Supporting Information

Asymmetric binary-acid catalysis: a diastereo- and enantioselective oxa-Nazarovcyclization Michael addition of conjugated 1,2-diketones

Yuan Tian, Mengdie Tang, Changshuo Lian, Ran Song, Daoshan Yang, and Jian Lv* Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China

*Email: lvjian@iccas.ac.cn

TABLE OF CONTENTS

PAGE

I. General Experimental Information	S2
II. Optimization	S3
III. Experimental Procedures and Characterization Data	S6
IV. Control Experiments	S34
V. X-ray structure of 3d	S39
VI. NMR spectrum	S41
VII. HPLC Chart	S73
VIII. Reference	S106

I. General Experimental Information and Materials

All commercial reagents were used without further purification unless otherwise noted. Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on a Bruker Avance 500MHz spectrometer. Tetramethylsilane (TMS) served as the internal standard for ¹H NMR, and CDCl₃ served as the internal standard for ¹³C NMR. ¹H NMR data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, td = triplet of doublet, dt = doublet of triplet, dd = doublet of doublet), coupling constants (Hz), and integration. Infrared Spectroscopy was conducted on Thermo Fisher Nicolet is10. High resolution mass spectra were obtained on an Ultima Global spectrometer with an ESI source. The enantiomeric excesses were determined by high-performance liquid chromatography (HPLC) analysis using as Shimadzu SPD-20A on Chiral Diacel Chiralpak AD-H, and OD-H columns. Optical rotations were measured on an INESA WZZ-2S. According to the known reference, compounds **2a-s,**¹ **2t-v**,² and **2w-x**³ were prepared.

II. Optimization

Ph 2a	Lewis acid (1 (S)- 1a (20 CH ₂ Cl ₂ ,	0 mol %) mol %) rt, t Ph	Ph O 3a (S)-14	Ar $O P O H$ Ar Ar Ar Ar $Ar = 4-PhC_6H_4$
Entry	Lewis acid	t (h)	Yield [%] ^[b]	ee [%] ^[c]
1	InBr ₃	24	94 (75:25)	23
2	InCl₃	24	93 (67:33)	18
3	Inl ₃	24	94 (75:25)	27
4	In(OTf)₃	24	91 (80:20)	13
5	Sc(OTf)₃	24	94 (90:10)	25
6	Bi(OTf) ₃	6	93 (75:25)	3
7	FeBr₃	24	96 (80:20)	56
8	FeCl₃	24	95 (75:25)	56
9	HfCl ₄	48	91 (71:29)	5
10	Hf(OTf) ₄	48	21 (67:33)	37
11	Ni(OTf) ₂	48	32 (83:17)	63
12	Cu(OTf) ₂	24	94 (75:25)	27
13	Zn(OTf) ₂	48	93 (75:25)	38
14	AgBF ₄	48	64 (67:33)	17
15	Ph₃CBF₄	48	92 (60:40)	34

Table S1. Screening of Different Lewis Acids^[a]

[a] Reaction conditions: **2a** (0.1 mmol), **1a** (20 mol %), Lewis acid (10 mol %) at room temperature in CH_2Cl_2 (0.5 mL). [b] Isolated yield, diastereomeric ratio (in parenthesis) was determined by ¹H NMR. [c] Enantiomeric excess determined by chiral HPLC analysis.

Ph 2a	FeBr ₃ (10 mol %) (<i>S</i>)- 1a (20 mol %) solvent, rt, 24 h	Ph O Ph O Ph O (Ar $O_{P}O_{OH}$ Ar S)-1a, Ar = 4-PhC ₆ H ₄
Entry	Solvent	Yield [%] ^[b]	ee [%] ^[c]
1	CH ₂ Cl ₂	96 (80:20)	56
2	CHCl₃	67 (60:40)	11
3	$CH_3CO_2C_2H_5$	48 (67:33)	33
4	THF	NR	-
5	1,4-dioxane	NR	-
6	Et ₂ O	Trace	-
7	MeCN	37 (67:33)	-
8	n-Hexane	14 (67:33)	27
9	DMSO	NR	-
10	CH₃OH	NR	-
11	DMF	NR	-
12	Acetone	NR	-

Table S2. Screening of Other Different Lewis Acids^[a]

[a] Reaction conditions: **2a** (0.1 mmol), **1a** (20 mol %), FeBr₃ (10 mol %) at room temperature in solvent (0.5 mL) for 24 h. [b] Isolated yield, diastereomeric ratio (in parenthesis) was determined by ¹H NMR. [c] Enantiomeric excess determined by chiral HPLC analysis.

Ph 2a	$\begin{array}{c} O & FeBr_3 (10 \text{ mo})\\ \hline \\ O & Catalyst (20 \text{ m})\\ \hline \\ CH_2Cl_2, \text{ rt, } 2 \end{array}$	hol %) hol %) 4 h Ph O Ph O	¥ o		
Ar O PO O Ar	$\begin{array}{l} (S)\textbf{-1a}, Ar = 4\textbf{-}PhC_{6}H_{4} \\ (S)\textbf{-1b}, Ar = 4\textbf{-}(2\textbf{-}Nap)C_{6}H_{4} \\ (S)\textbf{-1c}, Ar = 4\textbf{-}CH_{3}C_{6}H_{4} \\ (S)\textbf{-1d}, Ar = 1\textbf{-}Pyren \\ (S)\textbf{-1f}, Ar = 4\textbf{-}NO_{2}C_{6}H_{4} \\ (S)\textbf{-1g}, Ar = 2\textbf{,}4\textbf{,}6\textbf{-}Me_{3}C_{6}H_{2} \\ (S)\textbf{-1h}, Ar = 9\textbf{-}Anthryl \end{array}$	$Ar \qquad \begin{array}{c} X = \\ (S) \\ $	OH: 1e , Ar = 1-Pyren 1i , Ar = 4-PhC ₆ H ₄ 1j , Ar = 4-(2-Nap)C ₆ H ₄ 1k , Ar = 9-Anthryl NHTf: 11 Ar = 1-Pyren		
Entry	Catalyst	Yield [%] ^[b]	ee [%] ^[c]		
1	(S)- 1a	96 (80:20)	56		
2	(<i>S</i>)- 1b	92 (89:11)	71		
3	(<i>S</i>)- 1c	92 (85:15)	53		
4	(<i>S</i>)-1d	90 (83:17)	73		
5	(S)-1e	89 (96:4)	81		
6	(S)- 1f	90 (83:17)	73		
7	(S)- 1g	83 (80:20)	7		
8	(<i>S</i>)- 1h	81 (80:20)	70		
9	(S)- 1i	87 (86:14)	68		
10	(S)- 1 j	87 (88:12)	66		
11	(S)- 1k	88 (88:12)	70		
12	(S)- 1 I	95 (80:20)	7		

Table S3. Screening of Different Chiral Phosphoric Acid^[a]

[a] Reaction conditions: **2a** (0.1 mmol), catalyst (*S*)-**1** (20 mol %), FeBr₃ (10 mol %) at room temperature in CH_2Cl_2 (0.5 mL) for 24 h. [b] Isolated yield, diastereomeric ratio (in parenthesis) was determined by ¹H NMR. [c] Enantiomeric excess determined by chiral HPLC analysis.

III. Experimental Procedures and Characterization Data

$R^{1} \xrightarrow[]{0}{0} R^{2} \xrightarrow[]{0}{CH_{2}Cl_{2}, rt, 36 h}^{FeBr_{3} (5 mol \%)} \xrightarrow[]{0}{CH_{2}Cl_{2}, rt, 36 h} \xrightarrow[]{0}{R^{2}} \xrightarrow[]{0} \xrightarrow[]{0}{R^{2}} \xrightarrow[]{0} \xrightarrow[]{0}{$

A) Synthesis of chiral syn-3(2H)-furanones:

General procedure I: To a 10 mL Schlenk tube equipped with a magnetic stir bar was added FeBr₃ (0.005 mmol, 5 mol %) and chiral phosphoric acid (*R*)-**1e** (0.02 mmol, 20 mol %). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with nitrogen for three times. Then anhydrous DCM (1.0 mL) was added. After stirring for 0.5 h, conjugated 1,2-diketones **2** (0.2 mmol) was added under nitrogen. The reaction mixture was stirred at room temperature for 36 h. After reaction, the mixture was directly loaded onto silica gel column and eluted with PE/EA (5:1) to give the chiral target product.

(R)-5-((S)-2-methyl-3-oxo-5-phenyl-2,3-dihydrofuran-2-yl)-5-phenylpentane-2,3-dio ne 3a: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (34.5 mg, 99% yield, 90:10 dr, 96% ee for *syn*-3a); $[\alpha]_D^{30} = +139.1$ (c = 0.33 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 7.5 Hz, 2H), 7.75 (d, *J* = 7.5 Hz, 0.22 H), 7.63–7.60 (m, 1H), 7.56–7.53 (m, 2H), 7.49-7.47 (m, 0.33H), 7.39 (d, *J* = 7.5 Hz, 2H), 7.35-7.32 (m, 2H), 7.28 – 7.27 (m, 1H), 7.18 – 7.14 (m, 0.55H), 6.07 (s, 1H), 5.71 (s, 0.11H), 3.77 – 3.75 (m, 0.11H), 3.69 – 3.67 (m, 1H), 3.53–3.51 (m, 0.11H), 3.47–3.41 (m, 1.11H), 2.78-2.74 (m, 1H), 2.12 (s, 0.33H), 2.06 (s, 3H), 1.49 (s, 0.33H), 1.25 (s, 3H) ppm; major isomer *syn*-**3a**: ¹³C NMR (125 MHz, CDCl₃) δ 205.8, 197.0, 196.7, 184.8, 138.4, 133.1, 129.5, 129.1, 128.5, 127.6, 127.3, 127.0, 100.6, 92.4, 46.2, 36.3, 23.4, 21.6, ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₂₀NaO₄ 371.1254, found 371.1259; HPLC analysis (*syn*-**3a**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 8.4 min (major), 9.0 min (minor).

(R)-5-(4-fluorophenyl)-5-((S)-5-(4-fluorophenyl)-2-methyl-3-oxo-2,3-dihydrofuran-2 -yl)pentane-2,3-dione 3b: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil $(37.3 \text{ mg}, 97\% \text{ yield}, 90:10 \text{ dr}, 95\% \text{ ee for } syn-3b); [\alpha]_{D}^{30} = +162.7 \text{ (c} = 0.36 \text{ in CHCl}_3);$ ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 8.0, 5.5 Hz, 2H), 7.78 – 7.76 (m, 0.33H), 7.35 (dd, J = 8.0, 6.0 Hz, 2H), 7.28-7.13 (m, 2.55H), 7.02 (t, J = 8.5 Hz, 2H), 6.83 (t, J = 8.5 Hz, 0.22H), 6.01 (s, 1H), 5.67 (s, 0.11H), 3.75 (dd, J = 9.5, 5.5 Hz, 0.11H), 3.69 (dd, J = 11.0, 3.0 Hz, 1H), 3.53 (dd, J = 17.5, 9.5 Hz, 0.11H), 3.46 – 3.40 (m, 1.11H), 2.77 (dd, J = 18.0, 3.5 Hz, 1H), 2.17 (s, 0.33H), 2.12 (s, 3H), 1.48 (s, 0.33H), 1.25 (s, 3H) ppm; major isomer *syn*-**3b**: ¹³C NMR (125 MHz, CDCl₃) δ 205.3, 196.8, 196.3, 183.5, 165.6 (d, ${}^{1}J_{C-F} = 254.1 \text{ Hz}$), 162.1 (d, ${}^{1}J_{C-F} = 245.0 \text{ Hz}$), 134.0 (d, ${}^{4}J_{C-F} = 3.1 \text{ Hz}$), 130.9 (d, ${}^{3}J_{C-F} = 3.1 \text{ Hz}$) 7.5 Hz), 129.6 (d, ${}^{3}J_{C-F}$ = 8.9 Hz), 124.8 (d, ${}^{4}J_{C-F}$ = 3.0 Hz), 116.4 (d, ${}^{2}J_{C-F}$ = 22.3 Hz), 115.4 (d, ²J_{C-F} = 21.1 Hz), 100.4, 92.4, 45.4, 36.4, 23.4, 21.6 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₁₈F₂NaO₄ 407.1065, found 407.1064; HPLC analysis (syn-**3b**): Daicel Chiralpak AD-H column, hexane/i-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 9.3 min (major), 10.7 min (minor).

(R)-5-(4-chlorophenyl)-5-((S)-5-(4-chlorophenyl)-2-methyl-3-oxo-2,3-dihydrofuran-2 -yl)pentane-2,3-dione 3c: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (38.4 mg, 92% yield, 90:10 dr, 96% ee for *syn*-3c); $[α]_D^{30} = +163.4$ (c = 0.45 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 0.22H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 0.22H), 7.31 (s, 4H), 7.11 (s, 0.44H), 6.04 (s, 1H), 5.71 (s, 0.11H), 3.73 (dd, *J* = 9.5, 5.0 Hz, 0.11H), 3.67 (dd, *J* = 11.0, 3.5 Hz, 1H), 3.52 (dd, *J* = 18.0, 10.0 Hz, 1H), 3.45 – 3.39 (m, 1.11H), 2.77 (dd, *J* = 18.0, 3.5 Hz, 1H), 2.19 (s, 0.33H), 2.13 (s, 3H), 1.48 (s, 0.33H), 1.25 (s, 3H) ppm; major isomer *syn*-3c: ¹³C NMR (125 MHz, CDCl₃) δ 205.2, 196.7, 196.1, 183.4, 139.5, 136.8, 133.5, 130.7, 129.5, 128.7, 128.5, 126.9, 100.9, 92.3, 45.5, 44.7, 36.1, 26.9, 23.5, 21.6 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₁₈Cl₂NaO₄ 439.0474, found 439.0474; HPLC analysis (*syn*-3c): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 10.4 min (major), 13.6 min (minor).

(R)-5-(4-bromophenyl)-5-((S)-5-(4-bromophenyl)-2-methyl-3-oxo-2,3-dihydrofuran-2-yl)pentane-2,3-dione 3d: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (47.9 mg, 95% yield, 84:16 dr, 96% ee for *syn*-3d); $[\alpha]_{D}^{30} = +153.3$ (c = 0.62 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.67 – 7.62 (m, 1.19H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.30-7.27 (m, 1.95H), 7.07 (d, *J* = 8.0 Hz, 0.38H), 6.06 (s, 1H), 5.74 (s, 0.19H), 3.74 (dd, *J* = 9.5, 5.0 Hz, 0.19H), 3.67 (dd, *J* = 11.0, 3.5 Hz, 1H), 3.53 (dd, *J* = 17.5, 9.5 Hz, 0.19H), 3.46 – 3.41 (m, 1.19H), 2.78 (dd, *J* = 18.0, 3.5 Hz, 1H), 2.22 (s, 0.57H), 2.15 (s, 3H), 1.49 (s, 0.57H), 1.27 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.2, 204.8, 197.0, 196.7, 196.4, 196.1, 183.5, 182.5, 137.3, 136.6, 132.5, 132.4, 131.7, 131.3, 131.1, 130.7, 128.5, 128.4, 128.0, 127.4, 121.66, 121.65, 101.0, 100.6, 92.2, 91.2, 45.6, 44.8, 36.1, 35.6, 23.5, 23.4, 21.6,19.9 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₁₈NaBr₂O₄ 526.9464, found 526.9473; HPLC analysis (*syn*-**3d**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 9.6 min (major), 12.1 min (minor).

(R)-5-((S)-2-methyl-3-oxo-5-(4-(trifluoromethyl)phenyl)-2,3-dihydrofuran-2-yl)-5-(4-(trifluoromethyl)phenyl)pentane-2,3-dione 3e: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (45.1 mg, 93% yield, 84:16 dr, 90% ee for *syn*-3e); $[\alpha]_D^{30} =$ +186.8 (c = 0.54 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 2H), 7.89 (d, *J* = 8.5 Hz, 0.38H), 7.84 (d, *J* = 8.5 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 0.38H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 0.38H), 7.34 (d, *J* = 8.0 Hz, 0.38H), 6.18 (s, 1H), 5.84 (s, 0.19H), 3.86 (dd, *J* = 9.5, 5.0 Hz, 0.19H), 3.80 (dd, *J* = 11.0, 3.5 Hz, 1H), 3.60 (dd, *J* = 18.0, 9.0 Hz, 0.19H), 3.55 – 3.48 (m, 1.19H), 2.85 (dd, *J* = 18.5, 3.5 Hz, 1H), 2.24 (s, 0.57H), 2.17 (s, 3H), 1.53 (s, 0.57H), 1.30 (s, 3H) ppm; major isomer *syn*-3e¹³C NMR (125 MHz, CDCl₃) δ 205.1, 196.6, 195.7, 182.8, 142.3, 134.5 (q, ²*J*_{CF} = 32.5 Hz), 131.7, 129.8, 127.5, 126.1 (d, ${}^{3}J_{C-F}$ = 3.8 Hz), 125.5 (d, ${}^{3}J_{C-F}$ = 3.8 Hz), 102.1, 92.3, 45.9, 36.0, 23.4, 21.6 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₁₈F₆NaO₄ 507.1001, found 507.1002; HPLC analysis (*syn*-**3e**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 14.0 min (major), 15.2 min (minor).

(R)-5-((S)-2-methyl-3-oxo-5-(p-tolyl)-2,3-dihydrofuran-2-yl)-5-(p-tolyl)pentane-2,3dione 3f: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (32.7 mg, 87% yield, 86:14 dr, 96% ee for syn-**3f**); $[\alpha]_D^{30} = +127.9$ (c = 0.31 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 0.32H), 7.26 (d, J = 8.0 Hz, 2H), 7.21-7.18 (m, 2.32H), 7.06 (d, J = 7.5 Hz, 2H), 6.99 (d, J = 7.5 Hz, 0.32H), 6.87 (d, J = 7.8 Hz, 0.32H), 5.94 (s, 1H), 5.60 (s, 0.16H), 3.63 (dd, J = 9.0, 6.0 Hz, 0.16H), 3.55 (dd, J = 11.0, 3.5 Hz, 1H), 3.44 - 3.37 (m, 0.32H), 3.32 (dd, J = 17.5, 11.0 Hz, 1H), 2.65 (dd, J = 17.5, 3.5 Hz, 1H), 2.39 (s, 3H), 2.36 (s, 0.48H), 2.25 (s, 3H), 2.14 (s, 0.48H), 2.04 (s, 0.48H), 1.98 (s, 3H), 1.39 (s, 0.48H), 1.15 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.8, 205.4, 197.5, 197.2, 197.1, 196.8, 184.9, 183.9, 144.0, 143.6, 137.2, 137.0, 135.3, 134.6, 129.8, 129.6, 129.4, 129.2, 129.0, 128.9, 127.3, 127.1, 126.0, 125.9, 100.0, 99.7, 92.4, 91.2, 45.8, 45.1, 36.4, 36.0, 23.5, 23.4, 21.81, 21.76, 21.6, 21.1, 21.0, 19.8 ppm; HRMS (ESI, quarupole) m/z: $(M+Na)^+$ calcd for $C_{24}H_{24}NaO_4$ 399.1567, found 399.1568; HPLC analysis (syn-3f): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 8.5 min (major), 10.3 min (minor).

(R)-5-(4-methoxyphenyl)-5-((S)-5-(4-methoxyphenyl)-2-methyl-3-oxo-2,3-dihydrofu ran-2-yl)pentane-2,3-dione 3g: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (2:1) as the eluent. Yellow oil (21.5 mg, 53% yield, 75:25 dr, 84% ee for syn-3g); $[\alpha]_D^{30} = +117.9$ (c = 0.37 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 9.0 Hz, 2H), 7.71 (d, J = 9.0 Hz, 0.66H), 7.30 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.5 Hz, 0.66H), 7.03 (d, J = 8.5 Hz, 2H), 6.97 (d, J = 8.5 Hz, 0.66H), 6.87 (d, J = 8.5 Hz, 2H), 6.67 (d, J = 8.5 Hz, 0.66H), 5.95 (s, 1H), 5.61 (s, 0.33H), 3.91 (s, 3H), 3.89 (s, 0.99H), 3.80 (s, 3H), 3.70 (s, 0.99H), 3.62 (dd, J = 10.5, 3.5 Hz, 1H), 3.49 (dd, J = 17.5, 10.0 Hz, 0.33H), 3.43 – 3.35 (m, 1.33H), 2.73 (dd, J = 17.5, 4.0 Hz, 1H), 2.11 (s, 0.99H), 2.06 (s, 3H), 1.47 (s, 1H), 1.23 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.4, 205.1, 197.5, 197.4, 197.1, 197.0, 184.5, 183.6, 163.5, 158.9, 158.7, 130.6, 130.4, 130.2, 129.6, 129.3, 129.1, 121.2, 121.1, 114.5, 114.3, 113.8, 113.5, 99.0, 98.8, 92.5, 91.3, 55.6, 55.5, 55.2, 55.1, 45.5, 44.8, 36.5, 36.1, 23.5, 23.4, 21.6, 19.9 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₄H₂₄NaO₆ 431.1465, found 431.1467; HPLC analysis (syn-3g): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 16.2 min (major), 22.3 min (minor).

(R)-5-([1,1'-biphenyl]-4-yl)-5-((S)-5-([1,1'-biphenyl]-4-yl)-2-methyl-3-oxo-2,3-dihydr

ofuran-2-yl)pentane-2,3-dione 3h: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (49.1 mg, 98% yield, 83:17 dr, 92% ee for syn-**3h**); $[\alpha]_D^{30} = +195.4$ (c = 0.45 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.5 Hz, 0.40H), 7.77 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.0 Hz, 0.40H), 7.66 (d, J = 7.5 Hz, 2H), 7.60-7.58 (m, 4H), 7.52-7.42 (m, 5H), 7.45-7.42 (m, 4H), 7.37-7.27 (m, 1.80H), 6.11 (s, 1H), 5.77 (s, 0.2H), 3.82 (dd, J = 9.5, 5.5 Hz, 0.2H), 3.76 (dd, J = 10.5, 3.5 Hz, 1H), 3.59 (dd, J = 17.5, 9.0 Hz, 0.2H), 3.53 – 3.48 (m, 1.2H), 2.82 (dd, J = 16.5, 3.5 Hz, 1H), 2.16 (s, 0.6H), 2.10 (s, 3H), 1.53 (s, 0.6H), 1.32 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.6, 205.3, 197.4, 197.0, 196.6, 184.5, 183.5, 145.9, 145.6, 140.5, 140.4, 140.3, 140.1, 139.72, 139.70, 137.5, 136.8, 130.0, 129.6, 129.09, 129.05, 128.8, 128.7, 128.5, 128.4, 127.8, 127.7, 127.64, 127.55, 127.44, 127.40, 127.3, 127.22, 127.15, 127.0, 126.9, 126.8, 100.6, 100.3, 92.5, 91.3, 45.9, 45.2, 36.4, 36.0, 23.52, 23.45, 21.8, 20.0 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₃₄H₂₈NaO₄ 523.1880, found 523.1880; HPLC analysis (syn-3h): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 14.0 min (major), 23.2 min (minor).

(R)-5-(3-chlorophenyl)-5-((S)-5-(3-chlorophenyl)-2-methyl-3-oxo-2,3-dihydrofuran-2 -yl)pentane-2,3-dione 3i: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (37.2 mg, 89% yield, 87:13 dr, 91% ee for *syn*-3i); $[\alpha]_D^{30} = +70.2$ (c = 0.40 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (s, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 0.15H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.54 (d, *J* = 6.5 Hz, 0.15H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 0.15H), 7.38 (s, 1H), 7.29 – 7.25 (m, 3H), 7.18 (s, 0.15H), 7.15-7.07 (m, 0.45H), 6.07 (s, 1H), 5.74 (s, 0.15H), 3.76 – 3.71 (m, 0.15H), 3.67 (dd, J = 10.5, 3.5 Hz, 1H), 3.51 – 3.47 (m, 0.30H), 3.42 (dd, J = 18.0, 11.0 Hz, 1H), 2.79 (dd, J = 18.5, 3.5 Hz, 1H), 2.22 (s, 0.45H), 2.16 (s, 3H), 1.48 (s, 0.45H), 1.27 (s, 3H) ppm; major isomer *syn*-**3i**: ¹³C NMR (125 MHz, CDCl₃) δ 205.2, 196.7, 195.9, 183.1, 140.3, 135.3, 134.3, 133.0, 130.4, 130.2, 129.8, 129.5, 127.9, 127.6, 127.1, 125.3, 101.5, 101.1, 92.3, 45.8, 36.1, 23.5, 21.6 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₁₈Cl₂NaO₄ 439.0474, found 439.0474; HPLC analysis (*syn*-**3i**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 17.6 min (major), 23.3 min (minor).

(R)-5-((S)-2-methyl-3-oxo-5-(3-(trifluoromethyl)phenyl)-2,3-dihydrofuran-2-yl)-5-(3-(trifluoromethyl)phenyl)pentane-2,3-dione 3j: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (41.1 mg, 85% yield, 86:14 dr, 91% ee for *syn*-3j); $[\alpha]_D^{30}$ = +147.1 (c = 0.39 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.99 (s, 0.16H), 7.92 (d, *J* = 8.0 Hz, 0.16H), 7.89 (d, *J* = 7.5 Hz, 1H), 7.84 (d, *J* = 7.5 Hz, 0.16H), 7.73-7.70 (m, 2H), 7.68 – 7.63 (m, 0.32H), 7.6 (d, *J* = 7.5 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.50-7.45 (m, 1H), 7.45-7.40 (m, 0.32H), 7.36-7.33 (m, 0.16H), 6.14 (s, 1H), 5.81 (s, 0.16H), 3.87 (dd, *J* = 8.5, 5.5 Hz, 0.16H), 3.81 (dd, *J* = 10.5, 3.5 Hz, 1H), 3.63 – 3.55 (m, 0.32H), 3.50 (dd, *J* = 10.5, 19.0 Hz 1H), 2.92 (dd, *J* = 18.5, 3.5 Hz, 1H), 2.25 (s, 0.48H), 2.18 (s, 3H), 1.52 (s, 0.48H), 1.32 (s, 3H) ppm; major isomer *syn*-3j: ¹³C NMR (125 MHz, CDCl₃) δ 205.0, 196.6, 195.8, 182.7, 139.2, 132.9, 131.9 (q, ¹*J*_{C-F} = 32.5 Hz), 130.9 (q, ¹*J*_{C-F} = 32.5 Hz), 129.8, 129.5 (q, ²*J*_{C-F} = 3.75 Hz), 129.2, 129.0, 125.9, 124.5 (²*J*_{C-F} = 3.75 Hz), 123.7 (²*J*_{C-F} = 3.75 Hz), 122.8, 122.4, 101.7, 92.1, 45.9, 36.1, 23.4, 21.6 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₁₈F₆NaO₄ 507.1001, found 507.1002; HPLC analysis (*syn*-**3**j): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 13.3 min (major), 14.6 min (minor).

(R)-5-((S)-2-methyl-3-oxo-5-(m-tolyl)-2,3-dihydrofuran-2-yl)-5-(m-tolyl)pentane-2,3 -dione 3k: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (29.8 mg, 74% yield, 86:14 dr, 91% ee for syn-**3k**); $[\alpha]_D^{30} = +197.7$ (c = 0.27 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.70 (m, 2H), 7.59 – 7.57 (m, 0.32H), 7.48 – 7.41 (m, 2H), 7.39 (d, J = 5.0 Hz, 0.32 H), 7.29 - 7.21 (m, 3 H), 7.10 (d, <math>J = 7.0 Hz, 1 H), 7.07 - 6.96 (m, 0.64 H),6.07 (s, 1H), 5.71 (s, 0.16H), 3.73 (dd, J = 8.5, 5.5 Hz, 0.16H), 3.67 (dd, J = 10.5, 3.5 Hz, 1H), 3.57 – 3.50 (m, 0.32H), 3.45 (dd, J = 17.5, 10.5 Hz, 1H), 2.77 (dd, J = 17.5, 3.5 Hz, 1H), 2.49 (s, 3H), 2.46 (s, 0.48H), 2.38 (s, 3H), 2.18 (s, 0.48H), 2.15 (s, 0.48H), 2.09 (s, 3H), 1.50 (s, 0.48H), 1.27 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.8, 205.4, 197.5, 197.2, 197.1, 196.8, 185.0, 184.0, 138.9, 138.7, 138.3, 137.9, 137.6, 137.5, 133.8, 133.5, 130.5, 130.0, 128.9, 128.8, 128.7, 128.6, 128.34, 128.27, 128.2, 128.0, 127.7, 127.5, 126.4, 126.2, 124.5, 124.3, 100.6, 100.2, 92.3, 91.2, 46.2, 45.5, 36.4, 36.0, 23.5, 23.4, 21.6, 21.5, 21.42, 21.36, 21.2, 19.7 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₄H₂₄NaO₄ 399.1567, found 399.1568; HPLC analysis (*syn*-**3k**): Daicel Chiralpak AD-H column, hexane/i-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 11.0 min (major), 19.7 min (minor).

S14

(R)-5-(3-methoxyphenyl)-5-((S)-5-(3-methoxyphenyl)-2-methyl-3-oxo-2,3-dihydrofu ran-2-yl)pentane-2,3-dione 3I: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (3:1) as the eluent. Yellow oil (27.5 mg, 68% yield, 90:10 dr, 85% ee for syn-**3I**); $[\alpha]_D^{30} = +145.5$ (c = 0.45 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H), 7.38 (s, 1H), 7.38-7.35 (m, 0.11H), 7.27-7.23 (m, 1H), 7.15-7.13 (m, 1H), 7.10-7.07 (m, 0.33H), 6.97 (d, J = 7.5 Hz 1H), 6.94 (s, 1H), 6.82-6.80 (m, 1H), 6.78-6.68 (m, 0.44H), 6.05 (s, 1H), 5.73 (s, 0.11H), 3.90 (s, 3H), 3.89 (s, 0.33H), 3.81 (s, 3H), 3.72 (dd, J = 9.0, 5.5 Hz), 3.65 (dd, J = 10.5, 3.5 Hz, 1H), 3.61 (s, 0.33H), 3.54-3.46 (m, 0.22H), 3.42 (dd, J = 17.5, 11.0 Hz, 1H), 2.73 (dd, J = 17.5, 3.5 Hz 1H), 2.14 (s, 0.33H), 2.08 (s, 3H), 1.48 (s, 0.33H), 1.26 (s, 3H) ppm; major isomer *syn*-**3**I: ¹³C NMR (125 MHz, CDCl₃) δ 205.7, 197.0, 196.6, 184.6, 160.0, 159.5, 139.9, 130.1, 129.9, 129.4, 121.9, 119.8, 119.7, 115.3, 112.9, 112.3, 100.9, 100.6, 92.4, 55.5, 55.1, 46.3, 36.3, 23.4, 21.6 ppm; HRMS (ESI, quarupole) m/z: $(M+Na)^+$ calcd for C₂₄H₂₄NaO₆ 431.1465, found 431.1467; HPLC analysis (*syn-***3**I): Daicel Chiralpak AD-H column, hexane/i-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 9.9 min (major), 13.1 min (minor).

(R)-5-(2-fluorophenyl)-5-((S)-5-(2-fluorophenyl)-2-methyl-3-oxo-2,3-dihydrofuran-2 -yl)pentane-2,3-dione 3m: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (8:1) as the eluent. Yellow oil (29.6 mg, 77% yield, 88:12 dr, 92% ee for *syn*-3m); $[\alpha]_D^{30} = +127.6$ (c = 0.33 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.95 – 7.92 (m, 1H), 7.90 – 7.87 (m, 0.13H), 7.64 –7.54 (m, 1.13H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.31-7.29 (m, 0.26H), 7.27-7.20 (m, 2H), 7.20-7.18 (m, 0.26H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 9.0 Hz, 1H), 7.03-6.99 (m, 0.26H), 6.24 (d, *J* = 3.5 Hz, 1H), 6.03 (d, *J* = 3.5 Hz, 0.13H), 4.17 – 4.13 (m, 1H), 3.61 – 3.56 (m, 0.13H), 3.52 – 3.42 (m, 1.13H), 2.87 (dd, *J* = 18.0, 3.5 Hz, 1H), 2.22 (s, 0.39H), 2.14 (s, 3H), 1.48 (s, 0.39H), 1.31 (s, 3H) ppm; major isomer *syn*-**3m**: ¹³C NMR (125 MHz, CDCl₃) δ 205.0, 195.8, 195.5, 177.6 (d, ³*J*_{C-F} = 2.5 HZ), 160.7 (d, ¹*J*_{C-H} = 256.3 Hz), 160.3 (d, ¹*J*_{C-H} = 245.0 Hz), 133.6 (d, *J*_{C-H} = 8.8 Hz), 128.2 (d, *J*_{C-H} = 8.8 Hz), 126.9, 124.3 (d, *J*_{C-H} = 13.8 Hz), 123.7 (d, *J*_{C-H} = 3.8 Hz), 123.3 (d, *J*_{C-H} = 3.8 Hz), 116.2 (d, *J* = 10.0 Hz), 115.7 (d, *J* = 22.5 Hz), 114.5 (d, *J* = 22.5 H), 104.4 (d, *J* = 12.5 Hz), 89.2, 36.8, 34.4, 22.4, 20.1 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₁₈F₂NaO₄ 407.1065, found 407.1064; HPLC analysis (*syn*-**3m**): Daicel Chiralpak OD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 10.9 min (major), 12.0 min (minor).

(R)-5-(2-chlorophenyl)-5-((S)-5-(2-chlorophenyl)-2-methyl-3-oxo-2,3-dihydrofuran-2 -yl)pentane-2,3-dione 3n: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (8:1) as the eluent. Yellow oil (31.6 mg, 76% yield, 90:10 dr, 90% ee for *syn*-3n); $[\alpha]_D^{30}$ = +159.9 (c = 0.44 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.88 – 7.83 (m, 0.11H), 7.59 – 7.57 (m, 1H), 7.54 – 7.51 (m, 1H), 7.48 – 7.43 (m, 3.22H), 7.41– 7.36 (m, 0.33H), 7.29 – 7.26 (m, 1H), 7.23-7.20 (m, 1H), 7.20 – 7.17 (m, 0.22H), 6.44 (s, 1H), 6.30 (s, 0.11H), 4.51-4.48 (m, 1.11H), 3.57-3.51 (m, 1.11H), 3.46-3.41 (m, 0.11H), 2.22 (s, 0.33H), 2.16 (s, 3H), 1.54 (s, 0.33H), 1.34 (s, 3H) ppm; major isomer *syn*-3n: ¹³C NMR (125 MHz, CDCl₃) δ 205.9, 196.8, 196.2, 181.5, 136.2, 135.9, 134.0, 133.0, 131.4, 129.7, 129.5, 129.0, 128.7, 127.9, 127.2, 127.1, 106.4, 91.0, 40.9, 36.3, 23.4, 20.9 ppm; HRMS (ESI, quarupole) m/z: $(M+Na)^+$ calcd for $C_{22}H_{18}Cl_2NaO_4$ 439.0474, found 439.0474; HPLC analysis (*syn*-**3n**): Daicel Chiralpak OD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 5.4 min (major), 5.9 min (minor).

(R)-5-((S)-2-methyl-3-oxo-5-(o-tolyl)-2,3-dihydrofuran-2-yl)-5-(o-tolyl)pentane-2,3dione 3o: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (8:1) as the eluent. Yellow oil (25.2 mg, 67% yield, >95:5 dr, 91% ee for *syn*-3o); $[\alpha]_D^{30} = +121.6$ (c = 0.64 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.38 – 7.32 (m, 3H), 7.16 – 7.12 (m, 3H), 5.93 (s, 1H), 4.04 (dd, *J* = 10.5, 3.5 Hz, 1H), 3.54 (dd, *J* = 17.5, 10.5 Hz, 1H), 2.80 (dd, *J* = 17.5, 4.0 Hz, 1H), 2.53 (s, 3H), 2.52 (s, 3H), 2.04 (s, 3H), 1.25 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 206.3, 196.9, 196.9, 185.8, 137.93, 137.92, 137.1, 132.0, 131.9, 130.4, 128.8, 128.6, 127.7, 127.3, 126.4, 126.3, 104.9, 92.0, 40.3, 37.0, 23.3, 21.9, 21.1, 20.3 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₄H₂₄NaO₄ 399.1567, found 399.1568; HPLC analysis (*syn*-**3o**): Daicel Chiralpak OD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 8.2 min (major), 8.7 min (minor).

(R)-5-(2-methoxyphenyl)-5-((S)-5-(2-methoxyphenyl)-2-methyl-3-oxo-2,3-dihydrofu ran-2-yl)pentane-2,3-dione 3p: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (3:1) as the eluent. Yellow oil (25.7 mg, 63% yield, 83:17 dr, 83% ee for *syn*-**3p**); $[α]_D^{30} = +134.6$ (c = 0.27 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 0.21H), 7.59 – 7.56 (m, 1H), 7.55 – 7.51 (m, 0.21H), 7.40 (d, *J* = 7.5 Hz, 1H), 7.29 – 7.26 (m, 1.21H), 7.20 (t, *J* = 8.0 Hz, 0.21H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.08 – 7.06 (m, 1.21H), 7.02 – 6.99. (m, 1.21H), 6.96 (d, *J* = 8.5 Hz, 1H), 6.85-6.83 (m, 0.42H), 6.44 (s, 1H), 6.23 (s, 0.21H), 4.53 – 4.31 (m, 1.21H), 3.99 (s, 3H), 3.92 (s, 0.63H), 3.92 (s, 3H), 3.74 (s, 0.63H), 3.52 (m 0.21H), 3.38 – 3.33 (m, 1.21H), 2.81 (dd, *J* = 17.0, 4.0 Hz, 1H), 2.14 (s, 0.63H), 2.05 (s, 3H), 1.47 (s, 0.64H), 1.24 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 207.5, 207.1, 197.5, 197.34, 197.29, 197.2, 180.6, 179.4, 159.4, 159.2, 158.0, 157.6, 134.1, 133.8, 128.44, 128.38, 128.2, 128.1, 120.71, 120.70, 120.5, 120.3, 117.8, 117.7, 111.5, 111.3, 110.9, 110.8, 105.6, 105.0, 90.1, 88.7, 60.4, 55.7, 55.6, 55.5, 36.6, 36.4, 36.1, 36.0, 23.43, 23.38, 20.8, 19.4 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₄H₂₄NaO₆ 431.1465, found 431.1467; HPLC analysis (*syn*-**3p**): Daicel Chiralpak OD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 15.7 min (major), 18.2 min (minor).

(R)-5-(3,5-dimethylphenyl)-5-((S)-5-(3,5-dimethylphenyl)-2-methyl-3-oxo-2,3-dihyd rofuran-2-yl)pentane-2,3-dione 3q: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (38.4 mg, 95% yield, 86:14 dr, 93% ee for *syn*-3q); $[\alpha]_D^{30} = +220.8$ (c = 0.62 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (s, 2H), 7.36 (s, 0.32H), 7.24 (s, 1H), 7.18 (s, 0.16H), 6.99 (s, 2H), 6.90 (s, 1H), 6.80 (s, 0.32H), 6.77 (s, 0.16H), 6.01 (s, 1H), 5.70 (s, 0.16H), 3.65 (t, *J* = 7.5 Hz, 0.16H), 3.59 (dd, *J* = 10.5, 3.5 Hz, 1H), 3.47 (d, *J* = 7.5 Hz, 0.32H), 3.39 (dd, *J* = 17.5, 10.5 Hz, 1H), 2.73 (dd, *J* = 17.5, 3.5 Hz, 1H), 2.42 (s, 6H), 2.41 (s, 0.96H), 2.35 (s, 6H), 2.17 (s, 0.48H), 2.16 (s, 0.96H), 2.10 (s, 3H), 1.49 (s, 0.48H), 1.27 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 206.0, 205.5, 197.6, 197.19,

197.15, 196.9, 185.2, 184.3, 138.7, 138.5, 138.2, 137.7, 137.5, 137.4, 134.7, 134.4, 129.2, 129.0, 128.7, 128.6, 127.5, 127.1, 125.0, 124.8, 100.4, 100.2, 92.2, 91.0, 46.0, 45.4, 36.4, 35.9, 23.50, 23.45, 21.7, 21.4, 21.3, 21.2, 21.1, 19.5 ppm; HRMS (ESI, quarupole) m/z: $(M+Na)^+$ calcd for $C_{26}H_{28}NaO_4$ 427.1880, found 427.1880; HPLC analysis (*syn-***3q**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 15.0 min (major), 16.0 min (minor).

(S)-5-((S)-2-methyl-3-oxo-5-(thiophen-2-yl)-2,3-dihydrofuran-2-yl)-5-(thiophen-2-yl) pentane-2,3-dione 3r: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (25.9 mg, 72% yield, 87:13 dr, 91% ee for syn-**3r**); $[\alpha]_{D^{30}} = +194.0$ (c = 0.31 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 2.5 Hz, 1H), 7.98 (d, J = 2.5 Hz, 0.15H), 7.49 – 7.47 (m, 1H), 7.45 – 7.42 (m, 1.15H), 7.33 (d, J = 5.5 Hz, 0.15H), 7.29 (dd, J = 5.0, 3.0 Hz, 1H), 7.19 – 7.18 (m, 1H), 7.13 – 7.10 (m, 1.15H), 7.02 (d, J = 3.0 Hz, 0.15H), 6.91 (d, J = 5.0 Hz, 0.15H), 5.86 (s, 1H), 5.56 (s, 0.15H), 3.88 (dd, J = 9.5, 5.0 Hz, 0.15H), 3.84 (dd, J = 11.0, 3.5 Hz, 1H), 3.45 (dd, J = 17.0, 9.5 Hz, 0.15H), 3.38 - 3.32 (m, 1.15H), 2.69 (dd, J = 17.0, 3.5 Hz, 1H), 2.15 (s, 0.45H), 2.10 (s, 3H), 1.45 (s, 0.45H), 1.27 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.3, 205.3, 197.3, 197.0, 196.7, 180.0, 179.1, 138.8, 138.2, 131.41, 131.35, 129.2, 128.8, 128.2, 128.1, 127.6, 127.4, 126.1, 126.0, 125.8, 125.2, 123.8, 123.3, 100.4, 100.0, 91.9, 90.8, 41.6, 41.2, 36.5, 26.2, 23.5, 23.4, 21.5, 19.7 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₁₈H₁₆NaO₄S₂ 383.0382, found 383.0386; HPLC analysis (*syn*-**3r**): Daicel Chiralpak AD-H column, hexane/i-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 5.1 min (major), 6.4 min (minor).

(R)-5-((S)-2-methyl-5-(naphthalen-1-yl)-3-oxo-2,3-dihydrofuran-2-yl)-5-(naphthalen -1-yl)pentane-2,3-dione 3s: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (10:1) as the eluent. Yellow oil (28.7 mg, 64% yield, 85:15 dr, 90% ee for syn-**3s**); $[\alpha]_D^{30} = +181.5$ (c = 0.34 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.8 Hz, 1H), 8.33 (d, J = 8.8 Hz, 0.18H), 8.24 - 8.21 (m, 1H), 8.04 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 8.4 Hz, 0.18H), 7.96 - 7.90 (m, 1.36H), 7.85 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 7.2 Hz, 2H), 7.70 (d, J = 8.4 Hz, 0.18H), 7.66 - 7.62 (m, 2.18H), 7.58 - 7.52 (m, 4H), 7.50 (s, 0.36H), 7.48 (s, 0.36H), 7.46 (s, 0.18H), 7.44 – 7.40 (m, 1.18H), 7.20-7.15 (m, 0.18), 6.12 (s, 1H), 5.66 (s, 0.18H), 4.89 - 4.83 (m, 1.18H), 3.76 (dd, J = 17.6, 10.4 Hz, 1H), 3.66 (dd, J = 8.8, 7.6 Hz, 0.36H), 3.11 (dd, J = 17.2, 4.4 Hz, 1H), 1.95 (s, 3H), 1.93 (s, 0.54H), 1.42 (s, 0.54H), 1.34 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 206.0, 205.0, 197.3, 197.1, 197.0, 196.8, 186.2, 184.7, 135.2, 134.5, 133.83, 133.78, 133.72, 133.7, 132.93, 132.90, 132.7, 132.2, 130.22, 130.15, 129.0, 128.9, 128.8, 128.5, 128.3, 128.2, 127.9, 127.8, 127.62, 127.57, 127.5, 127.0, 126.68, 126.65, 126.5, 126.3, 125.84, 125.80, 125.75, 125.7, 125.4, 125.0, 124.9, 124.8, 124.71, 124.68, 124.2, 123.7, 105.9, 105.7, 92.6, 91.0, 105.9, 105.7, 92.6, 90.9, 39.1, 37.9, 37.8, 37.4, 29.7, 26.9, 23.4, 21.8 ppm; HRMS (ESI, quarupole) m/z: $(M+Na)^+$ calcd for $C_{30}H_{24}NaO_4$ 448.1675, found 448.1667; HPLC analysis (syn-3s): Daicel Chiralpak AD-H column, hexane/i-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 10.3 min (major), 15.3 min (minor).

(R)-1-((S)-2-ethyl-3-oxo-5-phenyl-2,3-dihydrofuran-2-yl)-1-phenylhexane-3,4-dione

3t: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Yellow oil (37.3 mg, 99% yield, 94:6 dr, 93% ee for *syn*-**3t**); $[\alpha]_D^{30} = +164.8$ (c = 0.56 in CHCl₃); major isomer *syn*-**3t**: ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 2H), 7.37 (d, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.26-7.23 (m, 1H), 7.12 (d, *J* = 8.0H, 3H), 6.09 (s, 1H), 3.69 (dd, *J* = 11.0, 3.5 Hz, 1H), 3.45 (dd, *J* = 17.0, 10.5 Hz, 1H), 2.79 (dd, 17.0, 3.5 Hz, 1H), 2.45 – 2.41 (m, 2H), 1.83 – 1.75 (m, 1H), 1.62 – 1.53 (m, 1H), 0.87 (t, *J* = 7.2 Hz, 3H), 0.70 (t, *J* = 7.4 Hz, 3H) ppm; major isomer *syn*-**3t**: ¹³C NMR (125 MHz, CDCl₃) δ 205.4, 199.9, 197.3, 185.7, 138.4, 133.0, 129.6, 129.1, 128.5, 128.4, 127.5, 127.2, 102.7, 95.5, 46.4, 36.7, 29.2, 28.7, 7.0, 6.6 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₄H₂₄NaO₄ 399.1567, found 399.1572; HPLC analysis (*syn*-**3t**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 15.9 min (major), 20.6 min (minor).

(R)-1-((S)-2-decyl-3-oxo-5-phenyl-2,3-dihydrofuran-2-yl)-1-phenyltetradecane-3,4-d ione **3u**: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (20:1) as the eluent. Yellow oil (52.2 mg, 87% yield, 90:10 dr, 88% ee for *syn*-**3u**); $[\alpha]_D^{30} = +126.8$ (c = 0.64 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 7.5 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.35 (d, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.25 – 7.22 (m, 1H), 6.07 (s, 1H), 3.68 (dd, *J* = 11.0, 3.5 Hz, 1H), 3.44 (dd, *J* = 17.0, 11.0 Hz, 1H), 2.76 (dd, *J* = 17.0, 3.5 Hz, 1H), 2.41 – 2.37 (m, 2H), 1.81 – 1.72 (m, 1H), 1.51 – 1.46 (m, 1H), 1.27 – 1.11 (m, 32H), 0.88 – 0.83 (m, 6H) ppm; major isomer **3u**: ¹³C NMR (125 MHz, CDCl₃) δ 205.5, 199.5, 197.4, 185.5, 138.3, 133.0, 129.6, 129.0, 128.6, 128.4, 127.5, 127.2, 102.6, 95.2, 46.6, 36.5, 35.7, 35.6, 31.9, 31.8, 29.6, 29.5, 29.42, 29.35, 29.3, 29.2, 29.0, 22.8,

22.64, 22.62, 14.1 ppm; HRMS (ESI, quarupole) m/z: $(M+Na)^+$ calcd for $C_{40}H_{56}NaO_4$ 623.4071, found 623.4079; HPLC analysis (*syn-***3u**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 25.1 min (major), 31.7 min (minor).

(**R**)-1-((**S**)-2-isopropyl-3-oxo-5-phenyl-2,3-dihydrofuran-2-yl)-5-methyl-1-phenylhex ane-3,4-dione 3v: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (15:1) as the eluent. Yellow oil (33.1 mg, 82% yield, 93:7 dr, 85% ee for *syn*-3v); $[\alpha]_D^{30} = +398.8$ (c = 1.31 in CHCl₃); major isomer *syn*-3v ¹H NMR (500 MHz, CDCl₃) δ 7.84 – 7.78 (m, 2H), 7.60 – 7.55 (m, 1H), 7.53 – 7.48 (m, 2H), 7.39 (d, *J* = 9.0 Hz, 2H), 7.25 – 7.16 (m, 3H), 5.94 (s, 1H), 3.96 (dd, *J* = 14.5, 4.0Hz, 1H), 3.60 (dd, *J* = 21.5, 13.0Hz, 1H), 3.13-3.03 (m, 1H), 2.80 (dd, *J* = 21.5, 4.0 Hz, 1H), 2.11 – 2.02 (m, 1H), 1.03 (d, *J* = 8.5 Hz, 3H), 0.93 (d, *J* = 8.5 Hz, 3H), 0.86 (d, *J* = 9.0Hz, 3H), 0.75 (d, *J* = 9.0 Hz, 3H) ppm; major isomer *syn*-3v: ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 202.5, 197.9, 185.1, 137.9, 132.8, 129.7, 128.9, 128.5, 128.2, 127.4, 127.1, 103.3, 96.6, 44.2, 36.9, 33.5, 32.5, 29.7, 17.1, 17.0., 16.4, 15.3 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₆H₂₈NaO₄ 427.1885, found 427.1880; HPLC analysis (*syn*-3v): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 16.5 min (major), 33.8 min (minor).

(R)-4-((S)-3-oxo-2,5-diphenyl-2,3-dihydrofuran-2-yl)-1,4-diphenylbutane-1,2-dione

3w: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (6:1) as the eluent. Yellow oil (41.2 mg, 87% yield, <5:95 dr, 42% ee for *anti-***3w**); $[\alpha]_D^{30} = +93.6$ (c = 0.28 in CHCl₃); major isomer *anti-***3w**: ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 9.0 Hz, 2H), 7.78 (d, *J* = 9.5 Hz, 2H), 7.59 (t, *J* = 9.0 Hz, 1H), 7.53 – 7.40 (m, 7H), 7.36 – 7.25 (m, 5H), 7.07 (m, 3H), 5.58 (s, 1H), 4.38 (dd, *J* = 14.5, 5.0 Hz, 1H), 3.72 (dd, *J* = 21.5, 14.5 Hz, 1H), 3.10 (dd, *J* = 21.5, 5.0 Hz, 1H) ppm; major isomer **3w**: ¹³C NMR (125 MHz, CDCl₃) δ 202.1, 200.6, 191.5, 184.0, 136.3, 136.1, 134.4, 133.0, 131.6, 130.2, 129.6, 129.2, 129.0, 128.64, 128.57, 128.5, 128.4, 127.8, 127.1, 125.0, 100.8, 93.7, 48.0, 39.4 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₃₂H₂₄NaO₄ 495.1567, found 495.1568; HPLC analysis (*anti-***3w**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 10.4 min (major), 17.0 min (minor).

(R)-4-cyclohexyl-4-((S)-5-cyclohexyl-3-oxo-2-phenyl-2,3-dihydrofuran-2-yl)-1-pheny lbutane-1,2-dione 3x: Prepared according to the general procedure I above and purified by flash chromatography column with PE/EA (20:1) as the eluent. Yellow oil as (13.1 mg, 27% yield, <5:95 dr, 64% ee for known compound *anti*-3x); $[\alpha]_D^{30}$ = +53.0 (c = 0.34 in CHCl₃); major isomer *anti*-3x: ¹H NMR (500 MHz, CDCl₃) δ 7.56 (dd, J = 8.4Hz, 4H), 7.41 – 7.33 (m, 2H), 7.28 – 7.17 (m, 4H), 5.39 (s, 1H), 3.25 – 3.13 (m, 1H), 3.08 (s, 1H), 3.03 (d, J = 8.4Hz , 1H), 2.97 – 2.86 (m, 1H), 2.61 – 2.48 (m, 1H), 2.03 (d, J = 11.5Hz, 2H), 1.88 – 1.85 (m, 2H), 1.78 –1.60 (m, 8H), 1.53 – 1.35 (m, 5H), 1.14 – 0.97 (m, 4H) ppm; major isomer **3x**: ¹³C NMR (125 MHz, CDCl₃) δ 204.0, 200.6, 196.3, 191.4, 137.5, 134.4, 131.7, 130.3, 128.6, 128.1, 125.0, 101.9, 95.2, 45.1, 40.0, 38.9, 35.0, 33.4, 30.0, 29.8, 29.2, 26.8, 26.5, 26.21, 25.7, 25.7, 25.6 ppm; HPLC analysis (*anti*-**3x**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 10.2 min (minor), 13.7 min (major).

General procedure II: To a 10 mL Schlenk tube equipped with a magnetic stir bar was added FeBr₃ (0.005 mmol, 5 mol %) and chiral phosphoric acid (*R*)-**1e** (0.02 mmol, 20 mol %). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with nitrogen for three times. Then anhydrous DCM (1.0 mL) was added. After stirring for 0.5 h, conjugated 1,2-diketones **2a** (0.1 mmol) and **2w** or **4a-d** (0.2 mmol) were added under nitrogen. The reaction mixture was stirred at room temperature for 36 h. After reaction, the mixture was directly loaded onto silica gel column and eluted with PE/EA (3:1) to give the chiral target product.

(R)-4-((S)-2-methyl-3-oxo-5-phenyl-2,3-dihydrofuran-2-yl)-1,4-diphenylbutane-1,2dione 5a: Prepared according to the general procedure II above and purified by flash chromatography column with PE/EA (3:1) as the eluent. Yellow oil (28.4 mg, 77% yield, 82:18 dr, 87% ee for *syn*-5a); $[\alpha]_D^{30} = +143.7$ (c = 0.34 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 7.5 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 0.44H), 7.60 (t, *J* = 7.0 Hz, 1.22H), 7.57 – 7.45 (m, 6.32H), 7.40 (d, *J* = 7.5 Hz, 2H), 7.32 – 7.28 (m, 4H), 7.25-7.22 (m, 1.22H), 7.20 – 7.15 (m, 0.44H), 7.07-7.04 (m, 0.66H), 6.07 (s, 1H), 5.69 (s, 0.22H), 3.86 (dd, *J* = 10.0, 5.5 Hz, 0.22H), 3.81 (dd, *J* = 11.0, 3.0Hz, 1H), 3.71 – 3.62 (m, 0.44H), 3.49 (dd, *J* = 17.5, 11.5 Hz, 1H), 3.04 (dd, *J* = 17.5, 3.5 Hz, 1H), 1.57 (s, 0.66H), 1.29 (s, 3H) ppm; major isomer *syn*-5a: ¹³C NMR (125 MHz, CDCl₃) δ 204.6, 204.2, 199.6, 199.1, 190.6, 190.3, 183.7, 182.9, 137.1, 136.2, 133.4, 132.1, 131.8, 130.6, 129.2, 129.1, 128.7, 128.36, 128.1, 128.0, 127.7, 127.6, 127.3, 126.7, 126.6, 126.3, 126.1, 99.8, 99.4, 91.3, 90.4, 45.3, 44.5, 37.9, 37.8, 20.6, 19.2 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₇H₂₂NaO₄ 433.1416, found 433.1414; HPLC analysis (*syn*-5a): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 75:25, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 14.5 min (major), 18.6 min (minor).

(R)-methyl 4-((S)-2-methyl-3-oxo-5-phenyl-2,3-dihydrofuran-2-yl)-2-oxo-4phenylbutanoate 5b: Prepared according to the general procedure II above and purified by flash chromatography column with PE/EA (3:1) as the eluent. Yellow oil (25.1 mg, 72% yield, >95:5 dr, 84% ee for *syn*-5b); $[\alpha]_D^{30} = +372.5$ (c = 1.21 in CHCl₃); major isomer *syn*-5b: ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 7.0 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 6.07 (s, 1H), 3.77 – 3.69 (m, 4H), 3.46 (dd, *J* = 18.5, 11.0 Hz, 1H), 2.97 (dd, *J* = 18.5, 3.0 Hz, 1H), 1.27 (s, 3H) ppm; major isomer *syn*-5b: ¹³C NMR (125 MHz, CDCl₃) δ 205.6, 191.1, 184.7, 160.9, 138.0, 133.1, 129.5, 129.1, 128.6, 128.5, 127.6, 127.2, 100.7, 92.3, 52.9, 46.1, 39.7, 21.6 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₂₀NaO₅ 387.1208, found 387.1210; HPLC analysis (*syn*-5b): Daicel Chiralpak OD-H column, hexane/*i*-PrOH = 85:15, flow rate = 0.8 mL/min, λ = 210 nm, 35 °C, retention time: 13.8 min (major), 14.8 min (minor).

(R)-methyl 4-(4-bromophenyl)-4-((S)-2-methyl-3-oxo-5-phenyl-2,3-dihydrofuran -2-yl)-2-oxobutanoate 5c: Prepared according to the general procedure II above and purified by flash chromatography column with PE/EA (3:1) as the eluent. Yellow oil (36.3 mg, 76% yield, 91:9 dr, 88% ee for *syn*-5c); $[\alpha]_D^{30} = +104.5$ (c = 0.87 in CHCl₃);

major isomer *syn*-**5c**: ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 7.5 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.41 (d, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.30 – 7.24 (m, 1H), 6.08 (s, 1H), 3.75 (dd, *J* = 11.0, 3.5 Hz, 1H), 3.71 (s, 3H), 3.50 (dd, *J* = 18.0, 11.0 Hz, 1H), 2.97 (dd, *J* = 18.0, 3.5 Hz, 1H), 1.26 (s, 3H) ppm; major isomer *syn*-**5c**: ¹³C NMR (125 MHz, CDCl₃) δ 205.2, 190.9, 184.7, 160.8, 137.1, 133.2, 131.6, 131.1, 129.1, 128.5, 127.2, 121.7, 100.7, 91.9, 53.0, 45.5, 39.6, 21.6 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₂H₁₉BrNaO₅ 465.0314, found 465.0313; HPLC analysis (*syn*-**5c**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 13.4 min (major), 19.9 min (minor).

(R)-methyl 4-(4-methoxyphenyl)-4-((S)-2-methyl-3-oxo-5-phenyl-2,3-dihydro furan-2-yl)-2-oxobutanoate 5d: Prepared according to the general procedure II above and purified by flash chromatography column with PE/EA (2:1) as the eluent. Yellow oil (14.0 mg, 34% yield, 89:11 dr, 90% ee for syn-5d); $[\alpha]_D^{30} = +124.4$ (c = 0.27 in CHCl₃); major isomer syn-5d: ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.0 Hz, 2H), 7.61 (t, J = 7.0 Hz, 1H), 7.54 (t, J = 8.0 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 6.07 (s, 1H), 3.78 (s, 3H), 3.72 (s, 3H), 3,70-3.69 (m, 1H), 3.75 (dd, J = 11.0, 3.5 Hz, 1H), 3.71 (s, 3H), 3.45 (dd, J = 18.0, 11.0 Hz, 1H), 2.93 (dd, J = 18.0, 3.5 Hz, 1H), 1.27 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.7, 205.3, 191.7, 191.3, 184.6, 183.7, 161.1, 160.9, 158.9, 158.8, 133.0, 132.7, 130.5, 130.2, 130.1, 129.9, 129.03, 128.9, 128.7, 127.21, 127.1, 113.8, 113.51, 100.7, 100.4, 92.6, 91.4, 55.2, 55.1, 53.0, 52.9, 45.4, 44.5, 39.8, 39.4, 21.6, 20.1, 14.2, 14.1 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₃H₂₂NaO₆ 417.1314, found 417.1311; HPLC analysis (syn-5d): Daicel Chiralpak AD-H column, hexane/i-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 26.4 min (major), 30.7 min (minor).

(S)-methyl 4-((S)-2-methyl-3-oxo-5-phenyl-2,3-dihydrofuran-2-yl)-2-oxo-4-(thiophen-2-yl)butanoate 5e: Prepared according to the general procedure II above and purified by flash chromatography column with PE/EA (3:1) as the eluent. Yellow oil (24.9 mg, 67% yield, 93:7 dr, 85% ee for *syn*-5e); $[α]_D^{30} = +89.8$ (c = 0.26 in CHCl₃); major isomer *syn*-5e: ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 7.5k Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 8.0 Hz, 2H), 7.28-7.27 (m, 1H), 7.23 (br, 1H), 7.15 (d, *J* = 5.0 Hz, 1H), 6.06 (s, 1H), 3.93 (dd, *J* = 11.0, 3.0 Hz, 1H), 3.73 (s, 3H), 3.40 (dd, *J* = 17.5, 11.0 Hz, 1H), 2.92 (dd, *J* = 17.5, 3.5 Hz, 1H), 1.31 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.4 191.1, 184.6, 160.9 138.4 133.1 129.1 128.6, 128.0, 127.2, 125.8 123.9, 100.7, 92.1, 52.9, 41.5, 39.8, 21.5 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₀H₁₈NaO₅S 393.0773, found 393.0770; HPLC analysis (*syn*-5e): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time:16.6 min (minor), 22.5 min (major).

B) Gram-scale reaction:

To a 10 mL Schlenk tube equipped with a magnetic stir bar was added FeBr₃ (36.5 mg, 0.125 mmol, 5 mol %) and chiral phosphoric acid (*R*)-**1e** (379 mg, 0.5 mmol, 20 mol %). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with nitrogen for three times. Then anhydrous DCM (25 mL) was added. After stirring for 0.5 h, conjugated 1,2-diketone **2a** (870 mg, 5 mmol) was added under nitrogen. The reaction mixture was stirred at room temperature for 36 h. After reaction, the mixture was directly loaded onto silica gel column and eluted with PE/EA (5:1) to give the chiral target product **3a** (861 mg, 99% yield, 89:11 dr, 93% ee for *syn*-**3a**).

C) Transformation of chiral syn-3(2H)-furanone 3a:

Reaction procedure I: NaBH₄ (378 mg, 10 mmol) was added to a solution of **3a** (174 mg, 0.5 mmol) in CH₃OH/CH₂Cl₂ (1:1, 5 mL) at 0 °C. The reaction mixture was stirred at room temperature for 30 min and then quenched with HCl (1.0 M). NaCl followed by extraction with CH₂Cl₂. The organic layer was washed with brine and dried over Na₂SO₄, filtered, and the solvent was concentrated under vacuum to give the crude diol, which was used for next step without further purification. To a solution of the crude diol in DCM (5 mL), was added NaIO₄ (118 mg, 0.55 mmol) at room temperature in an oven-dried round flask. The reaction mixture was stirred at room temperature for 4 h and then NaCl followed by extraction with CH₂Cl₂. The organic phase was washed with brine and dried over Na₂SO₄, the solvent was removed under vacuum. The crude product was purified by column chromatography on silica gel (eluted with PE/EA = 50:1) to afford a product **6** as a colorless oil (131.6 mg, 86% yield, 93:7 dr, 93% ee for *syn*-**6**).

(R)-3-((S)-2-methyl-3-oxo-5-phenyl-2,3-dihydrofuran-2-yl)-3-phenylpropanal 6: Prepared according to the reaction procedure I above and purified by flash chromatography column with PE/EA (50:1) as the eluent. Colorless oil, 131.6 mg, 86% yield, 93:7 dr, 94% ee for *syn*-6); $[\alpha]_D^{30} = +279.3$ (c = 1.27 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.63 (s, 0.08H), 9.48 (s, 1H), 7.86 (d, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 7.7 Hz, 0.16H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 0.16H), 7.40 (d, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.30 –7.27 (m, 1H), 7.24 (d, *J* = 5.0 Hz, 0.24 H), 7.18 (d, *J* = 4.0 Hz, 0.24H), 6.07 (s, 1H), 5.73 (s, 0.08H), 3.78 (dd, *J* = 10.0, 5.0 Hz, 0.08H), 3.70 (dd, *J* = 11.0, 4.0 Hz, 1H), 3.20 – 3.13 (m, 0.16H), 2.90 – 2.85 (m, 1H), 2.63 (d, J = 17.0, 4.0 Hz, 1H), 1.51 (s, 0.24H), 1.30 (s, 3H) ppm; major isomer *syn*-**6**: ¹³C NMR (125 MHz, CDCl₃) δ 205.7, 199.9, 184.7, 138.1, 133.1, 129.3, 129.1, 128.7, 128.6, 127.7, 127.2, 100.7, 92.2, 45.9, 43.6, 21.5 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₀H₁₈NaO₃ 329.1148, found 329.1147; HPLC analysis (*syn*-**6**): Daicel Chiralpak AD-H column, hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 6.8 min (major), 7.9 min (minor).

Reaction procedure II: NaBH₄ (226.8 mg, 6.0 mmol) was added to a solution of **6** (91.8 mg, 0.3 mmol) in CH₃OH/CH₂Cl₂ (1:1, 3 mL) at 0 °C. The reaction mixture was stirred at room temperature for 30 min and then quenched with HCl (1.0 M). NaCl followed by extraction with CH₂Cl₂. The organic layer was washed with brine and dried over Na₂SO₄, filtered, and the solvent was concentrated under vacuum to give the crude alcohol. The crude product was purified by column chromatography on silica gel (eluted with PE/EA = 1:1) to afford a product **7** as a white solid (91.8 mg, 99% yield, 94:6 dr, 91% ee for *syn-***7**).

(S)-2-((R)-3-hydroxy-1-phenylpropyl)-2-methyl-5-phenylfuran-3(2H)-one 7: Prepared according to the reaction procedure II above and purified by flash chromatography column with PE/EA (1:1) as the eluent. Colorless oil, 91.8 mg, 99% yield, 93:7 dr, 92% ee for syn-7; $[\alpha]_D^{30}$ = +163.9 (c = 0.38 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 7.0 Hz, 2H), 7.74 (d, J = 7.5 Hz, 0.16H), 7.60 (t, J = 7.5 Hz, 1H), 7.54 (t, J = 7.5 Hz, 2H), 7.48 (t, J = 8.0 Hz, 0.16H), 7.39 (m, 4H), 7.312(m, 1.08H), 7.18 - 7.14 (m, 0.40H), 6.09 (s, 1H), 5.65 (s, 0.08H), 3.25-3.20 (m, 0.16H), 3.16 (dd, J = 12.0, 3.0 Hz, 1H), 3.08 – 3.03 (m, 1H), 2.95 – 2.90 (m, 1.08), 2.38 – 2.30 (m, 0.08H), 2.28 – 2.21 (m, 0.08H), 1.96 – 1.90 (m, 1H), 1.82 – 1.80 (m, 1H), 1.55 (s, 0.24H), 1.22 (s, 3H) ppm; major isomer syn-7: ¹³C NMR (125 MHz, CDCl₃) δ 206.2, 184.6, 138.1, 132.9, 129.4, 129.0, 128.8, 128.7, 127.6, 127.2, 100.6, 92.9, 49.4, 49.3, 28.8, 21.8 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₀H₂₀NaO₃ 331.1305, found 331.1305; HPLC analysis (syn-5): Daicel Chiralpak AD-H column, hexane/i-PrOH = 80:20, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 8.5 min (major), 9.4 min (minor).

Reaction procedure III: TsCl (83.6 mg, 0.44 mmol) was added to a solution of **7** (125.3 mg, 0.4 mmol) in and pyridine (80 uL, 20 mol %) in DCM (5 mL) at 0 °C. The reaction mixture was stirred for 5 hours at room temperature. After the reaction completed, it was poured into ice water. The organic layer was washed with 1 M HCl solution (10 mL \times 2) and saturated aqueous Na₂CO₃ (10 mL \times 2). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum to give the crude product, which was used directly in the next step without further purification.

Sodium azide (52 mg, 0.8 mmol) was added to a solution of the crude from the previous step in DMF (5 mL) under nitrogen atmosphere. The resulting mixture was stirred at 70 °C for 12 hours. Then the reaction was allowed to cool to room temperature and diluted with water (20 mL). The aqueous layer was extracted by EtOAc (20 mL x 3) and the combined organic layers were dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (5/1) to afford product **8** (126.5 mg, 95% yield, 94:6 dr, 91% ee for *syn*-**8**).

(S)-2-((R)-3-azido-1-phenylpropyl)-2-methyl-5-phenylfuran-3(2H)-one 8: Prepared according to the reaction procedure III above and purified by flash chromatography column with PE/EA (5:1) as the eluent. Colorless oil, 126.5 mg, 95% yield, 93:7 dr, 91% ee for *syn*-8; $[\alpha]_D^{30}$ = +200.4 (c = 1.35 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.74 (d, *J* = 7.0 Hz, 0.16H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.48 – 7.45 (m, 0.24H), 7.42 – 7.35 (m, 4H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.24 – 7.17 (m, 0.16H), 7.14 – 7.09 (m, 0.24H), 6.08 (s, 1H), 5.64 (s, 0.08H), 3.67 – 3.63 (m, 0.08H), 3.55 – 3.53 (m, 0.08H), 3.48 (dd, *J* = 9.1, 4.7 Hz, 0.08H), 3.40 – 3.37 (m, 1H), 3.32 –

3.27 (m, 1H), 3.23 (dd, *J* = 12.0, 3.5 Hz, 1H), 2.45 – 2.35 (m, 2H), 2.00 – 1.77 (m, 2H), 1.21 (s, 3H), 1.18 (s, 0.24H) ppm; major isomer *syn*-8: ¹³C NMR (125 MHz, CDCl₃) δ 206.2, 184.6, 138.0, 132.9, 129.4, 129.0, 128.8, 128.7, 127.6, 127.2, 100.7, 92.9, 49.4, 49.3, 28.8, 21.8 ppm; HRMS (ESI, quarupole) m/z: (M+Na)⁺ calcd for C₂₀H₁₉N₃NaO₂ 356.1369, found 356.1375; HPLC analysis (*syn*-8): Daicel Chiralpak OD-H column, hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, λ = 210 nm, 35 °C, retention time: 9.5 min (major), 10.5 min (minor).

IV. Control Experiments

A) Fe(III)/(*R*)-1e catalyzed Michael Addition of 2a with 9: To a 10 mL Schlenk tube equipped with a magnetic stir bar was added FeBr₃ (1.5 mg, 0.005 mmol, 5 mol %) and chiral phosphoric acid (*R*)-1e (11.5 mg, 0.02 mmol, 20 mol %). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with nitrogen for three times. Then anhydrous DCM (1.0 mL) was added. After stirring for 0.5 h, conjugated 1,2-diketones 2a (0.1 mmol) and 9 (0.2 mmol) was added under nitrogen. The reaction mixture was stirred at room temperature for 4 h. After reaction, the mixture was directly loaded onto silica gel column and eluted with PE/EA (5:1) to give the chiral target product 3a (26.8 mg, 77% yield, 80:20 dr, 73% ee for *syn*-3a).

B) Phenol as an acidic additive: To a 10 mL Schlenk tube equipped with a magnetic stir bar was added FeBr₃ (1.5 mg, 0.005 mmol, 5 mol %) and chiral phosphoric acid (*R*)-1e (11.5 mg, 0.02 mmol, 20 mol %). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with nitrogen for three times. Then anhydrous DCM (1.0 mL) was added. After stirring for 0.5 h, conjugated 1,2-diketones 2a (34.8 mg, 0.2 mmol) and PhOH (20.7 mg, 0.22 mmol) was added under nitrogen. The reaction mixture was stirred at room temperature for 36 h. After reaction, the mixture was directly loaded onto silica gel column and eluted with PE/EA (5:1) to give the chiral target product **3a** (12.9 mg, 37% yield, 83:17 dr, 0% ee for *syn*-**3a**). Compound **9** couldn't be observed.

C) Non-linear Effect:

Fig. S1. Nonlinear effect in Oxa-Nazarov Cyclization-Michael Addition and direct Michael Addition.
D) ESI-MS Experiment

[(*R*)-**1e**]-FeBr₃-**2a** system: To a 10 mL Schlenk tube equipped with a magnetic stir bar was added FeBr₃ (1.5 mg, 0.005 mmol) and chiral phosphoric acid (*R*)-**1e** (15.2 mg, 0.02 mmol). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with nitrogen for three times. Then anhydrous DCM (1.0 mL) was added. After stirring for 0.5 h, conjugated 1,2-diketone **2a** (17.4 mg, 0.1 mmol) was added under nitrogen. After stirring for 1 h, an aliquot was diluted with CH₃CN (CH₃CN/CH₂Cl₂ = 20:1) and subjected to analysis by ESI-MS.

Fig. S2. ESI-MS analysis of a solution of [(R)-1e]-FeBr₃-2a (4:1:20)

O Ph O 2a (0.2 mmol)		FeBr ₃ (x mol %) (R)- 1e (y mol %)		Ph O
		CH ₂ Cl ₂ (0.1	M), rt, 36 h	Ph ³ a
entry	x	У	yield (%, dr)	ee (%)
1	5	20	99 (95:5)	96
2	5	15	90 (90:10)	87
3	5	10	82 (89:11)	73
4	5	5	71 (85:15)	53
5	10	10	86 (89:11)	73
6 ^a	20	20	99 (92:8)	83
7 ^b	30	30	99 (94:6)	87
^a t = 12 h,	^b t = 5 h			

E) Impact of the ratio of two acids: To a 10 mL Schlenk tube equipped with a magnetic stir bar was added FeBr₃ (x mol %) and chiral phosphoric acid (*R*)-1e (y mol %). The resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with nitrogen for three times. Then anhydrous DCM (1.0 mL) was added. After stirring for 0.5 h, conjugated 1,2-diketones 2a (34.8 mg, 0.2 mmol) was added under nitrogen. The reaction mixture was stirred at room temperature for 36 h. After reaction, the mixture was directly loaded onto silica gel column and eluted with PE/EA (5:1) to give the chiral target product **3a**.

V. X-ray structure of 3d

The crystal was cultivated from petrol ether/DCM (20:1) with volatilization method.

Fig. S3. ORTEP drawing of 3d delated one CH_2Cl_2 molecule at 30% ellipsoid probability (CCDC 2233765)

Empirical formula	$C_{45}H_{38}Br_4Cl_2O_8$	
Formula weight	1097.29	
Temperature/K	169.95(10)	
Crystal system	monoclinic	
Space group	12	
a/Å	12.52272(12)	
b/Å	7.55112(7)	
c/Å	23.7108(2)	
α/°	90	
β/°	101.6582(9)	
γ/°	90	
Volume/ų	2195.85(4)	
Z	2	
$\rho_{calc}g/cm^3$	1.660	
μ/mm ⁻¹	6.028	
F(000)	1092.0	
Crystal size/mm ³	$0.26 \times 0.25 \times 0.21$	
Radiation	CuKα (λ = 1.54184)	
20 range for data collection/°	7.44 to 153.974	
Index ranges	-15 ≤ h ≤ 15, -9 ≤ k ≤ 9, -29 ≤ l ≤ 27	
Reflections collected	12625	
Independent reflections	4439 [$R_{int} = 0.0231$, $R_{sigma} = 0.0196$]	
Data/restraints/parameters	4439/21/283	
Goodness-of-fit on F ²	1.048	
Final R indexes [I>= 2σ (I)]	R ₁ = 0.0236, wR ₂ = 0.0619	
Final R indexes [all data]	$R_1 = 0.0238$, $wR_2 = 0.0621$	
Largest diff. peak/hole / e Å ⁻³	0.47/-0.32	
Flack parameter	-0.011(7)	

Table S4. Crystal data and structure refinement for 3d

VI. NMR Spectrum

¹H NMR (500 MHz, CDCl₃)

VII. HPLC Charts

Chiral HPLC spectrum of racemic **3a**

Chiral HPLC spectrum of chiral **3a**

1 8.405 777519 97.716 64390 96.90 2 9.041 18174 2.284 2042 3.00	Index	Time	Area	Area%	Height	Height%
2 9 041 18174 2 284 2042 3 0	1	8.405	777519	97.716	64390	96. 927
2 5.041 10114 2.204 2042 5.0	2	9.041	18174	2.284	2042	3.073

Chiral HPLC spectrum of racemic **3b**

Chiral HPLC spectrum of chiral **3b**

Chiral HPLC spectrum of racemic **3**c

Chiral HPLC spectrum of chiral **3c**

Chiral HPLC spectrum of racemic **3d**

Chiral HPLC spectrum of chiral **3d**

Chiral HPLC spectrum of racemic **3e**

Chiral HPLC spectrum of chiral **3e**

	Ch2 210n	m			
Index	Time	Area	Area%	Height	Height%
1	13.968	6906835	95.030	334924	94.730
2	15.212	361236	4.970	18633	5.270

Chiral HPLC spectrum of racemic **3***f*

Chiral HPLC spectrum of chiral **3f**

	Cn2 210n	im			
Index	Time	Area	Area%	Height	Height%
1	8.456	1435251	97.952	102615	96.192
2	10.317	60554	2.048	4063	3.808

Chiral HPLC spectrum of racemic **3g**

Chiral HPLC spectrum of chiral **3g**

Chiral HPLC spectrum of racemic **3h**

174326

13.692

Chiral HPLC spectrum of chiral **3h**

11216319

11872278

30.606

39.671

3

4

<peak< th=""><th>Results></th><th></th></peak<>	Results>	
	01.0 010	

		CH2 210H				
Ind	ex	Time	Area	Area%	Height	Height%
	1	14.035	41200571	95.791	1628939	96.760
	2	23.215	2081516	4.209	54541	3.240

22.946

24.288

Chiral HPLC spectrum of racemic **3i**

Chiral HPLC spectrum of chiral **3i**

Chiral HPLC spectrum of racemic **3**j

Chiral HPLC spectrum of chiral **3**j

	Ch2 210n	m			
Index	Time	Area	Area%	Height	Height%
1	13.308	4602469	95.215	235837	94.603
2	14.646	231276	4.785	13454	5.397

Chiral HPLC spectrum of racemic **3**k

Chiral HPLC spectrum of chiral **3k**

Index	Time	Area	Area%	Height	Height%
1	10.971	1671293	95.368	62992	97.722
2	19.724	72182	4.632	1762	2.278

Chiral HPLC spectrum of racemic 31

61518

23788

30.669

11.859

Chiral HPLC spectrum of chiral **3**

689699

1272434

598470

33.636

15.820

11.254

13.117

14.616

2

3

4

Chiral HPLC spectrum of racemic **3m**

Chiral HPLC spectrum of chiral **3m**

Chiral HPLC spectrum of racemic **3n**

Chiral HPLC spectrum of chiral **3n**

Chiral HPLC spectrum of racemic **30**

Chiral HPLC spectrum of chiral **30**

Chiral HPLC spectrum of racemic **3p**

	Ch2 210n	im			
Index	Time	Area	Area%	Height	Height%
1	15.732	1087537	33.717	52693	38.609
2	18.418	1107135	34. 325	46101	33.779
3	20.474	1030790	31.958	37684	27.612
3	20.474	1030790	31. 958	37684	27.6

Chiral HPLC spectrum of chiral $\textbf{3p}_{mV}$

	CH2 210H	111			
Index	Time	Area	Area%	Height	Height%
1	15.729	3226528	91.521	144442	94.390
2	18.240	298911	8.479	8585	5.610

Chiral HPLC spectrum of racemic **3***q*

Chiral HPLC spectrum of chiral **3q**

Chiral HPLC spectrum of racemic **3r**

Chiral HPLC spectrum of chiral **3r**

	012 2101				
Index	Time	Area	Area%	Height	Height%
1	5.091	3292812	95.231	389744	95.662
2	6.432	219239	4.769	17674	4.338

Chiral HPLC spectrum of racemic 3s

Chiral HPLC spectrum of chiral 3s

Chiral HPLC spectrum of racemic **3t**

Chiral HPLC spectrum of chiral **3t**

	Ch2_210n	m			
Index	Time	Area	Area%	Height	Height%
1	15.947	1417610	96.271	60218	96. 538
2	20. 556	54905	3.729	2159	3.462

Chiral HPLC spectrum of racemic **3u**

	nz 210n	m			
Index	Гime	Area	Area%	Height	Height%
1 2	25. 213	524324	49.358	14007	55.759
2 3	32.030	537958	50.642	11114	44.241

Chiral HPLC spectrum of chiral **3u**

<peak results=""></peak>									
	Ch2 210n	m							
Index	Time	Area	Area%	Height	Height%				
1	25.077	52298	6.005	1560	8.983				
2	31.716	818682	93.995	15805	91.017				

Chiral HPLC spectrum of racemic **3u**

	UNZ 2040	.00			
Index	Time	Area	Area%	Height	Height%
1	16.398	14079940	28.461	470087	32.303
2	20.149	10924125	22.082	366408	25.179
3	24.887	11543529	23.334	347842	23.903
4	33.669	12923700	26.124	270900	18.616

Chiral HPLC spectrum of chiral ${\it 3v}$

	0112 2041				
Index	Time	Area	Area%	Height	Height%
1	16.495	29180125	74.717	1113082	78.147
2	20.254	6570691	16.824	225631	15.841
3	25 . 0 28	936715	2.398	33247	2.334
4	33.846	2366867	6.060	52388	3.678

Chiral HPLC spectrum of racemic **3w**

Chiral HPLC spectrum of chiral **3w**

Chiral HPLC spectrum of racemic **3**x

Chiral HPLC spectrum of chiral 3x

	CHZ 210H				
Index	Time	Area	Area%	Height	Height%
1	10.240	3718972	18.256	169191	16.060
2	13.654	24335409	81.744	884311	83.940

Chiral HPLC spectrum of racemic **3d**

Chiral HPLC spectrum of chiral **3d**

	<u>Ch2 210n</u>	im			
Index	Time	Area	Area%	Height	Height%
1	9.637	918154	7.306	48686	7.548
2	12.184	8553347	92.694	461226	92.452

Chiral HPLC spectrum of racemic 5a

Index	Time	Area	Area%	Height	Height%
1	14.501	3028051	47.574	149826	53.868
2	18.616	2938899	46.173	114424	41.140
3	19.820	397987	6.253	13886	4.993

Chiral HPLC spectrum of chiral **5a**

	0112 2101				
Index	Time	Area	Area%	Height	Height%
1	14.483	47816122	83.957	2227712	86.230
2	18. 590	3333800	5.854	139727	5.409
3	19.751	5803097	10.189	216019	8.362

Chiral HPLC spectrum of racemic **5b**

Index	Time	Area	Area%	Height	Height%
1	11.366	4051154	48.965	230886	53.076
2	13.670	3836399	46.370	190496	43.792
3	16.015	190791	2.306	8783	2.019
4	28.696	195152	2.359	4842	1.113

Chiral HPLC spectrum of chiral **5b**

	UNZ 2101	1111			
Index	Time	Area	Area%	Height	Height%
1	13.829	40906838	81.961	1774221	84.011
2	14.802	1849754	3.706	78211	3. 703
3	17.924	7153438	14.146	259372	12.282
4	34.410	283	0.187	79	0.004

Chiral HPLC spectrum of racemic **5**c

Index	Time	Area	Area%	Height	Height%
1	12.505	554136	14.751	27066	16.626
2	13.440	1285426	34.218	66524	40.864
3	16.209	622419	16.569	23331	14.332
4	19.956	1294634	34.463	45873	28.178

Chiral HPLC spectrum of chiral **5c**

	Ch2 254n	m			
Index	Time	Area	Area%	Height	Height%
1	12.445	259934	1.905	14439	2.268
2	13.391	8158159	59.80 2	416254	65.378
3	16.132	4712323	34.543	185650	29.159
4	19.896	511612	3.750	20345	3.195

Chiral HPLC spectrum of racemic 5d

	Ch2 210n	m			
Index	Time	Area	Area%	Height	Height%
1	25.798	7375602	45.004	200210	48.341
2	30.685	7242771	44.193	176758	42.679
3	36.320	915828	5.588	19631	4.740
4	37.444	854683	5.215	17561	4.240

Chiral HPLC spectrum of chiral 5d

	Ch2 210n	m			
Index	Time	Area	Area%	Height	Height%
1	26.381	19562858	78.901	405787	78.273
2	30.719	1050891	4.238	27843	5.371
3	36. 337	2871367	11.581	57568	11.104
4	37.473	1309104	5.280	27230	5.252

Chiral HPLC spectrum of racemic 5e

Index	Time	Area	Area%	Height	Height%
1	16.259	5071184	42.900	203312	50.904
2	22.249	4996822	42.270	150874	37.775
3	27.302	1753061	14.830	45218	11.321

Chiral HPLC spectrum of chiral 5e

	UIZ 2101				
Index	Time	Area	Area%	Height	Height%
1	16.569	3387318	6.944	139681	9.564
2	22. 524	41959294	86.015	1228905	84.141
3	27.635	3434730	7.041	91941	6.295

Chiral HPLC spectrum of racemic 6

	Ch2 210n	m			
Index	Time	Area	Area/%	Height	Height/%
1	6.793	4821234	50.572	265746	57.368
2	8.033	4813213	49.428	209642	42.632

Chiral HPLC spectrum of racemic 7

Chiral HPLC spectrum of chiral 7

Chiral HPLC spectrum of racemic 8

	Ch2 210h	m			
Index	Time	Area	Area/%	Height	Height/%
1	9.374	4928729	50.243	173492	50.428
2	10.641	4942814	49.757	172593	49.572

Chiral HPLC spectrum of chiral 8

	Ch2 210n	m			
Index	Time	Area	Area/%	Height/mV	Height/%
1	9.455	3791235	95.428	174924	94.451
2	10. 513	238524	4.572	8795	5. 549

VIII. Reference

1. J. Liu, D. K. Das, G. Zhang, S. Yang, H. Zhang, X. Fang, Org. Lett., 2018, 20, 64.

2. S. Fredrich, R. Göstl, M. Herder, L. Grubert, S. Hecht, *Angew. Chem., Int. Ed.,* 2016, **55**, 1208.

3. S. Chen, X. Li, H. Zhao, B. Li, B. J. Org. Chem., 2014, 79, 4137.