Supplementary Information

Molybdenum-catalyzed carbonyl-carbonyl olefination reaction for heterocycle syntheses

Yuan-Qing Dong, ${ }^{\dagger \mathrm{a}}{ }^{\text {Xiao-Nan Shi, }}{ }^{\dagger \mathrm{a}}{ }^{\text {Li-Ya Cao, }}{ }^{\dagger \mathrm{a}}$ Jin Bai, ${ }^{\text {a }}$ and Chun-Xiang Zhuo*a,baState Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of ChemicalBiology of Fujian Province, and College of Chemistry and Chemical Engineering, XiamenUniversity, Xiamen 361005, P. R. China${ }^{\text {b }}$ Shenzhen Research Institute of Xiamen University, Shenzhen 518057, P. R. China
*Email: cxzhuo@xmu.edu.cn
Table of Contents
I. Experimental details and characterization data S-2
II. Investigation of other quinones and transition-metal carbonyl S-42
complexes
III. Mechanistic studies S-43
IV. A proposed reaction pathway for the formation of coumarins S-45
V. References S-47
VI. Copies of NMR spectra S-52

I. Experimental details and characterization data.

General information. Unless stated otherwise, all reactions were carried out in oven-dried (oven temperature $\geq 110{ }^{\circ} \mathrm{C}$) glassware using anhydrous solvents under argon or N_{2} atmosphere. The solvents were purified by distillation over the following drying agents and were transferred under argon or N_{2} atmosphere: THF, toluene (Na); anhydrous $1,3,5-$ trimethylbenzene (mesitylene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMF were purchased from Energy Chemical and kept in a sealed bottle containing $4 \AA$ molecular sieve under argon. General-Reagent silica gel (300-400 mesh) was used for the flash column chromatography. Unless stated otherwise, all commercially available compounds (Energy Chemical, Bidepharmatech, TCI, J\&K Chemical, and Strem Chemicals) were used as received. The substituted anilines $\mathbf{S 1}$ were synthesized according to a reported procedure. ${ }^{[1]}$

NMR spectra were recorded on Bruker AV- 400 MHz , Quantum-IPlus 400 MHz or Bruker AV500 MHz spectrometers in the solvents indicated; chemical shifts ($\delta=$) are given in ppm, coupling constants (J) in Hz . The solvent signals were used as references $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}}=77.0 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm} ; \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}: \delta_{\mathrm{C}}=206.26,29.84 \mathrm{ppm}$; residual $\mathrm{C}_{3} \mathrm{D}_{5} \mathrm{HO}: \delta_{\mathrm{H}}=$ 2.05 ppm ; dimethyl sulfoxide- $\mathrm{D}_{6}: \delta_{\mathrm{C}}=39.52 \mathrm{ppm}$; residual dimethyl sulfoxide- $\mathrm{D}_{5} \mathrm{H}: \delta_{H}=2.50$ ppm). Infrared (IR) spectra were measured on a Nicolet AVATER FTIR330 spectrometer. Highresolution mass spectra (ESI) were recorded on a Micromass QTOF2 Quadruple/Time-of-Flight Tandem mass spectrometer.

1. Representative procedure for the syntheses of substrates 1 (RP1). ${ }^{[2]}$

Preparation of compound 1a. Benzoyl chloride ($984.0 \mathrm{mg}, 0.81 \mathrm{~mL}, 7.0 \mathrm{mmol}, 1.4$ equiv) was added dropwise to a stirred solution of 2-aminophenyl-(phenyl)methanone S1-1 (986.0 $\mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}\left(708.3 \mathrm{mg}, 0.97 \mathrm{~mL}, 7.0 \mathrm{mmol}, 1.4\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at room temperature. Stirring was continued at this temperature until the reaction was complete (monitored by TLC). The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\operatorname{DCM}(20 \mathrm{~mL} \times 3)$. The combined organic layers were washed with saturated aqueous sodium bicarbonate and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=10: 1$) gave $1 \mathrm{a}^{[3]}$ as a white solid ($1.35 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.98$ $(\mathrm{s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.45(\mathrm{~m}, 8 \mathrm{H})$, $7.15-7.08(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=200.2,165.7,141.0,138.7,134.54,134.45$, 133.9, 132.3, 131.9, 129.7, 128.7, 128.2, 127.3, 123.0, 122.1, 121.3. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=$ $3285,3062,1682,1615,1582,1449,1267,941,700,643$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NNaO}_{2}$ [$\mathrm{M}+\mathrm{Na}]^{+}: 324.1000$. Found: 324.0990.

The following substrates $\mathbf{1 b} \mathbf{- 1 z} \& \mathbf{1 a k}-1 \mathbf{1 a n}$ were prepared analogously.

1b. ${ }^{[3]}$ White solid, $1.43 \mathrm{~g}, 91 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.94(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.{ }_{3}\right): \delta=200.3$, $165.8,142.5,141.3,138.8,134.6,134.0,132.3,131.7,129.7,129.4,128.3,127.4,123.0,121.9$, 121.3, 21.5. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3305,2919,1679,1529,1447,1267,752,700,642$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 338.1152$. Found: 338.1152.

1c. ${ }^{[3]}$ White solid, $1.65 \mathrm{~g}, 94 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.92(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$): $\delta=200.2,165.2,162.5,141.3,138.7,134.5,134.0,132.2,129.7,129.2,128.2,126.7,122.8$, 121.7, 121.2, 113.9, 55.3. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3307,2918,1677,1507,1255,1175,700$, 643; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 354.1101. Found: 354.1100.

1d. ${ }^{[3]}$ White solid, $1.61 \mathrm{~g}, 96 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.01(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{dd}, \mathrm{J}$ $=8.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.45(\mathrm{~m}$, $4 \mathrm{H}), 7.13(\mathrm{td}, \mathrm{J}=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.4,164.6,141.0,138.6$, 138.3, 134.7, 134.1, 132.9, 132.4, 129.8, 129.0, 128.8, 128.3, 122.9, 122.3, 121.3. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3284,1683,1584,1267,1111,753,710,643 ;$ HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClNNaO}_{2}$ [M+Na] ${ }^{+}$: 358.0605. Found: 358.0610

1e. Yellow solid, $1.39 \mathrm{~g}, 94 \%$ yield, $\mathrm{mp} 81.1-81.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.11(\mathrm{~s}$, $1 \mathrm{H}), 8.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=200.4,164.3,140.7,138.5,137.8,134.7,134.1,133.5(\mathrm{q}, \mathrm{J}=32.6 \mathrm{~Hz}), 132.5,129.8$, $128.3,127.8,125.8(q, J=3.7 \mathrm{~Hz}), 123.6(q, J=271.0 \mathrm{~Hz}), 123.0,122.5,121.3 .{ }^{19} \mathrm{~F}$ NMR (376
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.99 . \operatorname{IR}($ thin film $): v_{\max }\left(\mathrm{cm}^{-1}\right)=3278,1686,1604,1531,1327,1296,1128$, 941, 768, 643; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 392.0869. Found: 392.0874.

1f. Yellow solid, $1.66 \mathrm{~g}, 92 \%$ yield, $\mathrm{mp} 143.4-143.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.05$ $(\mathrm{s}, 1 \mathrm{H}), 8.86(\mathrm{dd}, \mathrm{J}=8.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.08(\mathrm{~m}, 4 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.55(\mathrm{~m}$, $3 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.2$, $166.1,164.7,140.7,138.5,138.3,134.6,134.0,133.0,132.4,129.9,129.7,128.3,127.3,123.0$, 122.4, 121.3, 52.3. IR (thin film): $\mathrm{v}_{\max }\left(\mathrm{cm}^{-1}\right)=3288,2920,1725,1603,1529,1268,1108,723$, 704, 643; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 382.1050. Found: 382.1052.

1g. ${ }^{[3]}$ White solid, $1.35 \mathrm{~g}, 96 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.15(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 3 \mathrm{H})$, $7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=200.3,165.9,141.2$, $138.8,135.0,134.6,134.1,132.7,132.4,131.8,129.8,129.4,128.7,128.4,128.3,127.9,127.7$, 126.7, 123.6, 123.1, 122.2, 121.5. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3059,2921,1679,1598,1526$, 1448, 1259, 1198, 773, 700; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 374.1152. Found: 374.1151.

1h. White solid, 1.27 g , 87% yield, $\mathrm{mp} 116.2-116.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.87$ $(\mathrm{s}, 1 \mathrm{H}), 8.82(\mathrm{dd}, \mathrm{J}=8.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.47(\mathrm{~m}$, 2H), $7.29-7.27(m, 1 H), 7.16-7.10(m, 1 H), 6.57-6.54(m, 1 H) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.)_{3}\right):$
$\delta=199.6,156.6,147.9,144.8,140.2,138.5,134.2,133.7,132.3,129.7,128.2,123.2,122.1$, 121.3, 115.3, 112.2. IR (thin film): $V_{\max }\left(\mathrm{cm}^{-1}\right)=3298,2918,1682,1637,1525,1449,1274,923$, 753, 713, 643; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 314.0788. Found: 314.0785.

1i. Yellow solid, $1.40 \mathrm{~g}, 91 \%$ yield, $\mathrm{mp} 141.9-143.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.99$ (s, 1H), $8.80(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.51(\mathrm{~m}$, $4 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=200.1,160.2$, $140.8,139.8,138.5,134.5,133.9,132.2,131.2,129.6,128.6,128.1,127.8,122.4,121.9,120.9$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3298,2918,1670,1603,1530,1447,1269,939,752,711,642 ;$ HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 330.0559. Found: 330.0560.

1j. White solid, 1.32 g , 89% yield, $\mathrm{mp} 124.6-125.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.23$ $(\mathrm{s}, 1 \mathrm{H}), 8.71-8.66(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.18$ (td, J = 7.8, 1.1 Hz, 1H), $4.42(q, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=198.9,160.2,154.8,138.5,138.2,134.2,133.5,132.6,129.9,128.2,124.1,123.5$, 121.3, 63.5, 13.9. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3274,2985,1715,1600,1523,1263,1178,946$, 711, 643; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 320.0893. Found: 320.0892.

1k. White solid, $0.65 \mathrm{~g}, 81 \%$ yield, $\mathrm{mp} 117.5-118.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.80$ $(\mathrm{s}, 1 \mathrm{H}), 8.87(\mathrm{dd}, \mathrm{J}=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $)_{3}$: $\delta=198.5,165.7,165.3(\mathrm{~d}, \mathrm{~J}=253.1 \mathrm{~Hz}), 140.9,134.8(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 134.6,134.5,133.5,132.5$ $(\mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}), 132.0,128.8,127.3,123.1,122.2,121.6,115.5(\mathrm{~d}, \mathrm{~J}=21.8 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (376
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-105.5$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3305,3066,1682,1598,1449,1267,1156$, 933, 759, 703; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{FNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 342.0901. Found: 342.0899.

1I. ${ }^{[4]}$ White solid, $0.78 \mathrm{~g}, 93 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.85(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=198.8,165.8,141.1,138.9,137.0,134.8,134.5,133.6,132.1$, 131.2, 128.8, 128.7, 127.4, 122.9, 122.2, 121.6. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3301,2918,1682$, 1604, 1528, 1448, 1294, 932, 758, 702; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{CINNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 358.0611. Found: 358.0608.

1m. White solid, 0.87 g , 92% yield, $\mathrm{mp} 88.0-89.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.90(\mathrm{~s}$, $1 \mathrm{H}), 8.88(\mathrm{dd}, \mathrm{J}=8.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H})$, $7.28(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{td}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=199.8,165.7,143.3,140.8,135.9,134.5,134.2,133.7,131.9,130.0,128.9,128.7,127.3$, 123.4, 122.0, 121.3, 21.5. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3280,3063,1682,1582,1495,1268,1183$, 933, 782, 704; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 338.1152. Found: 338.1150.

1n. ${ }^{[5]}$ White solid, $0.82 \mathrm{~g}, 82 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.73(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{dd}, \mathrm{J}$ $=8.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-$ $7.44(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=198.3,165.5,163.2,140.3,134.4,133.7,133.2,132.4,131.8,130.8,128.6,127.2$, $123.8,122.0,121.4,113.5,55.3$. IR (thin film) $: v_{\max }\left(\mathrm{cm}^{-1}\right)=3319,2917,1678,1598,1581,1257$, 1176, 933, 760, 703; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 354.1101. Found: 354.1099.

10. ${ }^{[3]}$ Yellow solid, $0.22 \mathrm{~g}, 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.41(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-$ $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.)_{3}\right): \delta=190.2$, $165.5,143.8,139.8,135.6,134.7,134.4,133.9,132.0,131.9,128.7,128.0,127.2,124.1,122.4$, 121.7. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3319,1678,1599,1581,1409,1270,758,703,651$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 330.0559. Found: 330.0565.

1p. ${ }^{[6]}$ White solid, $1.09 \mathrm{~g}, 91 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.70(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.49$ $(\mathrm{m}, 3 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=203.1,165.9,141.3$, $135.2,134.7,131.8,131.7,128.7,127.3,122.3,121.8,120.6,28.4$.

1q. Yellow solid, $0.32 \mathrm{~g}, 60 \%$ yield, $\mathrm{mp} 92.8-93.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.74(\mathrm{~s}$, $1 \mathrm{H}), 8.97(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.05(\mathrm{~m}, 2 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.18$ $-7.12(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=205.3,166.0,141.3,134.9,134.8,131.8,130.9,128.7,127.4,122.4$, 121.8, 120.9, 41.9, 18.1, 13.8. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2692,1680,1607,1584,1450,1303$, 753, 703; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 290.1152. Found: 290.1156.

1r. Yellow solid, $1.09 \mathrm{~g}, 81 \%$ yield, $\mathrm{mp} 120.4-121.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.74$ $(\mathrm{s}, 1 \mathrm{H}), 8.97(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.48(\mathrm{~m}, 4 \mathrm{H})$, $7.16(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.33(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.50$ $(m, 2 H), 1.48-1.36(m, 2 H), 1.32-1.23(m, 1 H) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=208.8,166.0$, 141.7, 134.9, 134.8, 131.8, 130.6, 128.7, 127.4, 122.4, 121.2, 121.1, 46.7, 29.8, 25.8, 25.76. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2962,2854,1679,1583,1526,1450,1306,972,753,704$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 330.1464$. Found: 330.1472.

1s. White solid, $0.55 \mathrm{~g}, 44 \%$ yield, $\mathrm{mp} 115.0-117.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.82$ $(\mathrm{s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H})$, $7.55-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3$): \delta=200.3$, $165.6,138.8,138.6,135.3,134.6,134.0,132.3,131.9,131.7,129.7,128.7,128.3,127.3,123.2$, 121.4, 20.7. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3291,2922,1679,1590,1522,1297,1270,964,701$, 674; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 338.1152. Found: 338.1149.

1t. Yellow solid, $0.28 \mathrm{~g}, 85 \%$ yield, $\mathrm{mp} 94.5-94.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.53(\mathrm{~s}$, $1 \mathrm{H}), 8.78(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 1H), $7.54-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.)^{2}\right): \delta=199.7$, $165.5,154.1,138.4,134.6,134.2,132.6,131.8,129.8,128.7,128.3,127.2,124.6,123.1,119.6$, 118.8, 55.6. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2923,1675,1593,1522,1284,1217,960,701$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 354.1101. Found: 354.1100.

1u. White solid, $0.76 \mathrm{~g}, 80 \%$ yield, $\mathrm{mp} 134.5-135.7{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.16$ $(\mathrm{s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.46(\mathrm{~m}, 7 \mathrm{H})$, $6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.1,165.8,146.2,141.4$, 139.1, 134.6, 134.3, 132.1, 131.9, 129.6, 128.8, 128.2, 127.4, 123.0, 121.6, 120.5, 22.2. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3280,3061,2926,1682,1599,1530,1293,1270,935,798,700$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 338.1152 . Found: 338.1158.

1v. ${ }^{[7]}$ White solid, $0.40 \mathrm{~g}, 40 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.68(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~d}, \mathrm{~J}=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.43(\mathrm{~m}, 7 \mathrm{H}), 6.58(\mathrm{dd}, \mathrm{J}=8.9,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.3,166.0,164.7,144.3,139.4,136.4$, 134.4, 131.9, 131.5, 129.1, 128.7, 128.1, 127.3, 115.4, 109.2, 104.5, 55.5.

1w. White solid, $0.49 \mathrm{~g}, 86 \%$ yield, $\mathrm{mp} 85.3-86.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.71(\mathrm{~s}$, 1H), $7.93-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.1,165.4,137.6,136.5$, 135.8, 134.8, 134.1, 133.0, 132.4, 131.8, 130.4, 129.1, 128.6, 128.2, 127.4, 125.1, 19.2. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3303,1664,1509,1486,1317,778,741,706,668$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 338.1150$. Found: 338.1147.

1x. Yellow solid, $0.61 \mathrm{~g}, 60 \%$ yield, $\mathrm{mp} 119.0-121.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.78$ $(\mathrm{s}, 1 \mathrm{H}), 8.88(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.47(\mathrm{~m}, 8 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=199.0,165.7,139.5,138.0,134.2,134.1,133.0,132.8,132.2$, $129.8,128.8,128.5,127.3,127.2,124.3,122.9$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3303,3062,1684$,

1637, 1512, 1396, 1288, 1244, 951, 700; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 358.0605. Found: 358.0610.

1y. Yellow solid, $1.06 \mathrm{~g}, 70 \%$ yield, $\mathrm{mp} 117.4-118.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.78$ $(\mathrm{s}, 1 \mathrm{H}), 8.84-8.80(\mathrm{~m}, 1 \mathrm{H}), 8.06-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.57$ $-7.48(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=198.9,165.7,140.0,138.0,137.1,135.9,134.2$, $132.9,132.2,129.8,128.8,128.5,127.3,124.7,123.2,114.6$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3299$, 2917, 2926, 1683, 1577, 1511, 1492, 1287, 1259, 948, 833, 699; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 404.0080$. Found: 404.0083.

1z. White solid, $0.28 \mathrm{~g}, 73 \%$ yield, $\mathrm{mp} 158.0-160.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.71(\mathrm{~s}$, $1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=194.8,165.4$, $136.5,135.6,135.3,134.0,133.6,133.0,132.0,130.3,129.3,128.5,128.2,127.3,126.2,120.8$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3291,3062,1667,1597,1509,1485,1316,1283,751,703,655$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 404.0081$. Found: 404.0083 .

The corresponding substituted benzoyl chloride was prepared according to the literature procedure. ${ }^{[8-9]}$ 1ak. Yellow solid, $295.2 \mathrm{mg}, 87 \%$ yield, $\mathrm{mp} 114.9-116.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=11.89(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.63$ $-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.94$ $(m, 2 H), 2.56-2.42(m, 2 H), 2.40-2.31(m, 1 H), 2.18-2.13(m, 1 H), 2.11-2.04(m, 2 H), 2.02$ $-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta=220.4,200.1,165.8,144.1,141.1,138.7,137.1,134.5,133.9,132.2,131.9,129.7,128.2$, $125.7,124.3,122.9,121.9,121.3,50.4,47.8,44.4,37.7,35.7,31.4,29.3,26.2,25.5,21.5,13.7$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3289,2925,1738,1526,1447,1261,715,701$; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 500.2202$. Found: 500.2195.

The corresponding substituted benzoyl chloride was prepared according to the literature procedure. ${ }^{[9]}$ 1al. Yellow solid, $0.32 \mathrm{~g}, 54 \%$ yield, mp $146.0-148.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=12.16(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{dd}, \mathrm{J}=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-7.99$ $(\mathrm{m}, 3 \mathrm{H}), 7.82(\mathrm{dd}, \mathrm{J}=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.49(\mathrm{~m}$, $3 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.12(\mathrm{~s}$, 3 H), $1.82(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.2,165.7,158.8,141.2,141.0,138.8$, $138.75,135.4,134.6,134.0,132.4,132.2,131.4,131.1,129.7,129.6,128.7,128.2,128.1$, $126.4,125.8,125.6,124.5,123.8,122.9,122.0,121.4,112.0,55.0,40.5,37.1,37.0,29.0$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3303,2904,2849,1679,1602,1582,1448,1238,700,643 ;$ HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{37} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 614.2671. Found: 614.2668.

The corresponding substituted benzoyl chloride was prepared according to the literature procedure. ${ }^{[9-10]} 1 \mathrm{am}$. White solid, $0.58 \mathrm{~g}, 60 \%$ yield, mp $105.7-107 . \mathrm{A}^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=12.08(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{dd}, J=8.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.24-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.74-$ $7.69(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{td}, \mathrm{J}=7.6,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98(\mathrm{td}, \mathrm{J}=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.71(\mathrm{~m}$, $2 \mathrm{H}), 1.65-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 7 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=200.1,165.1,164.8,140.8,138.6,134.9,134.5,133.9,132.8,132.3$,
131.6, 131.1, 129.8, 128.9, 128.7, 128.2, 123.1, 122.3, 121.3, 75.2, 47.0, 40.8, 34.2, 31.4, 26.3, 23.4, 22.0, 20.7, 16.3. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3287,2956,2927,1717,1584,1449,1262$, 705, 643; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 506.2307. Found: 506.2309.

The corresponding substituted benzoyl chloride was prepared according to the literature procedure. ${ }^{[9]}$ 1an. Yellow solid, $412.0 \mathrm{mg}, 94 \%$ yield, $\mathrm{mp} 89.0-90.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.95(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 3 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}$, $4 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=164.8,149.0,144.8,144.4,142.4$, $139.2,138.0,133.7,132.7,131.5,131.4,129.9,128.9,128.6,128.1,128.0,127.1,127.0,123.5$, 122.3, 119.1, 116.6, 112.2, $97.0,84.6,35.22,35.20,34.0,33.9,31.9,31.88,19.9$. IR (thin film): $V_{\max }\left(\mathrm{cm}^{-1}\right)=3319,2958,2924,1683,1583,1448,1294,700,643 ;$ HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 550.2722$. Found: 550.2721.

The corresponding acid chloride was prepared according to the literature procedure. ${ }^{[9]} \mathbf{1} \mathbf{a o}$. White solid, $1.2 \mathrm{~g}, 91 \%$ yield, $\mathrm{mp} 127.0-128.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.19(\mathrm{~s}, 1 \mathrm{H})$, $8.71(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{td}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}$, $J=9.3,6.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{ddd}, J=8.3,5.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{ddd}, J=$ 8.2, 6.5, 4.5 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=199.7,171.0,140.6,140.2,138.5,134.3$, 133.5, 132.4, 129.8, 128.4, 128.2, 126.3, 126.0, 122.8, 121.8, 121.3, 28.1, 26.1, 16.9. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3312,3061,1690,1521,1448,1262,955,754,642$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 364.1308$. Found: 364.1365.

2. Procedure for the synthesis of substrate 1aa. ${ }^{[11]}$

To an oven-dried Schlenk tube were added compound 1y ($380.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv), $\mathrm{B}_{2} \operatorname{pin}_{2}\left(508.0 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(46.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, tricyclohexylphosphine ($28.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%$), potassium acetate ($197.0 \mathrm{mg}, 2.0 \mathrm{mmol}$, 2.0 equiv) and 1,4-dioxane (10 mL). Then the mixture was heated to reflux and stirred for 20 h under argon. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to rt, filtered through a short pad of silica gel, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=10: 1$) gave 1 aa as a white solid (0.25 g , 58% yield, $\left.\mathrm{mp} 170.4-171.1^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.04(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 5 \mathrm{H}), 1.31(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $)^{2}$: $\delta=200.4,165.8,143.3,141.0,140.3,138.8,134.5,132.5,132.1,130.0,128.8,128.4,127.4$, 122.5, 120.3, 84.0, 24.8. ${ }^{11} \mathrm{~B}$ NMR (128 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=31.4$ (s). IR (thin film): $\mathrm{v}_{\max }\left(\mathrm{cm}^{-1}\right)=$ 2978, 2927, 1685, 1582, 1362, 1294, 1144, 703, 649; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BNNaO}_{4}$ [M+Na] ${ }^{+}$: 450.1852. Found: 450.1848

3. Procedure for the synthesis of substrate 1ab. ${ }^{[12]}$

Step 1: To a solution of 2-aminophenyl-(phenyl)methanone ($986.0 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($691.1 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added allyl bromide (726.0 $\mathrm{mg}, 6.0 \mathrm{mmol}, 1.2$ equiv) at rt . The mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h . After the reaction was complete (monitored by TLC), the crude reaction mixture was filtrated through a short pad of silica gel, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=10: 1$) gave product $\mathbf{S 2}$ as yellow oil ($0.95 \mathrm{~g}, 80 \%$ yield), which was directly used for the next step.

Step 2: compound 1ab was prepared according to RP1 (page S-3).

1ab. White solid, $0.91 \mathrm{~g}, 66 \%$ yield, $\mathrm{mp} 105.5-106.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D}_{6}$): $\delta=$ $7.81-6.96(\mathrm{~m}, 14 \mathrm{H}), 6.08-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-$ $3.75(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-D6): $\delta=194.5,168.5,142.1,136.2,135.5,135.0,133.7$, 133.3, 131.9, 130.3, 129.6, 129.58, 128.5, 128.4, 127.6, 126.7, 117.6, 52.9. IR (thin film): $v_{\max }$ $\left(\mathrm{cm}^{-1}\right)=3061,2920,1663,1595,1340,1265,927,702,636 ; \mathrm{HRMS}(E S I)$ calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{2}$ [M+Na] ${ }^{+}: 364.1308$. Found: 364.1308.
4. Procedure for the synthesis of substrate 1ac. ${ }^{[13]}$

Step 1: To a solution of 2-aminophenyl-(phenyl)methanone ($986.0 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) in methanol (10 mL), acetic acid ($1.21 \mathrm{~g}, 1.1 \mathrm{~mL}, 20.0 \mathrm{mmol}, 4.0$ equiv) was added dropwise at $0^{\circ} \mathrm{C} . \mathrm{NaBH}_{3} \mathrm{CN}$ ($628.4 \mathrm{mg}, 10.0 \mathrm{mmol}, 2.0$ equiv) was added subsequently and stirred for 5 min at this temperature. Then cinnamaldehyde ($1.59 \mathrm{~g}, 12.0 \mathrm{mmol}, 2.4$ equiv) was added to the reaction mixture, which was then allowed to stir for 22 h at rt . After the reaction was complete (monitored by TLC), the crude reaction mixture was quenched with ice cold water, extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=80: 1$) afforded the product $\mathbf{S 3}$ as yellow solid (0.95 g , 61% yield), which was directly used for the next step.

Step 2: compound 1ac was prepared according to RP1 (page S-3).

1ac. White solid, $0.70 \mathrm{~g}, 84 \%$ yield, $\mathrm{mp} 57.2-59.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.52(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-6.99(\mathrm{~m}, 18 \mathrm{H}), 6.54-6.13(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.07(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=194.6,169.8,142.8,136.6,136.5,135.6,133.1,133.0$, 131.4, 130.5, 130.4, 130.1, 129.5, 129.0, 128.4, 128.1, 127.6, 126.4, 125.0, 53.4. IR (thin film): $V_{\max }\left(\mathrm{cm}^{-1}\right)=3059,2923,1663,1647,1313,1265,967,763,702$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 440.1621$. Found: 440.1620.

5. Procedure for the synthesis of substrate 1ad. ${ }^{[14]}$

To a solution of $\mathrm{NaH}\left(80.0 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0\right.$ equiv) in $\mathrm{DCM}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, 1 \mathrm{a}(301.0 \mathrm{mg}, 1.0$ mmol, 1.0 equiv) was added. The reaction mixture was stirred for 0.5 h at this temperature before iodomethane ($283.9 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv) was added. Then the reaction mixture was warmed to rt and stirred for 10 h . After the reaction was complete (monitored by TLC), the crude reaction mixture was quenched with water and extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$) afforded the desired product 1ad as colorless oil (283.5mg, 90\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.08(\mathrm{~m}, 10 \mathrm{H}), 7.00-6.90(\mathrm{~m}$, $2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=194.5,169.8,144.2,136.3,135.7,135.2,132.9$, $131.7,130.3,129.8,129.4,129.3,128.9,128.0,127.4,126.2,39.0$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=$ $3060,2925,1663,1596,1486,1367,765,703,654 ;$ HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 338.1152. Found: 338.1149.
6. Representative procedure for the synthesis of substrates 1ae-1ai.

Preparation of compound 1ae. To a solution of (2-hydroxyphenyl)(phenyl)methanone S4
($1.98 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) in dry THF (20 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(2.09 \mathrm{~mL}, 15 \mathrm{mmol}, 1.5$ equiv) and benzoyl chloride ($13.5 \mathrm{mmol}, 1.56 \mathrm{~mL}, 1.35$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature until the reaction was completed (monitored by TLC). Then, the reaction mixture was quenched with water and extracted with DCM. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=30: 1$) to afford compound $1 \mathbf{a e}^{[15]}$ as a colorless oil ($1.89 \mathrm{~g}, 63 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45$ $(\mathrm{m}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=194.8,164.6,148.8,137.6,133.5$, 132.9, 132.2, 131.9, 130.4, 130.0, 129.7, 128.8, 128.31, 128.27, 125.8, 123.3.

The following substrates 1af-1aj were prepared analogously.

1af. Yellow solid, $373 \mathrm{mg}, 66 \%$ yield, $\mathrm{mp} 99.4-99.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}$, $4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=194.5,164.6,148.8,144.3,143.8$, 135.0, 132.2, 131.8, 130.2, 130.1, 130.0, 128.99, 128.95, 126.2, 125.6, 123.3, 21.7, 21.6. IR (thin film): $v_{\text {max }}\left(\mathrm{cm}^{-1}\right)=2920,1732,1659,1603,1446,1297,1262,1197,1176,1100,1061$, 1017, 929; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 353.1148. Found: 353.1146.

1ag. Yellow solid, $946 \mathrm{mg}, 95 \%$ yield, $\mathrm{mp} 73.0-74.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.17$ (dd, J = 7.9, 1.7 Hz, 1H), 7.78-7.72 (m, 5H), 7.55-7.47(m, 3H), 7.33-7.27(m,5H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=193.1,192.6,164.3,151.3,135.7,134.4,133.7,131.9,131.1,130.0$, 129.9, 128.6, 128.2, 128.1, 127.1, 126.6, 124.0. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2921,2851,1742$,

1663, 1599, 1449, 1247, 1192, 1177, 1104, 1047, 1019, 702, 633; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 353.0784$. Found: 353.0779.

1ah. White solid, $251 \mathrm{mg}, 41 \%$ yield, $\mathrm{mp} 130.0-130.9^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.12$ (dd, J = 7.9, 1.6 Hz, 1H), $7.77-7.65(\mathrm{~m}, 5 \mathrm{H}), 7.49(\mathrm{td}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=192.4,191.2,163.5,150.9,141.4,140.5,135.9,131.3,131.2$, $130.2,129.0,128.6,127.0,126.8,126.6,123.9$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2920,2850,1634$, 1470, 1384, 1092, 1015; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 421.0005$. Found: 421.0006.

1ai. White solid, $250 \mathrm{mg}, 21 \%$ yield, $\mathrm{mp} 113.6-114.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.12$ (dd, J = 7.8, 1.4 Hz, 1H), 7.77-7.73(m, 1H), 7.63-7.56(m, 4H), $7.52-7.43(m, 5 H), 7.28-$ $7.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=192.4,191.4,163.7,150.9,135.9,132.1,131.7$, $131.33,131.3,131.2,130.6,130.3,129.2,127.1,127.0,126.9,123.9$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)$ = 2921, 2851, 1741, 1654, 1586, 1398, 1255, 1195, 1132, 1072, 1052, 1009, 748, 632; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 510.8974. Found: 510.8984.

1aj. Colorless oil, $50 \mathrm{mg}, 16 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.90-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.67$ (dd, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=196.2,189.2,144.0,137.5,137.0,136.3,133.6,133.3,130.6$, 130.2, 129.3, 129.0, 128.6, 128.4, 127.5, 125.9. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2961,2924,2853$,

1668, 1596, 1447, 1262, 1023, 801; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 341.0607. Found: 341.0607.

7. Procedure for the syntheses of substrates $5 m-5 n$.

The compounds 5 m and $\mathbf{5 n}$ were prepared according to the known procedure. ${ }^{[16]}$ To a solution of anhydrous magnesium dichloride ($1.9 \mathrm{~g}, 20 \mathrm{mmol}$) and solid paraformaldehyde (0.9 $\mathrm{g}, 30 \mathrm{mmol}$) in dry THF (30 mL), triethylamine ($2.8 \mathrm{~mL}, 20 \mathrm{mmol}$) was added dropwise by syringe under N_{2} atmosphere and the mixture is stirred for 10 min . Mecarbinate ($2.3 \mathrm{~g}, 10$ mmol) was added and the reaction mixture was heated under reflux for 24 h . The reaction mixture was cooled to room temperature, and quenched with 1 N HCl and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=4: 1$) to afford product $5 m$. ${ }^{[16]}$ Product $5 n$ was obtained when the eluent was switched to petroleum ether/ethyl acetate $=2: 1$.

5m. ${ }^{[16]}$ Pale yellow solid, $1.23 \mathrm{~g}, 47 \%$ yield, mp 146.1-147.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $12.56(\mathrm{~s}, 1 \mathrm{H}), 10.94(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.3$, $166.2,160.6,145.7,130.6,125.5,118.3,112.5,111.4,105.0,60.1,29.9,14.3,12.7$.

5n. Pale yellow solid, $1.23 \mathrm{~g}, 47 \%$ yield, mp $174.8-175.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $10.73(\mathrm{~s}, 1 \mathrm{H}), 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.78$ $(\mathrm{s}, 3 \mathrm{H}), 1.45(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=195.2,165.1,156.3,151.3,133.6$, 131.0, 116.4, 114.4, 107.0, 104.1, 59.6, 29.7, 14.5, 12.2. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2960,2930$, 2859, 1728, 1689, 1634, 1469, 1382, 1277, 1188, 1099, 756; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NNaO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 284.0893$. Found: 284.0898.

8. Procedure for the synthesis of substrate S6.

Step 1: Ethyl 2-oxo-2-(p-tolyl)acetate ($780 \mathrm{mg}, 4.06 \mathrm{mmol}, 1.0$ equiv) was dissolved in acetonitrile (10 mL) under N_{2} atmosphere. NBS ($801 \mathrm{mg}, 4.5 \mathrm{mmol}, 1.1$ equiv) and AIBN (66 $\mathrm{mg}, 0.4 \mathrm{mmol}, 0.1$ equiv) were added and the reaction mixture was stirred for 1.5 h at $90^{\circ} \mathrm{C}$ to give a yellow solution. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to rt . The solvents were evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography on silica gel to afford the title compound S5 as a white solid ($897 \mathrm{mg}, 82 \%$).

Step 2: To a Young Schlenk tube were added compound S5 (1.2 g, $4.5 \mathrm{mmol}, 1.0$ equiv), Nmethylbenzylamine ($0.7 \mathrm{~mL}, 5.4 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(0.75 \mathrm{~mL}, 5.4 \mathrm{mmol}, 1.2$ equiv) and toluene (10 mL). The tube was sealed and the reaction mixture was stirred at $110^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to rt . The solvents were evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography on silica gel to afford the title compound $\mathbf{S 6}$ as a pale yellow oil (1.26 g, 90\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=8.00-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ $-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}$, $3 \mathrm{H}), 1.43(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=186.1,163.9,147.6,138.8,131.3$, 130.1, 129.1, 128.8, 128.3, 127.1, 62.2, 62.0, 61.3, 42.3, 14.1. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2927$, $2790,1737,1683,1606,1454,1369,1316,1200,1172,1015,982,876,741,699 ;$ HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 312.1594. Found: 312.1594.
9. Representative procedure for the Mo-catalyzed carbonyl-carbonyl olefination reaction for the syntheses of indoles 2.

Preparation of compound 2a. To an oven-dried Young Schlenk tube (10 mL) were added $\mathrm{Mo}(\mathrm{CO})_{6}(2.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), 3,5$-di-tert-butyl-o-benzoquinone ($2.2 \mathrm{mg}, 0.01 \mathrm{mmol}$, $10 \mathrm{~mol} \%$), and mesitylene (0.5 mL) under argon. The tube was sealed and the reaction mixture was stirred at $160{ }^{\circ} \mathrm{C}$ for 15 min . After cooling to ambient temperature, compound 1a (30.1 $\mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and DPPB ($85.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) were added to the reaction
mixture under argon. The tube was sealed and the reaction mixture was stirred at $180^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to rt , and passed through a short pad of silica gel ($D C M / E t O A c=1: 1$). The solvents were evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography on silica gel (petroleum ether/tert-butyl methyl ether $=80: 1$ to $40: 1$) to afford the title compound $\mathbf{2 a}{ }^{[17]}$ as a white solid (25.3 mg , 94% yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.20(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.45-7.36(\mathrm{~m}$, $5 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=135.8,135.0,134.0,132.6,130.1$, $128.7,128.6,128.5,128.1,127.6,126.2,122.6,120.4,119.6,114.9,110.9$.

The following compounds $\mathbf{2 b} \mathbf{-} \mathbf{2 a d}$ were prepared analogously.

2b. ${ }^{[18]}$ Colorless oil, $26.0 \mathrm{mg}, 92 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.18(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 3 \mathrm{H})$, 2.42 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=137.5,135.8,135.2,134.2,130.1,129.7,129.4$, $128.8,128.5,128.0,126.1,122.5,120.3,119.5,114.6,110.8,21.2$.

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone in mesitylene ($2.0 \mathrm{~mL}, 0.4 \mathrm{mmol}$ scale) at $160{ }^{\circ} \mathrm{C} . \mathbf{2 c} .^{[19]}$ White solid, $101.7 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.19(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=159.2,135.7,135.2,134.1,130.1,129.4,128.8,128.5,126.0,125.2$, 122.3, 120.3, 119.4, 114.1, 110.8, 55.2.

2d. ${ }^{[18]}$ White solid, $24.5 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.21(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz,
$\left.\mathrm{CDCl}_{3}\right): \delta=136.0,134.7,133.6,132.8,131.1,130.1,129.3,128.9,128.7,128.6,126.5,123.0$, 120.6, 119.8, 115.6, 110.9.

2e. ${ }^{[20]}$ White solid, $29.0 \mathrm{mg}, 86 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.20$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=136.2,134.5,132.2,130.1,129.3(\mathrm{q}, \mathrm{J}=32.5 \mathrm{~Hz}), 128.74$, $128.7,128.1,126.7,125.6(q, J=3.7 \mathrm{~Hz}), 124.1(q, J=270.3 \mathrm{~Hz}), 123.4,120.7,120.0,116.6$, 111.1. ${ }^{19} \mathrm{~F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.5$.

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone in mesitylene/dioxane (3/2, $1.25 \mathrm{~mL}, 0.2 \mathrm{mmol}$ scale) at $160{ }^{\circ} \mathrm{C}$. 2f. ${ }^{[21]}$ White solid, $45.8 \mathrm{mg}, 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.44(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.95$ $(m, 2 H), 7.68(d, J=7.9 H z, 1 H), 7.51-7.46(m, 2 H), 7.45-7.37(m, 5 H), 7.35-7.31(m, 1 H)$, $7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=11.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $166.8,137.1,136.2,134.6,132.7,130.1,129.9,128.8,128.7,128.67,127.8,126.6,123.4$, 120.7, 120.0, 116.7, 111.0, 52.2. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3346,2921,1721,1699,1607,1281$, 1111, 771, 744, 702; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 350.1157 . Found: 350.1152.

2g. ${ }^{[22]}$ White solid, $29.1 \mathrm{mg}, 91 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.33(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}$, 1H), $7.84-7.72(m, 4 H), 7.52-7.44(m, 6 H), 7.41-7.37(m, 2 H), 7.35-7.27(m, 2 H), 7.22-$ $7.18(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=136.1,135.0,134.0,133.4,132.6,130.3,130.2$, $128.8,128.5,128.1,128.0,127.7,126.6,126.4,126.3,126.26,122.8,120.5,119.7,115.5$, 110.9. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3410,3055,1602,1496,1453,1330,773,749,701 ;$ HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 342.1259$. Found: 342.1254 .

2h. ${ }^{[18]}$ Yellow oil, $22.1 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.64(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.63$ $(\mathrm{m}, 3 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (ddd) $J=8.0,7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43-6.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=147.1,141.3,135.4$, $134.6,130.2,128.7,128.6,126.9,125.1,122.9,120.4,119.5,114.4,111.8,110.8,106.8$.

2i. ${ }^{[18]}$ Brown oil, $22.3 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.18(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=4.9,3.8 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=135.7,134.4,130.5,129.0,128.5,128.2,127.4,126.8$, $125.3,125.25,123.0,120.5,119.6,115.7,110.7$.

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone in mesitylene ($2.0 \mathrm{~mL}, 0.4 \mathrm{mmol}$ scale) at $160^{\circ} \mathrm{C} . \mathbf{2 j} .{ }^{[17]}$ White solid, $88.0 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.32(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{ddd}, J=8.0,6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.2,135.8$, $133.5,130.6,127.9,127.7,127.1,125.7,124.2,122.8,121.7,120.8,111.7,60.9,14.0$.

2k. ${ }^{[20]}$ White solid, $25.0 \mathrm{mg}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.14(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H})$, $7.10-7.03(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=161.6(\mathrm{~d}, \mathrm{~J}=243.5 \mathrm{~Hz}), 135.8,134.1,132.4$, $131.6(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 130.9(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 128.7,128.66,128.1,127.8,122.7,120.5,119.4$, $115.4(\mathrm{~d}, \mathrm{~J}=21.1 \mathrm{~Hz}), 113.9,110.9 .{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-116.3$.

21. ${ }^{[20]}$ White solid, $27.0 \mathrm{mg}, 89 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=135.8,134.3,133.6,132.3,131.9,131.3,128.73,128.7,128.4,128.2,127.9$, 122.8, 120.6, 119.3, 113.7, 111.0.

2m. ${ }^{[23]}$ White solid, $24.1 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=135.9$, 135.7, 133.8, 132.8, 132.0, 130.0, 129.3, $128.9,128.6,128.1,127.5,122.6,120.3,119.7,115.0,110.9,21.2 . \operatorname{IR}($ thin film $): v_{\max }\left(\mathrm{cm}^{-1}\right)=$ 3407, 2920, 1602, 1515, 1456, 1329, 1250, 836, 759, 696; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 284.1434. Found: 284.1433.

2n. ${ }^{[20]}$ White solid, $24.8 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}$): $\delta=10.57(\mathrm{~s}, 1 \mathrm{H}), 7.56-$ $7.47(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}\right): \delta=158.4,136.6,133.9,133.2,131.1,129.0,128.5$, 128.1, 127.8, 127.3, 122.1, 119.7, 119.0, 114.1, 114.0, 111.3, 54.6. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=$ 3419, 2923, 1603, 1513, 1244, 1178, 1026, 771, 696; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 300.1388. Found: 300.1384 .

20. ${ }^{[23]}$ White solid, $22.6 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=136.4,135.6,135.2,132.2,128.8,128.6,128.4,128.1,127.2$, 126.2, 124.5, 122.9, 120.6, 119.8, 110.9, 107.9.

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone in mesitylene ($1.0 \mathrm{~mL}, 0.2 \mathrm{mmol}$ scale) at $180^{\circ} \mathrm{C} .2 \mathrm{p} .{ }^{[24]}$ White solid, $36.0 \mathrm{mg}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.01(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-$ $7.60(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=135.8,134.0,133.3,130.0,128.8,127.7,127.3,122.3,119.5$, 119.0, 110.7, 108.7, 9.6.

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone in mesitylene ($2.0 \mathrm{~mL}, 0.4 \mathrm{mmol}$ scale) at $180^{\circ} \mathrm{C} . \mathbf{2 q} \cdot{ }^{[24]}$ Yellow oil, $60.2 \mathrm{mg}, 64 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}$): $\delta=10.22(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.65-$ $7.61(m, 1 H), 7.53-7.46(m, 2 H), 7.44-7.41(m, 1 H), 7.39-7.33(m, 1 H), 7.17-7.11(m, 1 H)$, $7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ (100 MHz, C $\mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}$): $\delta=137.4,135.0,134.6,130.3,129.5,128.7,128.0,122.5,119.71,119.7$ 113.7, 111.9, 27.5, 25.0, 14.6. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3409,3057,2958,1539,1457,1306$, 757, 741, 696; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 236.1439 . Found: 236.1434.

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone in mesitylene ($1.0 \mathrm{~mL}, 0.2 \mathrm{mmol}$ scale) at $180^{\circ} \mathrm{C} .2 \mathrm{r}$. White solid, $28.2 \mathrm{mg}, 51 \%$ yield, $\mathrm{mp} 149.8-151.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}$): $\delta=10.14(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 5 \mathrm{H})$, $1.45-1.34(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}\right): \delta=137.8,134.8,134.7,129.6,129.4,128.5$, $128.3,122.0,121.6,119.3,118.6,112.2,37.4,34.0,27.9,27.0$. IR (thin film) $: v_{\max }\left(\mathrm{cm}^{-1}\right)=3399$, 2922, 2852, 1455, 1447, 1309, 761, 743, 696; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 276.1747$. Found: 276.1749.

2s. ${ }^{[25]}$ Yellow oil, 26.3 mg , 93% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}$): $\delta=10.51(\mathrm{~s}, 1 \mathrm{H}), 7.51-$ $7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}\right): ~ \delta=136.8,135.9,135.2,134.0,131.0,129.9,129.6,129.4$, 129.3, 129.1, 128.2, 126.9, 124.7, 119.4, 114.7, 111.9, 21.7. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3416$, 2923, 2851, 1464, 1432, 764, 698; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 284.1439. Found: 284.1435.

2t. ${ }^{[24]}$ White solid, $25.5 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}$): $\delta=10.47(\mathrm{~s}, 1 \mathrm{H}), 7.51-$ $7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}=8.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}\right): \delta=155.6,136.8,135.8,133.9,132.6$, 130.9, 129.9, 129.4, 129.3, 129.0, 128.2, 126.9, 115.0, 113.4, 112.9, 101.4, 55.9. IR (thin film): $V_{\max }\left(\mathrm{cm}^{-1}\right)=3409,2923,1621,1506,1488,1160,1033,761,699$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 322.1208$. Found: 322.1203.

2u. ${ }^{[25]}$ Colorless oil, $24.9 \mathrm{mg}, 88 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.08(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.06$ (dd, $J=8.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.3,135.2,133.4,132.8$,

2v. ${ }^{[26]}$ White solid, $23.4 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}$): $\delta=10.45(\mathrm{~s}, 1 \mathrm{H}), 7.50-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}\right): \delta=157.9,138.3$, $136.8,134.0,133.8,130.8,129.4,129.3,128.8,128.0,126.9,124.0,120.5,115.0,111.0,95.2$, 55.7. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3331,2923,2852,1601,1457,1197,1029,814,763,697$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 300.1388. Found: 300.1383.

2w. ${ }^{[17]}$ White solid, $25.2 \mathrm{mg}, 89 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.19(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=135.4,135.2,133.9,132.8,130.1,128.6,128.5,128.3,128.2,127.6$, 126.1, 123.2, 120.7, 120.0, 117.4, 115.6, 16.6.

2x. ${ }^{[18]}$ Yellow oil, $27.2 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.20(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=135.4,134.3,134.1,132.1,130.0,129.8,128.69,128.6,128.1,128.0$, $126.5,126.1,122.9,119.0,114.7,111.9$.

2y. ${ }^{[25]}$ Yellow oil, $28.5 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}$): $\delta=10.85(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}$, $1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}\right): \delta=136.7,136.0,135.8,133.2,131.3,130.9,129.5,129.4,129.2,128.7$, 127.3, 125.7, 122.1, 114.6, 114.1, 113.6. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3407,2918,1601,1507$, 1449, 1307, 1071, 762, 698; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}$: 348.0388. Found: 348.0386.

2z. White solid, $28.5 \mathrm{mg}, 82 \%$ yield, $\mathrm{mp} 109.0-110.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.42$ $(\mathrm{s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.32(\mathrm{~m}, 11 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=134.7,134.6,134.5,132.1,130.1,129.9,128.7,128.6,128.2,128.1,126.5,124.8$, 121.5, 118.9, 116.0, 104.5. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3429,3059,2921,1602,1505,1449$, 1305, 783, 723, 607; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}: 348.0382$. Found: 348.0384.

2aa. White solid, $30.5 \mathrm{mg}, 77 \%$ yield, $\mathrm{mp} 210.1-213.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}\right): \delta=$ $10.76(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 4 \mathrm{H}), 1.32$ (s, 12H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{3} \mathrm{D}_{6} \mathrm{O}\right): \delta=139.4,136.5,135.2,133.6,131.1,129.5,129.43,129.4$, 129.0, 128.4, 127.6, 127.2, 115.6, 111.5, 84.0, 25.2. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.1$ (s). IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3309,2925,2853,1602,1430,1353,1144,1070,858,699$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 396.2134$. Found: 396.2132.

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone in mesitylene ($1.0 \mathrm{~mL}, 0.2 \mathrm{mmol}$ scale) at $160^{\circ} \mathrm{C}$. 2ab. ${ }^{[27]}$ White solid, $51.6 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.43$ (m, 8H), $7.42-7.36(m, 3 H), 7.34-7.26(m, 2 H), 6.12-5.99(m, 1 H), 5.29(d d, J=10.4,1.1 H z$, $1 \mathrm{H}), 5.12(\mathrm{dd}, \mathrm{J}=17.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.5$, $136.8,135.1,133.7,131.8,131.0,129.8,128.3,128.12,128.1,127.2,125.5,122.2,120.3$, 119.7, 116.6, 115.4, 110.3, 46.4. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3058,2921,1602,1461,1363,1215$, 743 700; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 332.1415. Found: 332.1412.

2ac. White solid, 32.7 mg , 85% yield, $\mathrm{mp} 76.2-76.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.93$ (d, J=7.8 Hz, 1H), $7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 7 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.32-7.23$ $(\mathrm{m}, 3 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dt}, J=15.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=137.6,136.9,136.4,135.1,131.9,131.6,131.1,129.8,128.5,128.4$, 128.1, 127.7, 127.3, 126.4, 125.5, 125.3, 122.3, 120.4, 119.7, 115.5, 110.3, 46.1. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3058,2924,2853,1602,1461,1362,1264,966,741,700 ;$ HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 408.1723$. Found: 408.1728 .

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone in mesitylene ($1.0 \mathrm{~mL}, 0.2 \mathrm{mmol}$ scale) at $160{ }^{\circ} \mathrm{C}$. 2ad. ${ }^{[28]}$ White solid, $46.4 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.33(\mathrm{~m}$, 11H), $7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.7,137.3,135.2$, $131.9,131.1,129.8,128.4,128.1,128.0,127.0,125.5,122.2,120.2,119.6,115.1,109.5,30.9$.

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone in mesitylene ($1.0 \mathrm{~mL}, 0.05 \mathrm{mmol}$ scale) at $180^{\circ} \mathrm{C}$. 2ak. White solid, $20.1 \mathrm{mg}, 90 \%$ yield, $\mathrm{mp} 145.4-147.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}$, 5H), $2.88-2.87(m, 2 H), 2.57-2.52(m, 1 H), 2.42-2.33(m, 2 H), 2.23-2.14(m, 1 H), 2.13-$ $1.95(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.45(\mathrm{~m}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=220.7,139.3$, $136.8,135.8,135.2,134.0,130.2,130.1,128.9,128.4,128.2,126.1,125.6,125.57,122.5$, $120.3,119.5,114.7,110.8,50.5,47.9,44.4,38.0,35.8,31.5,29.3,26.4,25.6,21.5,13.8$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3354,2926,2855,1732,1456,1250,742,701$; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 446.2484$. Found: 446.2471 .

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone, $\mathrm{PCy}_{3}(2.4$ equiv) in mesitylene/dioxane ($1 / 1,1.0 \mathrm{~mL}, 0.05 \mathrm{mmol}$ scale) at $180^{\circ} \mathrm{C}$. 2al. White solid, 26.3 mg , 94% yield, $\mathrm{mp} 260.0-263.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.35(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.83-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.46$ (m, 5H), $7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.6$, 139.4, 138.9, 136.1, 135.0, 134.2, 133.0, 132.9, 132.2, 130.2, 129.9, 128.8, 128.5, 128.3, $128.25,126.7,126.3,125.9,125.5,124.8,122.8,120.5,119.7,115.4,112.1,110.9,55.1,40.6$, 37.2, 37.1, 29.1. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3407,2904,2850,1603,1489,1238,1029,742$, 701; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{38} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 560.2953. Found: 560.2936.

In lieu of the standard conditions, the reaction was performed with $30 \mathrm{~mol} \%$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $30 \mathrm{~mol} \%$ of o-quinone, $\mathrm{PCy}_{3}(2.4$ equiv) in mesitylene/dioxane ($1 / 1,1.0 \mathrm{~mL}, 0.05 \mathrm{mmol}$ scale) at $180^{\circ} \mathrm{C}$. 2am. White solid, 22.0 mg , 98% yield, $\mathrm{mp} 126.1-128.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.42(\mathrm{~s}, 1 \mathrm{H}), 8.19-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{td}, \mathrm{J}=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-$ $2.07(m, 1 H), 1.94-1.83(m, 1 H), 1.75-1.72(m, 2 H), 1.59-1.45(m, 2 H), 1.18-1.01(m, 2 H)$, $0.98-0.88(\mathrm{~m}, 7 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=165.8,136.0,134.8$, $132.9,132.88,132.5,131.4,130.2,128.7,128.67,128.63,128.61,128.56,126.5,123.0,120.5$, $119.8,115.8,111.0,75.1,47.1,40.9,34.3,31.4,26.4,23.5,22.0,20.8,16.4$. IR (thin film): $v_{\max }$
$\left(\mathrm{cm}^{-1}\right)=3345,2956,2925,1714,1694,1289,1275,742$; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NNaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}$: 474.2409. Found: 474.2408.

2an. White solid, $40.2 \mathrm{mg}, 81 \%$ yield, $\mathrm{mp} 134.0-134.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.26(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.25(\mathrm{~m}$, $4 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 4 \mathrm{H}), 1.35$ (s, 6H), $1.31(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=149.2,144.1,142.2,140.2,138.4,135.9$, $135.1,133.8,132.8,131.6,130.2,128.9,128.5,128.1,127.9,127.8,126.9,126.2,122.7,120.4$, $119.7,115.2,114.9,110.8,35.23,35.22,34.0,33.9,31.9,31.89,19.9$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)$ $=3411,2957,2925,1602,1456,849,773,701 ;$ HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 496.3004$. Found: 496.2984.

10. Procedure for the gram-scale reaction of substrate 1a.

1a

mesitylene, $180^{\circ} \mathrm{C}, 84 \mathrm{~h}$

2a

To a Young Schlenk tube (100 mL) was added $\mathrm{Mo}(\mathrm{CO})_{6}(132.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%), 3,5-$ di-tert-butyl-o-benzoquinone ($110.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and mesitylene (20 mL) under argon. The tube was sealed and the reaction mixture was stirred at $160^{\circ} \mathrm{C}$ for 15 min . After cooling to rt, compound 1a ($1.51 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{PPh}_{3}(3.15 \mathrm{~g}, 12.0 \mathrm{mmol}, 2.4$ equiv) were added to the reaction mixture under argon. The tube was sealed and the reaction mixture was stirred at $180^{\circ} \mathrm{C}$ for 84 h (Caution: a protective shield should be installed around the Young Schlenk tube when the reaction was carried out in big scale because of the risk of explosion due to CO release). After the reaction was complete (monitored by TLC), the mixture was cooled to rt , and passed through a short pad of silica gel ($\mathrm{DCM} / E t O A c=1: 1$). The solvents were evaporated under reduced pressure to give the crude mixture, which was purified by
flash column chromatography on silica gel (petroleum ether/tert-butyl methyl ether $=80: 1$ to $40: 1$) to afford the compound 2 a as a white solid ($1.21 \mathrm{~g}, 90 \%$ yield).

11. Representative procedure for the Mo-catalyzed carbonyl-carbonyl olefination reaction for the syntheses of benzofurans 2

Preparation of compound 2ae. In a glovebox, $\mathrm{Mo}(\mathrm{CO})_{6}(5.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), 3,5-di-tert-butyl-o-benzoquinone ($4.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and toluene (1.0 mL) were added to a Young Schlenk tube (10 mL) equipped with a stirring bar. The tube was sealed and transferred out of the glovebox and the mixture was stirred at $160^{\circ} \mathrm{C}$ for 15 min . After cooling to ambient temperature, the tube was transferred to the glovebox and compound 1ae (60.4 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), DPPB ($102.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and toluene (1.0 mL) were added to the reaction mixture. Then, the tube was sealed and transferred out of the glovebox and the mixture was stirred at $160^{\circ} \mathrm{C}$ until the reaction was complete (monitored by TLC). The reaction mixture was cooled to rt , and concentrated under reduced pressure to give the crude mixture, which was purified by flash column chromatography on silica gel (petroleum ether) to give compound $\mathbf{2 a e}{ }^{[29]}$ as a white solid ($52.4 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.40-$ $7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=154.0,150.5,132.8,130.6$, $130.2,129.8,129.0,128.4,128.3,127.6,127.0,124.7,122.9,120.0,117.5,111.1$.

The following compounds 2af-2aj were prepared analogously.

2af. ${ }^{[29]}$ Colorless oil, $55.0 \mathrm{mg}, 92 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, 2H), $7.61(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20$ $(\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.9,150.6,138.2$, $137.2,130.4,129.9,129.63,129.6,129.1,128.0,126.9,124.4,122.7,119.9,116.7,111.0,21.3$.

In lieu of the standard conditions, the reaction was performed with 2.4 equiv of PPh_{3} instead of DPPB in toluene at $160^{\circ} \mathrm{C}$. 2ag. ${ }^{[30]}$ Yellow solid, $44.5 \mathrm{mg}, 75 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.87(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ - 7.24 (m, 7H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=192.4,157.7,153.8,137.8,133.1,129.8,129.7$, 129.4, 128.44, 128.4, 128.38, 125.3, 123.8, 121.5, 116.1, 111.2.

2ag'. ${ }^{[31]}$ Minor isomer. Yellow solid, $7.0 \mathrm{mg}, 11 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.33$ $(d, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.24(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=177.3,161.5,156.1,133.7,133.3,132.8,131.2,130.1,129.6,128.3$, 128.1, 127.6, 126.4, 125.1, 123.5, 123.0, 118.0.

In lieu of the standard conditions, the reaction was performed with 2.4 equiv of PPh_{3} in toluene at $160{ }^{\circ} \mathrm{C}$. 2ah. White solid, $31.6 \mathrm{mg}, 67 \%$ yield, $\mathrm{mp} 158.0-158.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.83-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 1 \mathrm{H})$, $7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=190.7,156.3,153.8$, 139.9, 136.1, 136.0, 131.2, 129.5, 128.92, 128.85, 128.1, 127.7, 125.7, 124.1, 121.4, 116.2, 111.3. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2920,2850,1747,1671,1587,1488,1453,1402,1255,1193$, 1173, 1091, 1054, 1013, 751; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 389.0107. Found: 389.0108.

In lieu of the standard conditions, the reaction was performed with 2.4 equiv of PPh_{3} in toluene at $160^{\circ} \mathrm{C}$. 2ai. ${ }^{[32]}$ White solid, $56.0 \mathrm{mg}, 62 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75$ - $7.68(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.39(\mathrm{~m}$,

1H), $7.29-7.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=190.9,156.3,153.8,136.4,131.9$, $131.8,131.3,129.7,128.7,128.2,128.1,125.8,124.5,124.1,121.4,116.2,111.4$.

In lieu of the standard conditions, the reaction was performed on 0.1 mmol scale. 2aj. ${ }^{[33]}$ White solid, $21.0 \mathrm{mg}, 75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.57$ $(m, 1 H), 7.46-7.33(m, 9 H), 7.29-7.27(m, 3 H) .{ }^{13} \mathrm{C} N M R\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.9,139.6$, 138.9, 135.6, 134.3, 133.3, 130.5, 129.6, 128.6, 128.3, 127.7, 127.4, 124.5, 124.4, 123.4, 122.1 .
12. Procedure for the gram-scale reaction of substrate 1ae.

1ae

mesitylene, $160-167^{\circ} \mathrm{C}, 4 \mathrm{~d}$

2ae

In a glovebox, $\mathrm{Mo}(\mathrm{CO})_{6}(87.1 \mathrm{mg}, 0.33 \mathrm{mmol}, 10 \mathrm{~mol} \%), 3,5$-di-tert-butyl-o-benzoquinone ($72.6 \mathrm{mg}, 0.33 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and mesitylene $(10 \mathrm{~mL})$ were added to a Young Schlenk tube $(100 \mathrm{~mL})$ equipped with a stirring bar. The tube was sealed and transferred out of the glovebox and the mixture was stirred at $160^{\circ} \mathrm{C}$ for 15 min . After cooling to ambient temperature, the tube was transferred to the glovebox and compound 1ae ($1.0 \mathrm{~g}, 3.31 \mathrm{mmol}, 1.0$ equiv), DPPB ($1.7 \mathrm{~g}, 3.98 \mathrm{mmol}, 1.2$ equiv) and mesitylene (15 mL) were added to the reaction mixture. Then, the tube was sealed and transferred out of the glovebox and the mixture was stirred at $160^{\circ} \mathrm{C}$ for 2 days and at $167{ }^{\circ} \mathrm{C}$ for another 2 days (Caution: a protective shield should be installed around the Young Schlenk tube when the reaction was carried out in big scale because of the risk of explosion due to CO release). Then the reaction mixture was cooled to rt , and concentrated under reduced pressure to give the crude mixture, which was purified by flash column chromatography on silica gel (petroleum ether) to give compound 2ae as a white solid ($831 \mathrm{mg}, 93 \%$ yield).
13. Procedure for the syntheses of compounds 2b, P2 and P3.

To an oven-dried Young Schlenk tube (10 mL) were added $\mathrm{Mo}(\mathrm{CO})_{6}(2.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10$ mol\%), 3,5-di-tert-butyl-o-benzoquinone ($2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and mesitylene (0.5 mL) under argon. The tube was sealed and the reaction mixture was stirred at $160^{\circ} \mathrm{C}$ for 15 min. After cooling to ambient temperature, compound 1 b ($31.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and DPPB ($85.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) were added to the reaction mixture under argon. The tube was sealed and the reaction mixture was stirred at $180^{\circ} \mathrm{C}$ for 12 h . After the reaction was complete (monitored by TLC), the reaction mixture was cooled to rt, and concentrated under reduced pressure to give the crude residue, which was purified by flash column chromatography on silica gel (petroleum ether/tert-butyl methyl ether $=60: 1$ to $40: 1$) to afford the title compounds $\mathbf{2 b}$ as a colorless oil ($26.1 \mathrm{mg}, 92 \%$ yield). Diphosphine monoxide P3 was obtained as a white solid ($26.5 \mathrm{mg}, 60 \%$ yield) when the eluent was switched to petroleum ether/ethyl acetate = 1:1. Diphosphine oxide P2 was obtained as a white solid ($28.0 \mathrm{mg}, 61 \%$ yield) when the eluent was switched to petroleum ether/ethyl acetate/methanol = 2:2:1.

P2. ${ }^{[34]}$ White solid, $28.0 \mathrm{mg}, 61 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.62(\mathrm{~m}, 8 \mathrm{H})$, $7.51-7.34(\mathrm{~m}, 12 \mathrm{H}), 2.35-2.14(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 4 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl $\left.)_{3}\right): \delta=$ 31.9.

P3. ${ }^{[35]}$ White solid, $26.5 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89-7.18(\mathrm{~m}, 20 \mathrm{H})$, $2.28-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (202 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.7,-16.8$.
14. Representative procedure for the Mo-catalyzed carbonyl-carbonyl olefination reaction for the syntheses of coumarin derivatives 7.

To a Young Schlenk tube (10 mL) were added $\mathrm{Mo}(\mathrm{CO})_{6}(5.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), 3,5-di-tert-butyl-o-benzoquinone ($4.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and toluene (1.0 mL) under N_{2} atmosphere. The tube was sealed and the reaction mixture was stirred at $160^{\circ} \mathrm{C}$ for 15 min . After cooling to ambient temperature, compound 5 ($0.2 \mathrm{mmol}, 1.0$ equiv), compound 6 (0.3 mmol, 1.5 equiv), and PPh_{3} ($125.9 \mathrm{mg}, 0.48 \mathrm{mmol}, 2.4$ equiv) were added to the reaction mixture under N_{2} atmosphere. The tube was sealed and the reaction mixture was stirred at $160^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to $r t$. The solvents were evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography on silica gel to afford the coumarin derivatives 7.

7a. ${ }^{[36]}$ White solid, $31.2 \mathrm{mg}, 70 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.81(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.68$ (m, 2H), $7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{td}, \mathrm{J}=7.5,1.1 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.5,153.5,139.8,134.7,131.4,128.8,128.5,128.44$, 128.36, 127.9, 124.5, 119.7, 116.4

7b. ${ }^{[36]}$ White solid, $47.9 \mathrm{mg}, 88 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.56$ (s, 1H), 8.29 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{ddd}, J=$ 8.4, 7.0, 1.3 Hz, 1H), 7.57 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), $7.54-7.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=160.6,153.2,135.7,135.1,132.7,130.4,129.14,129.10,128.9,128.59,128.55$, $128.2,127.3,126.0,121.4,116.7,113.8$

7c. ${ }^{[37]}$ Yellow solid, $54.4 \mathrm{mg}, 95 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.50(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=160.6,152.9,138.8,134.9,132.4,132.1,130.2,129.2,129.0,128.4,128.0,127.0,125.9$, 121.4, 116.6, 113.7, 21.3.

7d. ${ }^{[37]}$ Yellow solid, $58.6 \mathrm{mg}, 97 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.44(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{td}, J=$ 8.2, 1.1 Hz, 1H), $7.55-6.52(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=160.7,160.1,152.6,134.1,132.1,130.2,129.8,128.9,128.0$, $127.3,126.6,125.9,121.3,116.5,113.9,113.7,55.3$.

7e. Yellow solid, $36.0 \mathrm{mg}, 62 \%$ yield, $\mathrm{mp} 174.8-176.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.58(\mathrm{~s}$, $1 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=8.2,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{td}, \mathrm{J}=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.7(\mathrm{~d}, \mathrm{~J}=246.0 \mathrm{~Hz}), 160.2,153.3,137.0(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 136.1,133.1,130.0$ (d, J = 8.4 Hz), 130.0, 129.1, 129.0, 128.3, 126.1, $125.8(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $121.3,116.6,115.73(\mathrm{~d}, \mathrm{~J}=21.1 \mathrm{~Hz}), 115.7(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}), 113.5 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=-113.4 . \operatorname{IR}($ thin film $): v_{\max }\left(\mathrm{cm}^{-1}\right)=2928,1724,1581,1444,1267,1072,746 ;$ HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{FNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 313.0635$. Found: 313.0635.

7f. Yellow solid, 100.2 mg , 89% yield, $\mathrm{mp} 206.0-207.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.62$ $(\mathrm{s}, 1 \mathrm{H}), 8.38-8.23(\mathrm{~m}, 2 \mathrm{H}), 8.02-7.84(\mathrm{~m}, 6 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 1 \mathrm{H})$, $7.64(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$,
$2.24(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.6,158.6,153.0,139.6$, $138.8,135.5,133.6,132.7,132.5,131.9,130.2,129.0,128.99,128.8,128.12,128.1,127.8$, $126.8,126.1,126.0,125.9,125.7,125.5,124.5,121.5,116.5,113.8,112.1,55.1,40.6,37.2$, 37.1, 29.1. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2903,2848,1724,1569,1493,1463,1237,1101,1029$, 811, 734; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 585.2400. Found: 585.2395.

7g. ${ }^{[37]}$ Pale yellow solid, $39.7 \mathrm{mg}, 71 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.75(\mathrm{~s}, 1 \mathrm{H}), 8.33$ (d, J = 8.4 Hz, 1H), $7.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{ddd}, J=8.3,7.0,1.3 \mathrm{~Hz}$, 1 H), 7.58 (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=5.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=159.4,152.3,136.5,132.5,131.3,130.4,129.1,128.9,128.2,127.7$, 127.1, 126.1, 121.4, 120.8, 116.6, 113.6.

7h. Yellow solid, $45.6 \mathrm{mg}, 82 \%$ yield, $\mathrm{mp} 207.0-208.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.62(\mathrm{~s}$, $1 \mathrm{H}), 8.33-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{dd}, J=5.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=160.1,152.4,134.8,132.9,132.4,130.3,129.1,128.9,128.1,126.2,126.0,125.8$, 121.6, 121.3, 116.6, 113.5. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2926,1717,1465,1273,1124,1072,798$, 744; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 301.0294 . Found: 301.0291.

7i. ${ }^{[38]}$ Yellow solid, $23.4 \mathrm{mg}, 42 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.28(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.24(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (td, $J=7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.92-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $161.6,152.0,134.0,131.9,131.6,130.3,128.9,127.8,125.7,121.4,116.7,113.5,38.6,32.2$, 26.5, 26.2.

7j. ${ }^{[39]}$ White solid, $46.6 \mathrm{mg}, 86 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63-8.57(\mathrm{~m}, 1 \mathrm{H}), 7.95$ (s, 1H), $7.92-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H})$, $7.52(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=160.6,150.6,140.5$, $134.8,134.6,128.8,128.53,128.49,128.4,127.8,127.6,127.2,124.5,123.7,122.9,122.3$, 115.1.

7k. Pale yellow solid, 48.4 mg , 89% yield, $\mathrm{mp} 200.3-202.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.98(\mathrm{dd}, J=4.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ $-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=160.1,152.8,150.0,145.5,134.6,134.5,133.9,129.7,129.1,128.6$, $128.5,128.1,124.3,122.5,120.2,113.5$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2927,1728,1601,1468$, 1282, 830, 812, 745, 702; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 296.0682. Found: 296.0685.

7I. ${ }^{[40]}$ Pale yellow solid, $25.4 \mathrm{mg}, 47 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 2H), $7.70(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.38(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=159.4,155.9$, $149.0,148.9,137.6,134.1,131.7,129.5,129.3,128.7,128.6,128.4,127.8,122.0,117.6,111.4$.

7 m . Pale yellow solid, $58.1 \mathrm{mg}, 80 \%$ yield, $\mathrm{mp} 177.4-178.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $9.60(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.6,160.8,151.1,145.6,140.8,135.7,133.0,128.5,128.3,128.1,124.8$, $122.1,112.7,112.3,111.4,106.3,60.3,30.1,14.4,13.1$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3087,2932$, 1709, 1588, 1440, 1376, 1287, 1184, 1149, 1098, 960, 787, 704, 619; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 384.1206$. Found: 384.1200.

7n. Pale yellow solid, 44.8 mg , 62% yield, $\mathrm{mp} 215.9-217.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.97(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=$ $165.3,161.2,149.6,149.1,140.5,135.0,133.8,129.2,128.3,125.6,115.0,107.6,107.1,104.4$, 59.7, 29.9, 14.5, 12.1. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2929,1715,1630,1467,1418,1178,1094$, 967, 784, 695; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 384.1206$. Found: 384.1208.

70. Pale yellow solid, $39.5 \mathrm{mg}, 57 \%$ yield, $\mathrm{mp} 190.9-192.1{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.51(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}$, $2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=160.6,153.1,153.0,148.9,141.3,137.7,132.3$, $130.3,129.1,128.9,128.0,125.8,125.0,121.5,116.8,116.3,113.6,110.3,101.5,95.5,56.9$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2933,2787,1718,1617,1572,1508,1452,1386,1282,1236,1199$, 1150, 1009, 737, 700; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 369.0733. Found: 369.0729.

7p. ${ }^{[41]}$ Viscous yellow oil, $64.5 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75(\mathrm{~s}, 1 \mathrm{H}), 7.69$ $-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}$, $1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=161.0,152.6,149.4,146.4,139.7,139.6,139.1,133.7,128.9$, $128.2,127.0,125.0,112.3,107.9,99.6,61.8,61.4,56.4,56.3,42.2 . \operatorname{IR}($ thin film $): v_{\max }\left(\mathrm{cm}^{-1}\right)=$ S-40

2918, 1714, 1578, 1491, 1439, 1370, 1266, 1195, 1042, 1012, 928, 814, 736; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 438.1676$. Found: 438.1673.

15. Procedure for the Mo-catalyzed carbonyl-carbonyl olefination reaction for the synthesis

 of 2-pyrone 10.

To a Young Schlenk tube (10 mL) were added $\mathrm{Mo}(\mathrm{CO})_{6}(5.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, 3,5-di-tert-butyl-o-benzoquinone ($4.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and mesitylene (1.0 mL) under N_{2} atmosphere. The tube was sealed and the reaction mixture was stirred at $160^{\circ} \mathrm{C}$ for 15 min . After cooling to ambient temperature, compound 8 ($44.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), compound 9 ($53.4 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) and DPPB ($102.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) were added to the reaction mixture under N_{2} atmosphere. The tube was sealed and the reaction mixture was stirred at $180^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to rt , and passed through a short pad of silica gel (DCM/EtOAc = 1:1). The solvents were evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=60: 1$ to $30: 1$) to afford the title compound $10^{[42]}$ as a yellow solid (37.6 mg , 58% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.00-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.16(\mathrm{~m}, 10 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=162.6,158.2,152.6,137.7,133.7,131.3,130.8,130.7,128.9,128.64$, $128.6,128.3,127.9,127.6,125.5,123.0,104.9$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2922,2852,1708$, 1627, 1532, 1449, 1350, 766, 701; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 347.1043$. Found: 347.1067.
II. Investigation of other quinones and transition-metal carbonyl complexes.

Table S1. Investigation of other quinones. ${ }^{\text {a }}$

${ }^{a}$ Reaction conditions: the reaction was performed with $\mathrm{Mo}(\mathrm{CO})_{6} /$ quinone, DPPB (2 equiv) on 0.1 mmol scale in mesitylene (0.5 mL) at $180^{\circ} \mathrm{C}$. ${ }^{b}$ Yield and conversion were determined by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.

o-quinone

Q1

Q2

Q3

Table S2. Investigation of other transition-metal carbonyl complexes. ${ }^{\text {a }}$

 1a	$\xrightarrow[\begin{array}{c}\text { DPPB (2 equiv) } \\ \text { mesitylene, } 160^{\circ} \mathrm{C}, 22 \mathrm{~h}\end{array}]{\substack{\text { metal }(\mathrm{x} \mathrm{mol} \%) \\ \text { o-quinone (} \\ \text { h mol\%) }}}$	 2a	
entry	metal	x (mol\%)	yield ${ }^{\text {b }}$ (\%)
1	$\mathrm{Cr}(\mathrm{CO})_{6}$	10	n.r. ${ }^{\text {c }}$
2	$\mathrm{W}(\mathrm{CO})_{6}$	10	n.r. ${ }^{\text {c }}$
3	$\mathrm{Fe}_{2}(\mathrm{CO})_{9}$	5	n.r. ${ }^{\text {c }}$
4	$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$	3.3	n.r. ${ }^{\text {c }}$
5	$\mathrm{Mn}_{2}(\mathrm{CO})_{12}$	5	n.r. ${ }^{\text {c }}$

${ }^{a}$ Reaction conditions: the reaction was performed with metal/o-quinone, DPPB (2 equiv) on 0.1 mmol scale in mesitylene (0.5 mL) at $160{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Yield was determined by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. ${ }^{\text {c }}$ No reaction.

III. Mechanistic studies.

1. General procedure for the Mo-catalyzed carbonyl-carbonyl olefination reaction of compound 1a in the presence of radical scavengers.

To a Young Schlenk tube (10 mL) were added $\mathrm{Mo}(\mathrm{CO})_{6}(2.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), 3,5-$ di-tert-butyl-o-benzoquinone ($2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and mesitylene (0.5 mL) under N_{2} atmosphere. The tube was sealed and the reaction mixture was stirred at $160^{\circ} \mathrm{C}$ for 15 min . After cooling to ambient temperature, compound 1a ($30.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv), the corresponding additive ($0.1 \mathrm{mmol}, 1.0$ equiv) and DPPB ($85.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) were added to the reaction mixture under N_{2} atmosphere. The tube was sealed and the reaction mixture was stirred at $180{ }^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to rt , and passed through a short pad of silica gel ($\mathrm{DCM} / E t O A c=$ 1:1). The solvents were evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography on silica gel (petroleum ether/tert-butyl methyl ether $=80: 1$ to $40: 1$) to afford the title compound $\mathbf{2 a}$ as a white solid.

2. Procedure for the Mo-catalyzed carbonyl-carbonyl olefination reaction of compound

1 ao.

To a Young Schlenk tube (10 mL) were added $\mathrm{Mo}(\mathrm{CO})_{6}(7.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, 3,5-di-tert-butyl-o-benzoquinone ($6.6 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$), and mesitylene (2.0 mL) under N_{2} atmosphere. The tube was sealed and the reaction mixture was stirred at $160^{\circ} \mathrm{C}$ for 15 min . After cooling to ambient temperature, compound 1ao ($34.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv), PCy_{3} ($67.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 2.4$ equiv) were added to the reaction mixture under N_{2} atmosphere. The tube was sealed and the reaction mixture was stirred at $180^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to rt , and passed through a
short pad of silica gel ($D C M / E t O A c=1: 1$). The solvents were evaporated under reduced pressure to give the crude mixture, which was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=80: 1$ to $30: 1$) to afford the title compound $\mathbf{2 a o}$ as a white solid ($25.1 \mathrm{mg}, 81 \%$ yield, $\mathrm{mp} 114.9-115.5^{\circ} \mathrm{C}$). The relative configuration of product $\mathbf{2 a o}$ was determined by 2D-NMR analysis. For details, see the NMR spectra in Page S-228 to S-235. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.91(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dt}, J=9.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dt}, J=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44$ (dt, $J=8.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=141.2,135.0,134.9,134.87,129.6$, $128.4,128.37,127.9,126.0,125.8,125.77,121.9,120.2,118.9,115.5,110.5,26.0,20.3,16.7$. IR (thin film): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3419,2925,1603,1460,1075,772,697$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 310.1590. Found: 310.1587.

IV. A proposed reaction pathway for the formation of coumarins.

Preliminary mechanistic experiments were performed to gain some insights to the reaction mechanism of the coumarin forming reaction. First, the the reaction of ethyl 2-oxo-2phenylacetate S7 with O-methyl protected substrate S8 was performed to probe whether the transesterification or carbonyl-carbonyl olefination occurred first (eq 2). Under the Mocatalytic conditions, no reaction was occurred while 58% yield of product $7 \mathbf{b}$ could be detected when the 2-hydroxy-1-naphthaldehyde $\mathbf{5 b}$ was used as the substrate (eq 1). In contrast, reaction of transesterification product $\mathbf{S 9}$ which was considered as one of the possible reaction intermediates, proceeded and afforded product 3 g in 18% yield (eq 3). The low yield of this reaction might be due to the low stability of substrate $\mathbf{S 9}$ under the reaction conditions. These experimental results suggested that the coumarin forming reaction might be initiated via the transesterification and followed by the intramolecular carbonyl-carbonyl olefination. Accordingly, a possible reaction pathway was proposed (Scheme S1).

Scheme S1. Plausible reaction mechanism.

V. References.

[1] A. Whyte, K. I. Burton, J. Zhang and M. Lautens, Enantioselective Intramolecular CopperCatalyzed Borylacylation, Angew. Chem. Int. Ed., 2018, 57, 13927-13930.
[2] W.-T. Wei, J.-F. Sheng, H. Miao, X. Luo, X.-H. Song, M. Yan and Y. Zou, Transition-Metal-Free Synthesis of Acridones via Base-Mediated Intramolecular Oxidative C-H Amination, Adv. Synth. Catal., 2018, 360, 2101-2106.
[3] G. Dannhardta, B. L. Fiebich and J. Schweppenhäuser, COX-1/COX-2 inhibitors based on the methanone moiety, Eur. J. Med. Chem., 2002, 37, 147-161.
[4] Y. Wu, B. Li, F. Mao, X. Li and F. Y. Kwong, Toluene derivatives as simple coupling precursors for cascade palladium-catalyzed oxidative $\mathrm{C}-\mathrm{H}$ bond acylation of acetanilides, Chem. Commun., 2013, 49, 689-691.
[5] A. Albertia, P. Astolfi, P. Carloni, D. Döppc, L. Greci, C. Rizzoli and P. Stipa, Radical intermediates in the photorearrangement of 3-hydroxyindolic nitrones, Tetrahedron, 2011, 67, 6889-6894.
[6] A. Verma and S. Kumar, Selective Oxidative Decarbonylative Cleavage of Unstrained $C\left(s p^{3}\right)-C\left(s p^{2}\right)$ Bond: Synthesis of Substituted Benzoxazinones, Org. Lett., 2016, 18, 43884391.
[7] S. S. Bera, M. R. Sk and M. S. Maj, Weakly Coordinating, Ketone-Directed (n^{5} -Pentamethylcyclopentadienyl)cobalt(III)- and (n^{5} Pentamethylcyclopentadienyl)rhodium(III)-Catalyzed C-H Amidation of Arenes: A Route to Acridone Alkaloids, Chem. Eur. J., 2019, 25, 1806-1811.
[8] Y. Wu, P. Sun, K. Zhang, T. Yang, H. Yao and A. Lin, Rh(III)-Catalyzed Redox-Neutral Annulation of Primary Benzamides with Diazo Compounds: Approach to Isoquinolinones, J. Org. Chem., 2016, 81, 2166-2173.
[9] S. Ning, L. Zhang, J. Ma, L. Chen, G. Zeng, C. Yang, Y. Zhou, X. Guo and X. Deng, Modular and scalable synthesis of nematode pheromone ascarosides: implications in eliciting plant defense response, Org. Biomol. Chem., 2020, 18, 4956-4961.
[10] T. Zhou, P.-P. Xie, C.-L. Ji, X. Hong and M. Szostak, Decarbonylative Suzuki-Miyaura CrossCoupling of Aroyl Chlorides, Org. Lett., 2020, 22, 6434-6440.
[11] J. E. Davoren, C.-W. Lee, M. Garnsey, M. A. Brodney, J. Cordes, K. Dlugolenski, J. R.

Edgerton, A. R. Harris, C. J. Helal, S. Jenkinson, G. W. Kauffman, T. P. Kenakin, J. T. Lazzaro, S. M. Lotarski, Y. Mao, D. M. Nason, C. Northcott, L. Nottebaum, S. V. O'Neil, B. Pettersen, M. Popiolek, V. Reinhart, R. SalomonFerrer, S. J. Steyn, D. Webb, L. Zhang and S. Grimwood, Discovery of the Potent and Selective M1 PAM-Agonist $N-[(3 R, 4 S)-3-$ Hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)benzyl]pyridine-2carboxamide (PF-06767832): Evaluation of Efficacy and Cholinergic Side Effects, J. Med. Chem., 2016, 59, 6313-6328.
[12] W.-T. Wei, Y.-J. Cheng, Y. Hu, Y.-Y. Chen, X.-J. Zhang, Y. Zou and M. Yan, Concise Synthesis of 4-Arylquinolines via Intramolecular Cyclization of Allylamines and Ketones, Adv. Synth. Catal., 2015, 357, 3474 - 3478.
[13] B. Ganesan, G. C. Senadi, B.-C. Guo, M.-Y. Huang and W.-Y Lin, A copper(II)-catalyzed annulative formylation of o-alkynylanilines with DMF: a single-step strategy for 3-formyl indoles, RSC Adv., 2018, 8, 40968-40973.
[14] M. Hu, Y. Gao, W. Wu, J. Li, C. Li, H. Zhang and H. Jiang, Efficient assembly of ynones via palladiumcatalyzed sequential carbonylation/alkynylation, Org. Biomol. Chem., 2018, 16, 7383-7392.
[15] S. Sharma, J. Park, M. Kim, J. H. Kwak, Y. H. Jung and I. S. Kim, Cu(II)-catalyzed oxidative esterification of 2-carbonyl substituted phenols from the alcohol oxidation level, Tetrahedron, 2013, 69, 9391-9397.
[16] Y. Yu, L. Ma, J. Xia, L. Xin, L. Zhu and X. Huang, A Modular Approach to Dibenzo-fused ϵ Lactams: Palladium-Catalyzed Bridging-C-H Activation, Angew. Chem. Int. Ed., 2020, 59, 18261-18266.
[17] A. Lerchen, S. V. Céspedes and F. Glorius, Cobalt(III)-Catalyzed Redox-Neutral Synthesis of Unprotected Indoles Featuring an N-N Bond Cleavage, Angew. Chem. Int. Ed., 2016, 55, 3208-3211.
[18] R. K. Maurya, O. P. S. Patel, D. Anand and P. P. Yadav, Substrate selective synthesis of indole, tetrahydroquinoline and quinoline derivatives via intramolecular addition of hydrazones and imines, Org. Chem. Front., 2018, 5, 1170-1175.
[19] S. Minakata, Y. Kasano, H. Ota, Y. Oderaotoshi and M. Komatsu, 1,6-Stannatropic Strategy: Effective Generation and Cyclization of 1,5-Dipoles from o-Stannylmethylated

Thioanilides or Phenyl Isothiocyanates, Org. Lett., 2006, 8, 3693-3695.
[20] H. Yan, H. Wang, X. Li, X. Xin, C. Wang and B. Wan, Rhodium-Catalyzed C-H Annulation of Nitrones with Alkynes: A Regiospecific Route to Unsymmetrical 2,3-Diaryl-Substituted Indoles, Angew. Chem. Int. Ed., 2015, 54, 10613-10617.
[21] G. A. Kraus and H. Guo, A Flexible Synthesis of 2,3-Disubstituted Indoles from Aminobenzyl Phosphonium Salts. A Direct Synthesis of Rutaecarpine, J. Org. Chem., 2009, 74, 5337-5341.
[22] J. Chen, Z. Chen, H. Zhao, T. Zhang, W. Wang, Y. Zou, X. Zhang and M. Yan, Intramolecular addition of diarylmethanols to imines promoted by KOt-Bu/DMF: a new synthetic approach to indole derivatives, Org. Biomol. Chem., 2016, 14, 4071-4076.
[23] J. Li, Y. An, J. Li, S. Yang, W. Wu and H. Jiang, Palladium-catalyzed C-S bond activation and functionalization of 3-sulfenylindoles and related electron-rich heteroarenes, Org. Chem. Front., 2017, 4, 1590-1594.
[24] D. Zhao, Z. Shi and F. Glorius, Indole Synthesis by Rhodium(III)-Catalyzed HydrazineDirected C-H Activation: Redox-Neutral and Traceless by N-N Bond Cleavage, Angew. Chem. Int. Ed., 2013, 52, 12426-12429.
[25] H. Wang, M. Moselage, M. J. González and L. Ackermann, Selective Synthesis of Indoles by Cobalt(III)-Catalyzed C-H/N-O Functionalization with Nitrones, ACS Catal., 2016, 6, 2705-2709.
[26] H. Lee and C. S. Yi, Catalytic Synthesis of Substituted Indoles and Quinolines from the Dehydrative C-H Coupling of Arylamines with 1,2- and 1,3-Diols, Organometallics, 2016, 35, 1973-1977.
[27] Y. Shang, K. Jonnada, S. L. Yedage, H. Tu, X. Zhang, X. Lou, S. Huang and W. Su, Rhodium(iii)catalyzed indole synthesis at room temperature using the transient oxidizing directing group strategy, Chem. Commun., 2019, 55, 9547-9550.
[28] Y. Liang and N. Jiao, Cationic Cobalt(III) Catalyzed Indole Synthesis: The Regioselective Intermolecular Cyclization of N-Nitrosoanilines and Alkynes, Angew. Chem. Int. Ed., 2016, 55, 4035-4039.
[29] W. Zeng, W.-Q. Wu, H.-F. Jiang, L.-B. Huang, Y.-D. Sun, Z.-W. Chen and X.-W. Li, Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and
alkynes, Chem. Commun., 2013, 49, 6611-6613.
[30] M. Nakamura, L. Ilies, S. Otsubo and E. Nakamura, 2,3-Disubstituted Benzofuran and Indole by Copper-Mediated C-C Bond Extension Reaction of 3-Zinciobenzoheterole, Org. Lett., 2006, 8, 2803-2805.
[31] S. Baruah, P. P. Kaishap and S. Gogoi, Ru(П)-Catalyzed C-H activation and annulation of salicylaldehydes with monosubstituted and disubstituted alkynes, Chem. Commun., 2016, 52, 13004-13007.
[32] M. Begala, P. Caboni, M. J. Matos and G. L. Delogu, Unexpected one-step synthesis of 3-benzoyl-2-phenylbenzofurans under Wittig conditions, Tetrahedron Lett., 2018, 59, 17111714.
[33] B. Alcaide, P. Almendros, E. Busto, F. Herrera, C. Lazaro-Milla and A. Luna, Photopromoted Entry to Benzothiophenes, Benzoselenophenes, 3H-Indoles, Isocoumarins, Benzosultams, and (Thio)flavones by Gold-Catalyzed Arylative Heterocyclization of Alkynes, Adv. Synth. Catal., 2017, 359, 2640-2652.
[34] X. Ma, Q. Xu, H. Li, C. Su, L. Yu, X. Zhang, H. Cao and L.-B. Han, Alcohol-based MichaelisArbuzov reaction: an efficient and environmentally-benign method for $\mathrm{C}-\mathrm{P}(\mathrm{O})$ bond formation, Green Chem., 2018, 20, 3408-3413.
[35] V. V. Grushin, Synthesis of Hemilabile Phosphine-Phosphine Oxide Ligands via the Highly Selective Pd-Catalyzed Mono-oxidation of Bidentate Phosphines: Scope, Limitations, and Mechanism, Organometallics, 2001, 20, 3950-3961.
[36] H. Zeng and C.-J. Li, A Complete Switch of the Directional Selectivity in the Annulation of 2-Hydroxybenzaldehydes with Alkynes, Angew. Chem. Int. Ed., 2014, 53, 13862-13965.
[37] J., Liu, X., Zhang, L. Shi, M. Liu, Y. Yue, F. Li and K. Zhuo, Base-promoted synthesis of coumarins from salicylaldehydes and aryl-substituted 1,1-dibromo-1-alkenes under transition-metal-free conditions, Chem. Commun., 2014, 50, 9887-9890.
[38] A. Banerjee, S. K. Santra, N. Khatun, W. Ali and B. K. Patel, Oxidant controlled regioselective mono- and di-functionalization reactions of coumarins, Chem. Commun., 2015, 51, 15422-15425.
[39] Y. Jiang, W. Chen and W. Lu, Synthesis of 3-arylcoumarins through N-heterocyclic carbene catalyzed condensation and annulation of 2-chloro-2-arylacetaldehydes with salicylaldehydes, Tetrahedron Lett., 2013, 69, 3669-3676.
[40] M. Čakurda, P. Koiš, G. Addová, M. Lácová and A. Boháč, 2H-Pyrano[3,2-c]quinolin-2-ones: their convenient synthesis and selected reactions, Chem. Pap., 2018, 72, 683-690.
[41] L. Plazzi, A. Cavalli, F. Belluti, A. Bisi, S. Gobbi, S. Rizzo, M. Bartolini, V. Andrisano, M. Recanatini and A. Rampa, Extensive SAR and Computational Studies of 3-\{4-[(Benzylmethylamino)methyl]phenyl\}-6,7-dimethoxy-2H-2-chromenone (AP2238) Derivatives, J. Med. Chem., 2007, 50, 4250-4254.
[42] P. Zhou, W.-T. Yang, A. U. Rahman, G. Li and B. Jiang, Rh(III)-Catalyzed [3 + 3] Annulation Reaction of Cyclopropenones and Sulfoxonium Ylides toward Trisubstituted 2-Pyrones, J. Org. Chem., 2020, 85, 360-366.
VI. Copies of NMR spectra.

$$
\begin{aligned}
& \text {--62.992 } \\
& 1 \mathrm{e}
\end{aligned}
$$

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

1w

$1 z$

1ac

Tゅ T T T

 NNNNNNNo

1ad

$1 \mathbf{a e}$

反্N No

200	180	160	140	120	100	80	60	40	20	0
					f1 (ppm)					

1ag

j

1ak

1am

1an

芯

1 an

1 ao

 N N

2a

Mo

2a

2b

て61・レて－

2b

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

2d

2d

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

2 e

$2 e$

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0 $\mathrm{f1}(\mathrm{ppm})$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

$2 g$

 ল゙ $\stackrel{\infty}{\infty} \stackrel{O}{O}_{0}^{0}$ Nべ

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90
 $\mathrm{f} 1(\mathrm{ppm})$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

2j

10
0
0
0
0

2j

 $\stackrel{\infty}{ल} 0_{0}^{\circ}$ N人

--116.287

 ∞ NNNNNNNNNNNN

LUでして－

2 m

20

@ O G F F
○ - N ウ ゥ -

| 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | $\underset{\mathrm{f} 1 \mathrm{ppm})}{4.5}$ | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
| :--- |

めNへNNNNNNNNNNNNNN゙

2p

2s
Acetone-D 6

LOL゙レてー

 o NNNNNNNNNNNNNNNNN

2x

 $\underbrace{\infty}_{\underbrace{\infty}}$ $\begin{array}{r}\infty \\ \hline \\ \hline\end{array}$

2ab

 N

2 ac

2ae

2ag

永
๙

た。 $1 \underbrace{\circ}$

[^0]0Zて＇しL

ल

2ah

2ai

লা

2aj

2ak

 がNNNNNNNNNNNNNNNNNNNNM，
$\stackrel{N}{N}$
ヘベヤ

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90
 $\mathrm{f} 1(\mathrm{ppm})$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

2ao

(asY

NOESY

NNNNNNN
-2.235
-1.696

NNMNNNNMN

P3

7b

8しがて

$\stackrel{T}{5}$
$\stackrel{1}{\circ}$

$\begin{array}{llllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \begin{array}{l}5.0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}$

$\stackrel{\curvearrowleft}{\stackrel{n}{N}}$

?10	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0

に

7e

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0

$\infty \infty$

$7 f$

 mon mond

7i

2

$\stackrel{n}{N}$

[^0]: | $889.9 \angle$ |
 | :--- |
 | $000 \angle L \square$ |
 | $81 \varepsilon^{\circ} \angle L$ |

