mathbf{1}$	$\mathrm{NiBr}_{2}(\mathrm{DME})$	$\mathbf{L 1}$	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	$96(91)^{a}$	2
$\mathbf{2}$	$\mathrm{NiBr}_{2}(\mathrm{DME})$	$\mathbf{L 2}$	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	42	36
$\mathbf{3}$	$\mathrm{NiBr}_{2}(\mathrm{DME})$	$\mathbf{L 3}$	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	50	29

| $\mathbf{4}$ | NiBr_{2} (DME) | $\mathbf{L 4}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 17 | 60 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | NiBr_{2} (DME) | $\mathbf{L 5}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 77 | 22 |
| $\mathbf{6}$ | NiBr_{2} (DME) | $\mathbf{L 6}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 39 | 25 |
| $\mathbf{7}$ | NiBr_{2} (DME) | $\mathbf{L 7}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 40 | 26 |
| $\mathbf{8}$ | NiBr_{2} (DME) | $\mathbf{L 8}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 38 | 38 |
| $\mathbf{9}$ | NiBr_{2} (DME) | $\mathbf{L 9}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 30 | 67 |
| $\mathbf{1 0}$ | NiBr_{2} (DME) | $\mathbf{L 1 0}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 52 | 25 |
| $\mathbf{1 1}$ | NiBr_{2} (DME) | $\mathbf{L 1 1}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 35 | 27 |
| $\mathbf{1 2}$ | NiBr_{2} (DME) | $\mathbf{L 1 2}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 11 | 24 |
| $\mathbf{1 3}$ | NiBr_{2} (DME) | $\mathbf{L 1 3}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | n.d. | 23 |
| $\mathbf{1 4}$ | NiBr_{2} (DME) | $\mathbf{L 1 4}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | n.d. | 24 |
| $\mathbf{1 5}$ | NiBr_{2} (DME) | $\mathbf{L 1 5}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 17 | 60 |
| $\mathbf{1 6}$ | NiBr_{2} (DME) | $\mathbf{L 1 6}$ | Acetone | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | TBADT | 77 | 22 |

${ }^{a}$ Isolated yield on 0.2 mmol scale

Supplementary Table 2. Screening results on solvent

Entry	Ni-cat	Ligand	solvent	base	PC	3 Yield (\%)	4 Yield (\%)
$\mathbf{1}$	NiBr_{2} (DME)	$\mathbf{L 1}$	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	$96(91)$	2
$\mathbf{2}$	NiBr_{2} (DME)	$\mathbf{L 1}$	MeCN	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	89	9
$\mathbf{3}$	$\mathrm{NiBr}_{2}(\mathrm{DME})$	$\mathbf{L 1}$	DMA	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	n.d.	57
$\mathbf{4}$	$\mathrm{NiBr}_{2}(\mathrm{DME})$	$\mathbf{L 1}$	THF	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	n.d.	17
$\mathbf{5}$	$\mathrm{NiBr}_{2}(\mathrm{DME})$	$\mathbf{L 1}$	Dioxane	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	n.d.	5
$\mathbf{6}$	$\mathrm{NiBr}_{2}(\mathrm{DME})$	$\mathbf{L 1}$	DME	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	n.d.	17

Supplementary Table 3. Screening results on base

							 4
Entry	Ni-cat	Ligand	solvent	base	PC	3 Yield (\%)	4 Yield (\%)
1	$\mathrm{NiBr}_{2}(\mathrm{DME})$	L1	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	96(91)	2
2	$\mathrm{NiBr}_{2}(\mathrm{DME})$	L1	Acetone	NaHCO_{3}	TBADT	66	5
3	NiBr_{2} (DME)	L1	Acetone	$\mathrm{Li}_{3} \mathrm{PO}_{4}$	TBADT	n.d.	22
4	NiBr_{2} (DME)	L1	Acetone	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	TBADT	65	8
5	NiBr_{2} (DME)	L1	Acetone	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	TBADT	48	15
6	$\mathrm{NiBr}_{2}(\mathrm{DME})$	L1	Acetone	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	TBADT	n.d.	14

Supplementary Table 4. Screening results on Ni-cat

 Ph 1							 4
Entry	Ni-cat	Ligand	solvent	base	PC	3 Yield (\%)	4 Yield (\%)
1	$\mathrm{NiBr}_{2}(\mathrm{DME})$	L1	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	96(91)	2
2	$\mathrm{NiCl}_{2}(\mathrm{DME})$	L1	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	85	9
3	NiI_{2}	L1	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	79	6
4	$\mathrm{Ni}(\mathrm{COD})_{2}$	L1	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	84	10
5	NiBr_{2}	L1	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	83	12

Supplementary Table 5. Screening results on PC

$\mathbf{1}$	$\mathrm{NiBr}_{2}(\mathrm{DME})$	$\mathbf{L 1}$	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBADT	$96(91)$	2
$\mathbf{2}$	NiBr_{2} (DME)	$\mathbf{L 1}$	Acetone	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBPDT	74	11

Supplementary Table 6. Control reactions

3. Supplementary Methods

3.1 General procedure for $\boldsymbol{\beta}$-ketophosphonates:

Standard conditions

In a glove box, an oven-dried $10-\mathrm{mL}$ Schlenk tube containing a Teflon stir bar was charged with TBADT ($0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$), NiBr_{2} (DME) ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), ligand L1 ($0.024 \mathrm{mmol}, 12 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol}, 2.5$ equiv.), and Acetone (2 ml). Then aldehyde 1 ($0.3 \mathrm{mmol}, 1.5$ equiv.) and alkyl bromide ($0.2 \mathrm{mmol}, 1.0$ equiv.) were added via micro-syringes. Once added, the tube was sealed, and the reaction mixture was stirred and irradiated under LED lamps ($\lambda=390-395 \mathrm{~nm}$) for 12 hours, while the temperature was controlled at approximately $18^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$ by cooling with fans and an air-conditioner. Upon completion, the reaction mixture was quenched with water and diluted with EtOAc. The aqueous solution was extracted with EtOAc three times. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite, and concentrated in vacuo. The residues were purified by silica gel column chromatography with a gradient eluent of petroleum ether/ethyl acetate or petroleum ether/dichloromethane affording product $\mathbf{3}(61.8 \mathrm{mg}, 91 \%$ yield).

3.2 General procedure for the scale-up reaction:

Standard conditions

In a glove box, an oven-dried $50-\mathrm{mL}$ Schlenk tube containing a Teflon stir bar was charged with TBADT ($0.15 \mathrm{mmol}, 5 \mathrm{~mol} \%$), NiBr_{2} (DME) ($0.3 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathbf{L 1}$ ($0.36 \mathrm{mmol}, 12 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(7.5 \mathrm{mmol}, 2.5$ equiv.), and Acetone (15 ml). Then aldehyde 1 ($4.5 \mathrm{mmol}, 1.5$ equiv.) and 2 ($3 \mathrm{mmol}, 1.0$ equiv.) were added via micro-syringes. Once added, the tube was sealed, and the reaction mixture was stirred and irradiated under LED lamps ($\lambda=390-395 \mathrm{~nm}$) for 24 hours, while the temperature was controlled at approximately $18^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$ by cooling with fans and an air-conditioner. Upon completion, the reaction mixture was quenched with water and diluted with EtOAc. The aqueous solution was extracted with EtOAc three times. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite, and concentrated in vacuo. The residues were purified by silica gel column
chromatography with a gradient eluent of petroleum ether/ethyl acetate or petroleum ether/dichloromethane affording product 3 ($0.903 \mathrm{~g}, 88 \%$ yield).

3.3 General procedure for applications of the products:

According to the literature ${ }^{[56]}, \beta$-ketophosphonate $3(0.1 \mathrm{mmol})$ was mixed with bromotrimethylsilane ($0.13 \mathrm{~mL}, 1 \mathrm{mmol}, 10$ equiv.) and stirred at room temperature for 36 hours. The excess of bromotrimethylsilane was then evaporated, and the mixture was hydrolyzed with $\mathrm{MeOH}(5 \mathrm{ml})$ for 5 hours. MeOH was then evaporated and the crude dried under high vacuum conditions, affording the desired product $\mathbf{5 0}$ ($27.0 \mathrm{mg} 96 \%$ yield) as an orange solid.

According to the literature ${ }^{[57]}$, In a flame-dried Schlenk tube equipped with a magnetic stirring bar, $\mathrm{Zn}\left(\mathrm{OTf}_{2} \quad(0.01 \mathrm{mmol}, 0.1\right.$ equiv.) and (S,S)-(-)-2,2'-isopropylidenebis(4-tert-butyl-2-oxazoline) ($0.011 \mathrm{mmol}, 0.12$ equiv.) were added, followed by dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and the suspension was stirred in the dark for 6 h . β - ketophosphonates $3(0.1 \mathrm{mmol}, 1$ equiv.) was then added, followed by N-chlorosuccinimide ($0.11 \mathrm{mmol}, 1.1$ equiv.). After 20 h stirring in the dark at room temperature, the solution was concentrated in vacuo. The residues were purified by silica gel column chromatography (petroleum ether / ethyl acetate $=7: 1$) to give compound 51 ($35.8 \mathrm{mg} 96 \%$ yield) as a colorless oil.

According to the literature ${ }^{[88]}$, to a suspension of $60 \% \mathrm{NaH}(0.2 \mathrm{mmol}, 1$ equiv.) in dry THF (1 mL), β-ketophosphonate $\mathbf{3}(0.2 \mathrm{mmol}, 1$ equiv.) in dry THF (1 mL) was added slowly under N_{2} at rt . The mixture was stirred for 1 hour. Allyl bromide (0.4 mmol, 2 equiv.) was added followed by stirring of the mixture for $4 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL}$, aq) was added, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent, the residue was chromatographed (silica gel, petroleum ether / ethyl acetate) to give compound $52(18.4 \mathrm{mg}, 48 \%$ yield) as a colorless oil.

According to the literature ${ }^{[S 9]}$, to a suspension of $60 \% \mathrm{NaH}(0.22 \mathrm{mmol}, 1.1$ equiv.) in dry THF (1 mL), β-ketophosphonate $\mathbf{3}(0.2 \mathrm{mmol}, 1$ equiv.) in dry THF (1 mL) was added under N_{2} at rt . The mixture was stirred for 1 hour. 4-Cyanobenzaldehyde ($0.4 \mathrm{mmol}, 2$ equiv.) was added followed by stirring of the mixture overnight. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL}$, aq) was added, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent, the residue was chromatographed (silica gel, petroleum ether / ethyl acetate) to give compound $\mathbf{5 3}$ ($54.9 \mathrm{mg}, 86 \%$ yield, $\mathrm{E} / \mathrm{Z}=6.7: 1$, determined by HNMR) as a colorless oil.

3.4 General procedure for mechanism studies:

An oven-dried $10-\mathrm{mL}$ Schlenk tube containing a Teflon stir bar was charged with TBADT ($0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$), Ni-catalyst ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), ligand (0.024 mmol , $12 \mathrm{~mol} \%$), base ($0.5 \mathrm{mmol}, 2.5$ equiv.), and solvent (2 mL). Then aldehyde $\mathbf{1}(0.3$ mmol, 1.5 equiv.), $\mathbf{2}$ ($0.2 \mathrm{mmol}, 1.0$ equiv.), and compound 54 ($0.6 \mathrm{mmol}, 3.0$ equiv.) were added via micro-syringes. Once added, the tube was sealed, and the reaction mixture was stirred and irradiated under LED lamps ($\lambda=390-395 \mathrm{~nm}$) for 12 hours, while the temperature was controlled at approximately $18{ }^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$ by cooling with fans and an air-conditioner. Upon completion, the reaction mixture was quenched with water and diluted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite, and concentrated in vacuo. Flash chromatography on silica gel eluting with petroleum ether/ethyl acetate afforded the pure product 55 ($27.9 \mathrm{mg}, 32 \%$ yield, light yellow oil).

An oven-dried $10-\mathrm{mL}$ Schlenk tube containing a Teflon stir bar was charged with TBADT ($0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$), 20base ($0.5 \mathrm{mmol}, 2.5$ equiv.), and solvent (2 mL). Then aldehyde $\mathbf{1}$ ($0.3 \mathrm{mmol}, 1.5$ equiv.), $\mathbf{2}$ ($0.2 \mathrm{mmol}, 1.0$ equiv.), and compound $\mathbf{5 4}$
($0.6 \mathrm{mmol}, 3.0$ equiv.) were added via micro-syringes. Once added, the tube was sealed, and the reaction mixture was stirred and irradiated under LED lamps ($\lambda=$ $390-395 \mathrm{~nm}$) for 12 hours, while the temperature was controlled at approximately 18 ${ }^{\circ} \mathrm{C}-25{ }^{\circ} \mathrm{C}$ by cooling with fans and an air-conditioner. Upon completion, the reaction mixture was quenched with water and diluted with EtOAc. The yields were determined by FNMR analysis.

4. The characterization of the compounds

3
The title compound $\mathbf{3}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=5: 1,91 \%$ yield, 61.8 mg , colorless oil).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), ~ 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}$, 2H), 4.14-4.03 (m, 4H), 3.16 (ddd, $J=24.7,10.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.71(\mathrm{~m}, 1 \mathrm{H})$, 2.69-2.61 (m, 1H), 2.54-2.46 (m, 1H), 2.44-2.33 (m, 2H), 2.13-2.03 (m, 1H), $1.58-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.8(\mathrm{~d}, J=4.4 \mathrm{~Hz}$), 140.5, 128.49, 128.48, 126.2, $62.6(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 51.8(\mathrm{~d}, J=124.5 \mathrm{~Hz}), 44.1,34.2(\mathrm{~d}, J=$ $15.1 \mathrm{~Hz}), 27.8(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 25.5,22.1,16.3(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=6.1 \mathrm{~Hz})$, 13.9.
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.43$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{P}: 341.1786$, found: 341.1786.

5
The title compound 5 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,65 \%$ yield, 51.3 mg , yellow oil, $1: 1 d r$ determined by H NMR).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.14-4.03(\mathrm{~m}, 8 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{dd}, J=18.1,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.70-2.64 (m, 2H), 2.62 (dd, $J=17.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{dd}, J=$ $17.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{dd}, J=18.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.13$ (m, $1 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{td}, J=7.1,3.2 \mathrm{~Hz}, 12 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.05$ (m, 2H), 0.93 (dd, $J=10.5,6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.91$ (s, 18H).
${ }^{13}$ C NMR (151 MHz, CDCl3) δ 205.10, 205.07, 204.98, 204.95, 140.6, 140.50, $128.49,128.47,126.25,126.24,62.6(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 62.4$ (d, $J=$ $3.4 \mathrm{~Hz}), 54.01,54.00,52.2(\mathrm{~d}, J=124.9 \mathrm{~Hz}), 51.8(\mathrm{~d}, J=124.4 \mathrm{~Hz}), 50.9,50.5,34.2$ (d, $J=11.6 \mathrm{~Hz}$), 34.1 (d, $J=11.6 \mathrm{~Hz}$), 31.1, 31.1, $30.03,29.98,27.9$ (d, $J=4.7 \mathrm{~Hz}$), $27.6(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 25.0,24.9,22.8,22.4,16.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.33(\mathrm{~d}, J=6.1$ Hz).
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.53,22.44$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{P}: 397.2502$, found: 397.2502.

6
The title compound $\mathbf{6}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel (PE:EA $=3.5: 1,69 \%$ yield, 63.4 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.10-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.70-2.54 (m, 2H), 2.52-2.29 (m, 2H), 2.20-1.93 (m, 1H), 1.33-1.20 (m, 6H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}$), 145.1, 140.3, 128.9, 128.5, $128.44,128.42(\mathrm{q}, J=32.4 \mathrm{~Hz}), 126.3,125.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272.7 \mathrm{~Hz})$, 62.7 (d, $J=6.8 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 52.0(\mathrm{~d}, J=124.5 \mathrm{~Hz}), 45.1,34.0(\mathrm{~d}, J=$ $14.6 \mathrm{~Hz}), 29.1,27.5(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 16.25(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 16.22(\mathrm{~d}, J=6.2 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.93$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{FO}_{4} \mathrm{P}: 457.1750$, found: 457.1750.

7
The title compound 7 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,81 \%$ yield, 60.6 mg , colorless oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.22-4.01(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.22 (ddd, $J=24.7,10.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.89 (dt, $J=18.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (ddd, $J=14.1,8.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dt}, J=13.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.24-2.09 (m, 1H), 1.90-1.72 (m, 4H), $1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 140.4,128.5,128.4,126.2,62.7$ (d, $J=6.7 \mathrm{~Hz}$), 62.5 (d, $J=6.9 \mathrm{~Hz}$), 51.9 (d, $J=124.6 \mathrm{~Hz}), 44.5,43.2,34.1$ (d, $J=$ $14.7 \mathrm{~Hz}), 31.6,27.6(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 20.6,16.3(\mathrm{~d}, J=6.0 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.19$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{ClO}_{4} \mathrm{P}: 375.1487$, found: 375.1487.

8
The title compound $\mathbf{8}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,46 \%$ yield, 33.3 mg , colorless oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}$, 2H), 4.09-3.94 (m, 4H), 3.08 (ddd, $J=24.9,10.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04-2.93 (m, 1H), 2.70-2.53 (m, 4H), 2.51-2.41 (m, 1H), 2.39-2.26 (m, 1H), 2.04 (s, 3H), 2.03-1.94 (m, $1 \mathrm{H}) 1.23$ (td, $J=7.1,2.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 203.9$ (d, $J=4.4 \mathrm{~Hz}$), 140.4, 128.49, 128.48, 126.3, $62.7(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 52.0(\mathrm{~d}, J=124.7 \mathrm{~Hz}), 43.9,34.1(\mathrm{~d}, J=$ 14.7 Hz), 27.7, 27.6 (d, $J=4.4 \mathrm{~Hz}$), 16.3 (d, J = 5.9 Hz), 15.7.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.91$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{PS}: 359.1440$, found: 359.1440.

9
The title compound 9 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2: 1,54 \%$ yield, 48.2 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.07-8.00 (m, 2H), 7.60-7.51 (m, 1H), 7.47-7.39 (m, $2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{td}, J=6.5,2.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.15-4.02 (m, 4H), 3.16 (ddd, $J=24.7,10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dt}, 1 \mathrm{H})$, 2.72-2.61 (m, 1H), 2.59-2.46 (m, 2H), 2.45-2.33 (m, 1H), 2.17-2.09 (m, 1H), 2.09-2.00 (m, 2H), $1.28(\mathrm{td}, J=7.1,3.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 166.4,140.3,132.9,130.2$, 129.49, 128.47, 128.46, 128.3, 126.3, 63.9, 62.7 (d, $J=6.7 \mathrm{~Hz}), 62.4$ (d, $J=6.7 \mathrm{~Hz}$), 51.9 (d, $J=124.8 \mathrm{~Hz}), 40.5,34.1(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 27.6(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 22.7,16.27(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}$), 16.25 (d, $J=5.9 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 22.17.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{P}: 447.1931$, found: 447.1923.

10
The title compound $\mathbf{1 0}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=5: 1,63 \%$ yield, 48.4 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}$, 2H), 4.13-4.03 (m, 4H), 3.67 (s, 3H), 3.13 (ddd, $J=24.7,10.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dt}$, $J=18.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=14.1,9.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dt}, J=13.7,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{td}, J=7.1,2.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.8(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 173.5,140.4,128.48,128.46$ $126.3,62.7(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 51.8(\mathrm{~d}, J=124.8 \mathrm{~Hz}), 51.5,43.1$, 34.1 (d, $J=14.8 \mathrm{~Hz}$), $32.8,27.7$ (d, $J=4.8 \mathrm{~Hz}$), 18.5, 16.3 (d, $J=6.0 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.16$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{P}: 385.1775$, found: 385.1764.

11
The title compound $\mathbf{1 1}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=1: 1,59 \%$ yield, 53.6 mg , white powder).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.10(\mathrm{~m}, 5 \mathrm{H}), 4.11-4.03(\mathrm{~m}$, 4 H), 4.01-3.90 (m, 2H), 3.22 (dt, $J=17.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (ddd, $J=25.0,10.5,3.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.81 (dt, $J=17.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 1 \mathrm{H})$, 2.43-2.33 (m, 1H), 2.15-2.06 (m, 1H), 1.33-1.24 (m, 6H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 167.9,140.2,133.9,132.0$, $128.5,128.4,126.2,123.1,62.7(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 52.0(\mathrm{~d}, J=124.5 \mathrm{~Hz}), 41.7,34.0(\mathrm{~d}$, $J=14.6 \mathrm{~Hz}), 32.7,27.4(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 16.23(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 16.21(\mathrm{~d}, J=6.1 \mathrm{~Hz})$. ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.43$.
HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}\right]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{P}: 490.1989$, found: 490.1990.

12
The title compound $\mathbf{1 2}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=5: 1,60 \%$ yield, 47.1 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.05(\mathrm{~m}$, 2 H), 5.85 (dd, $J=21.0,3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.16-3.98 (m, 4H), 3.23-3.04 (m, 2H), 2.93-2.78 $(\mathrm{m}, 2 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{td}, J=8.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H})$, 2.42-2.30 (m, 1H), 2.23 (s, 3H), 2.13-2.02 (m, 1H), 1.29 (td, J=7.1, 2.4 Hz, 6H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.2(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}$), 152.5, 150.4, 140.5, 128.47, 128.46, 126.2, 105.90, 105.89, 62.7 (d, $J=6.6 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 51.9(\mathrm{~d}, J=$ $124.7 \mathrm{~Hz}), 42.6,34.1(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 27.8(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 22.0,16.28(\mathrm{~d}, J=5.9 \mathrm{~Hz})$, $16.26(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 13.4$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.09$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{P}: 393.1825$, found: 393.1816 .

The title compound $\mathbf{1 3}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=6: 1,49 \%$ yield, 50.4 mg , yellow oil).
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.05(\mathrm{~m}, 5 \mathrm{H}), ~ 5.45-5.27(\mathrm{~m}, 4 \mathrm{H}), 4.15-3.99(\mathrm{~m}$, 4 H), 3.15 (ddd, $J=24.6,10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $4 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 20 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 3 H).
${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 205.6(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 140.5,130.2,130.0,128.47$, 128.46, 128.0, 127.9, 126.2, 62.6 (d, $J=7.0 \mathrm{~Hz}$), 62.4 (d, $J=7.0 \mathrm{~Hz}$), 51.8 (d, $J=$ 124.7 Hz), 44.3, 34.2 (d, $J=14.8 \mathrm{~Hz}$), 31.5, 29.6, 29.3, 29.1, 29.0, 27.8 (d, $J=4.8$ $\mathrm{Hz}), 27.18,27.17,25.6,23.4,22.5,16.3(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 14.0$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.43$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{P}: 519.3598$, found: 519.3595.

The title compound $\mathbf{1 4}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=6: 1,53 \%$ yield, 66.9 mg , yellow oil).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46-7.02 $(\mathrm{m}, 5 \mathrm{H}), 4.17-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, 3.24-3.10 (m, 2H), 2.82-2.67 (m, 1H), 2.67-2.59 (m, 1H), 2.57-2.45 (m, 1H), 2.44-2.37 (m, 1H), 2.36-2.24 (m, 1H), 2.15-2.06 (m, 1H), $1.94(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.63(\mathrm{~m}, 8 \mathrm{H}), 1.59(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.30(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $6 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 5 \mathrm{H}), 1.17-0.99(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.63 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.0,140.6,128.51,128.48,126.2,80.4,62.6(\mathrm{~d}, \mathrm{~J}=$ $6.6 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 56.5,56.4,56.01,55.99,55.5,52.6,52.5,51.4,51.2$, 42.7, 42.1, 41.3, 41.2, 40.4, 40.2, 35.9, 35.3, 35.2, 35.0, 34.9, 34.2 (d, $J=14.9 \mathrm{~Hz}$), 32.8, 29.4, 28.2 (d, $J=2.6 \mathrm{~Hz}$), 27.8, 27.3, 26.8, 26.4, 24.2, 23.4, 20.8, 18.5, 18.4, 16.4 (d, $J=6.0 \mathrm{~Hz}$), 12.05, 12.03 .
${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.53$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{38} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{P}: 629.4329$, found: 629.4304.

15
The title compound 15 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=4: 1,70 \%$ yield, 45.3 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.34-7.25 (m, 3H), 7.23-7.15 (m, 1H), 4.16-4.03 (m, 4 H), 3.38 (ddd, $J=25.0,10.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62 (ddd, $J=$ $13.5,9.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (ddd, $J=13.5,9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.09$ (m, 1H), 1.30 (td, $J=7.1,1.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.11$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, 3 H).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.6$ (d, $J=4.5 \mathrm{~Hz}$), 140.7, 128.5, 128.4, 126.2, 62.7 (d, $J=6.7 \mathrm{~Hz}$), $62.6(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 50.4(\mathrm{~d}, J=124.7 \mathrm{~Hz}), 41.8,34.4(\mathrm{~d}, J=14.9$ $\mathrm{Hz}), 27.8(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 18.6,17.4,16.4(\mathrm{~d}, J=5.5 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.40$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{P}: 327.1720$, found: 327.1720.

The title compound 16 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel (PE:EA $=3: 1,40 \%$ yield, 36.7 mg , yellow oil, $1: 1 d r$ determined by H NMR).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.04(\mathrm{~m}, 10 \mathrm{H}), ~ 4.15-3.97(\mathrm{~m}$, 6 H), 3.94-3.87 (m, 2H), 3.36 (ddd, $J=25.7,10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26-3.16 (m, 2H), 3.10 (ddd, $J=25.3,8.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=13.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (dd, $J=13.5$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}$, $1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.31(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 24 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.4(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 208.5(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 149.4$, 148.8, 141.0, 140.7, 136.7, 136.1, 129.0, 128.7, 128.45, 128.44, 128.37, 128.3, 126.2, 126.1, 125.4, 125.0, 62.6 (d, $J=10.5 \mathrm{~Hz}$), 62.53 (d, $J=6.6 \mathrm{~Hz}$), 62.52 (d, $J=16.6$ $\mathrm{Hz}), 52.7$ (d, $J=124.0 \mathrm{~Hz}), 50.7$ (d, $J=124.2 \mathrm{~Hz}), 49.2,48.7,39.4,37.2,34.4,34.31$, 34.28 (d, $J=6.7 \mathrm{~Hz}), 34.2(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 31.4,31.3,27.8(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 27.5(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}), 16.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.35(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 16.2$.
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.54,22.07$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{P}: 459.2659$, found: 459.2659.

17
The title compound $\mathbf{1 7}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,71 \%$ yield, 46.3 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.16-4.03(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{ddd}, J=24.3,10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H})$, 1.30 (td, $J=7.1,2.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.18-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.92(\mathrm{~m}$, 2H).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5(\mathrm{~d}, J=4.0 \mathrm{~Hz}$), 140.6, 128.5, 128.4, 126.2, $62.53(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 62.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 53.0(\mathrm{~d}, J=125.5 \mathrm{~Hz}), 34.2(\mathrm{~d}, J=15.4$ $\mathrm{Hz}), 27.9(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 21.7,16.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.32(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 12.2$, 12.0. ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.68$.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{P}: 325.1563$, found: 325.1563.

18
The title compound 18 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,64 \%$ yield, 45.3 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.14-4.02(\mathrm{~m}$, 4 H), 3.32 (ddd, $J=24.8,10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 1 \mathrm{H})$, 2.52-2.43 (m, 1H), 2.43-2.32 (m, 1H), 2.14-2.04 (m, 1H), 1.99-1.92 (m, 1H), $1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.53-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.4(\mathrm{~d}, ~ J=4.3 \mathrm{~Hz}$), 140.6, 128.39, 128.37, 126.1, 62.6 (d, $J=6.7 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 52.4,51.7(\mathrm{~d}, J=124.4 \mathrm{~Hz}), 34.3(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}), 30.3,28.0,27.8(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 26.0,25.9,16.31(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.29(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.52$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{P}: 353.1876$, found: 353.1876 .

19
The title compound 19 was synthesized according to General Procedure (SI 3.1, without L1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=$ 5:1, 25% yield, 17.3 mg , colorless oil).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 3 \mathrm{H}), ~ 4.16-3.96(\mathrm{~m}$, 4 H), 3.61 (ddd, $J=20.7,8.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.54(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 2 \mathrm{H})$, $1.25(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H})$), $1.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.0(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 140.8,128.45,128.41,126.2$, $62.6(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 45.8(\mathrm{~d}, J=129.5 \mathrm{~Hz}), 45.4(\mathrm{~d}, J=1.8 \mathrm{~Hz})$, 34.5 (d, $J=11.7 \mathrm{~Hz}$), 30.8 (d, $J=5.5 \mathrm{~Hz}$), 26.6, 16.4 (d, $J=6.2 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.38$.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{P}: 341.1876$, found: 341.1875.

20
The title compound 20 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2: 1,42 \%$ yield, 30.3 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.18-3.98(\mathrm{~m}, 5 \mathrm{H})$, 2.80-2.69 (m, $1 \mathrm{H}), 2.67-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.0(\mathrm{~d}, J=5.3 \mathrm{~Hz}$), 140.4, 137.5, 133.3, 128.7, 128.6, 128.42, 128.39, 126.2, $62.8(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 46.2(\mathrm{~d}, J=$ $127.7 \mathrm{~Hz}), 34.0(\mathrm{~d}, J=15.1 \mathrm{~Hz}), 28.9(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 16.1(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.21$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{P}: 361.1563$, found: 361.1563.

21
The title compound 21 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,48 \%$ yield, 40.9 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.10-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.70-2.54 (m, 1H), 2.52-2.29 (m, 1H), 2.20-1.93 (m, 1H), 1.33-1.20 (m, 6H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 140.1,138.1,131.8,131.1(\mathrm{q}, J$ $=33.2 \mathrm{~Hz}), 129.6(\mathrm{q}, J=3.3 \mathrm{~Hz}), 129.1,128.6,128.5,126.4,125.5(\mathrm{q}, J=3.9 \mathrm{~Hz})$, $123.6(\mathrm{q}, J=273.3 \mathrm{~Hz}), 63.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 62.7(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 46.6(\mathrm{~d}, J=127.2$ $\mathrm{Hz}), 34.0(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 28.7(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 16.0(\mathrm{~d}, J=6.3$ Hz).
HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{P}$: 429.1437, found: 429.1435 .

The title compound 22 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=1: 1,73 \%$ yield, 57.0 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.94-7.86 (m, 2H), 7.28-7.13 (m, 3H), 7.13-7.05 (m, $2 \mathrm{H}), ~ 6.96-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.17-3.92(\mathrm{~m}, 5 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.71$ (ddd, $J=13.4,9.0,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.17$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.2(\mathrm{~d}, J=5.2 \mathrm{~Hz}$), 163.8, 140.7, 131.2, 130.7, $128.6,128.4,126.2,113.6,62.7(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 55.5,45.9(\mathrm{~d}, J=$ $128.0 \mathrm{~Hz}), 34.1(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 29.1(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 16.2(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.67$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{P}: 391.1669$, found: 391.1654.

23
The title compound 23 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=4: 1,36 \%$ yield, 28.0 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.02(\mathrm{~m}$, $2 \mathrm{H})$, 4.19-3.92 (m, 5H), 2.78-2.67 (m, 1H), 2.65-2.47 (m, 2 H$), 2.37-2.23(\mathrm{~m}, 1 \mathrm{H})$, $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 140.5,140.0,132.2,129.0$, $128.61,128.55,126.4,117.8,116.4,63.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 62.8$ (d, $J=6.9 \mathrm{~Hz}), 46.9$ (d, $J=127.0 \mathrm{~Hz}), 34.0(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 28.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 16.2(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.08$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{P}: 386.1516$, found: 386.1486 .

24
The title compound 24 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=4: 1,57 \%$ yield, 45.3 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.86-7.78 (m, 2H), 7.47-7.37 (m, 2H), 7.29-7.13 (m, $3 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.18-3.92(\mathrm{~m}, 5 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 1 \mathrm{H})$,
$2.55-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.7(\mathrm{~d}, J=5.3 \mathrm{~Hz}$), 140.3, 139.8, 135.9, 130.1, $128.69,128.6,128.4,126.3,62.8(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 62.6(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 46.3(\mathrm{~d}, J=$ $127.7 \mathrm{~Hz}), 34.0(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 28.8(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 16.2(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 16.1(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.84$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClO}_{4} \mathrm{P}: 395.1173$, found: 395.1173.

25
The title compound 25 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=4: 1,52 \%$ yield, 45.5 mg , yellow oil).
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.78-7.70 (m, 2H), 7.62-7.54 (m, 2H), 7.27-7.15 (m, $3 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.17-3.92(\mathrm{~m}, 5 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 1 \mathrm{H})$, $2.55-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 140.3,136.3,131.7,130.2$, 128.58, 128.57, 128.5, 126.3, 62.8 (d, $J=6.9 \mathrm{~Hz}$), 62.7 (d, $J=7.0 \mathrm{~Hz}$), 46.3 (d, $J=$ $127.7 \mathrm{~Hz}), 34.0(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 28.8(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 16.1(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}$).
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.79$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BrO}_{4} \mathrm{P}: 439.0668$, found: 439.0673.

The title compound 26 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=4: 1,58 \%$ yield, 67.4 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.02(\mathrm{~m}, 5 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$, 2.78-2.68 (m, 1H), 2.67-2.48 (m, 2H), 2.36-2.25 (m, 1H), $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.7(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 162.4,154.20,154.16,140.4$, 135.7, 132.6, 130.6, 129.8, 129.4, 128.6, 128.5, 126.9, 126.3, 126.0, 121.5, 62.8 (d, J $=6.9 \mathrm{~Hz}), 62.7(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 62.4,46.5(\mathrm{~d}, J=127.6 \mathrm{~Hz}), 34.1(\mathrm{~d}, J=14.8 \mathrm{~Hz})$, $28.9(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 16.2(\mathrm{~d}, J=6.2 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.90$.
HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{NO}_{7} \mathrm{P}: 596.1366$, found: 596.1343.

27
The title compound 27 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=5: 1,67 \%$ yield, 55.1 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.84$ (m, 3H), 7.65-7.50 (m, 2H), 7.28-7.15 (m, 3H), 7.11 (dd, $J=8.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.27$ (ddd, $J=23.4,10.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.95(\mathrm{~m}, 4 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 140.5,135.6,134.91,134.89$, 132.3, 130.7, 129.7, 128.6, 128.4, 128.3, 127.6, 126.7, 126.2, 124.2, 62.8 (d, $J=6.9$ $\mathrm{Hz}), 62.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 46.2(\mathrm{~d}, J=128.3 \mathrm{~Hz}), 34.0(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 29.0(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 16.1(\mathrm{~d}, J=6.2 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.45$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{P}: 411.1720$, found: 411.1713.

28
The title compound 28 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,38 \%$ yield, 26.4 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.01$ $(\mathrm{m}, 2 \mathrm{H}), 6.48(\mathrm{dd}, J=3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.85$ (ddd, $J=23.7,10.5$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.0(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 153.0,146.8,140.5,128.6$, $128.4,126.2,112.6,62.73(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 62.66(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 46.9(\mathrm{~d}, J=128.4$ $\mathrm{Hz}), 34.2(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 28.4(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 16.2(\mathrm{~d}, J=6.2$ Hz).
31P NMR (162 MHz, CDCl3) $\delta 21.99$.

MS (EI): $[\mathrm{M}]^{+}: 350.15$.

29
The title compound 29 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,57 \%$ yield, 42.0 mg , yellow oil).
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59$ (ddd, $J=13.4,4.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20-7.14$ (m, $2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 3 \mathrm{H}), 4.14-3.87(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{ddd}, J=23.0$, $10.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.1(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 144.9,140.4,134.7,133.2$, 128.6, 128.4, 128.2, 126.2, 62.9 (d, $J=6.6 \mathrm{~Hz}), 62.7(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 48.1(\mathrm{~d}, J=$ $128.8 \mathrm{~Hz}), 34.1(\mathrm{~d}, J=14.9 \mathrm{~Hz}), 28.9(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.2(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}$).
31P NMR ($162 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 21.83.
MS (EI): [M] ${ }^{+}: 366.15$.

30
The title compound $\mathbf{3 0}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=5: 1,64 \%$ yield, 39.7 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.00(\mathrm{~m}, 5 \mathrm{H}), 3.74(\mathrm{dd}, J=11.0,3.6 \mathrm{~Hz}, 6 \mathrm{H})$, 3.20 (ddd, $J=24.6,10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83-2.71 (m, 1H), 2.70-2.61 (m, 1H), 2.57-2.47 (m, 1H), 2.46-2.33 (m, 2H), 2.17-2.02 (m, 1H), 1.63-1.48 (m, 2H), $1.39-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 205.5(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 140.4,128.5,128.4,126.3,53.2$ (d, $J=6.7 \mathrm{~Hz}$), $53.0(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 51.2(\mathrm{~d}, J=125.1 \mathrm{~Hz}), 44.1,34.1(\mathrm{~d}, J=14.9$ Hz), 27.8 (d, $J=4.8 \mathrm{~Hz}$), 25.4, 22.0, 13.8.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.99$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{P}: 313.1563$, found: 313.1554.

31
The title compound 31 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=5: 1,86 \%$ yield, 63.0 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}$, 2H), 4.74-4.56 (m, 2H), $3.17-3.02$ (ddd, $J=25.0,10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (dt, $J=$ $17.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, $J=13.9,9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.13-1.99$ $(\mathrm{m}, 1 \mathrm{H}), 1.54(\mathrm{p}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 14 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7$ ($\mathrm{d}, J=4.4 \mathrm{~Hz}$), 140.7, $128.5,128.4,126.1,71.3$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}), 71.0(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 52.6(\mathrm{~d}, J=125.7 \mathrm{~Hz}), 43.9,34.2(\mathrm{~d}, J=15.0$ Hz), $27.8(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 25.5,24.0(\mathrm{t}, J=3.8 \mathrm{~Hz}), 23.8(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 23.7(\mathrm{~d}, \mathrm{~J}=$ $5.1 \mathrm{~Hz})$, 22.1, 13.8.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.42$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{P}: 369.2189$, found: 369.2189 .

32
The title compound 32 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,64 \%$ yield, 35.4 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77-4.62(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{dq}, J=25.3,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.81(\mathrm{dt}, J=17.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dt}, J=17.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H})$, $1.35-1.30(\mathrm{~m}, 17 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.2(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 71.2(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 71.0(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}), 47.3(\mathrm{~d}, J=128.1 \mathrm{~Hz}), 42.8,25.7,24.0(\mathrm{t}, J=3.9 \mathrm{~Hz}), 23.8(\mathrm{t}, J=4.8 \mathrm{~Hz})$, $22.1,13.8,11.0(\mathrm{~d}, J=6.5 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.73$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{P}: 279.1720$, found: 279.1720.

33

The title compound $\mathbf{3 3}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=5: 1,41 \%$ yield, 27.6 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.72-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{ddd}, J=25.4,10.1,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.85$ $(\mathrm{m}, 1 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.16(\mathrm{~m}, 14 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 71.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 71.2(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}), 51.7(\mathrm{~d}, J=125.8 \mathrm{~Hz}), 44.2,32.7(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 25.6,25.1(\mathrm{~d}, J=4.4$ $\mathrm{Hz}), 24.05(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 24.0(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 23.84(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 23.77(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}), 22.1,14.8,13.8$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 20.23.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{PS}: 339.1753$, found: 339.1753.

34
The title compound 34 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,86 \%$ yield, 75.2 mg , white solid).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{ddd}, J=46.8,5.5,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.75-4.55(\mathrm{~m}$, 2H), 3.77-3.57 (m, 2H), 3.19 (ddd, $J=26.0,10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.93 (dt, $J=18.1,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.58(\mathrm{dt}, J=18.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 12 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0,168.3,134.0,132.0,123.2,71.6(\mathrm{~d}, J=7.1 \mathrm{~Hz})$, $71.3(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 51.2(\mathrm{~d}, J=126.0 \mathrm{~Hz}), 43.7,36.6(\mathrm{~d}, J=16.3 \mathrm{~Hz}), 25.42,25.37$, $24.0(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 23.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 23.7(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 22.1$, 13.9 .
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 19.62.
HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}: 455.2305$, found: 455.2305.

35
The title compound 35 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,86 \%$ yield, 63.1 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.76-4.60(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09$ (ddd, $J=24.6,10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dt, $J=17.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (ddd, $J=17.5,8.1$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.51(\mathrm{~m}$,
$2 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 12 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.9(\mathrm{~d}, J=4.5 \mathrm{~Hz}$), $71.3(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 71.1(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}), 53.6(\mathrm{~d}, J=126.1 \mathrm{~Hz}), 44.8,43.9,32.1,27.8(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 26.6,26.2(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}), 25.6,24.05(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 23.99(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 23.8(\mathrm{t}, J=5.4 \mathrm{~Hz})$, 22.2, 13.8 .
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.51$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{ClO}_{4} \mathrm{P}: 369.1956$, found: 369.1953.

36
The title compound 36 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=4: 1,75 \%$ yield, 63.9 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}$, $2 \mathrm{H}), 4.76-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{ddd}, J=24.8,10.6,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.82(\mathrm{dt}, J=17.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.85$ $(\mathrm{m}, 1 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 14 \mathrm{H}), 0.90(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 205.6$ (d, $J=4.5 \mathrm{~Hz}$), 166.4, 132.8, 130.2, 129.5, $128.3,71.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 71.1(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 64.2,53.1(\mathrm{~d}, J=126.2 \mathrm{~Hz}), 43.9$, $27.5(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 25.5,24.0(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 23.9(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 23.8(\mathrm{~d}, J=5.1$ $\mathrm{Hz}), 23.7$ (d, $J=5.4 \mathrm{~Hz}), 23.1$ (d, $J=5.0 \mathrm{~Hz}$), 22.1, 13.8 .
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.05$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{P}: 427.2244$, found: 427.2244.

37
The title compound 37 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=2: 1,49 \%$ yield, 46.7 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.73-4.59 (m, 2H), $3.99(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.06$ (ddd, $J=25.0,10.3,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{dt}, J=17.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 4 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 12 \mathrm{H})$, $0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,144.7,133.1,129.8,127.8,71.5(\mathrm{~d}, J=6.9 \mathrm{~Hz})$, $71.2(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 69.8,52.8(\mathrm{~d}, J=127.2 \mathrm{~Hz}), 43.8,27.6(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 25.5$, $24.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 23.9(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 23.8(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 23.7(\mathrm{~d}, J=5.1 \mathrm{~Hz})$, 22.6 (d, $J=4.7 \mathrm{~Hz}$), 22.1, 21.5, 13.8.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.69$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{PS}: 477.2070$, found: 477.2070.

38
The title compound 38 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel (PE:EA $=1: 3,73 \%$ yield, 47.1 mg , yellow oil).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77-4.61(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{ddd}$, $J=24.9,10.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dt}, J=17.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 1 \mathrm{H})$, 2.18-2.05 (m, 1H), 1.99-1.89 (m, 1H), 1.87-1.73 (m, 2H), 1.67-1.50 (m, 2H), $1.40-1.28(\mathrm{~m}, 14 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 71.5(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 71.2(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}), 52.8(\mathrm{~d}, J=126.4 \mathrm{~Hz}), 43.8,32.6,31.3(\mathrm{~d}, J=14.6 \mathrm{~Hz}), 25.5,25.1(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}), 24.03(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 23.97(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 23.8(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 23.7(\mathrm{~d}, J=$ 5.3 Hz), 22.1, 13.8 .
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.82$.
HRMS (ESI) m/z: [M+Na] ${ }^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{NaO}_{5} \mathrm{P}: 345.1801$, found: 345.1801.

39
The title compound 39 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel (PE:EA $=5: 1,67 \%$ yield, 44.3 mg , yellow oil).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.80-4.60(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=21.2,10.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.75-2.62 (m, 1H), 2.54-2.33 (m, 2H), 2.07-1.94 (m, 1H), 1.80-1.70 (m, 1H), $1.69-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 16 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.6(\mathrm{~d}, J=4.2 \mathrm{~Hz}$), $71.0(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 70.7(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}), 59.3(\mathrm{~d}, J=127.7 \mathrm{~Hz}), 43.9,39.0(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 32.2(\mathrm{~d}, J=17.0 \mathrm{~Hz})$, $31.6(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 25.4,24.71,24.15,24.14(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 24.06(\mathrm{~d}, J=3.8 \mathrm{~Hz})$, $23.88(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 23.78(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 22.16,13.84$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.46$.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{P}: 333.2189$, found: 333.2198 .

40
The title compound 40 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=9: 1,46 \%$ yield, 32.0 mg , yellow oil).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.80-4.63(\mathrm{~m}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{dd}, J=21.3,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.65$ (ddd, $J=18.1,8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (ddd, $J=18.0,8.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.11-2.07 (m, 1H), 1.79-1.68 (m, 2H), 1.66-1.43 (m, 6H), 1.34-1.25 (m, 16H), 1.17-1.05 (m, 2H), $0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.8(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 71.0(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 70.8(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}), 60.0(\mathrm{~d}, J=128.0 \mathrm{~Hz}), 44.6,37.6(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 32.2(\mathrm{~d}, J=15.8 \mathrm{~Hz})$, 31.7 (d, $J=3.7 \mathrm{~Hz}), 26.10,26.06,26.04,26.00,25.3,24.14$ (d, $J=3.3 \mathrm{~Hz}$), 24.07 (d, $J=3.7 \mathrm{~Hz}$), $23.85(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 23.78(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 13.9$.
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.74$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}: 347.2346$, found: 347.2346.

41
The title compound $\mathbf{4 1}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1,77 \%$ yield, 53.8 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.83-4.62(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{ddd}, J=26.0,11.6,4.3 \mathrm{~Hz}$, 2 H), 3.44-3.32 (m, 2H), 2.97 (dd, $J=21.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.65(\mathrm{~m}, 1 \mathrm{H})$, 2.50-2.37 (m, 1H), 2.37-2.25 (m, 1H), 1.64-1.51 (m, 2H), 1.50-1.41 (m, 2H), $1.38-1.27(\mathrm{~m}, 16 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.2(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 71.3(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 71.0(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}), 67.7,67.6(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 59.3(\mathrm{~d}, J=127.5 \mathrm{~Hz}), 45.2,34.8(\mathrm{~d}, J=4.8 \mathrm{~Hz})$, $32.0(\mathrm{~d}, J=16.3 \mathrm{~Hz}), 31.7(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 25.2,24.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 24.0(\mathrm{~d}, J=3.9$ $\mathrm{Hz}), 23.9$ (d, $J=5.0 \mathrm{~Hz}$), 23.8 (d, $J=5.5 \mathrm{~Hz}$), 22.1, 13.8 .
${ }^{31} \mathbf{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.46$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{P}: 349.2138$, found: 349.2138.

42
The title compound $\mathbf{4 2}$ was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel (PE:EA $=2: 1,88 \%$ yield, 55.4 mg , yellow solid).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.44(\mathrm{~m}, 6 \mathrm{H}), 3.68(\mathrm{dq}, J=$ $14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.14(\mathrm{~h}, J=7.4 \mathrm{~Hz}$, 2 H), 0.80 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.5(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.0(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=99.8 \mathrm{~Hz}), 130.9$ (d, $J=108.9 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 50.3(\mathrm{~d}, J=57.6 \mathrm{~Hz})$, $42.6,25.3,21.9,13.7,11.4(\mathrm{~d}, J=3.6 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.37$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}: 315.1508$, found: 315.1489.

45
The title compound 45 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel (PE:EA $=30: 1,64 \%$ yield, 39.0 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.31-7.20 (m, 2H), 7.20-7.11 (m, 3H), 4.12-3.96 (m, $1 \mathrm{H}), 3.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.87(\mathrm{~m}$, $1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.5,167.6,141.0,128.38,128.36,126.0,61.1,48.7$, 46.2, 40.6, 29.5, 22.5, 20.9, 20.59, 20.55, 20.3, 12.1.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{2}: 304.2271$, found: 304.2264.

47
The title compound 47 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel (PE:EA $=15: 1,57 \%$ yield, 40.5 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.11(\mathrm{~m}$,
$2 \mathrm{H}), 4.03(\mathrm{dd}, J=10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.36-3.21(\mathrm{~m}, 4 \mathrm{H}), 2.82(\mathrm{dt}, J$ $=18.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.18(\mathrm{~m}, 1 \mathrm{H})$, 1.58-1.48 (m, 2H), 1.36-1.29 (m, 2H), $0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.35,139.44,128.75,128.42,126.70,72.03,66.87$, 46.84, 44.04, 32.88, 28.56, 25.23, 22.02, 13.80 .

HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{Na}\right]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}: 417.1818$, found: 417.1818.

49
The title compound 49 was synthesized according to General Procedure (SI 3.1), and it was purified by column chromatography on silica gel (PE:EA $=30: 1,41 \%$ yield, 22.1 mg , yellow oil).
${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dt}, J=18.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dt}, J=18.1,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 2 \mathrm{H})$, $0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 202.6,145.4,133.3,129.7,129.4,70.0,43.5,25.4$, 22.0, 21.6, 13.7, 12.0.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{KO}_{3} \mathrm{~S}: 307.0765$, found: 307.0735 .

50
The title compound $\mathbf{5 0}$ was synthesized according to General Procedure (SI 3.3) without purified (95% yield, 27.0 mg , yellow solid).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ _SPE) $\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.20$ (ddd, $J=24.5,10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77 (dt, $J=17.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67-2.51 (m, 2H), $2.50-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ _SPE) $\delta 207.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}$), 140.9, 128.2, 128.1, $125.8,52.8(\mathrm{~d}, J=122.1 \mathrm{~Hz}), 43.6,33.9(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 28.1(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 25.2(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}$), 21.8, 12.8.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD} _\mathrm{SPE}$) $\delta 19.59$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{P}: 285.1250$, found: 285.1250.

51
The title compound 51 was synthesized according to General Procedure (SI 3.3), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=8: 1,96 \%$ yield, 35.8 mg , colorless oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.33-7.24 (m, 2H), 7.24-7.15 (m, 3H), 4.30-4.15 (m, $4 \mathrm{H}), 2.96-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.49$ (td, $J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.52$ (m, 2H), 1.34 (t, $J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.7,140.60$ 128.6, 128.5, 126.2, 74.9 (d, $J=142.0$ $\mathrm{Hz}), 64.7$ (d, $J=7.3 \mathrm{~Hz}$), 64.6 (d, $J=7.3 \mathrm{~Hz}), 40.1,37.7,37.6,30.6(\mathrm{~d}, J=10.6 \mathrm{~Hz})$, $26.0,22.0,16.39(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 16.35(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 13.8$.
${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.31$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{ClO}_{4} \mathrm{P}: 375.1487$, found: 375.1487.

52
The title compound 52 was synthesized according to General Procedure (SI 3.3), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=6: 1,48 \%$ yield, 18.4 mg , yellow oil).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.31-7.25 (m, 2H), 7.23-7.15 (m, 3H), 5.92-5.75 (m, $1 \mathrm{H}), 5.27-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{p}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.90-2.56(\mathrm{~m}, 5 \mathrm{H}), 2.52(\mathrm{td}, J=12.8$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 207.2,142.1,133.3(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 128.42,128.36$, $126.0,118.6,62.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 58.1(\mathrm{~d}, J=127.3 \mathrm{~Hz}), 39.6$, $35.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 33.2,30.7(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 25.9,22.2,16.4(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 13.9$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.77$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{P}: 381.2189$, found: 381.2156 .

53
The title compound 53 was synthesized according to General Procedure (SI 3.3), and it was purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=50: 1,86 \%$ yield, $54.9 \mathrm{mg}, \mathrm{E} / \mathrm{Z}=6.7: 1$, determined by HNMR, colorless oil).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.19$ (ovrlp, 5H), 7.11-7.05 (m, 2H), 2.81-2.69 (ovrlp, 6H), 1.68 (p, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.43$1.36(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 202.0,143.8,141.0,140.4,136.5,132.1,129.3$, $128.39,128.38,126.1,118.4,111.7,37.6,34.8,28.6,26.8,22.4,13.9$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}$: 318.1852, found: 318.1852.

5. Supplimentary References

[S1] Matsuzawa, A.; Shiraiwa, J.; Kasamatsu, A.; Sugita, K. Enantioselective, Protecting-Group-Free Total Synthesis of Boscartin F. Organic Letters 2018, 20, 1031-1033.
[S2] Lee, S. Y.; Lee, C.-W.; Oh, D. Y. Regiocontrolled Synthetic Approach to $\alpha, \alpha^{‘}$-Disubstituted Unsymmetrical Ketones. The Journal of Organic Chemistry 2000, 65, 245-248.
[S3] Bernardi, L.; Jørgensen, K. A. Enantioselective chlorination and fluorination of β-keto phosphonates catalyzed by chiral Lewis acids. Chemical Communications 2005, 1324-1326.
[S4] Li, X.; Yuan, M.; Chen, F.; Huang, Z.; Qing, F.-L.; Gutierrez, O.; Chu, L. Three-component enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis. Chem 2023, 9, 154-169.
[S5] Oswood, C. J.; MacMillan, D. W. C., Selective Isomerization via Transient Thermodynamic Control: Dynamic Epimerization of trans to cis Diols. Journal of the American Chemical Society 2022, 144 (1), 93-98.
[S6] Perry, I. B.; Brewer, T. F.; Sarver, P. J.; Schultz, D. M.; DiRocco, D. A.; MacMillan, D. W. C. Direct arylation of strong aliphatic C-H bonds. Nature 2018, 560, 70-75.
[S7] He, S.-J.; Wang, J.-W.; Li, Y.; Xu, Z.-Y.; Wang, X.-X.; Lu, X.; Fu, Y., Nickel-Catalyzed Enantioconvergent Reductive Hydroalkylation of Olefins with α-Heteroatom Phosphorus or Sulfur Alkyl Electrophiles. Journal of the American Chemical Society 2020, 142, 214-221.
[S8] Choi, J.; Martín-Gago, P.; Fu, G. C. Stereoconvergent Arylations and Alkenylations of Unactivated Alkyl Electrophiles: Catalytic Enantioselective Synthesis of Secondary Sulfonamides and Sulfones. Journal of the American Chemical Society 2014, 136, 12161-12165.
[S9] Wang, H.; Zheng, P.; Wu, X.; Li, Y.; XU, T. Modular and Facile Access to Chiral α-Aryl Phosphates via Dual Nickel- and Photoredox-Catalyzed Reductive Cross-Coupling. Journal of the American Chemical Society 2022, 144, 3989-3997.

6. Spectra data for the compounds

(

5
(wdd) IJ

sins

	7.38
	7.36
	7.35
	7.34
	7.30
	-7.29
	7.29
	-7.28
	-7.23
	- 7.22
	4.19
	-4.18
	4.16
	4.16
	4.15
	4.14
	4.14
	4.13
	3.62
	-3.60
	3.59
	2.91
	2.87
	2.72
	2.71
	2.61
	. 2.59
	2.50
	2.48
\square	2.48
	2.47
	2.46
	- 2.46
	2.45
	-2.44
	1.85
	1.85
	-1.84
	1.83
	1.82
	-1.81
	-1.80
	-1.79
	1.78
	1.77
	1.77
	-1.40
	-1.38
	1.36

7
(udd) IJ

=	7.23
	7.21
	7.19
	7.15
	7.13
	7.11
	7.08
	7.07
	-4.04
	4.03
	4.02
	4.02
	4.01
$=$	4.00 -3.99
	3.13
	3.12
	3.11
	3.10
	3.07
	3.06
	3.05
	3.04
	3.04
	3.04
	3.03
	3.02
	-3.01
\star	- 3.00
	-2.99
	2.66
	2.65
	2.64
	2.63
	- 2.62
	- 2.61
	-2.60
$\xlongequal{7}$	2.58
	2.56
	2.47
	2.45
	2.44
	2.33
	2.04
	1.25
	-1.25
	1.23
	1.23
	1.22
	1.21

(udd) If

62.769
-62.56
62.56
62.49

へ 52.57
51.33
$\checkmark 43.90$
$[34.14$
-33.99
27.70
27.63
27.63
27.59
-16.31
16.26
15.66

8
(wdd) IJ
$8 \quad 0.6 \quad \$ 6$

9
$\left[\begin{array}{l}140.31 \\ 132.86 \\ 130.22 \\ 129.49 \\ 128.46 \\ 128.46 \\ 128.29 \\ 126.26\end{array}\right.$
77.32
77.00
76.68
63.93
$[63.93$
62.70
-62.64
62.64
-62.57
62.50
-52.55
$\checkmark 51.31$
$\int \begin{aligned} & 40.49 \\ & 34.21\end{aligned}$
$\left[\begin{array}{r}34.21 \\ 34.06\end{array}\right.$
$\left[\begin{array}{l}27.68 \\ 27.63\end{array}\right.$
-22.66
16.30
$\left\{\begin{array}{l}16.28 \\ 16.24 \\ 16.22\end{array}\right.$
(udd) If

$$
\mathrm{I}^{\mathrm{I}^{-}} 0 \mathbf{O}^{-} \quad 08^{-} \quad 0 L^{-} \quad 09^{-}
$$

10
(

$\left\{\begin{array}{l}77.21 \\ -77.00\end{array}\right.$
-76.79
62.74
62.69
$\int^{52.44}$
$\checkmark 51.61$
$\int_{\int}^{41.74} \mathbf{3 4} 0$
33.99
-32.71
$<\begin{aligned} & 27.44 \\ & 27.41\end{aligned}$
16.25
-16.23
$\left\{\begin{array}{r}16.23 \\ 16.21 \\ 16.19\end{array}\right.$
16.19

(
(udd) I

$0 ヵ$
12
$\begin{array}{ll}\text { O } \\ 0 & \end{array}$

(wdd) IJ

N
\sim
N

77.31
77.10
76.89
62.70
62.66
62.59
62.55
50.84

- 50.01
${ }^{4} 41.78$
$L_{34.32}^{34.42}$
27.86
<27.83
${ }_{2} 27.83$
18.57
17.39
-17.39
16.42
16.38
16.42
-16.35

15

$\int\left[\begin{array}{l}208.4 \\ 149.3 \\ 148.76\end{array}\right.$
148.76
141.03
140.67
136.74
136.06
129.03
128.71
128.44
128.37
128.33
126.19
126.07
125.40
125.03
77.21
-77.00
76.79
-62.60
-62.58
62.56
-62.53
62.53
-62.51
62.51
-62.47
53.07

- 52.25
- 51.09
50.27
49.17
- 48.69
- 39.37
- 37.18
34.36
- 34.31 34.30
34.25
34.20
- 34.17
-31.37
$\left[\begin{array}{l}31.33 \\ 27.86\end{array}\right.$
[27.86
27.83
27.53
27.53
27.50
16.39
16.38
16.35
16.35
16.33
16.18

16(1:1dr)
$\left\{\begin{array}{l}22.54 \\ 22.07\end{array}\right.$

	77.30
	-7.29
	7.27
	7.27
	7.21
	7.20
	-7.19
	-7.17
	- 7.16
	4.13
	-4.12
	-4.12
\bigcirc	= 4.10
	4.09
	- 4.08
	4.08
	3.32
	3.27
	2.68
	2.68
	2.67
	2.53
	2.51
	2.50
	2.22
	-2.21
	-2.21
	2.20
	2.19
	1.31
	-1.31
\checkmark	= 1.30
	-1.30
	-1.29
	- 1.29
\checkmark	$=1.15$
	d 1.14
\bigcirc	-1.13
	-1.09
	-1.09
	- 1.08
	1.07
三	${ }^{5} 0.98$
\square	0.98
	0.97
	0.96
	- 0.96
	-0.96
	0.95
	0.94

17
12.18
12.01
17
(udd) If

N

208.38
208.35
128.39
128.37
<126.13
18
126.13
$\left[\begin{array}{r}77.21 \\ 77.00 \\ 76.79\end{array}\right.$
62.58
62.58
62.54
-62.42
62.38
$\left[\begin{array}{c}52.39 \\ 52.07\end{array}\right.$
52.07
$[34.35$
$\left[\begin{array}{l}34.35 \\ 30.29 \\ 28.00\end{array}\right.$
] 28.00
27.85
27.82

27.82
25.96

25.86
16.33
16.31
16.29
$\left[\begin{array}{l}16.31 \\ 16.29 \\ 167\end{array}\right.$

(udd) If

[^0](udd) IJ

f1 (ppm)

194.79
194.73
140.11
-138.09
131.84
131.58
131.25
-130.93
130.61
-129.60
129.57
129.53
129.49
129.07
-128.63
128.51
127.70
126.40
125.59
125.55
125.51
-125.47
-124.98
122.28
77.32
$=77.00$
$\boxed{77.00}$
76.68
63.00
62.94
62.94
62.74
62.67
47.26
46.00
${ }^{34.11}$
$\underbrace{}_{33.97}$
< 28.68
28.64

$\left\{\begin{array}{l}16.30 \\ 16.24 \\ 16.08\end{array}\right.$
$\left[\begin{array}{l}16.24 \\ 16.01\end{array}\right.$
f1 (ppm) $0 ヵ Z^{-} 0 Z Z^{-} 00 Z^{-} 08 \mathrm{I}^{-} 09 \mathrm{I}^{-} 0 \mathrm{IV}^{-} 0 \mathrm{I}^{-} 00 \mathrm{I}^{-} 08^{-}$

21
f1 (ppm)

$\left[\begin{array}{l}140.52 \\ 140.02\end{array}\right.$

- 140.02
$\int_{\Gamma}^{132.23} 129.04$
-128.61
128.55
126.45
$\urcorner 117.85$
23

77.32
77.00
77.00
76.68
62.99
62.93
-62.88
62.88
62.81
47.53
$\underset{46.27}{ }$
$\left[\begin{array}{l}34.05 \\ 33.90\end{array}\right.$
-33.90
$T_{28.61}^{28.57}$
28.57
16.33
-16.28
-16.28
16.12

23
(udd) IJ
$06 \quad$ ¢ 6

$\xrightarrow{\square}$

	7.83
	7.83
	7.81
	7.81
	7.43
	7.42
	7.41
	7.40
	7.40
	7.25
	7.25
-	. 7.24
-	-7.23
-	7 7.23
	-7.21
	7.20
	7.19
	7.19
	7.18
	7.17
	7.08
	-7.08
	7.06
	4.11
	-4.10
	4.09
	4.09
	- 4.07
	-4.07
	4.06
	4.05
	4.04
	4.04
	4.02
-	4.02
<	4.01
-	-3.99
	-3.98
	3.96
	2.71
	2.54
-	- 2.52
	-2.51
	2.49
	1.27
	-1.26
	1.24
	1.18
	1.17
	1.15

02 012

77.00
76.68
$\left[\begin{array}{l}62.82 \\ 62.75\end{array}\right.$
$\left\{\begin{array}{r}62.75 \\ 62.67 \\ 62.60\end{array}\right.$
62.60
46.96
<45.69
$\begin{array}{r}34.04 \\ \hline 33.90\end{array}$
-33.90
$\left[\begin{array}{l}28.79 \\ 28.74\end{array}\right.$
28.74
16.28
-16.22
$\left[\begin{array}{l}16.15 \\ 16.08\end{array}\right.$

28.75
16.30
16.30
-16.24
16.17
0I
16.10

25
(

(udd) IJ

128.35
128.28
-127.64
126.72
126.20
27
124.20
77.32
-77.00
亿 76.68
62.82
$\left\{\begin{array}{r}62.75 \\ 62.56 \\ 62.50\end{array}\right.$
62.50
46.87
$\underset{45.59}{ }$
34.10
-33.96
$\left[\begin{array}{l}29.03 \\ 28.99\end{array}\right.$
28.99
16.30
$-\begin{array}{r}16.30 \\ -16.24\end{array}$
16.12
(wdd) IJ

(wdd) Lf

OI-

(wdd) Lf

(udd) It

N

$\mathcal{L} 128.48$
128.41
$\curlyvee 126.14$
$\left[\begin{array}{l}77.32 \\ 77.00 \\ 76.68 \\ 71.32 \\ 71.25 \\ 71.07 \\ 71.00 \\ 53.27 \\ 52.02 \\ 43.94 \\ 34.30 \\ 34.15 \\ 27.82 \\ 27.78 \\ 25.48 \\ 24.02 \\ 23.99 \\ 23.95 \\ 23.78 \\ 23.76 \\ 23.73 \\ 23.71 \\ 22.13 \\ 13.82\end{array}\right.$

31
(udd) LJ

32
$\left[\begin{array}{r}77.32 \\ 77.00 \\ 76.68 \\ 71.27\end{array}\right.$
71.27
-71.20
$\left[\begin{array}{l}71.07 \\ 71.00\end{array}\right.$
47.97
$\int\left[\begin{array}{l}46.69 \\ 42.76 \\ 25.66\end{array}\right.$
] 25.66
$\begin{array}{r}24.00 \\ \hline 23.97\end{array}$

- 23.97
23.93
23.80
-23.75
23.70
22.13
$\downarrow \begin{aligned} & 13.78 \\ & 11.01\end{aligned}$
11.01
10.94

$\left[\begin{array}{r}77.34 \\ 77.03 \\ 76.71 \\ 71.50\end{array}\right.$
71.50
71.43
71.22
-71.15
52.35
51.10
51.10
-44.22
25.63
$\int 24.10$
24.06
24.04
24.01
23.89
- 23.84
23.83
-23.77
22.16
14.85
14.85
1286

	7.86
	7.86
	7.85
	7.84
	. 7.75
	. 7.74
	-7.73
	-7.73
	4.70
	- 4.68
	-4.68
	4.66
	4.66
	4.66
	4.65
	4.64
	4.64
	4.63
	4.62
	-3.71
	-3.69
	-3.69
	3.67
	-3.65
	-3.64
\bigcirc	-3.63
	-3.23
	-3.21
	3.15
L	- 2.95
\bigcirc	- 2.93
	2.91
	${ }^{3} 2.89$
\rangle	- 2.62
	-2.60
\dagger	T2.59
	${ }_{2} .56$
\backslash	1.56
	1.54
	1.52
	± 1.50
	+ 1.33
	1.32
-	H 1.31
	-1.29
	-1.27
	- 1.26
	-0.92
	-0.91
	0.89

34
(udd) II

(udd) IJ

(udd) IJ

(wdd) IJ

	[7.79
	- 7.79
	-7.78
	7.77
	7.36
	7.34
	4.69
	-4.68
	4.67
	4.67
7	4.66
	-4.65
	4.65
-	4.64
	-4.63
	4.01
	-3.99
	- 3.98
	2.76
	2.47
	2.46
	2.44
	1.64
	1.63
	1.62
	1.62
\checkmark	1.61
	1.60
	1.55
	1.55
\checkmark	1.53
	1.53
	1.53
	1.51
\rangle	- 1.51
,	1.37
	- 1.36
	1.35
	-1.34
λ	-1.33
	-1.32
	1.32
) 1.31
	+1.31
	1.30
-	\% 1.30
	1.28
	0.92
	0.90
	0.89

f1 (ppm)

N

77.32
77.00
76.68
71.53
71.46
71.46
71.27
71.20
69.76
53.45
52.19

- 43.81
27.64
27.49
25.52
- 24.00
23.95
- 23.91
23.83
23.78
23.75
-23.69
22.63
22.58
22.11
-21.54
-13.77
(udd) IJ
0 I

$0 \pm$ -	(udd) IJ																		
	0zて	002-	08 I	091-	$0 \pm{ }^{-}$	OZI-	001-	08-	09^{-}	$0 \downarrow^{-}$	$0 z^{-}$	0	02	0t	09	08	001	0ZI	$0 \downarrow$ I

39
77.32
77.00
76.68
71.04
70.98
70.76
70.69
59.93

- 58.67
43.88
- 39.08
- 39.03
- 32.29
- 32.12
- 31.57
31.55
- 25.36
- 24.71
24.15
- 24.12
24.08
24.04
- 23.91
23.86
23.80
23.75
22.16
13.84

f1 (ppm)

N
O
N

(udd) It
012

77.32
77.00
76.68
71.31
71.24
71.03

- 70.96
67.73
67.63
67.61
59.97
58.71
- 45.19
34.84
34.84
-32.05
31.89
31.72
31.69
25.22
24.14
[24.07
24.03
- 23.88
23.84
23.80
23.75
22.12
13.83

N
0

132.08
132.06
132.02
131.99
131.53

- 131.34
131.25
131.16
130.54
- 130.35
128.67
128.62
128.62
128.55
128.50
42
77.32
-77.00
77.32
77.00
76.68
$\tau^{-50.63}$
$\backslash_{50.05}$
-42.65
$\checkmark 25.29$
-21.88
$\int_{11.67}^{13.68}$
0I

. 6
${ }_{11.33}$

$$
\mathrm{I}^{-}
$$

45
77.32
-77.00
76.68
-61.09
-48.70
$\checkmark 46.25$
-40.55
[29.54
$\left[\begin{array}{l}22.49 \\ 20.88\end{array}\right.$
$\begin{array}{r}20.88 \\ \hline \\ \hline\end{array}$
$\left[\begin{array}{l}20.59 \\ 20.55 \\ 20.29\end{array}\right.$
20.29
12.06

(udd) IJ

(
(udd) II
$00 Z$ 0IZ

49
f1 (ppm)

(udd) If
N

N

128.59
128.47
126.22

77.32
77.00
76.68
-75.58
74.17
$\left\{\begin{array}{l}64.72 \\ 64.68\end{array}\right.$
64.64
64.61
$\left[\begin{array}{l}40.12 \\ 37.65 \\ 37.63\end{array}\right.$
37.63
30.60

- 30.50
, 25.95
${ }^{\top} 22.02$
$\left\{\begin{array}{l}16.42 \\ 16.38\end{array}\right.$
$\left[\begin{array}{l}16.38 \\ 16.36\end{array}\right.$
0I
16.36
-16.32
13.85

(udd) LJ
N
0
0
0
$\left|\left.\right|^{102}\right|$
-142.10
${ }^{133.36}$
$\perp_{133.27}$
${ }^{128.42}$
128.40
128.36

52
125.98
125.94
118.56
77.32
$\mathcal{Z} 77.00$
ไ76.68
${ }^{62.65}$
$-\quad 62.58$
62.49

58.71
[58.45
39.59
$\int_{[35.11}$
$\begin{array}{r}35.07 \\ \hline\end{array}$
-33.16
$\uparrow 30.71$
l 30.63
25.94
22.24
16.45
16.39
(udd) IJ
0ZI 0ヵI
08
$\begin{array}{lllllll} & 09^{-} & 0 t^{-} & 0 Z^{-} & 0 & 0 Z & 0 t \\ 09\end{array}$
$0 ヵ Z^{-} 02 Z^{-} 00 Z^{-} 08 \mathrm{I}^{-} 09 \mathrm{I}^{-} 0 \mathrm{O}^{-} 0 \mathrm{I}^{-} 0 \mathrm{I}^{-} 00 \mathrm{I}^{-} 08^{-}$

52

(udd) If
N

N

-34.81
-28.65
-26.76
25.66
22.42
21.98
13.88
13.67

[^0]: $\left[\begin{array}{l}77.32 \\ 77.20\end{array}\right.$
 77.20
 77.00
 $\left[\begin{array}{l}77.00 \\ 76.68\end{array}\right.$
 62.64
 -62.57
 62.44
 62.37
 $\int_{46.42}^{46}$
 $\left[\begin{array}{l}45.38 \\ 45.36 \\ 45.14\end{array}\right.$

 - 34.54
] 34.42
 -30.80
 30.74
 26.56
 16.42
 16.36

