Copper-CatalyzedRing-OpenSulfonylationofCyclopropanols via the Insertion of Sulfur Dioxide towardthe Synthesis of γ-Keto Aryl Sulfones

Lin Shen,[§] Xuemei Zhang,[§] and Zhong Lian^{*}

Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

Email: lianzhong@scu.edu.cn [§] These authors contributed equally.

Supporting Information

Contents

1.	General information	2
2.	General procedures for the synthesis of diazonium salts 1	2
3.	General procedures for the synthesis of Cyclopropanols 2	2
4.	General procedures for the synthesis of γ -keto arylsulfones 3	4
5.	Characterization data of products	4
6.	Gram-scale reaction and transformation of γ -keto ary lsulfones	.12
7.	Mechanistic studies	. 14
8.	References	.16
9.	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of products	.17

General information.

All reactions were carried out in oven dried two-chamber under argon atmosphere glovebox (Vigor, SGI800-750TS-F). All of Aryl diazonium salts were prepared according to the literature¹. Unless otherwise stated, all commercially available compounds were purchased from the reagent company. ¹H, ¹⁹F, ¹³C NMR spectra were recorded in CDCl₃ or (CD₃)₂SO on Bruker Avance 400 MHz spectrometers. NMR spectra were taken using TMS ($\delta = 0$), CDCl₃ ($\delta = 7.26$), and CDCl₃ (¹³C, CPD $\delta = 77.0$) as the internal standards, respectively. High-resolution mass spectrometric measurements were provided by School of Chemistry, Sichuan University, The molecular ion [M+H]⁺, [M]⁺ and [M+Na]⁺ are given in m/z units. Flash column chromatography was performed on silica gel (particle size 200-300 mesh) and eluted with petroleum ether/ethyl acetate.

General procedures for the synthesis of diazonium salts 1

Substrates 1 were synthesized according to the literature procedures¹: In a 50 mL round-bottom flask, the aniline (5 mmol) was dissolved in a mixture of absolute ethanol (1.5 mL) and an aqueous solution of HBF₄ (48% aq, 1.25 mL), followed by dropwise addition of *t*BuONO (1.35 mL) at 0 °C. After stirring at room temperature for 1 h, diethyl ether (5 mL) was added to precipitate the arenediazonium tetrafluoroborates (Note: If there is no solid formed after adding diethyl ether, put the flask in the refrigerator overnight). The solids were filtered off and washed with diethyl ether (3×5 mL), dried in vacuo for 25 minutes, and stored in refrigerator.

General procedures for the synthesis of Cyclopropanols 2

General procedure A

Substrates 2 were synthesized according to the literature procedures²: To a solution of ester (10 mmol), styrene (11 mmol, 1.1 equiv) and $Ti(OiPr)_4$ (2 mmol, 0.35 ml, 0.2 equiv) in Et₂O (15 mL), a solution of *n*BuMgBr (25 mmol, 2.5 equiv) in Et₂O (12 mL)

was added dropwisely over 1 h at reflux. The mixture was stirred for an additional 1 h, and then poured into ice-cold aqueous solution of hydrochloric acid (50 mL, 1M). The organic layer was separated and the aqueous layer was extracted with ether (2×20 mL). The combined organic extracts were washed with saturated NaHCO₃ aq., dried over Na₂SO₄ and concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (~ 10: 1) to give the desired product **2**.

Notes: Cyclopropanols are not stable when chromatography on silica gel, so products were purified by column chromatography quickly, and stored in glovebox at a -20 °C freezer.

General procedure B

$$R \xrightarrow{\text{Br}} \frac{n\text{BuLi}(1.2 \text{ equiv})}{\text{THF, -78 °C, 1.5 h}} \xrightarrow{\text{R}} \xrightarrow{\text{Li}} \frac{1}{-78 °\text{C} - \text{rt, over 3 h}} \xrightarrow{\text{HO}} \xrightarrow{\text{HO$$

Following the literature procedure³, a flame-dried round bottom flask charged with 5 mmol of aryl/alkyl bromide (commercially available reagents were used without further purification) in 15 mL THF was cooled to -78 °C and 2.4 mL of *n*BuLi (2.5 M in hexane, 6 mmol, 1.2 equiv) was added dropwise via syringe. The mixture was stirred for 0.5 h at -78 °C before the addition of the corresponding ketone (5 mmol, 1.0 equiv), then the mixture was warmed to room temperature and stirred over 3 h. The ammonium chloride solution was then added to quench the reaction and extracted with ethyl acetate (3 x 30 mL), washed with sodium chloride solution, and dried over Na₂SO₄. After filtration and concentration, the residue was purified by column chromatography (PE/EA) to afford the products.

General procedure C

Following the literature procedure⁴, a flame-dried round bottom flask charged with 5 mmol of ethyl benzoate and 1 mmol of titanium tetraisopropanolate in 10 mL Et₂O, then 10 mL of Grignard reagent (0.5 M in THF, 5 mmol, 1.0 equiv) was added dropwise via syringe. The mixture was stirred for 2 h at room temperature. The 1.0 M hydrochloric acid solution was then added to quench the reaction and extracted with ethyl acetate (3 x 30 mL), washed with sodium chloride solution, and dried over Na₂SO₄. After filtration and concentration, the residue was purified by column chromatography (PE/EA) to afford the products.

General procedures for the synthesis of γ-keto aryl sulfones 3

Chamber A: for SO₂ gas generation

In an argon fulfilled glovebox, tetrabromothiophene S, S-dioxides (0.51 mmol, 237.4 mg) and 1-methyl-4-vinylbenzene (0.5 mmol, 66 uL) were added into chamber A with a magnetic stirring bar, followed by addition of tetradecane (1.0 mL). Diazonium salts 1 (0.2 mmol), Cyclopropanols 2 (0.3 mmol, 1.5 equiv.), Cu(OTf)₂ (2.5 mol%, 1.8 mg) and L1 (1.6 mg, 2.5 mol%) were added into chamber B with a magnetic stirring bar, followed by addition of MTBE (1.0 mL). The two-chamber was sealed and removed out of the glovebox, then chamber A was allowed to heated to 100 °C in heat block. About ten minutes later, the sulfur dioxide was completely released since the system in chamber A became clear. Then chamber B was heated to 40 °C in heat block. Upon completion, the mixture in chamber B was passed through a short silica gel pad with ethyl acetate. The filtrate was washed by ethyl acetate and H₂O (15 mL×3), dried by Na₂SO₄, then concentrated and the residue was purified by flash column chromatography to afford pure products **3**.

Characterization data of products

4-((4-fluorophenyl)sulfonyl)-4-phenylbutan-2-one (3a) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (51 mg, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 - 7.40 (m, 2H), 7.20 - 7.13 (m, 3H), 7.04 - 7.03 (m, 2H), 6.99 - 6.95 (m, 2H), 4.64 (dd, J = 9.2, 4.4 Hz, 1H),

3.54 (dd, J = 18.0, 4.4 Hz, 1H), 3.21 (dd, J = 17.6, 8.8 Hz, 1H), 2.10 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.2. ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 165.8 (d, J = 257.6 Hz), 132.8 (d, J = 3.0 Hz), 132.4, 131.9 (d, J = 9.1 Hz), 129.7, 129.0, 128.6, 116.1 (d, J = 23.2 Hz), 66.3, 41.3, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for

C₁₆H₁₅FO₃SNa 329.0618; Found:329.0620.

4-((4-chlorophenyl)sulfonyl)-4-phenylbutan-2-one (3b) Prepared by general procedure; isolated as a white solid using petroleum/ethyl acetate (5:1) as eluent (50 mg, 77%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 7.21 – 7.14 (m, 3H), 7.04 (d, *J* = 6.8 Hz, 2H), 4.65 (dd, *J* = 8.8, 4.4

Hz, 1H), 3.53 (dd, J = 18.0, 4.4 Hz, 1H), 3.20 (dd, J = 17.6, 8.8 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 140.6, 135.4, 132.2, 130.4, 129.7, 129.1, 129.1, 128.7, 66.3, 41.3, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₅ClO₃SNa 345.0323; Found: 345.0319.

4-((4-bromophenyl)sulfonyl)-4-phenylbutan-2-one (3c) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (62 mg, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.8 Hz, 2H), 7.21 – 7.14 (m, 3H), 7.04 (d, *J* = 7.2 Hz, 2H), 4.65 (dd, *J* = 8.8,

4.0 Hz, 1H), 3.52 (dd, J = 18.0, 4.4 Hz, 1H), 3.20 (dd, J = 17.6, 8.8 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 135.9, 132.2, 132.0, 130.5, 129.7, 129.2, 129.1, 128.7, 66.2, 41.3, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₅BrO₃SNa 388.9817; Found: 388.9818.

4-((4-iodophenyl)sulfonyl)-4-phenylbutan-2-one (3d) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (77 mg, 94%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 8.4 Hz, 2H), 7.21 – 7.14 (m, 3H), 7.10 (d, J = 8.8 Hz, 2H), 7.05 (d, J = 6.8 Hz, 2H), 4.65 (dd, J = 8.8,

4.4 Hz, 1H), 3.52 (dd, J = 17.6, 4.4 Hz, 1H), 3.20 (dd, J = 18.0, 9.2 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 138.0, 136.6, 132.2, 130.3, 129.7, 129.1, 128.7, 101.9, 66.0, 41.3, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₄H₂₃IO₃SNa 541.0305; Found:541.0300.

4-phenyl-4-((4-(trifluoromethyl)phenyl)sulfonyl)butan-2-one (**3e**) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (51mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.62 (m, 4H), 7.32 – 7.22 (m, 3H), 7.13 (d, *J* = 8.0 Hz, 2H), 4.79 (dd, *J* = 8.8, 4.4 Hz, 1H), 3.65

(dd, J = 17.6, 4.4 Hz, 1H), 3.31 (dd, J = 18.0, 9.2 Hz, 1H), 2.20 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2. ¹³C NMR (101 MHz, CDCl₃) δ 202.9, 140.5, 135.3 (q, J = 33.3 Hz), 132.0, 129.7, 129.6, 129.2, 128.7, 125.8 (q, J = 4.0 Hz), 123.1 (q, J = 274.7 Hz), 66.2, 41.2, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₁₅F₃O₃SNa 379.0586; Found:379.0588.

4-phenyl-4-((4-(trifluoromethoxy)phenyl)sulfonyl)butan-2-one (3f) Prepared by general procedure; isolated as a white solid using petroleum/ethyl acetate (5:1) as eluent (53 mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 8.8 Hz, 2H), 7.29 – 7.27 (m, 1H), 7.25 – 7.19 (m, 4H), 7.12 (d, *J* = 7.2 Hz, 2H), 4.75 (dd, *J*

= 8.8, 4.4 Hz, 1H), 3.63 (dd, *J* = 17.6, 4.4 Hz, 1H), 3.31 (dd, *J* = 17.6, 8.8 Hz, 1H), 2.20

(s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -57.8. ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 153.0 (q, J = 2 Hz), 135.0, 132.2, 131.3, 129.7, 129.1, 128.7, 120.4, 120.1 (d, J = 261.6 Hz), 66.4, 41.2, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₁₅F₃O₄SNa 395.0535; Found:395.0536.

4-((4-acetylphenyl)sulfonyl)-4-phenylbutan-2-one (3g) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (55mg, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 8.8 Hz, 2H), 7.21 – 7.12 (m, 3H), 7.04 (d, *J* = 6.4 Hz, 2H),

4.69 (dd, J = 8.8, 4.4 Hz, 1H), 3.56 (dd, J = 18.0, 4.4 Hz, 1H), 3.22 (dd, J = 18.0, 8.8 Hz, 1H), 2.55 (s, 3H), 2.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 195.7, 139.7, 131.0, 128.7, 128.4, 128.1, 127.4, 127.4, 65.1, 40.2, 29.5, 25.9, 0.0. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₈H₁₉O₄S 331.1004; Found: 331.0999.

4-((3-benzoylphenyl)sulfonyl)-4-(naphthalen-2-yl)butan-2-one (3h) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (65mg, 73%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 4.6 Hz, 1H), 7.77 – 7.71 (m, 2H), 7.69 – 7.60 (m, 8H), 7.53 – 7.44 (m, 4H), 7.32 (d, *J* = 8.4

Hz, 1H), 5.00 (dd, J = 8.8, 4.4 Hz, 1H), 3.75 (dd, J = 18.0, 4.4 Hz, 1H), 3.47 (dd, J = 18.0, 9.2 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 195.2, 142.1, 139.9, 136.3, 133.3, 133.2, 132.9, 130.1, 129.8, 129.7, 129.6, 129.0, 128.6, 128.5, 128.0, 127.7, 127.0, 126.6, 126.5, 66.5, 41.4, 30.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₃O₄S 443.1312; Found: 443.1315.

methyl (S)-4-((3-oxo-1-phenylbutyl)sulfonyl)benzoate (3i) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (60 mg, 87%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.19 – 7.11 (m, 3H), 7.03 (d, *J* = 7.2 Hz, 2H),

4.69 (dd, J = 9.2, 4.4 Hz, 1H), 3.86 (s, 3H), 3.55 (dd, J = 17.6, 4.4 Hz, 1H), 3.22 (dd, J = 18.0, 8.8 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 165.5, 140.8, 134.7, 132.0, 129.8, 129.7, 129.1, 128.7, 66.2, 52.7, 41.2, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₈O₅SNa 369.0767; Found:369.0762.

4-((3-(methylthio)phenyl)sulfonyl)-4-phenylbutan-2-one (3j) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (39 mg, 58%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33-7.30 (m, 1H), 7.22 – 7.18 (m, 4H), 7.17 –

7.14 (m, 1H), 7.09 (s, 1H), 7.05 (d, J = 6.8 Hz, 2H), 4.64 (dd, J = 9.2, 4.4 Hz, 1H), 3.54 (dd, J = 17.6, 4.4 Hz, 1H), 3.21 (dd, J = 18.0, 9.2 Hz, 1H), 2.25 (s, 3H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 140.7, 137.4, 132.5, 131.4, 129.8, 129.0, 128.9, 128.5, 125.6, 125.0, 66.3, 41.3, 30.5, 15.2. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₉O₃S₂ 335.0776; Found: 335.0770.

N-(3,3-dimethyl-1-tosylbut-1-en-2-yl)acetamide (3k) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (1:1) as eluent (41 mg, 62%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.8 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 2H), 7.22 – 7.14 (m, 3H), 7.04 (d, *J* = 7.2 Hz, 2H), 4.72 (dd, *J* = 8.8,

4.4 Hz, 1H), 3.58 (dd, J = 18.0, 4.0 Hz, 1H), 3.24 (dd, J = 18.0, 8.8 Hz, 1H), 2.13 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.7, 150.7, 142.7, 131.7, 130.4, 129.7, 129.4, 128.9, 123.8, 66.3, 41.0, 30.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₆H₁₆NO₅S 334.0749; Found: 334.0748.

4-(naphthalen-1-ylsulfonyl)-4-phenylbutan-2-one (3l) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (36 mg, 54%). ¹H NMR (400 MHz, Chloroformd) δ 8.66 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.56 – 7.53 (m,

1H), 7.27 - 7.23 (m, 1H), 7.10 - 7.06 (m, 1H), 7.01 - 6.98 (m, 2H), 6.86 (d, J = 7.6 Hz, 2H), 5.00 (dd, J = 8.4, 4.8 Hz, 1H), 3.63 (dd, J = 18.0, 4.8 Hz, 1H), 3.26 (dd, J = 18.0, 8.4 Hz, 1H), 2.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.2, 138.1, 136.7, 135.3, 134.8, 134.7, 132.2, 132.1, 131.9, 131.7, 131.6, 131.2, 127.1, 126.7, 68.2, 44.1, 33.4. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₁₈O₃SNa 361.0869; Found: 361.0865.

4-(naphthalen-2-ylsulfonyl)-4-phenylbutan-2-one (3m) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (34 mg, 50%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (s, 1H), 7.81 – 7.73 (m, 3H), 7.60 – 7.55 (m, 1H), 7.53 – 7.49 (m, 1H), 7.39 – 7.36 (m, 1H), 7.17 – 7.15 (m,

1H), 7.12 – 7.08 (m, 2H), 7.05 – 7.03 (m, 2H), 4.75 (dd, J = 9.2, 4.4 Hz, 1H), 3.58 (dd, J = 17.6, 4.4 Hz, 1H), 3.24 (dd, J = 17.6, 9.2 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.2, 135.2, 133.8, 132.4, 131.9, 131.1, 129.8, 129.4, 129.3, 128.9, 128.8, 128.5, 127.9, 127.6, 123.5, 66.3, 41.6, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₁₈O₃SNa 361.0869; Found: 361.0870.

4-([1,1'-biphenyl]-4-ylsulfonyl)-4-phenylbutan-2-one (3n) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (52 mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.46 (m, 6H), 7.42 – 7.34 (m, 3H), 7.21 – 7.13 (m, 3H), 7.10 – 7.07 (m, 2H), 4.70 (dd, J = 9.2, 4.4 Hz,

1H), 3.56 (dd, J = 18.0, 4.4 Hz, 1H), 3.23 (dd, J = 18.0, 9.2 Hz, 1H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 145.5, 138.0, 134.3, 131.4, 128.7, 128.5, 128.0, 127.9, 127.7, 127.5, 126.3, 126.2, 65.3, 40.5, 29.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₅IO₃SNa 387.1025; Found: 387.1021.

4-phenyl-4-tosylbutan-2-one (30) Prepared by general procedure; isolated as a yellow solid using petroleum/ethyl acetate (5:1) as eluent (47 mg, 77%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 8.0 Hz, 2H), 7.28 – 7.23 (m, 3H), 7.18 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 6.4 Hz, 2H), 4.72 (dd, J = 8.8, 4.4 Hz, 1H), 3.60 (dd, J = 17.6,

4.4 Hz, 1H), 3.28 (dd, J = 17.6, 8.8 Hz, 1H), 2.39 (s, 3H), 2.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 144.8, 133.9, 132.6, 129.7, 129.4, 129.0, 128.8, 128.5, 66.2, 41.6, 30.5, 21.6. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₁₈O₃SNa 325.0869; Found:325.0867.

4-((4-(tert-butyl)phenyl)sulfonyl)-4-phenylbutan-2-one (3p) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (59 mg, 86%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.29 (m, 4H), 7.19 – 7.10 (m, 3H), 7.04 (d, *J* = 6.8 Hz, 2H), 4.64 (dd, *J* = 9.2, 4.4 Hz, 1H), 3.49 (dd, *J*

= 17.6, 4.4 Hz, 1H), 3.20 (dd, J = 17.6, 9.2 Hz, 1H), 2.08 (s, 3H), 1.22 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 157.8, 133.8, 132.5, 129.7, 128.9, 128.8, 128.4, 125.7, 66.2, 41.6, 35.2, 31.0, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₄O₃SNa 367.1338; Found: 367.1336.

4-((4-methoxyphenyl)sulfonyl)-4-phenylbutan-2-one (3q) Prepared by general procedure; isolated as a yellow solid using petroleum/ethyl acetate (5:1) as eluent (38 mg, 60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 (d, *J* = 8.8 Hz, 2H), 7.20 – 7.13 (m, 3H), 7.05 (d, *J* = 7.2 Hz, 2H), 6.75 (d, *J* = 8.8 Hz, 2H), 4.62 (dd, *J* = 9.2,

4.4 Hz, 1H), 3.76 (s, 3H), 3.52 (dd, J = 18.0, 4.4 Hz, 1H), 3.19 (dd, J = 18.0, 9.2 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 163.8, 132.7, 131.2, 129.7, 128.8, 128.5, 128.3, 113.9, 66.4, 55.6, 41.7, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₁₉O₄S 319.0999; Found: 319.0996.

4-((4-phenoxyphenyl)sulfonyl)-4-phenylbutan-2-one (3r) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (40 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.31 (m, 4H), 7.20 – 7.12 (m, 4H), 7.07 (d, J = 7.2 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 7.6

Hz, 2H), 4.64 (dd, J = 8.8, 4.4 Hz, 1H), 3.52 (dd, J = 18.0, 4.4 Hz, 1H), 3.20 (dd, J = 18.0, 8.8 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 162.5, 155.0, 132.6, 131.3, 130.3, 130.2, 129.7, 128.9, 128.5, 125.1, 120.2, 117.3, 66.4, 41.6, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₂H₂₀O₄SNa 403.0975; Found:403.0974.

4-((4-ethynylphenyl)sulfonyl)-4-phenylbutan-2-one (3s) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (27mg, 44%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.35 (m, 4H), 7.20 – 7.13 (m, 3H), 7.04 (d, *J* = 7.2 Hz, 2H), 4.65 (dd, *J* = 9.2, 4.4 Hz, 1H), 3.53 (dd, *J*

= 18.0, 4.4 Hz, 1H), 3.24 - 3.17 (m, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 136.8, 132.3, 132.2, 129.7, 129.1, 129.0, 128.6, 127.9, 81.8, 81.3, 66.2, 41.3, 30.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₈H₁₇O₃S 313.0898; Found: 313.0890.

4-(4-methoxyphenyl)-4-tosylbutan-2-one (3t) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (41mg, 62%). 1H NMR (400 MHz, Chloroform-d) δ 7.32 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz,

2H), 6.97 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 4.58 (dd, J = 9.2, 4.0 Hz, 1H), 3.70 (s, 3H), 3.47 (dd, J = 17.6, 4.0 Hz, 1H), 3.14 (dd, J = 17.6, 9.2 Hz, 1H), 2.32 (s, 3H), 2.08 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 203.5, 159.9, 144.7, 134.0, 130.9, 129.4, 129.1, 124.3, 113.9, 65.5, 55.3, 41.7, 30.5, 21.6. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₈H₂₀O₄SNa 355.0975; Found: 355.0975.

(4-phenoxyphenyl)-4-tosylbutan-2-one (3u) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (62mg, 79%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 8.0 Hz, 2H), 7.28 – 7.24 (m, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.06 – 6.99 (m, 3H), 6.89 (d, *J* = 8.8 Hz, 2H),

6.76 (d, J = 8.8 Hz, 2H), 4.61 (dd, J = 9.2, 4.0 Hz, 1H), 3.49 (dd, J = 17.6, 4.0 Hz, 1H), 3.16 (dd, J = 17.6, 9.2 Hz, 1H), 2.32 (s, 3H), 2.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 157.9, 156.6, 144.9, 133.9, 131.1, 129.8, 129.4, 129.1, 127.0, 123.8, 119.2, 118.5, 65.5, 41.7, 30.5, 21.7. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₃H₂₂O₄SNa 417.1131; Found: 417.1128.

4-(4-(tert-butyl)phenyl)-4-((4-iodophenyl)sulfonyl)butan-2-one (3v) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (68mg, 72%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8.8 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 4.63

(dd, J = 9.2, 4.4 Hz, 1H), 3.48 (dd, J = 17.6, 4.4 Hz, 1H), 3.18 (dd, J = 17.6, 9.2 Hz, 1H), 2.09 (s, 3H), 1.20 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 152.4, 137.9, 136.7, 130.3, 129.3, 128.9, 125.6, 101.7, 65.9, 41.4, 34.6, 31.2, 30.5. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₀H₂₄IO₃S 471.0485; Found: 471.0480.

4-((4-iodophenyl)sulfonyl)-4-(o-tolyl)butan-2-one (3w) Prepared by general procedure; isolated as a yellow solid using petroleum/ethyl acetate (5:1) as eluent (68mg, 80%). ¹H NMR (400 MHz, Chloroformd) δ 7.65 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 7.6 Hz, 1H), 7.16 – 7.09 (m, 4H), 6.92 (d, J = 8.8 Hz, 1H), 4.95 (dd, J = 9.2, 4.0 Hz, 1H), 3.52 (dd,

J = 18.0, 4.0 Hz, 1H), 3.25 (dd, J = 18.0, 9.2 Hz, 1H), 2.07 (s, 3H), 1.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 137.6, 136.9, 136.0, 129.7, 129.5, 129.3, 127.9, 127.0, 125.4, 100.9, 60.1, 41.3, 29.4, 18.2. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₈IO₃S 429.0021; Found: 429.0022.

4-(naphthalen-2-yl)-4-tosylbutan-2-one (3x) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (59mg, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 7.2 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.61 (s, 1H), 7.52 - 7.45 (m, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.27 (d,

J = 7.6 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 4.91 (dd, J = 9.2, 4.0 Hz, 1H), 3.69 (dd, J = 17.6, 4.0 Hz, 1H), 3.40 (dd, J = 17.6, 9.2 Hz, 1H), 2.36 (s, 3H), 2.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 144.8, 133.9, 133.2, 132.9, 130.0, 129.4, 129.0, 128.3, 128.1, 127.6, 126.8, 126.7, 126.4, 66.3, 41.9, 30.5, 21.6. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₁H₂₀O₃SNa 375.1025; Found: 375.1026.

4-(4-chlorophenyl)-4-tosylbutan-2-one (3y) Prepared by general procedure; isolated as a white solid using petroleum/ethyl acetate (5:1) as eluent (47mg, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (d, *J* = 6.8 Hz, 2H), 7.23 – 7.20 (m, 4H), 7.08 (d, *J* = 7.2 Hz, 2H), 4.69 (dd, *J* = 9.2, 4.4 Hz, 1H), 3.59 (dd, *J* = 18.0, 4.4 Hz, 1H),

3.23 (dd, J = 18.0, 9.2 Hz, 1H), 2.41 (s, 3H), 2.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 145.1, 134.9, 133.7, 131.2, 131.0, 129.6, 129.0, 128.7, 65.4, 41.6, 30.5, 21.7. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₁₇ClO₃SNa 359.0479; Found: 359.0479.

4-(2-chlorophenyl)-4-tosylbutan-2-one (3z) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (41mg, 61%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 2H), 7.31 – 7.28 (m, 1H), 7.25 – 7.18 (m, 4H), 5.45 (dd, J = 9.6, 4.4 Hz,

1H), 3.66 (dd, J = 17.6, 4.4 Hz, 1H), 3.31 (dd, J = 17.6, 9.6 Hz, 1H), 2.41 (s, 3H), 2.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 144.8, 133.9, 133.2, 130.0, 129.4, 129.0, 128.1, 127.6, 126.7, 126.4, 66.3, 41.9, 30.5, 21.6. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₇H₁₇ClO₃SNa 359.0479; Found: 359.0476.

1,4-diphenyl-4-tosylbutan-2-one (**3aa**) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (48 mg, 63%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, J = 8.0 Hz, 2H), 7.21 – 7.18 (m, 3H), 7.15 (d, J = 7.6 Hz, 1H), 7.10 – 7.06 (m, 4H), 6.99 (d, J = 8 Hz, 2H), 6.92

(d, J = 7.6 Hz, 2H), 4.61 (dd, J = 9.6, 4.4 Hz, 1H), 3.62 – 3.56 (m, 2H), 3.47 (dd, J = 17.6, 4.4 Hz, 1H), 3.23 (dd, J = 17.6, 9.6 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.2, 144.7, 133.9, 133.0, 132.3, 129.7, 129.5, 129.4, 129.0, 128.9, 128.7, 128.4, 127.3, 66.3, 50.6, 39.8, 21.6. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₃H₂₂O₃SNa 401.1182; Found: 401.1184.

1-((4-iodophenyl)sulfonyl)-4-methyl-1-phenylpentan-3-one (3ab) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (62 mg, 70%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 8.4 Hz, 2H), 7.21 – 7.10 (m, 5H), 7.05 (d, J = 7.2 Hz, 2H), 4.66 (dd, J = 9.2, 4.0 Hz, 1H), 3.51 (dd, J =

17.6, 4.0 Hz, 1H), 3.27 (dd, J = 17.6, 9.2 Hz, 1H), 2.56 – 2.49 (m, 1H), 1.02 (d, J = 7.2 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.1, 138.0, 136.7, 132.3, 130.3, 129.7, 129.0, 128.6, 101.8, 66.3, 41.4, 38.2, 17.9. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₀IO₃S 443.0178; Found: 443.0171.

1-((4-iodophenyl)sulfonyl)-1,6-diphenylhexan-3-one (3ac) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (72 mg, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.22 - 7.08 (m, 8H), 7.04 - 6.99 (m, 4H), 4.65 (dd, J = 8.8, 4.4 Hz,

1H), 3.44 (dd, J = 17.6, 4.4 Hz, 1H), 3.13 (dd, J = 17.6, 9.2 Hz, 1H), 2.46 – 2.37 (m, 3H), 2.31 – 2.23 (m, 1H), 1.79 – 1.72 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 205.2,

141.2, 138.0, 136.6, 132.2, 130.3, 129.7, 129.1, 128.7, 128.5, 126.1, 101.9, 66.2, 42.5, 40.5, 34.8, 24.9. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₄H₂₃IO₃SNa 541.0305; Found: 541.0300.

1-cyclohexyl-4-((4-iodophenyl)sulfonyl)-4-phenylbutan-2-one (3ad) Prepared by general procedure; isolated as a white solid using petroleum/ethyl acetate (5:1) as eluent (84 mg, 85%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 6.4 Hz, 2H), 7.22 – 7.09 (m, 5H), 7.04 (d, *J* = 8.0 Hz, 2H), 4.65 (dd, *J* = 8.8, 4.4 Hz, 1H),

3.43 (dd, J = 17.6, 4.0 Hz, 1H), 3.19 (dd, J = 17.6, 9.2 Hz, 1H), 2.26 – 2.14 (m, 2H), 1.68 – 1.63 (m, 1H), 1.55 – 1.52 (m, 2H), 1.45 – 1.37 (m, 2H), 1.18 – 0.98 (m, 4H), 0.81 – 0.71 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 205.2, 138.0, 136.7, 132.2, 130.3, 129.7, 129.0, 128.6, 101.8, 66.2, 51.1, 40.9, 33.8, 33.1, 32.9, 26.1. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₂H₂₅IO₃SNa 519.0461; Found: 519.0452.

1-cyclobutyl-3-((4-iodophenyl)sulfonyl)-3-phenylpropan-1-one (3ae) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (64 mg, 71%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 8.4 Hz, 2H), 7.23 – 7.09 (m, 5H), 7.04 (d, J = 6.8 Hz, 2H), 4.66 (dd, J = 9.2, 4.4 Hz, 1H), 3.41

(dd, J = 17.6, 4.0 Hz, 1H), 3.22 - 3.10 (m, 2H), 2.21 - 2.11 (m, 1H), 2.10 - 2.00 (m, 2H), 1.95 - 1.82 (m, 2H), 1.72 - 1.62 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 206.2, 138.0, 136.7, 132.3, 130.3, 129.7, 129.1, 128.6, 101.8, 66.2, 45.7, 37.8, 24.2, 23.9, 17.6. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₉H₂₀IO₃S 455.0178; Found: 455.0177.

6-bromo-1-((4-iodophenyl)sulfonyl)-1-phenylhexan-3-one (3af) Prepared by general procedure; isolated as a pale yellow solid using petroleum/ethyl acetate (5:1) as eluent (56 mg, 54%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.23 – 7.15 (m, 3H), 7.12 – 7.03 (m, 4H), 4.66 (dd, *J* = 8.8,

4.8 Hz, 1H), 3.52 (dd, J = 17.6, 4.8 Hz, 1H), 3.29 – 3.14 (m, 2H), 3.18 (dd, J = 17.6, 8.4 Hz, 1H), 2.71 – 2.62 (m, 1H), 2.54 – 2.46 (m, 1H), 2.03 – 1.95 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 204.2, 138.1, 136.5, 132.1, 130.3, 129.7, 129.2, 128.7, 102.0, 66.2, 41.3, 40.7, 32.8, 26.1. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₈H₁₉BrIO₃S 520.9283; Found:520.9278.

4-((4-iodophenyl)sulfonyl)-1-(p-tolyl)butan-1-one (3ag) Prepared by general procedure; isolated as a white solid using petroleum/ethyl acetate (5:1) as eluent (26 mg, 30%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.8 Hz, 2H), 3.16 (t, J = 7.2 Hz, 2H), 3.07 (t, J = 6.8 Hz, 2H), 2.34 (s, 3H), 2.11 – 2.04 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 144.4, 138.7, 138.6, 133.9, 129.5, 129.4, 128.1, 101.7, 55.2, 36.0, 21.7, 17.4. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₁₇H₁₈IO₃S 429.0021; Found: 429.0025.

(6S)-6-((3R,5R,8S,9S,10S,17R)-3-((tertbutyldimethylsilyl)oxy)-10-methylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)-1-((4iodophenyl)sulfonyl)-1-phenylheptan-3-one (3ah) Prepared by general procedure; isolated as a

yellow solid using petroleum/ethyl acetate (5:1) as eluent (88 mg, 53%).¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.25 – 7.20 (m, 1H), 7.19 – 7.09 (m, 4H), 7.06 – 7.03 (m, 2H), 4.65 (dd, *J* = 9.2, 4.0 Hz, 1H), 4.08 – 4.02 (m, 1H), 3.57 – 3.44 (m, 2H), 3.24 – 3.14 (m, 1H), 2.45 – 2.15 (m, 2H), 2.00 - 1.90 (s, 2H), 1.87 – 1.41 (m, 13H), 1.35 – 0.74 (m, 29H), 0.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 205.9, 171.2, 138.0, 136.7, 132.2, 130.3, 129.7, 129.1, 128.7, 101.8, 71.9, 66.2, 60.4, 56.5, 55.9, 42.7, 42.1, 40.5, 40.4, 40.3, 40.2, 36.5, 35.8, 35.4, 35.2, 35.1, 34.6, 30.6, 29.5, 28.2, 27.2, 26.4, 24.2, 23.4, 21.1, 20.8, 18.3, 14.2, 12.0. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₄₃H₆₃IO₄SSiNa 853.3159; Found: 853.3155.

1,3-diphenyl-3-(phenylsulfonyl)propan-1-one (3ai) Prepared by general procedure; isolated as a white solid using petroleum/ethyl acetate (5:1) as eluent (22 mg, 32%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.84 (m, 2H), 7.64 – 7.50 (m, 4H), 7.49 – 7.41 (m, 2H), 7.41 – 7.32 (m, 2H), 7.23 – 7.14 (m, 5H), 4.92 (dd, *J* = 9.7, 3.6 Hz, 1H), 4.18 – 4.11 (m, 1H), 3.94 (dd, *J* = 17.9, 9.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.0, 137.0, 136.2, 133.8, 133.8, 132.6, 129.9, 129.1, 128.9, 128.9, 128.8, 128.6, 128.2, 66.6, 37.0. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₂₁H₁₈O₃SNa 373.0869; Found:373.0865.

Gram-Scale Reaction and Transformation of γ-keto aryl sulfones.

Gram-Scale Reaction

In an argon fulfilled glovebox, tetrabromothiophene S, S-dioxides (2.55 mmol, 1187 mg) and 1-methyl-4-vinylbenzene (2.5 mmol, 330 uL) were added into chamber A with a magnetic stirring bar, followed by addition of tetradecane (3.0 mL). Diazonium salts **1** (1.0 mmol), Cyclopropanols **2** (1.5 mmol, 1.5 equiv.), Cu(OTf)₂ (2.5 mol%, 9.0 mg)

and L1 (8.0 mg, 2.5 mol%) were added into chamber B with a magnetic stirring bar, followed by addition of MTBE (3.0 mL). The two-chamber was sealed and removed out of the glovebox, then chamber A was allowed to heated to 100 °C in heat block. About ten minutes later, the sulfur dioxide was completely released since the system in chamber A became clear. Then chamber B was heated to 40 °C in heat block. Upon completion, the mixture in chamber B was passed through a short silica gel pad with ethyl acetate. The filtrate was washed by ethyl acetate and H₂O (15 mL×3), dried by Na₂SO₄, then concentrated and the residue was purified by flash column chromatography to afford pure products **3d** in 77% yield.

Transformation of γ-keto arylsulfone

According to the literature⁵, to a mixture of **3d** (82.9 mg, 0.2 mmol) in MeOH (3 mL) was added NaBH₄ (18.9 mg, 0.5 mmol) at 0 °C. After stirring for 24 hours, the mixture was washed by ethyl acetate and H₂O (15 mL×3), dried by Na₂SO₄, then concentrated and the residue was purified by flash column chromatography to afford pure products **4** (70.7 mg, 85% yield). ¹H NMR (400 MHz, Chloroform-d) 7.69 – 7.57 (m, 2H), 7.28 – 7.11 (m, 4H), 7.11 – 6.98 (m, 3H), 4.36 (dd, J = 11.6, 3.5Hz, 1H), 3.49-3.38 (m, 1H), 2.61 – 2.55 (m, 1H), 2.18 – 2.08 (m, 1H), 1.57 (br, 1H), 1.12 (d, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.9, 136.9, 133.2, 130.3, 129.7, 129.0, 128.7, 101.6, 68.4, 65.7, 37.8, 23.3. HRMS (ESI/Q-TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₇IO₃SNa 438.9835; Found: 438.9837.

According to the literature⁶, copper(I) thiophene-2-carboxylate hydrate (CuTc) (1.9 mg, 0.01 mmol, 10 mol%) and **3s** (37.0 mg, 0.1 mmol, 1.0 equiv) were added to PhMe (1.0 mL) in a 15 mL vial. Then TsN₃ (21.7 mg, 0.11 mmol, 1.1 equiv) were slowly injected into the flask. The reaction was stirred at room temperature for one day. After terminal alkynes were completely reacted (monitored by TLC analysis). The reaction mixture was filtered to remove inorganic compound, the solvent was dried over and purified by flash column chromatography to get N1-sulfonyl-1,2,3-triazoles **5**. Isolated as a white solid using petroleum/ethyl acetate (5/1) as eluent (73.4 mg, 72% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 (s, 1H), 7.97 (d, *J* = 8.5 Hz, 2H), 7.77 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.17 – 7.10 (m, 3H), 7.11 – 6.99 (m, 2H), 4.68 (dd, *J* = 9.0, 4.3 Hz, 1H), 3.56 (dd, *J* = 17.8, 4.3 Hz, 1H), 3.22 (dd, *J* = 17.8, 9.0 Hz, 1H), 2.39 (s, 3H), 2.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 146.8, 144.3, 136.0, 133.1, 131.7, 131.2, 129.6, 128.8, 128.7, 128.0, 127.9, 127.6, 125.0, 119.3, 65.2, 40.4, 29.5, 28.7. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₄N₃O₅S₂ 510.1152; Found: 510.1155.

Mechanistic studies

(a) Radical trapping experiment with TEMPO

In an argon fulfilled glovebox, tetrabromothiophene S, S-dioxides (0.51 mmol, 237.4 mg) and 1-methyl-4-vinylbenzene (0.5 mmol, 66 uL) were added into chamber A with a magnetic stirring bar, followed by addition of tetradecane (1.0 mL). Diazonium salt

1a (0.2 mmol, 1.0 equiv), Cyclopropanol **2a** (0.3 mmol, 1.5 equiv), Cu(OTf)₂ (2.5 mol%, 1.8 mg), L1 (2.5 mol%, 1.6 mg) and TEMPO (0.6 mmol, 3.0 equiv.) were added into chamber B with a magnetic stirring bar, followed by addition of MTBE (1.0 mL). The two-chamber was sealed and removed out of the glovebox, then chamber A was allowed to heated to 100 °C in heat block. About ten minutes later, the sulfur dioxide was completely released since the system in chamber A became clear. Then chamber B was heated to 40 °C in heat block. The yields were determined by ¹⁹F-NMR analysis using trifluorotoluene as an internal standard. The benzyl radical combined with TEMPO were detected by LCMS m/z: $[M+H]^+$ calcd for C₁₉H₃₀NO₂ 304.2271; found: 304.3362.

(b) Radical trapping experiment with 1,1-Diphenylethylene

In an argon fulfilled glovebox, tetrabromothiophene S, S-dioxides (0.51 mmol, 237.4 mg) and 1-methyl-4-vinylbenzene (0.5 mmol, 66 uL) were added into chamber A with a magnetic stirring bar, followed by addition of tetradecane (1.0 mL). Diazonium salt **1a** (0.2 mmol, 1.0 equiv), Cyclopropanol **2a** (0.3 mmol, 1.5 equiv), Cu(OTf)₂ (2.5 mol%, 1.8 mg), **L1** (2.5 mol%, 1.6 mg) and 1,1-Diphenylethylene (0.6 mmol, 3.0 equiv) were added into chamber B with a magnetic stirring bar, followed by addition of MTBE (1.0 mL). The two-chamber was sealed and removed out of the glovebox, then chamber A was allowed to heated to 100 °C in heat block. About ten minutes later, the sulfur dioxide was completely released since the system in chamber A became clear. Then chamber B was heated to 40 °C in heat block. The yields were determined by ¹⁹F-NMR analysis using trifluorotoluene as an internal standard. The aryl radical combined with 1,1-Diphenylethylene were detected by LCMS m/z: $[M+Na]^+$ calcd for C₂₀H₁₅FO₂SNa 361.0669; found: 361.2886.

(c) homo-coupling products 8

4-((3-oxo-1-(4-phenoxyphenyl)butyl)sulfonyl)-4-(4phenoxyphenyl)butan-2-one (8a) Isolated as a side product of the corresponding γ -ketone aryl sulfone. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 2H), 7.19 (m, 2H), 7.09 (m, 1H), 7.00 (d, *J* = 7.5 Hz, 2H),

6.89 (d, J = 8.7 Hz, 2H), 4.37 (dd, J = 9.7, 3.6 Hz, 1H), 3.33 (dd, J = 17.8, 3.6 Hz, 1H), 2.98 (dd, J = 17.8, 9.7 Hz, 1H), 2.00 (s, 3H). ¹³C NMR (101 MHz, CDC13) δ 203.1, 158.6, 156.0, 131.4, 130.0, 126.5, 124.2, 119.9, 118.2, 59.8, 42.0, 30.5. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₃₂H₃₁O₆S 543.1836; Found: 543.1840.

4-([1,1'-biphenyl]-4-yl)-4-((1-([1,1'-biphenyl]-4-yl)-3-oxobutyl)sulfonyl)butan-2-one (8b) Isolated as a side product of the corresponding γ -ketone aryl sulfone. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 – 7.54 (m, 4H), 7.49 – 7.39 (m, 4H), 7.37 – 7.30 (m, 1H), 5.20 (dd,

J = 8.9, 3.5 Hz, 2H), 2.99 – 2.77 (m, 2H), 2.21 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.3, 141.8, 140.9, 140.8, 128.9, 127.4, 127.2, 126.2, 69.7, 52.0, 30.91. HRMS (ESI/Q-TOF) m/z: [M+H]⁺ calcd for C₃₂H₃₁O₄S 511.1938; Found: 511.1939.

References

1. Tao Zhong, Meng-Ke Pang, Zhi-Da Chen, Bin Zhang, Jiang Weng, and Gui Lu *Org. Lett.* **2020** *22*, 3072-3078.

2. Epstein, O. L.; Savchenko, A. I.; Kulinkovich, O. G., Titanium(IV) isopropoxidecatalysed reaction of alkylmagnesium halides with ethyl acetate in the presence of styrene. Non-hydride mechanism of ligand exchange in the titanacyclopropanes. *Tetrahedron Lett.* **1999**, *40*, 5935-5938.

3. Wu, S.; Li, J.; He, R.; Jia, K.; Chen, Y., Terminal Trifluoromethylation of Ketones via Selective C–C Cleavage of Cycloalkanols Enabled by Hypervalent Iodine Reagents. *Org. Lett.* **2021**, *23*, 9204-9209.

4. Kulinkovich, O. G.; Vasilevskii, D. A.; Savchenko, A. I.; Sviridov, S. V. Journal of Organic Chemistry USSR (English Translation), **1991**, 27, 1249 - 1251.

5. Zhang, C.; Zhang, C.; Tang, J.; Ye, S.; Ma, M.; Wu, J., Synthesis of γ -Keto Sulfones through a Three-Component Reaction of Cyclopropanols, DABCO (SO₂)₂ and Alkyl Halides. *Adv. Synth. Catal.* **2021**, *363*, 3109-3114.

6. Wang, T.; Tang, Z.; Luo, H.; Tian, Y.; Xu, M.; Lu, Q.; Li, B. Access to (Z)-β-Substituted Enamides from N1-H-1,2,3-Triazoles. *Org. Lett.*, **2021**, *23*, 6293-6298.

Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra of Products

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3g (400 MHz, Chloroform- d)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: f1 (ppm)

3q (400 MHz, Chloroform- d)

35

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)