Supporting Information

Site-Selective Carbamoylation of Carbohydrates Catalyzed by SnCl₂/Me₂SnCl₂ Leading to Complementary Selectivity

Yang-Fan Guo, Tao Luo and Hai Dong*

*Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan, 430074, PR China, E-mail: hdong@mail.hust.edu.cn

TABLE OF CONTENTS

1.	General experiments	S2
2.	Figure S1-5	S3-4
3.	Preparation and characterization for the compounds	S5
4.	Reference	.S24
5.	Copy of NMR spectra	.S25

1. General experiments

General. All commercially available starting materials and solvents were of reagent grade and used without further purification. Chemical reactions were monitored with thin-layer chromatography using precoated silica gel 60 (0.25 mm thickness) plates. Flash column chromatography was performed on silica gel 60 (SDS 0.040-0.063 mm). ¹H NMR spectra were recorded at 298 K in CDCl₃, using the residual signals from CHCl₃ (¹H: = 7.26 ppm) as internal standard. ¹H peak assignments were made by first order analysis of the spectra, supported by standard ¹H-¹H correlation spectroscopy (COSY).

Structure of acylation reagents a – j.

General procedure A for the synthesis of 1-carbamoylimidazoles a - f.

1-carbamoylimidazoles **a-f** were prepared based on the literature¹: The amine (5.00 mmol) was dissolved in water (50 mL) and stirred for 15 min at 0°C. Then *N*, *N*'- carbonyldiimidazole (CDI) (6.00 mmol) was added, and the mixture was stirred for 30 min at 0°C. The mixture was extracted with ethyl acetate (2 × 25 mL), then the organic layers were pooled together and washed with a saturated aqueous solution of NaHCO₃ (2 × 25 mL) and a saturated aqueous solution of NaCl (25 mL). The organic layer was dried over Na₂SO₄, filtered and the solvent rotary evaporated. The crude residue was chromatographed over silica gel using a gradient of ethyl acetate (from 0% to 50%) in dichloromethane as the mobile phase to afford the expected 1-carbamoylimidazole **a-f**.

General procedure B for the synthesis of acyl imidazoles g - j.

Acyl imidazoles **g-j** were prepared based on the literature²: Imidazole (11.72 mmol) was dissolved in anhydrous THF (20 mL) and the corresponding acyl chloride (0.5 equiv, 5.86 mmol) was added dropwise. The reaction mixture was stirred overnight at room temperature under argon. The white precipitate of imidazolium chloride was filtered off and discarded. The solvent was removed under vacuum to give the acyl imidazolide **g-j**, which was stored under argon at 4°C and used for the acylation reactions without further purification.

General procedure C for the carbamoylation of substrates catalyzed by SnCl₂.

The substrate (0.1 - 0.2 mmol), $SnCl_2$ (0.1 equiv) and *N*, *N*-diisopropylethylamine (DIPEA) (0.2 equiv) were mixed in dry acetonitrile (0.5 - 1.0 mL). Then, 1-carbamoylimidazole (1.4 equiv) was added to the

mixture. After stirring vigorously at $(50^{\circ}\text{C} - 70^{\circ}\text{C})$ for 4 - 12 hours, the reaction mixture was concentrated *in vacuo* and purified by flash column chromatography, affording the pure selectively carbamoylated derivatives.

General procedure D for the carbamoylation of substrates catalyzed by Me₂SnCl₂. The substrate (0.1 - 0.2 mmol), Me₂SnCl₂ (0.1 equiv) and DIPEA (0.2 equiv) were mixed in dry acetonitrile (0.5 - 1.0 mL). Then, 1-carbamoylimidazole (1.4 equiv) was added to the mixture. After stirring vigorously at 50 °C for 1 - 2 hours, the reaction mixture was concentrated *in vacuo* and purified by flash column chromatography, affording the pure selectively carbamoylated derivatives.

2. Figure S1-5

Figure S1. ¹H-NMR spectra of crude products with c and c' as acylation reagents

Figure S2. ¹HNMR spectra of crude products with g and g' as acylation reagents

Figure S3. ¹HNMR spectra of crude products with h and h' as acylation reagents

Figure S4. ¹HNMR spectra of crude products with i as acylation reagents

Figure S5. ¹HNMR spectra of crude products with j as acylation reagents

3. Preparation and characterization for the compounds

1-benzyl-carbamoylimidazole (**a**): Following the general procedure A, a mixture of benzylamine (2.14 g, 20 mmol) and CDI (3.89 g, 24 mmol) afforded the title compound **a** as a white powder (3.635 g, 90%). Rf = 0.30 (ethyl acetate/petroleum ether: 2/1). ¹H NMR (400 MHz, (CD₃)₂SO) δ 9.08 (s, 1H), 8.28 (s, 1H), 7.71 (s, 1H), 7.40 – 7.27 (m, 5H), 7.04 (s, 1H), 4.46 (d, J = 5.9 Hz, 2H). NMR data were consistent with literature description.¹

1-(4-methoxyphenyl)-carbamoylimidazole (**b**). Following the general procedure A, a mixture of 4methoxybenzylamine (686 mg, 5.00 mmol) and CDI (973 mg, 6.00 mmol) afforded the title compound **b** as an off-white powder (982.2 mg, 85%). Rf = 0.24 (ethyl acetate/petroleum ether: 2/1). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.74 (t, J = 5.6 Hz, 1H), 7.42 (s, 1H), 7.26 – 7.20 (m, 2H), 6.90 – 6.83 (m, 3H), 4.50 – 4.44 (m, 2H), 3.78 (s, 3H). NMR data were consistent with literature description.³

1-methyl-carbamoylimidazole (c). Synthesized in light of the reported reference.⁴ CDI (20.0 g, 111 mmol, 1.10 equiv) and MeNH₃Cl (6.82 g, 101 mmol, 1.0 equiv) were dissolved in DMF (20 mL) and acetonitrile (60 mL). The solution was stirred at room temperature for 2 h before being concentrated under an air stream to a thick oil. Flash chromatography (4% MeOH/ CH₂Cl₂) gave **c** as a white solid (12.6 g, quantitative yield). Rf = 0.24 (4% MeOH/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 4.7 Hz, 1H), 8.26 (t, *J* = 1.2 Hz, 1H), 7.56 (t, *J* = 1.5 Hz, 1H), 7.01 (dd, *J* = 1.6, 0.9 Hz, 1H), 2.99 – 2.95 (m, 3H). NMR data were consistent with literature description.⁴

1-butyl-carbamoylimidazole (**d**). Following the general procedure A, a mixture of butylamine (366 mg, 5.00 mmol) and CDI (973 mg, 6.00 mmol) afforded the title compound **d** as a colorless oil (715.5 mg, 85%). *Rf* = 0.35 (ethyl acetate/petroleum ether: 2/1). ¹H NMR (600 MHz, CDCl₃) δ 8.48 (t, J = 5.7 Hz, 1H), 8.28 (s, 1H), 7.61 (s, 1H), 7.00 (s, 1H), 3.41 – 3.34 (m, 2H), 1.62 – 1.55 (m, 2H), 1.41 – 1.31 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). NMR data were consistent with literature description.¹

1-octyl-carbamoylimidazole (e). Following the general procedure A, a mixture of octylamine (646 mg, 5.00 mmol) and CDI (973 mg, 6.00 mmol) afforded the title compound e as a colorless oil (268.2 mg, 24%). *Rf* = 0.27 (ethyl acetate/petroleum ether: 2/1). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.00 (t, J = 5.6 Hz, 1H), 7.54 (s, 1H), 7.00 (s, 1H), 3.41 – 3.31 (m, 2H), 1.66 – 1.55 (m, 2H), 1.42 – 1.13 (m, 10H), 0.91 – 0.81 (m, 3H). NMR data were consistent with literature description.¹

1-cyclohexyl-carbamoylimidazole (**f**). Following the general procedure A, a mixture of cyclohexylamine (496 mg, 5.00 mmol) and CDI (973 mg, 6.00 mmol) afforded the title compound **f** as an off-white powder (710.6 mg, 74%). *Rf* = 0.25 (ethyl acetate/petroleum ether: 2/1). ¹H NMR (600 MHz, CDCl3) δ 8.20 (s, 1H), 7.50 (s, 1H), 7.42 (d, J = 7.8 Hz, 1H), 6.99 (s, 1H), 3.83 – 3.74 (m, 1H), 2.06 – 1.98 (m, 2H), 1.79 – 1.70 (m, 2H), 1.69 – 1.61 (m, 1H), 1.43 – 1.19 (m, 4H), 1.17 – 1.06 (m, 1H). NMR data were consistent with literature description.¹

1-(benzylacetyl)imidazole (**g**). Following the general procedure B, a mixture of hydrocinnamoyl chloride (843 mg, 5 mmol) and imidazole (680 mg, 10 mmol) afforded the title compound **g** as a colorless oil (950 mg, 95%). Rf = 0.25 (ethyl acetate/petroleum ether: 1/4). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (t, J = 1.1 Hz, 1H), 7.45 (t, J = 1.5 Hz, 1H), 7.36 – 7.17 (m, 5H), 7.07 (dd, J = 1.7, 0.8 Hz, 1H), 3.21 – 3.06 (m, 4H).⁵

1-(cyclohexylcarbonyl)imidazole (**h**). Following the general procedure B, a mixture of cyclohexanecarbonyl chloride (733 mg, 5 mmol) and imidazole (680 mg, 10 mmol) afforded the title compound **h** as a colorless oil (801 mg, 90%). Rf = 0.20 (ethyl acetate/petroleum ether: 1/4). ¹H NMR (600 MHz, CDCl₃) δ 8.21 (s, 1H), 7.50 (t, J = 1.5 Hz, 1H), 7.12 – 7.06 (m, 1H), 2.92 (tt, J = 11.5, 3.4 Hz, 1H), 2.04 – 1.81 (m, 4H), 1.80 – 1.71 (m, 1H), 1.70 – 1.58 (m, 2H), 1.46 – 1.19 (m, 3H). NMR data were consistent with literature description.⁵

1-(trimethylacetyl)imidazole (i). Following the general procedure B, a mixture of trimethylacetyl chloride (603 mg, 5 mmol) and imidazole (680 mg, 10 mmol) afforded the title compound i as a colorless oil (669 mg, 88%). Rf = 0.25 (ethyl acetate/petroleum ether: 1/2). ¹H NMR (600 MHz, CDCl₃) δ 8.32 (s, 1H), 7.60 – 7.55 (m, 1H), 7.08 – 7.05 (m, 1H), 1.47 (s, 9H). NMR data were consistent with literature description.⁵

1-(benzoyl)imidazole (**j**). Following the general procedure B, a mixture of benzoyl chloride (703 mg, 5 mmol) and imidazole (680 mg, 10 mmol) afforded the title compound **j** as a colorless oil (826 mg, 96%). Rf = 0.20 (ethyl acetate/petroleum ether: 1/2). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.84 – 7.77 (m, 2H), 7.74 – 7.65 (m, 1H), 7.61 – 7.53 (m, 3H), 7.20 – 7.15 (m, 1H). NMR data were consistent with literature description.⁵

Methyl 2-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside (**1aa**). Following the general procedure C, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50 °C for 4 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1aa** as colorless oil (37.9 mg, 86%). $R_f = 0.4$ (ethyl acetate/petroleum ether: 1/1). $[\alpha]^{18}_D + 17.0$ (c 1.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.20 (m, 5H), 5.37 (t, J = 6.0 Hz, 1H, NH), 4.97 (dd, J = 3.6, 1.6 Hz, 1H, H-2), 4.75 (d, J = 1.7 Hz, 1H, H-1), 4.43 – 4.25 (m, 2H, ArCH₂), 3.97 (dd, J = 9.4, 3.6 Hz, 1H, H-3), 3.86 (m, 2H, *H*-6a and *H*-6b), 3.73 (t, J = 9.6 Hz, 1H, *H*-4), 3.57 (dq, J = 10.0, 5.0 Hz, 1H, *H*-5), 3.35 (s, 3H), 0.89 (s, 9H), 0.08 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 156.36, 138.18, 128.65, 127.55, 127.47, 98.86, 72.83, 71.91, 70.07, 69.16, 63.80, 54.83, 45.05, 25.91, 18.31, -5.27, -5.29. HRMS (ESI) m/z calcd for C₂₁H₃₅NO₇SiNa [M + Na]⁺ 464.2080, found 464.2100.

Methyl 3-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1ba**). Following the general procedure D, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1ba** as colorless oil (36.2 mg, 81%). R_f = 0.6 (ethyl acetate/petroleum ether: 1/1). ¹H NMR (400 MHz, CDCl3) δ 7.36 – 7.20 (m, 5H), 5.59 (t, J = 5.9 Hz, 1H), 4.96 (dd, J = 9.8, 3.2 Hz, 1H), 4.68 (d, J = 1.8 Hz, 1H), 4.36 – 4.31 (m, 2H), 4.02 – 3.98 (m, 1H), 3.95 – 3.84 (m, 3H), 3.63 (dt, J = 10.2, 5.1 Hz, 1H), 3.37 (s, 3H), 0.90 (s, 9H), 0.09 (s, 6H). NMR data were consistent with literature description.¹

Methyl 2-*O*-(4-methoxy-benzyl) carbamoyl-6-*O*-(tert-butyldimethyl)silyl- α -D-mannopyranoside (**1ab**). Following the general procedure C, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-(4-methoxyphenyl)-carbamoylimidazole (**b**) (32.3mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50 °C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1ab** as colorless oil (40.5 mg, 86%). R_f = 0.4 (ethyl acetate/petroleum ether: 1/1). [α]¹⁸_D + 17.6 (c 0.34, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.06 (m, 2H), 6.80 – 6.72 (m, 2H), 5.32 (t, *J* = 5.8 Hz, 1H, NH), 4.87 (dd, *J* = 3.6, 1.6 Hz, 1H, H-2), 4.65 (d, *J* = 1.6 Hz, 1H, H-1), 4.25 – 4.08 (m, 2H), 3.87 (dd, *J* = 9.6, 3.5 Hz, 1H, H-3), 3.81 – 3.72 (m, 2H, H-6a and H-6b), 3.70 (s, 3H, OCH₃), 3.62 (t, *J* = 9.5 Hz, 1H, H-4), 3.47 (dt, *J* = 9.7, 4.9 Hz, 1H, H-5), 3.26 (s, 3H, OCH₃), 0.81 (s,

9H), 0.00 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 159.05, 156.15, 130.14, 128.98, 114.07, 98.96, 72.63, 71.36, 70.19, 69.81, 64.13, 55.28, 54.92, 44.66, 25.86, 18.27, -5.38. HRMS (ESI) m/z calcd for C₂₂H₃₇NO₈SiNa [M + Na]⁺ 494.2186, found 494.2185.

Methyl 3-*O*-(4-methoxy-benzyl)carbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside (**1bb**). Following the general procedure D, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-(4-methoxyphenyl)-carbamoylimidazole (**b**) (32.3 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1bb** as colorless oil (38.6 mg, 82%). $R_f = 0.7$ (ethyl acetate/petroleum ether: 1/1). $[\alpha]^{18}_{D} + 81.4$ (c 0.07, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.07 (m, 2H), 6.79 – 6.71 (m, 2H), 5.35 (t, *J* = 5.8 Hz, 1H, NH), 4.86 (dd, *J* = 9.7, 3.2 Hz, 1H, H-3), 4.59 (d, *J* = 1.8 Hz, 1H, H-2), 4.24 – 4.12 (m, 2H), 3.92 – 3.88 (m, 1H, H-2), 3.85 – 3.74 (m, 3H, H-4, H-6a and H-6b), 3.69 (s, 3H), 3.53 (dt, *J* = 9.8, 4.9 Hz, 1H, H-5), 3.48 (d, *J* = 3.4 Hz, 1H, 4-OH), 3.28 (s, 3H), 2.42 – 2.37 (m, 1H, 2-OH), 0.81 (s, 9H), -0.00 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.08, 156.76, 130.10, 129.07, 114.08, 100.59, 75.43, 72.10, 69.56, 67.64, 63.91, 55.29, 54.90, 44.76, 25.90, 18.32, -5.40. HRMS (ESI) m/z calcd for C₂₂H₃₇NO₈SiNa [M + Na]⁺ 494.2186, found 494.2231.

Methyl 2-*O*-methylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside (**1ac**). Following the general procedure C, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-methyl-carbamoylimidazole (**c**) (17.5 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50°C for 6 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1ac** as colorless oil (28.5 mg, 78%). $R_f = 0.5$ (ethyl acetate/petroleum ether: 2/1). $[\alpha]^{18}_{D} + 42.9$ (c 0.07, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 4.90 – 4.81 (m, 2H, NH, H-2), 4.62 (d, J = 1.7 Hz, 1H, H-1), 3.86 (dd, J = 9.2, 4.5 Hz, 1H, H-3), 3.77 (dd, J = 5.1, 2.1 Hz, 2H, H-6a and H-6b), 3.67 – 3.58 (m, 1H, H-4), 3.47 (dt, J = 9.7, 5.0 Hz, 1H, H-5), 3.26 (s, 3H), 3.24 – 3.20 (m, 1H, 4-OH), 3.03 (d, J = 5.0 Hz, 1H, 3-OH), 2.69 (m, 2H), 0.81 (s, 9H), -0.00 (s, 3H), -0.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.79, 99.05, 72.48, 71.13, 70.25, 70.04, 64.25, 54.96, 27.59, 25.86, 18.28, -5.41. HRMS (ESI) m/z calcd for C₁₅H₃₁NO₇SiNa [M + Na]⁺ 388.1767, found 388.1763.

Methyl 3-*O*-methylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1bc**). Following the general procedure D, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-methyl-carbamoylimidazole (**c**) (17.5 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50 °C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1bb** as colorless oil (29.9 mg, 82%). R_f = 0.52 (ethyl acetate/petroleum ether: 2/1). ¹H NMR (400 MHz, CDCl₃) δ 4.83 (dd, J = 9.7, 3.3 Hz, 1H, H-3), 4.60 (d, J = 1.8 Hz, 1H, H-1), 3.91 (d, J = 4.7 Hz, 1H, H-2), 3.86 – 3.75 (m, 3H, H-4, H-6a and H-6b), 3.59 – 3.49 (m, 1H, H-5), 3.29 (s, 3H), 2.77 – 2.62 (m, 3H), 0.81 (s, 9H), 0.00 (s, 6H). NMR data were consistent with literature description.¹

Methyl 2-*O*-butylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside (**1ad**). Following the general procedure C, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-butyl-carbamoylimidazole (**d**) (23.4 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50°C for 8 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1ad** as colorless oil 33.8 mg, 84%). R_f = 0.4 (ethyl acetate/petroleum ether: 1/1). [α]¹⁸_D + 11.7 (c 0.3, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 5.01 (t, J = 6.0 Hz, 1H, NH), 4.93 (dd, J = 3.6, 1.7 Hz, 1H, H-2), 4.73 (d, J = 1.6 Hz, 1H, H-1), 3.96 (dd, J = 9.5, 3.6 Hz, 1H, H-3), 3.92 – 3.83 (m, 2H, H-6a and H-6b), 3.74 (t, J = 9.5 Hz, 1H, H-4), 3.58 (dt, J = 9.7, 4.9 Hz, 1H, H-5), 3.37 (s, 3H, OCH₃), 3.19 – 3.07 (m, 2H), 1.53 – 1.42 (m, 2H), 1.38 – 1.29 (m, 2H), 0.95 – 0.89 (m, 12H), δ 0.11 (s, 3H), 0.10 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.22, 99.02, 72.40, 71.28, 70.21, 69.79, 64.08, 54.94, 40.87, 31.82, 25.87, 19.89, 18.29, 13.71, -5.39. HRMS (ESI) m/z calcd for C₁₈H₃₇NO₇SiNa [M + Na]⁺ 430.2237, found 430.2242.

Methyl 3-*O*-butylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1bd**). Following the general procedure D, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-butyl-carbamoylimidazole (**d**) (23.4 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50 °C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1bd** as colorless oil (32.2 mg, 79%). R_f = 0.8 (ethyl acetate/petroleum ether: 1/1). ¹H NMR (400 MHz, CDCl₃) δ 5.37 (t, J = 5.8 Hz, 1H), 4.90 (dd, J = 9.7, 3.3 Hz, 1H), 4.69 (d, J = 1.8 Hz, 1H), 3.99 (ddd, J = 5.5, 3.2, 1.7 Hz, 1H),

3.92 - 3.86 (m, 3H), 3.73 (d, J = 3.6 Hz, 1H), 3.66 - 3.56 (m, 1H), 3.37 (s, 3H), 3.21 - 3.11 (m, 2H), 2.87 (d, J = 5.8 Hz, 1H), 1.54 - 1.42 (m, 2H), 1.40 - 1.32 (m, 2H), 0.95 - 0.86 (m, 12H), 0.09 (s, 6H). NMR data were consistent with literature description.¹

Methyl 2-*O*-octylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside (**1ae**). Following the general procedure C, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-octyl-carbamoylimidazole (**e**) (31.2 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50°C for 12 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1ae** as colorless oil 33.7 mg, 75%). R_f = 0.5 (ethyl acetate/petroleum ether: 1/1). [α]¹⁸_D + 43.0 (c 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 4.92 – 4.76 (m, 2H,NH and H-2), 4.63 (d, *J* = 1.7 Hz, 1H, H-1), 3.86 (d, *J* = 9.6 Hz, 1H, H-3), 3.83 – 3.71 (m, 2H, H-6a and H-6b), 3.64 (t, *J* = 9.4 Hz, 1H, H-4), 3.47 (dt, *J* = 9.8, 5.0 Hz, 1H, H-5), 3.26 (s, 3H), 3.15 (s, 1H,4-OH), 3.13 – 2.97 (m, 2H), 2.94 (s, 1H, 3-OH), 1.42 – 1.33 (m, 2H), 1.24 – 1.10 (m, 10H), 0.84 – 0.68 (m, 12H), -0.00 (s, 3H), -0.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.18, 99.04, 72.38, 71.19, 70.24, 69.93, 64.14, 54.95, 41.21, 31.79, 29.77, 29.23, 29.21, 26.77, 25.87, 22.64, 18.28, 14.10, -5.39. HRMS (ESI) m/z calcd for C₂₀H₃₉NO₇SiNa [M + Na]⁺ 486.2863, found 486.2872.

Methyl 3-*O*-octylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1be**). Following the general procedure D, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-octyl-carbamoylimidazole (**e**) (31.2 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1be** as colorless oil (34.6 mg, 77%). R_f = 0.83 (ethyl acetate/petroleum ether: 1/1). ¹H NMR (400 MHz, CDCl₃) δ 5.34 (t, *J* = 5.8 Hz, 1H), 4.91 (dd, *J* = 9.7, 3.2 Hz, 1H), 4.70 (d, *J* = 1.8 Hz, 1H), 4.00 (dd, *J* = 3.3, 1.8 Hz, 1H), 3.96 - 3.84 (m, 3H), 3.62 (dt, *J* = 9.5, 4.7 Hz, 1H), 3.38 (s, 3H), 3.20 - 3.11 (m, 2H), 1.54 - 1.43 (m, 2H), 1.35 - 1.18 (m, 10H), 0.94 - 0.83 (m, 12H), 0.10 (s, 6H). NMR data were consistent with literature description.¹

Methyl 2-O-cyclohexylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (1af). Following the general procedure C, the reaction was carried out with methyl 6-O-(*tert*-

butyldimethyl)silyl-α-D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1cyclohexyl-carbamoylimidazole (**f**) (27.0 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50°C for 4 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1af** as colorless oil 35.5 mg, 82%). $R_f = 0.47$ (ethyl acetate/petroleum ether: 1/1). $[\alpha]^{18}_D$ + 31.3 (c 0.15, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 4.81 (dd, J = 3.6, 1.7 Hz, 1H, H-2), 4.76 (d, J = 8.1Hz, 1H, NH), 4.63 (d, J = 1.7 Hz, 1H, H-1), 3.86 (d, J = 9.5 Hz, 1H, H-3), 3.81 – 3.71 (m, 2H), 3.64 (t, J = 9.5 Hz, 1H, H-4), 3.47 (dt, J = 9.7, 4.9 Hz, 1H, H-5), 3.42 – 3.28 (m, 1H), 3.26 (s, 3H, OCH₃), 3.18 (s, 1H, 4-OH), 3.00 (d, J = 4.8 Hz, 1H, 3-OH), 1.88 – 1.76 (m, 2H), 1.64 – 1.55 (m, 2H), 1.49 (dt, J =12.7, 3.9 Hz, 1H), 1.34 – 1.12 (m, 2H), 1.12 – 0.95 (m, 3H), 0.81 (s, 9H), -0.00 (s, sH), -0.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.34, 99.03, 72.33, 71.29, 70.24, 69.84, 64.06, 54.96, 50.09, 33.26, 33.15, 25.89, 25.44, 24.78, 18.30, -5.36. HRMS (ESI) m/z calcd for C₂₀H₃₉NO₇SiNa [M + Na]⁺ 456.2393, found 456.2396.

Methyl 3-*O*-cyclohexylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1bf**). Following the general procedure D, the reaction was carried out with methyl 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-cyclohexyl-carbamoylimidazole (**f**) (27.0 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50 °C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1bf** as colorless oil (39.9 mg, 92%). R_f = 0.75 (ethyl acetate/petroleum ether: 1/1). ¹H NMR (400 MHz, CDCl₃) δ 5.08 (d, *J* = 8.1 Hz, 1H), 4.90 (dd, *J* = 9.8, 3.2 Hz, 1H), 4.71 (d, *J* = 1.8 Hz, 1H), 4.00 (s, 1H), 3.96 – 3.84 (m, 3H), 3.72 (d, *J* = 3.4 Hz, 1H), 3.62 (dt, *J* = 9.4, 4.7 Hz, 1H), 3.55 – 3.41 (m, 1H), 3.39 (s, 3H), 2.46 (s, 1H), 1.97 – 1.89 (m, 2H), 1.75 – 1.65 (m, 2H), 1.60 (dt, *J* = 12.8, 3.7 Hz, 1H), 1.41 – 1.28 (m, 2H), 1.26 – 1.07 (m, 3H), 0.91 (s, 9H), 0.10 (s, 6H). NMR data were consistent with literature description.¹

4-methoxyphenyl 2-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**2a**). Following the general procedure C, the reaction was carried out with 4-methoxyphenyl 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **2**¹ (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50 °C for 5 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **2a** as colorless oil (48.0 mg, 90%). R_f = 0.45 (ethyl acetate/petroleum ether: 2/1). [α]¹⁸_D + 22.7 (c 0.33, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.15 (m, 5H), 6.99 – 6.90 (m, 2H), 6.79 – 6.70 (m, 2H), 5.41 (d, *J* = 1.7 Hz, 1H, *H*-1), 5.37 (t, *J* = 6.0 Hz, 1H, N*H*), 5.12 (dd, *J* = 3.6, 1.8 Hz, 1H,

H-2), 4.37 – 4.21 (m, 2H, PhC*H*₂), 4.15 (d, J = 9.5 Hz, 1H, *H*-3), 3.85 – 3.76 (m, 3H, *H*-4, *H*-6a and *H*-6b), 3.74 – 3.68 (m, 4H, *H*-5 and OC*H*₃), 3.46 (s, 1H, 4-O*H*), 3.36 – 3.30 (m, 1H, 3-O*H*), 0.81 (s, 9H), 0.00 (s, 3H), -0.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.11, 155.08, 150.18, 137.89, 128.70, 127.57, 118.06, 114.54, 97.23, 72.58, 71.83, 69.98, 69.73, 64.01, 55.62, 45.18, 25.83, 18.24, -5.41, -5.43. HRMS (ESI) m/z calcd for C₂₇H₃₉NO₈SiNa [M + Na]⁺ 556.2343, found 556.2350.

4-methoxyphenyl 3-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside (**2b**). Following the general procedure D, the reaction was carried out with 4-methoxyphenyl 6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **2**¹ (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **2b** as colorless oil (35.7 mg, 67%). R_f = 0.6 (ethyl acetate/petroleum ether: 2/1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.20 (m, 5H), 7.06 – 6.96 (m, 2H), 6.85 – 6.77 (m, 2H), 5.54 (t, *J* = 5.9 Hz, 1H), 5.39 (d, *J* = 1.9 Hz, 1H), 5.21 (dd, *J* = 9.8, 3.2 Hz, 1H), 4.38 (t, *J* = 5.4 Hz, 2H), 4.22 (s, 1H), 4.03 (td, *J* = 9.5, 2.8 Hz, 1H), 3.90 – 3.78 (m, 3H), 3.77 (s, 3H), 3.57 (d, *J* = 3.4 Hz, 1H), 2.64 (s, 1H), 0.87 (s, 9H), 0.05 (s, 6H). NMR data were consistent with literature description.¹

Phenyl 2-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-1-thio-α-D-mannopyranoside (**3a**). Following the general procedure C, the reaction was carried out with phenyl 6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **3**^{6,7} (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50 °C for 5 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **3a** as colorless oil (45.7 mg, 88%). $R_f = 0.5$ (ethyl acetate/petroleum ether: 1/1). [α]¹⁸_D + 159.0 (c 0.2, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 2H), 7.29 – 7.13 (m, 8H), 5.48 (d, J = 1.6 Hz, 1H, H-1), 5.26 (t, J = 5.9 Hz, 1H, NH), 5.19 (dd, J = 3.5, 1.5 Hz, 1H, H-2), 4.33 – 4.16 (m, 2H, BnCH₂), 4.06 (dt, J = 9.8, 5.1 Hz, 1H, H-5), 3.91 (d, J = 9.6 Hz, 1H, H-3), 3.86 – 3.70 (m, 3H, H-4, H-6a and H-6b), 3.41 (s, 1H, 4-OH), 3.24 (s, 1H, 3-OH), 0.81 (s, 9H), 0.00 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 156.00, 137.88, 133.92, 131.82, 129.01, 128.70, 127.59, 127.41, 127.16, 86.46, 74.35, 72.31, 70.82, 70.20, 64.11, 45.19, 25.89, 18.30, -5.39. HRMS (ESI) m/z calcd for C₂₆H₃₇NO₆SSiNa [M + Na]⁺ 542.2009, found 542.2003.

Phenyl3-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-1-thio- α -D-mannopyranoside(3b).Following the general procedure D, the reaction was carried out with phenyl6-O-(*tert*-

butyldimethyl)silyl-α-D-mannopyranoside $3^{6,7}$ (48.6 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **3b** as colorless oil (46.2 mg, 89%). R_f= 0.6 (ethyl acetate/petroleum ether: 1/1). [α]¹⁸_D + 124.6 (c 0.24, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 2H), 7.30 – 7.14 (m, 8H), 5.44 (t, *J* = 5.9 Hz, 1H, NH), 5.40 (d, *J* = 1.7 Hz, 1H, *H*-1), 4.91 (dd, *J* = 9.7, 3.1 Hz, 1H, *H*-3), 4.32 – 4.21 (m, 3H, BnCH₂ and *H*-2), 4.12 (dt, *J* = 9.6, 4.8 Hz, 1H, *H*-5), 3.95 (td, *J* = 9.6, 3.3 Hz, 1H, *H*-4), 3.87 – 3.76 (m, 2H, *H*-6a and *H*-6b), 3.50 (d, *J* = 3.4 Hz, 1H, 4-OH), 2.69 (d, *J* = 5.7 Hz, 1H, 2-OH), 0.82 (s, 9H), 0.00 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.49, 137.88, 133.88, 131.56, 129.05, 128.74, 127.67, 127.52, 87.91, 75.52, 73.05, 71.07, 67.89, 63.91, 45.32, 25.91, 18.34, -5.43. HRMS (ESI) m/z calcd for C₂₆H₃₇NO₆SSiNa [M + Na]⁺ 542.2009, found 542.1960.

Methyl 2-*O*-benzylcarbamoyl-4,6-*O*-benzylidene-α-D-mannopyranoside (**4a**). Following the general procedure C, the reaction was carried out with phenyl methyl 4,6-*O*-benzylidene-α-D-mannopyranoside $\mathbf{4}^9$ (28.2 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50 °C for 6 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **4a** as colorless oil (33.2 mg, 80%). R_f = 0.7 (ethyl acetate/petroleum ether: 2/1). [α]¹⁸_D + 76.9 (c 0.26, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.41 (m, 2H), 7.39 – 7.19 (m, 8H), 5.57 (s, 1H, PhC*H*), 5.37 (t, *J* = 5.8 Hz, 1H, N*H*), 5.14 (dd, *J* = 3.8, 1.6 Hz, 1H, *H*-2), 4.76 (d, *J* = 1.6 Hz, 1H, *H*-1), 4.35 – 4.30 (m, 2H), 4.29 – 4.24 (m, 1H. *H*-6a), 4.21 (dd, *J* = 9.4, 3.6 Hz, 1H, *H*-3), 3.92 – 3.84 (m, 1H, *H*-4), 3.84 – 3.76 (m, 2H, *H*-5 and *H*-6b), 3.39 (s, 3H), 2.73 (s, 1H, 3-OH). ¹³C NMR (151 MHz, CDCl₃) δ 156.29, 138.31, 137.53, 129.61, 129.10, 128.70, 128.04, 128.01, 126.66, 102.65, 100.39, 79.52, 73.29, 69.15, 67.76, 63.63, 55.62, 45.64. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₇SiNa [M + Na]⁺ 438.1529, found 438.1507.

Methyl 3-*O*-benzylcarbamoyl-4,6-*O*-benzylidene- α -D-mannopyranoside (**4b**). Following the general procedure D, the reaction was carried out with phenyl methyl 4,6-*O*-benzylidene- α -D-mannopyranoside **4**⁹ (28.2 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50 °C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **4b** as colorless oil (12.5 mg, 30%). R_f= 0.45 (ethyl acetate/petroleum ether: 2/1). [α]¹⁸_D + 16.0 (c 0.15, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.11 (m, 10H), 5.51 (s, 1H, PhC*H*), 5.31 – 5.19 (m, 2H, N*H* and *H*-3), 4.74 – 4.69 (m, 1H, *H*-1), 4.37 – 4.22 (m, 3H, PhC*H*₂ and *H*-6b), 4.21 (s, 1H, *H*-2), 4.07 (t, *J* = 9.7 Hz, 1H, *H*-4), 3.91 (td, *J* = 9.7, 4.4 Hz, 1H, *H*-5), 3.82 (t, *J* = 10.1 Hz, 1H, *H*-6a), 3.38 (s, 3H), 2.71 (d, *J* = 4.6 Hz, 1H, 2-OH). ¹³C NMR (101 MHz, CDCl₃) δ 155.41, 138.11, 137.26, 129.07, 128.64, 128.26, 127.55, 127.51, 127.42, 127.34, 126.27, 101.97, 101.55, 71.63, 70.02, 68.83, 63.68, 55.07, 45.09, 44.55. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₇SiNa [M + Na]⁺ 438.1529, found 438.1509.

Phenyl 4-*O*-benzylcarbamoyl- β -L-fucopyranoside (**5a**). Following the general procedure C, the reaction was carried out with phenyl β -L-fucopyranoside **5**⁷ (25.6 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50°C for 5 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **5a** as colorless oil (27.2 mg, 70%). R_f = 0.4 (ethyl acetate/petroleum ether: 2/1). [α]¹⁸_D + 70.0 (c 0.02, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.41 – 7.19 (m, 8H), 5.25 (t, *J* = 6.1 Hz, 1H, NH), 5.06 (d, *J* = 3.2 Hz, 1H, H-4), 4.57 (d, *J* = 9.7 Hz, 1H, H-1), 4.45 – 4.36 (m, 2H), 3.84 – 3.72 (m, 2H, H-3 and H-5), 3.65 (t, *J* = 9.4 Hz, 1H, H-2), 3.06 (s, 1H, 3-OH), 2.65 (s, 1H, 2-OH), 1.33 – 1.28 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 132.40, 128.95, 128.77, 127.98, 127.66, 127.41, 88.78, 74.08, 74.07, 73.68, 70.07, 64.89, 50.32, 45.25, 29.71, 16.75. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₇SiNa [M + Na]⁺ 412.1195, found 412.1237.

Phenyl 3-*O*-benzylcarbamoyl-**β**-L-fucopyranoside (**5b**). Following the general procedure D, the reaction was carried out with phenyl **β**-L-fucopyranoside **5**⁷ (25.6 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50 °C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **5b** as a white solid (32.3 mg, 83%): mp 127.3–128.5 °C. R_f = 0.6 (ethyl acetate/petroleum ether: 2/1). $[\alpha]^{18}_{\text{ D}}$ + 16.3 (c 0.16, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.48 (m, 2H), 7.32 – 7.17 (m, 8H), 5.70 (t, *J* = 6.0 Hz, 1H, N*H*), 4.75 (dd, *J* = 9.6, 3.1 Hz, 1H, *H*-3), 4.55 (d, *J* = 9.7 Hz, 1H, *H*-1), 4.39 – 4.24 (m, 2H), 3.86 (t, *J* = 4.1 Hz, 1H, *H*-4), 3.77 (td, *J* = 9.7, 2.9 Hz, 1H, *H*-2), 3.67 (q, *J* = 6.4 Hz, 1H, *H*-5), 3.21 (d, *J* = 3.6 Hz, 1H, 2-OH), 2.49 (d, *J* = 6.0 Hz, 1H, 4-OH), 1.29 – 1.25 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.28, 138.05, 132.50, 132.43, 128.98, 128.67, 127.94, 127.59, 127.53, 88.81, 77.60, 74.56, 70.63, 67.62, 45.13, 16.52. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₇SiNa [M + Na]⁺ 412.1195, found 412.1280.

4-methoxyphenyl 2-*O*-benzylcarbamoyl- α -L-rhamnopyranoside (**6a**). Following the general procedure C, the reaction was carried out with 4-methoxyphenyl α -L-rhamnopyranoside **6**¹ (27.0 mg, 0.1 mmol), DIPEA (3.3 μ L, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50°C for 6 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **6a** as colorless oil (32.6 mg, 81%). R_f = 0.45 (ethyl acetate/petroleum ether: 2/1). [α]¹⁸_D – 70.3 (c 0.32, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.13

(m, 5H), 6.99 - 6.90 (m, 2H), 6.83 - 6.76 (m, 2H), 5.68 (t, J = 5.9 Hz, 1H, NH), 5.36 (d, J = 1.7 Hz, 1H, H-1), 5.17 (dd, J = 3.6, 1.8 Hz, 1H, H-2), 4.35 (dd, J = 14.9, 6.4 Hz, 1H, ArCH₂), 4.25 (dd, J = 14.9, 5.5 Hz, 1H, ArCH₂), 4.14 (dd, J = 9.6, 3.6 Hz, 1H, H-3), 3.80 (dt, J = 9.5, 6.1 Hz, 1H, H-5), 3.75 (s, 3H, OCH₃), 3.56 (t, J = 9.5 Hz, 1H, H-4), 1.26 (s, 2H), 1.25 (s, 2H). 13 C NMR (101 MHz, CDCl₃) δ 156.29, 155.11, 150.10, 137.89, 128.72, 127.63, 127.60, 117.95, 114.62, 97.19, 73.15, 70.10, 68.81, 55.65, 45.22, 29.72, 17.55. HRMS (ESI) m/z calcd for C₂₁H₂₅NO₇SiNa [M + Na]⁺ 426.1529, found 426.1528.

4-methoxyphenyl 3-*O*-benzylcarbamoyl- α -L-rhamnopyranoside (**6b**). Following the general procedure D, the reaction was carried out with 4-methoxyphenyl α -L-rhamnopyranoside **6**¹ (27.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50 °C for 1 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **6b** as colorless oil (28.2 mg, 70%). R_f = 0.65 (ethyl acetate/petroleum ether: 2/1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.19 (m, 5H), 7.02 – 6.91 (m, 2H), 6.85 – 6.77 (m, 2H), 5.72 (t, *J* = 6.0 Hz, 1H, N*H*), 5.34 (d, *J* = 1.8 Hz, 1H, *H*-1), 5.11 (dd, *J* = 9.8, 3.2 Hz, 1H, *H*-3), 4.40 – 4.30 (m, 2H, ArCH₂), 4.20 (t, *J* = 2.6 Hz, 1H, *H*-2), 3.81 (dt, *J* = 12.3, 6.2 Hz, 1H, *H*-5), 3.76 (s, 3H), 3.68 (t, *J* = 9.7 Hz, 1H, *H*-4), 3.39 (s, 1H, 4-OH), 2.90 (s, 1H, 2-OH), 1.30 – 1.23 (m, 3H). NMR data were consistent with literature description.¹

4-methoxyphenyl 2-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-galactopyranoside (**7c**). Following the general procedure C, the reaction was carried out with 4-methoxyphenyl 6-*O*-(*tert*-butyldimethyl)silyl-α-D-galactopyranoside **7**⁶ (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50 °C for 3 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **7c** as colorless oil (45.8 mg, 86%). R_f = 0.65 (ethyl acetate/petroleum ether: 1/1). [α]¹⁸_D + 40 (c 0.12, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.15 (m, 5H), 6.95 – 6.87 (m, 2H), 6.80 – 6.70 (m, 2H), 5.55 (d, *J* = 3.7 Hz, 1H, *H*-1), 5.27 (t, *J* = 6.0 Hz, 1H, NH), 5.02 (dd, *J* = 10.0, 3.8 Hz, 1H, *H*-2), 4.37 – 4.24 (m, 2H, ArCH₂), 4.14 – 4.03 (m, 2H, *H*-4 and *H*-3), 3.90 (t, *J* = 4.8 Hz, 1H, *H*-5), 3.86 – 3.76 (m, 2H, *H*-6a and *H*-6b), 3.71 (s, 3H,OCH₃), 3.42 (d, *J* = 2.3 Hz, 1H, 4-OH), 3.20 (d, *J* = 7.4 Hz, 1H, 3-OH), 0.82 (s, 9H), 0.01 (s, 3H), 0.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.69, 155.13, 150.75, 137.90, 128.71, 127.55, 118.22, 114.57, 96.71, 72.36, 70.29, 69.73, 68.93, 63.50, 55.66, 45.22, 29.70, 25.79, 18.22, -5.51. HRMS (ESI) m/z calcd for C₂₇H₃₉NO₈SiNa [M + Na]⁺ 556.2343, found 556.2393.

4-methoxyphenyl 3-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-galactopyranoside (**7b**). Following the general procedure D, the reaction was carried out with 4-methoxyphenyl 6-*O*-(*tert*-butyldimethyl)silyl-α-D-galactopyranoside **7**⁶ (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 3 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **7b** as colorless oil (44.8 mg, 84%). R_f = 0.35 (ethyl acetate/petroleum ether: 1/1). $[a]^{18}_{D}$ + 113.3 (c 0.24, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.10 (m, 5H), 7.01 – 6.92 (m, 2H), 6.81 – 6.69 (m, 2H), 5.64 (t, *J* = 6.0 Hz, 1H, NH), 5.42 (d, *J* = 3.9 Hz, 1H, *H*-1), 5.12 (dd, *J* = 10.4, 3.0 Hz, 1H, *H*-3), 4.34 – 4.28 (m, 2H, ArCH₂), 4.25 (s, 1H, *H*-4), 4.19 (td, *J* = 10.5, 3.8 Hz, 1H, *H*-2), 3.89 (d, *J* = 4.4 Hz, 1H, *H*-6a), 3.84– 3.75 (m, 2H, *H*-6b and *H*-5), 3.71 (s, 3H), 2.59 (d, *J* = 10.8 Hz, 1H, 2-OH), 0.82 (s, 9H), 0.01 (s, 3H), -0.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.57, 155.19, 150.67, 138.13, 128.66, 127.51, 118.10, 114.62, 98.81, 73.88, 69.83, 67.41, 64.01, 60.42, 55.63, 45.17, 25.78, 18.19, 14.19, -5.53, -5.55. HRMS (ESI) m/z calcd for C₂₇H₃₉NO₈SiNa [M + Na]⁺ 556.2343, found 556.2344.

Methyl 3-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl- β -D-galactopyranoside (**8b**). Following the general procedure D, the reaction was carried out with 6-*O*-(*tert*-butyldimethyl)silyl- β -D-galactopyranoside **8**⁶ (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **8b** as colorless oil (38.8 mg, 88%). Following the general procedure C, the reaction was carried out with 6-*O*-(*tert*-butyldimethyl)silyl- β -D-galactopyranoside **8**⁶ (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv), and 6-*O*-(*tert*-butyldimethyl)silyl- β -D-galactopyranoside **8**⁶ (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 60°C for 12 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **8b** as colorless oil (31.8 mg, 72%). R_f = 0.55 (ethyl acetate/petroleum ether: 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.21 (m, 5H), 5.71 (t, *J* = 6.0 Hz, 1H, N*H*), 4.72 (dd, *J* = 10.0, 3.1 Hz, 1H), 4.37 – 4.30 (m, 2H), 4.25 – 4.12 (m, 2H), 3.94 – 3.80 (m, 3H), 3.52 – 3.47 (m, 4H), 3.27 (s, 1H, 4-OH), 3.10 (s, 1H, 2-OH), 0.89 (s, 9H), 0.08 (s, 6H). NMR data were consistent with literature description.¹

Methyl 3-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-galactopyranoside (**9b**). Following the general procedure D, the reaction was carried out with 6-*O*-(*tert*-butyldimethyl)silyl- α -D-galactopyranoside **9**⁶ (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **9b** as colorless oil (38.4 mg, 87%). Following the general procedure C, the reaction was carried out with 6-*O*-(*tert*-butyldimethyl)silyl- α -D-galactopyranoside **9**⁶ (40.0 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 60°C for 12 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **9b** as colorless oil (18.1 mg, 41%). R_f = 0.55 (ethyl acetate/petroleum ether: 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.12 (m, 5H), 5.46 (t, *J* = 6.0 Hz, 1H, NH), 4.86 (dd, *J* = 10.3, 3.0 Hz, 1H, H-3), 4.73 (d, *J* = 3.9 Hz, 1H, H-1), 4.31 – 4.22 (m, 2H, PhCH₂), 4.15 (d, *J* = 2.9 Hz, 1H, H-4), 4.03 – 3.94 (m, 1H, H-2), 3.86 – 3.74 (m, 2H, H-6a and H-6b), 3.67 (t, *J* = 4.6 Hz, 1H, H-5), 3.39 (s, 1H, 4-OH), 3.32 (s, 3H), 2.26 (d, *J* = 10.5 Hz, 1H, 2-OH), 0.81 (s, 9H), -0.00 (s, 6H). NMR data were consistent with literature description.¹

Methyl 3-O-benzylcarbamoyl-2,6-O-benzyl-a-D-galactopyranoside (10b). Following the general procedure D, the reaction was carried out with methyl 2,6-O-benzyl- α -D-galactopyranoside 10⁸ (37.4 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (a) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 3 h. The reaction mixture was directly purified by flash column chromatography, afforded compound 10b as colorless oil (47.7 mg, 94%). Following the general procedure C, the reaction was carried out with methyl 2,6-O-benzyl-α-Dgalactopyranoside⁸ (37.4 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (a) (28.1 mg, 0.14 mmol) in the presence of $SnCl_2$ (1.9 mg, 0.1 equiv) at 60°C for 8 h. The reaction mixture was directly purified by flash column chromatography, afforded compound 10b as colorless oil (41.6 mg, 82%). $R_f = 0.62$ (ethyl acetate/petroleum ether: 1/1). $[\alpha]^{18}_D + 71.3$ (c 0.15, CH₂Cl₂). ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta 7.37 - 7.20 \text{ (m, 15H)}, 5.15 \text{ (dd, } J = 10.4, 3.1 \text{ Hz}, 1\text{H}, H-3), 5.07 \text{ (t, } J = 5.9 \text{ Hz}, 1\text{H}, 1\text{H},$ NH), 4.75 (d, J = 3.7 Hz, 1H, H-1), 4.68 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (dd, J = 14.9, 6.3 Hz, 1H, H-6a), 4.32 - 4.50 (m, 4H), 4.39 (m, 4H), 4.394.25 (m, 2H, H-4 and H-5), 3.98 - 3.93 (m, 2H, H-2 and H-6a), 3.77 - 3.69 (m, 2H), 3.38 (s, 3H), 3.12 (d, J = 2.5 Hz, 1H, 4-OH). ¹³C NMR (151 MHz, CDCl₃) δ 155.61, 138.38, 138.31, 137.38, 128.65, 128.50, 128.33, 127.92, 127.90, 127.72, 127.57, 127.50, 98.78, 74.01, 73.82, 73.37, 72.87, 70.56, 69.98, 67.85, 55.40, 45.10. HRMS (ESI) m/z calcd for C₂₉H₃₃NO₇SiNa [M + Na]⁺ 530.2155, found 530.2148.

4-methoxyphenyl 3-*O*-benzylcarbamoyl- β -L-arabinopyranoside (**11b**). Following the general procedure D, the reaction was carried out with 4-methoxyphenyl β -L-arabinopyranoside **11**¹ (25.6 mg, 0.1 mmol), DIPEA (3.3 μ L, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 3 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **11b** as colorless oil (34.6 mg, 89%). Following the general

procedure C, the reaction was carried out with 4-methoxyphenyl β-L-arabinopyranoside **11**¹ (25.6 mg, 0.1 mmol), DIPEA (3.3 μL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 60°C for 8 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **11b** as colorless oil (27.6 mg, 71%). R_f = 0.58 (ethyl acetate/petroleum ether: 3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.22 (m, 5H), 7.00 (dd, *J* = 9.3, 3.1 Hz, 2H), 6.87 – 6.76 (m, 2H), 5.61 (t, *J* = 6.0 Hz, 1H,N*H*), 4.84 (dd, *J* = 9.6, 3.3 Hz, 1H, *H*-3), 4.77 (d, *J* = 7.3 Hz, 1H, *H*-1), 4.36 – 4.30 (m, 2H, PhC*H*₂), 4.14 – 4.07 (m, 2H, *H*-2 and *H*-5b), 4.00 (dd, *J* = 12.8, 2.8 Hz, 1H, *H*-4), 3.76 (s, 3H), 3.61 (dd, *J* = 12.8, 1.5 Hz, 1H, *H*-5a), 3.20 (s, 1H, 4-OH), 2.79 (s, 1H, 2-OH). ¹³C NMR (101 MHz, CDCl₃) δ 156.11, 155.64, 150.86, 137.97, 128.73, 127.62, 118.91, 117.96, 114.70, 114.58, 102.93, 75.53, 69.53, 67.26, 65.91, 55.64, 45.23. NMR data were consistent with literature description.¹

4-methoxyphenyl 3-O-benzylcarbamoyl- α -D-lyxopyranoside (12b). Following the general procedure D, the reaction was carried out with 4-methoxyphenyl α-D-lyxopyranoside 12 (25.6 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (a) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound 12b as colorless oil (16.3 mg, 42%). Following the general procedure C, the reaction was carried out with 4-methoxyphenyl α -D-lyxopyranoside **12** (25.6 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (a) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 60°C for 12 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **12b** as colorless oil (31.9 mg, 82%). $R_f = 0.58$ (ethyl acetate/petroleum ether: 3/1). [α]¹⁸_D + 58.0 (c 0.05, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.20 (m, 5H), 7.04 – 6.96 (m, 2H), 6.88 – 6.79 (m, 2H), 5.39 – 5.33 (m, 2H, NH and H-1), 5.12 (dd, J = 9.3, 3.3 Hz, 1H, H-3), 4.43 – 4.38 (m, 2H, PhCH₂), 4.23 (d, J = 3.3 Hz, 1H, H-2), 4.12 (q, J = 7.1 Hz, 1H, H-4), 3.86 (dd, J = 11.4, 5.4 Hz, 1H, H-5a), 3.77 (s, 3H, OCH₃), 3.73 – 3.63 (m, 1H, H-5b), 3.23 (d, J = 5.1 Hz, 1H, 4-OH), 2.34 (d, J = 4.8 Hz, 1H, 2-OH). ¹³C NMR (101 MHz, CDCl₃) δ 155.15, 150.01, 137.70, 128.82, 127.81, 127.66, 117.68, 114.67, 98.58, 75.69, 69.55, 66.17, 63.33, 55.67, 45.43, 14.20. HRMS (ESI) m/z calcd for $C_{20}H_{23}NO_7SiNa [M + Na]^+ 412.1372$, found 412.1370.

Methyl 6-*O*-benzylcarbamoyl-2,3-*O*-benzyl- α -D-glucopyranoside (**13**). Following the general procedure C, the reaction was carried out with methyl 2,3-*O*-benzyl- α -D-glucopyranoside⁸ (37.4 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 70°C for 3 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **13** as colorless oil (40.6 mg, 80%). R_f = 0.5 (ethyl acetate/petroleum ether: 1/1). [α]¹⁸_D + 29.2 (c 0.12, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.22

(m, 15H), 5.18 (t, J = 6.0 Hz, 1H, NH), 4.95 (d, J = 11.2 Hz, 1H, BnCH₂), 4.86 – 4.75 (m, 2H, BnCH₂), 4.69 – 4.56 (m, 3H, BnCH₂, H-6b and H-1), 4.43 – 4.25 (m, 2H, BnCH₂), 4.13 (dd, J = 12.3, 2.1 Hz, 1H, H-6a), 3.82 (t, J = 9.2 Hz, 1H, H-3), 3.69 (ddd, J = 10.0, 3.7, 2.1 Hz, 1H, H-5), 3.53 – 3.38 (m, 2H, H-2 and H-4), 3.36 (s, 3H), 3.18 (d, J = 3.4 Hz, 1H,4-OH). ¹³C NMR (151 MHz, CDCl₃) δ 156.97, 138.78, 138.10, 138.01, 128.72, 128.52, 128.47, 128.12, 128.09, 127.94, 127.79, 127.62, 127.53, 98.48, 81.00, 79.28, 75.67, 73.34, 70.08, 69.88, 63.69, 55.31, 45.26. HRMS (ESI) m/z calcd for C₂₉H₃₃NO₇SiNa [M + Na]⁺ 530.2155, found 530.2197.

Methyl 6-*O*-benzylcarbamoyl-2,3-*O*-benzyl- α -D-galactopyranoside (**14**). Following the general procedure C, the reaction was carried out with methyl 2,3-*O*-benzyl- α -D-galactopyranoside⁸ (37.4 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 70°C for 3 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **14** as colorless oil (47.2 mg, 93%). R_f = 0.65 (ethyl acetate/petroleum ether: 1/1). [α]¹⁸_D + 28.0 (c 0.1, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.23 (m, 15H), 5.16 (t, *J* = 6.0 Hz, 1H, NH), 4.88 (d, *J* = 11.1 Hz, 1H, BnCH₂), 4.74 – 4.64 (m, 3H, BnCH₂), 4.44 – 4.28 (m, 4H, BnCH₂, *H*-6a and *H*-6b), 4.25 (d, *J* = 7.7 Hz, 1H, *H*-1), 3.94 (t, *J* = 3.0 Hz, 1H, *H*-4), 3.61 (q, *J* = 7.8 Hz, 2H, *H*-2 and *H*-5), 3.54 (s, 3H), 3.49 (dd, *J* = 9.4, 3.5 Hz, 1H, *H*-3), 2.63 (d, *J* = 2.5 Hz, 1H, 4-OH). ¹³C NMR (101 MHz, CDCl₃) δ 156.35, 138.63, 138.31, 137.82, 128.73, 128.51, 128.34, 128.08, 127.96, 127.87, 127.65, 127.61, 127.56, 104.66, 80.32, 78.86, 75.14, 72.49, 72.09, 66.51, 63.49, 56.99, 45.16. HRMS (ESI) m/z calcd for C₂₉H₃₃NO₇SiNa [M + Na]⁺ 530.2155, found 530.2046.

Methyl 6-*O*-benzylcarbamoyl-2,3-*O*-benzyl-α-D-mannopyranoside (**15**). Following the general procedure C, the reaction was carried out with methyl 2,3-*O*-benzyl-α-D-mannopyranoside⁸ (37.4 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 70°C for 5 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **15** as colorless oil (36.0 mg, 71%). $R_f = 0.6$ (ethyl acetate/petroleum ether: 1/1). $[\alpha]^{18}_{D} - 10.8$ (c 0.12, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.10 (m, 15H), 5.25 (t, *J* = 6.0 Hz, 1H, NH), 4.77 (d, *J* = 1.7 Hz, 1H, *H*-1), 4.71 – 4.66 (m, 2H, BnCH₂), 4.63 – 4.58 (m, 3H, BnCH₂ and *H*-6b), 4.48 – 4.25 (m, 3H, BnCH₂ and *H*-6a), 4.01 (t, *J* = 9.7 Hz, 1H, *H*-4), 3.79 (dd, *J* = 3.1, 1.7 Hz, 1H, *H*-2), 3.76 – 3.66 (m, 2H, *H*-3 and *H*-5), 3.34 (s, 3H), 3.11 (s, 1H, 4-OH). ¹³C NMR (101 MHz, CDCl₃) δ 157.01, 138.31, 138.26, 138.16, 128.67, 128.46, 128.35, 127.94, 127.73, 127.69, 127.54, 127.50, 99.43, 79.20, 74.21, 72.72, 72.25, 71.36, 66.48, 64.03, 54.89, 45.19. HRMS (ESI) m/z calcd for C₂₉H₃₃NO₇SiNa [M + Na]⁺ 530.2155, found 530.2181.

Methyl 2-*O*-benzylcarbamoyl-4,6-*O*-benzylidene- α -D-glucopyranoside (**16**). Following the general procedure D, the reaction was carried out with methyl 4,6-*O*-benzylidene- α -D-glucopyranoside⁸ (28.2 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **16** as colorless oil (36.9 mg, 89%). mp 170.3–170.9 °C. R_f = 0.42 (ethyl acetate/petroleum ether: 2/1). [α]¹⁸_D + 174.3 (c 0.07, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.43 (m, 2H), 7.41 – 7.21 (m, 8H), 5.51 (s, 1H, PhC*H*), 5.48 (t, *J* = 6.0 Hz, 1H, N*H*), 4.98 (d, *J* = 3.7 Hz, 1H, *H*-1), 4.72 (dd, *J* = 9.7, 3.8 Hz, 1H, *H*-2), 4.35 – 4.23 (m, 3H, PhC*H*₂ *H*-6a), 4.14 (td, *J* = 9.5, 3.3 Hz, 1H, *H*-3), 3.86 – 3.69 (m, 2H, *H*-5 and *H*-6b), 3.52 (t, *J* = 9.2 Hz, 1H, *H*-4), 3.38 (s, 3H), 3.00 (d, *J* = 3.4 Hz, 1H, 3-OH). ¹³C NMR (101 MHz, CDCl₃) δ 155.92, 138.01, 137.03, 129.30, 128.70, 128.35, 127.58, 127.52, 126.36, 102.02, 98.17, 81.38, 74.27, 68.88, 62.09, 55.40, 45.15. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₇SiNa [M + Na]⁺ 438.1529, found 438.1552.

Methyl 3-*O*-benzylcarbamoyl-4,6-*O*-benzylidene-β-D-glucopyranoside (**17**). Following the general procedure D, the reaction was carried out with methyl 4,6-*O*-benzylidene-β-D-glucopyranoside⁹ (28.2 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **17** as colorless oil (34.4 mg, 83%). $R_f = 0.6$ (ethyl acetate/petroleum ether: 2/1). $[\alpha]^{18}_D - 46.3$ (c 0.16, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.42 – 7.33 (m, 3H), 7.30 – 7.21 (m, 5H), 5.50 (s, 1H), 5.21 (t, J = 6.0 Hz, 1H, NH), 5.04 (t, J = 9.3 Hz, 1H, H-3), 4.43 – 4.31 (m, 4H, H-1 and H-6b), 3.78 (t, J = 10.3 Hz, 1H, H-5), 3.66 – 3.49 (m, 6H, H-2, H-4, H-6a and -OCH3). ¹³C NMR (151 MHz, CDCl₃) δ 157.02, 137.88, 136.94, 129.15, 128.68, 128.29, 127.57, 127.48, 126.23, 104.65, 101.61, 78.41, 75.84, 73.87, 68.67, 66.23, 57.62, 45.22. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₇SiNa [M + Na]⁺ 438.1529, found 438.1549.

Methyl 2-*O*-benzylcarbamoyl-4,6-*O*-benzylidene- β -D-galactopyranoside (**18**). Following the general procedure D, the reaction was carried out with methyl 4,6-*O*-benzylidene- β -D-galactopyranoside⁹ (28.2 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **18** as colorless oil (37.7 mg, 91%). R_f = 0.55 (ethyl acetate/petroleum ether: 2/1). [α]¹⁸_D + 39.1 (c 0.11, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, *J* = 6.8, 2.9 Hz, 2H), 7.37 – 7.17 (m, 8H), 5.52 (s, 1H), 5.28 (t, *J* = 6.0 Hz, 1H, NH), 4.81 (dd, *J* = 10.2, 3.6 Hz, 1H, *H*-2), 4.44 (d, *J* = 3.6 Hz, 1H, *H*-1), 4.37 – 4.26 (m, 4H, PhCH₂ H-5 and H-4), 4.05

(dd, J = 12.5, 1.8 Hz, 1H, H-6a), 4.00 – 3.91 (m, 1H, H-3), 3.59 (s, 3H), 3.53 – 3.48 (m, 1H, H-6b), 2.63 (d, J = 2.6 Hz, 1H,3-OH). ¹³C NMR (151 MHz, CDCl₃) δ 156.03, 137.98, 137.65, 129.10, 128.68, 128.20, 127.57, 127.53, 126.42, 104.04, 101.18, 74.46, 74.02, 69.09, 68.89, 66.42, 57.29, 45.10. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₇Na [M + Na]⁺ 438.1529, found 438.1556.

Methyl 2/3-*O*-benzylcarbamoyl-4,6-*O*-benzylidene- α -D-galactopyranoside (**19a** and **19b**). Following the general procedure D, the reaction was carried out with methyl 4,6-*O*-benzylidene- α -D-galactopyranoside⁹ (28.2 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-benzyl-carbamoylimidazole (**a**) (28.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 2 h. The reaction mixture was directly purified by flash column chromatography, isolated as an inseparable mixture of compound **19a** (39%) and **19b** (47%) by NMR yield.

1bg 1ag

Following the general procedure D, the reaction was carried out with 6-O-(tert-butyldimethyl)silyl-a-Dmannopyranoside 1 (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-(benzylacetyl)imidazole (g) ² (28 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50 $^{\circ}$ C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound 1bg (35.2 mg, 80%, $R_f = 0.6$, ethyl acetate/petroleum ether: 1/4) and compound **1ag** (7.0 mg, 16%, $R_f = 0.4$, ethyl acetate/petroleum ether: 1/4) as colorless oil. Following the general procedure C, the reaction was carried out with 6-O-(tert-butyldimethyl)silyl- α -D-mannopyranoside 1 (30.8 mg, 0.1 mmol), DIPEA (3.3 μ L, 0.2 equiv), and 1-(benzylacetyl)imidazole (g) 2 (28 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50°C for 12 h. The reaction mixture was directly purified by flash column chromatography, afforded compound 1bg (9.2 mg, 21%, $R_f = 0.6$, ethyl acetate/petroleum ether: 1/4) and compound 1ag(27.7 mg, 63%, Rf = 0.4, ethyl acetate/petroleum ether: 1/4) as colorless oil. Methyl 3-O-benzylacetyl-6-O-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1bg**). $[\alpha]^{18}$ _D + 70.0 (c 0.02, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 7.27 – 7.06 (m, 5H), 4.96 (dd, *J* = 9.7, 3.2 Hz, 1H, *H*-3), 4.55 (d, *J* = 1.8 Hz, 1H, *H*-3) 1), 3.85 – 3.78 (m, 2H, H-4 and H-6a), 3.77 – 3.72 (m, 2H, H-2 and H-6b), 3.54 (dt, J = 10.0, 5.3 Hz, 1H, H-5), 3.28 (s, 3H, OCH₃), 2.90 (tt, J = 10.5, 5.2 Hz, 2H), 2.81 (d, J = 3.0 Hz, 1H, 4-OH), 2.73 – 2.62 (m, 2H), 1.63 (d, J = 5.4 Hz, 1H, 2-OH), 0.81 (s, 9H), 0.00 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 174.59, 130.15, 129.85, 128.04, 102.20, 76.12, 73.73, 70.86, 66.44, 63.11, 56.64, 37.33, 32.51, 27.18, 26.84, 19.52, -2.05. HRMS (ESI) m/z calcd for C₂₂H₃₆NO₇Na [M + Na]⁺ 463.2128, found 463.2120. Methyl 2-*O*-benzylacetyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1ag**). $[\alpha]^{18}$ + 33.6 (c 0.36, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.24 - 7.07 (m, 5H), 4.95 (dd, J = 3.6, 1.7 Hz, 1H, H-2), 4.52 (d, J = 1.6 Hz, 1H, H-1), 3.88 - 3.68 (m, 3H, H-3, H-6a and H-6b), 3.62 (t, J = 9.4 Hz, 1H, H-4), 3.47

(dt, J = 9.8, 5.1 Hz, 1H, H-5), 3.24 (s, 3H), 2.99 – 2.94 (m, 1H, 4-OH), 2.89 – 2.81 (m, 2H), 2.65 – 2.57 (m, 2H), 1.95 (d, J = 5.4 Hz, 1H, 3-OH), 0.81 (s, 9H), 0.00 (s, 3H), -0.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.56, 140.17, 128.59, 128.25, 126.41, 98.52, 71.78, 70.78, 70.37, 70.03, 64.33, 55.01, 35.69, 30.87, 25.85, 18.25, -5.42, -5.45. HRMS (ESI) m/z calcd for C₂₂H₃₆NO₇Na [M + Na]⁺ 463.2128, found 463.2130.

Methyl 3-*O*-pivaloyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1bh**). Following the procedure D, the reaction was carried out with 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-(trimethylacetyl)imidazole (**i**) ² (21.2 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1bh** (29.0 mg, 74%, R_f = 0.55, ethyl acetate/petroleum ether: 1/4) as colorless oil. Following the general procedure C, the reaction was carried out with 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-(trimethylacetyl)imidazole (**i**) ² (21.2 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50°C for 6 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1bh** (23.5 mg, 60%, R_f = 0.55, ethyl acetate/petroleum ether: 1/4) as colorless oil. [α]¹⁸_D + 56.2 (c 0.26, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 4.96 (dd, *J* = 9.7, 3.2 Hz, 1H, *H*-3), 4.60 (d, *J* = 1.8 Hz, 1H, *H*-1), 3.88 (dd, *J* = 3.3, 1.9 Hz, 1H, *H*-2), 3.86 – 3.76 (m, 3H, *H*-4, *H*-6a and *H*-6b), 3.56 (dt, *J* = 9.8, 5.0 Hz, 1H, *H*-5), 3.29 (s, 3H), 1.15 (s, 9H), 0.80 (s, 9H), -0.00 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 178.71, 100.48, 74.25, 71.68, 69.29, 68.05, 64.32, 54.98, 39.08, 27.18, 27.09, 25.90, 18.33, -5.42. HRMS (ESI) m/z calcd for C₁₈H₃₆NO₇SiNa [M + Na]⁺ 415.2128, found 415.2135.

Following the general procedure D, the reaction was carried out with 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1- (cyclohexylcarbonyl)imidazole (**h**)² (25 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50°C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1bi** (24.2 mg, 58%, R_f = 0.4, ethyl acetate/petroleum ether: 1/2) and compound **1ai** (12.1 mg, 29%, R_f = 0.6, ethyl acetate/petroleum ether: 1/2) as colorless oil. Following the general procedure C, the reaction was carried out with 6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 µL, 0.2 equiv), and 1-(cyclohexylcarbonyl)imidazole (**h**)² (25 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 50°C for 4 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1bi** (18.4 mg, 44%, R_f = 0.6, ethyl acetate/petroleum ether: 1/2) as colorless oil. Methyl 3-*O*-cyclohexanecarbonyl-6-*O*-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1bi**). [α]¹⁸_D +

48.0 (c 0.15, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 5.09 (dd, J = 9.7, 3.2 Hz, 1H, H-3), 4.70 (d, J = 1.8 Hz, 1H, H-1), 4.01 – 3.84 (m, 4H, H-2, H-4, H-6a and H-6b), 3.66 (dt, J = 9.8, 5.0 Hz, 1H, H-5), 3.39 (s, 3H), 2.43 (tt, J = 11.3, 3.6 Hz, 1H), 2.02 – 1.88 (m, 2H), 1.82 – 1.71 (m, 2H), 1.69 – 1.60 (m, 1H), 1.56 – 1.39 (m, 2H), 1.37 – 1.16 (m, 3H), 0.91 (s, 9H), 0.10 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 176.30, 100.53, 74.02, 71.61, 69.28, 67.94, 64.30, 55.00, 43.17, 29.13, 29.00, 25.89, 25.68, 25.38, 25.32, 18.31, -5.43. HRMS (ESI) m/z calcd for C₂₀H₃₈NO₇SiNa [M + Na]⁺ 441.2284, found 441.2307. Methyl 2-*O*-cyclohexanecarbonyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside (**1ai**). [α]¹⁸_D + 10.7 (c 0.15, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 4.95 (dd, J = 3.5, 1.7 Hz, 1H, *H*-2), 4.55 (d, J = 1.6 Hz, 1H, *H*-1), 3.89 (dd, J = 9.5, 3.5 Hz, 1H, *H*-3), 3.82 (dd, J = 10.6, 4.6 Hz, 1H, *H*-4), 3.76 – 3.67 (m, 2H, *H*-6a and *H*-6b), 3.47 (dt, J = 9.6, 4.9 Hz, 1H, *H*-5), 3.25 (s, 3H), 2.26 (tt, J = 11.2, 3.6 Hz, 1H), 1.86 – 1.75 (m, 2H), 1.69 – 1.58 (m, 2H), 1.57 – 1.49 (m, 1H), 1.42 – 1.25 (m, 2H), 1.25 – 1.04 (m, 3H), 0.81 (s, 9H), 0.00 (s, 3H), -0.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 175.82, 98.66, 71.32, 70.91, 70.24, 70.18, 64.13, 55.01, 43.10, 29.03, 28.93, 25.85, 25.69, 25.35, 25.34, 18.26, -5.43, -5.48. HRMS (ESI) m/z calcd for C₂₀H₃₈NO₇SiNa [M + Na]⁺ 441.2266.

Following the general procedure D, the reaction was carried out with $6-O-(tert-butyldimethyl)silyl-\alpha-D$ mannopyranoside 1 (30.8 mg, 0.1 mmol), DIPEA (3.3 μ L, 0.2 equiv), and 1-(benzoyl)imidazole (j)² (24.1 mg, 0.14 mmol) in the presence of Me₂SnCl₂ (2.2 mg, 0.1 equiv) at 50 °C for 2 h. The reaction mixture was directly purified by flash column chromatography, afforded compound 1bj (34. mg, 84%, $R_f = 0.5$, ethyl acetate/petroleum ether: 1/4) and compound **1aj** (2.5 mg, 6%, $R_f = 0.25$, ethyl acetate/petroleum ether: 1/4) as colorless oil. Following the general procedure C, the reaction was carried out with 6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1** (30.8 mg, 0.1 mmol), DIPEA (3.3 μL, 0.2 equiv), and 1-(benzoyl)imidazole (j) 2 (24.1 mg, 0.14 mmol) in the presence of SnCl₂ (1.9 mg, 0.1 equiv) at 80 $^{\circ}$ C for 12 h. The reaction mixture was directly purified by flash column chromatography, afforded compound **1bj** (22.7 mg, 55%, $R_f = 0.5$, ethyl acetate/petroleum ether: 1/4) and compound **1aj** (2.5 mg, 6%, $R_f =$ 0.25, ethyl acetate/petroleum ether: 1/4) as colorless oil. Methyl 3-O-benzoyl-6-O-(tertbutyldimethyl)silyl- α -D-mannopyranoside (1bj). ¹H NMR (600 MHz, CDCl₃) δ 8.13 – 8.08 (m, 2H), 7.61 - 7.55 (m, 1H), 7.46 (t, J = 7.8 Hz, 2H), 5.36 (dd, J = 9.7, 3.3 Hz, 1H), 4.76 (d, J = 1.8 Hz, 1H), 4.18 – 4.09 (m, 2H), 3.99 – 3.88 (m, 2H), 3.74 (dt, *J* = 9.9, 5.2 Hz, 1H), 3.43 (s, 3H), 3.08 (d, *J* = 3.1 Hz, 1H), 2.08 (d, J = 5.8 Hz, 1H), 0.92 (s, 9H), 0.12 (s, 3H), 0.12 (s, 3H). NMR data were consistent with literature description.¹⁰ Methyl 2-O-benzoyl-6-O-(*tert*-butyldimethyl)silyl- α -D-mannopyranoside (**1a**j). ¹H NMR (600 MHz, CDCl₃) δ 8.05 (dd, J = 8.2, 1.4 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.44 (t, J = 7.8 Hz, 2H), 5.34 (dd, J = 3.5, 1.7 Hz, 1H), 4.82 (d, J = 1.7 Hz, 1H), 4.12 (ddd, J = 9.1, 5.2, 3.5 Hz, 1H), 4.04 -3.94 (m, 2H), 3.89 (dd, *J* = 10.6, 5.2 Hz, 1H), 3.66 (dt, *J* = 9.6, 4.9 Hz, 1H), 3.41 (s, 3H), 3.05 (d, *J* = 2.1 Hz, 1H), 2.31 (d, J = 5.4 Hz, 1H), 0.93 (s, 9H), 0.13 (s, 6H). NMR data were consistent with literature description.¹⁰

4. Reference

(1) Alsarraf, J.; Petitpoisson, L.; Pichette, A. Catalytic Site-Selective Carbamoylation of Pyranosides. *Org. Lett.* **2021**, *23*, 6052-6056.

(2) Bonfio, C.; Caumes, C.; Duffy, C. D.; Patel, B. H.; Percivalle, C.; Tsanakopoulou, M.; Sutherland, J. D. Length-Selective Synthesis of Acylglycerol-Phosphates through Energy-Dissipative Cycling. *J. Am. Chem. Soc.* **2019**, *141*, 3934–3939.

(3) Nugent, J.; Campbell, S. G.; Vo, Y.; Schwartz, B. D.; Solvent-Free Synthesis of Cyanoformamides from Carbamoyl Imidazoles. *Eur. J. Org. Chem.* **2017**, 5110–5118.

(4) Duspara, P. A.; Islam, M. S.; Lough, A. J.; Batey, R. A. Synthesis and Reactivity of N-Alkyl Carbamoyli midazoles: Development of N-Methyl Carbamoylimidazole as a Methyl Isocyanate Equivalent. *J. Org. Chem.* **2012**, *77*, 10362–10368.

(5) Zhuo, J.; Zhang, Y.; Li, Z.; Li, C. Nickel-Catalyzed Direct Acylation of Aryl and Alkyl Bromides with Acylimidazoles. *ACS Catal.* **2020**, *10*, 3895–3903.

(6) Lv, J.; Luo, T.; Zou, D.; Dong, H. Using DMF as Both a Catalyst and Cosolvent for the Regioselective Silylation of Polyols and Diols. *Eur. J. Org. Chem.* **2019**, 6383–6395.

(7) Feng, G.-J.; Luo, T.; Guo, Y.-F. Liu, C.-Y.; Dong, H. Concise Synthesis of 1-Thioalkyl Glycoside Donors by Reaction of Per-O-acetylated Sugars with Sodium Alkanethiolates under Solvent-Free Conditions. *J. Org. Chem.* **2022**, *87*, 3638–3646.

(8) Lv, J.; Zhu, J.-J.; Liu, Y.; Dong, H. Regioselective Sulfonylation/Acylation of Carbohydrates Catalyzed by FeCl3 Combined with Benzoyltrifluoroacetone and Its Mechanism Study. *J. Org. Chem.* **2020**, *85*, 3307-3319.

(9) Lv, J.; Yu, J. C.; Feng, G. J.; Luo, T.; Dong, H. Stannous Chloride as a Low-toxic and Extremely Cheap Catalyst for Regio/Site-Selective Acylation with Unusually Broad Substrate Scope. *Green Chem.* **2020**, *22*, 6936–6942.

(10) Shimada, N.; Nakamura, Y.; Ochiai, T.; Makino, K. Catalytic A ctivation of Cis-Vicinal Diols by Boronic Acids: Site-Selective Acylation of Carbohydrates. *Org. Lett.* **2019**, *21*, 3789–3794.

5. NMR Spectra

1-benzyl-carbamoylimidazole a

S25

1-(4-methoxyphenyl)-carbamoylimidazole **b**

OCH₂

Figure S7. ¹H NMR spectrum (400 MHz) of **b** in CDCl₃

1-methyl-carbamoylimidazole c

1-butyl-carbamoylimidazole d

1-octyl-carbamoylimidazole e

Ņ≓

1-(phenethylcarbonyl)imidazole g

1-(cyclohexylcarbonyl)imidazole h

1-(trimethylacetyl) imidazole i

1-(benzoyl)imidazole j

1.04 H 8.0 7.5 4.5 4.0 f1 (ppm) -1.0 9.0 8.5 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

Figure S15. ¹H NMR spectrum (400 MHz) of **j** in CDCl₃

Methyl 2-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside 1aa

Methyl 2-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1aa

Methyl 2-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1aa

Methyl 3-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ba

Figure S19. ¹H NMR spectrum (400 MHz) of 1ba in CDCl₃

Methyl 2-O-(4-methoxy-benzyl)carbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ab

Methyl 2-O-(4-methoxy-benzyl)carbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1ab**

Methyl 2-O-(4-methoxy-benzyl)carbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ab

Figure S22. ¹³C NMR spectrum (100 MHz) of **1ab** in CDCl₃

Methyl 3-O-(4-methoxy-benzyl)carbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1bb**

Methyl 3-O-(4-methoxy-benzyl)carbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1bb**

Figure S24. ¹H-¹H COSY spectrum (400 MHz) of 1bb in CDCl₃

Methyl 3-O-(4-methoxy-benzyl)carbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1bb**

Methyl 2-*O*-methylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1ac**

Methyl 2-*O*-methylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1ac**

Methyl 2-*O*-methylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1ac**

Methyl 3-*O*-methylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1bc**

Methyl 3-*O*-methylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1bc**

Methyl 2-O-butylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ad

Figure S31. ¹H NMR spectrum (400 MHz) of 1ad in CDCl₃

Methyl 2-O-butylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ad

Methyl 2-O-butylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ad

Methyl 3-O-butylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1bd

Methyl 2-O-octylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ae

Methyl 2-O-octylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ae

Figure S36. ¹H-¹H COSY spectrum (400 MHz) of 1ae in CDCl₃

Methyl 2-O-octylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ae

Methyl 3-O-octylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1be**

Figure S38. ¹H NMR spectrum (400 MHz) of 1be in CDCl₃

Methyl 2-O-cyclohexylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside 1af

Methyl 2-O-cyclohexylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1af**

Figure S40. ¹H-¹H COSY spectrum (400 MHz) of **1af** in CDCl₃

S60

Methyl 3-O-cyclohexylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1bf

Figure S42. ¹H NMR spectrum (400 MHz) of 1bf in CDCl₃

4-methoxyphenyl 2-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside 2a

4-methoxyphenyl 2-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside 2a

Figure S44. ¹H-¹H COSY spectrum (400 MHz) of 2a in CDCl₃

4-methoxyphenyl 2-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 2a

4-methoxyphenyl 3-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **2b**

Figure S46. ¹H NMR spectrum (400 MHz) of 1bf in CDCl₃

Phenyl 2-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-1-thio-α-D-mannopyranoside **3a**

Phenyl 2-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-1-thio-α-D-mannopyranoside 3a

Figure S48. ¹H-¹H COSY spectrum (400 MHz) of 3a in CDCl₃

Phenyl 2-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-1-thio-α-D-mannopyranoside **3a**

Phenyl 3-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-1-thio-α-D-mannopyranoside **3b**

Figure S50. ¹H NMR spectrum (400 MHz) of 3b in CDCl₃

Phenyl 3-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-1-thio-α-D-mannopyranoside **3b**

Figure S51. ¹H-¹H COSY spectrum (400 MHz) of **3b** in CDCl₃

Phenyl 3-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-1-thio-α-D-mannopyranoside **3b**

Figure S52. ¹³C NMR spectrum (100 MHz) of 3b in CDCl₃

Methyl 2-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-mannopyranoside 4a

Methyl 2-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-mannopyranoside 4a

Figure S54. ¹H-¹H COSY spectrum (400 MHz) of 4a in CDCl₃

Methyl 3-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-mannopyranoside 4b

Methyl 3-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-mannopyranoside 4b

Figure S57. ¹H-¹H COSY spectrum (400 MHz) of 4b in CDCl₃

Methyl 3-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-mannopyranoside 4b

Phenyl 4-*O*-benzylcarbamoyl-β-L-fucopyranoside 5a

Figure S59. ¹H NMR spectrum (400 MHz) of 5a in CDCl₃

Figure S60. ¹H-¹H COSY spectrum (400 MHz) of 5a in CDCl₃

Phenyl 4-*O*-benzylcarbamoyl-β-L-fucopyranoside 5a

Figure S61. ¹³C NMR spectrum (100 MHz) of 5a in CDCl₃

Phenyl 3-*O*-benzylcarbamoyl-**β**-L-fucopyranoside **5b**

S81

Phenyl 3-*O*-benzylcarbamoyl-**β**-L-fucopyranoside **5b**

4-methoxyphenyl 2-O-benzylcarbamoyl-α-L-rhamnopyranoside 6a

Figure S65. ¹H NMR spectrum (600 MHz) of 6a in CDCl₃

4-methoxyphenyl 2-O-benzylcarbamoyl-α-L-rhamnopyranoside 6a

Figure S66. ¹H-¹H COSY spectrum (600 MHz) of 6a in CDCl₃

4-methoxyphenyl 2-O-benzylcarbamoyl-α-L-rhamnopyranoside 6a

4-methoxyphenyl 3-O-benzylcarbamoyl-α-L-rhamnopyranoside **6b**

4-methoxyphenyl 3-O-benzylcarbamoyl-α-L-rhamnopyranoside **6b**

Figure S69. ¹H-¹H COSY spectrum (400 MHz) of 6b in CDCl₃

4-methoxyphenyl 2-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-galactopyranoside 7c

4-methoxyphenyl 2-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-galactopyranoside 7c

Figure S71. ¹H-¹H COSY spectrum (400 MHz) of **7c** in CDCl₃

4-methoxyphenyl 2-O-benzylcarbamoyl-6-O-(*tert*-butyldimethyl)silyl-α-D-galactopyranoside 7c

Figure S72. ¹³C NMR spectrum (100 MHz) of 7c in CDCl₃

4-methoxyphenyl 3-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-galactopyranoside 7b

Figure S73. ¹H NMR spectrum (400 MHz) of 7b in CDCl₃

4-methoxyphenyl 3-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-galactopyranoside 7b

Figure S74. ¹H-¹H COSY spectrum (400 MHz) of 7b in CDCl₃

4-methoxyphenyl 3-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-α-D-galactopyranoside 7b

Methyl 3-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-β-D-galactopyranoside **8b**

Figure S76. ¹H NMR spectrum (400 MHz) of 8b in CDCl₃

Methyl 3-O-benzylcarbamoyl-6-O-(tert-butyldimethyl)silyl-β-D-galactopyranoside 9b

Figure S77. ¹H NMR spectrum (400 MHz) of 9b in CDCl₃

Methyl 3-*O*-benzylcarbamoyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-galactopyranoside **9b**

Figure S78. ¹H-¹H COSY spectrum (400 MHz) of 9b in CDCl₃

Methyl 3-O-benzylcarbamoyl-2,6-O-benzyl-α-D-galactopyranoside 10b

Figure S80. ¹H-¹H COSY spectrum (600 MHz) of 10b in CDCl₃

Methyl 3-O-benzylcarbamoyl-2,6-O-benzyl-α-D-galactopyranoside 10b

Figure S81. ¹³C NMR spectrum (100 MHz) of 10b in CDCl₃

4-methoxyphenyl 3-*O*-benzylcarbamoyl-β-L-arabinopyranoside **11b**

4-methoxyphenyl 3-*O*-benzylcarbamoyl-β-L-arabinopyranoside **11b**

4-methoxyphenyl 3-*O*-benzylcarbamoyl-β-L-arabinopyranoside **11b**

Figure S84. ¹³C NMR spectrum (100 MHz) of **11b** in CDCl₃

4-methoxyphenyl 3-*O*-benzylcarbamoyl-α-D-lyxopyranoside **12b**

4-methoxyphenyl 3-*O*-benzylcarbamoyl-α-D-lyxopyranoside **12b**

Figure S86. ¹H-¹H COSY spectrum (400 MHz) of **12b** in CDCl₃

f1 (ppm)

Methyl 6-O-benzylcarbamoyl-2,3-O-benzyl-α-D-glucopyranoside 13

Figure S88. ¹H NMR spectrum (400 MHz) of 13 in CDCl₃

Methyl 6-*O*-benzylcarbamoyl-2,3-*O*-benzyl-α-D-glucopyranoside 13

Figure S89. ¹H-¹H COSY spectrum (400 MHz) of 13 in CDCl₃
Methyl 6-O-benzylcarbamoyl-2,3-O-benzyl-α-D-glucopyranoside 13

Methyl 6-O-benzylcarbamoyl-2,3-O-benzyl-α-D-galactopyranoside 14

HO BnO ЪBп

Methyl 6-*O*-benzylcarbamoyl-2,3-*O*-benzyl-α-D-galactopyranoside 14

Figure S92. ¹H-¹H COSY spectrum (400 MHz) of 14 in CDCl₃

Methyl 6-O-benzylcarbamoyl-2,3-O-benzyl-α-D-galactopyranoside 14

Methyl 6-O-benzylcarbamoyl-2,3-O-benzyl-α-D-mannopyranoside 15

Methyl 6-O-benzylcarbamoyl-2,3-O-benzyl-a-D-mannopyranoside 15

Figure S95. ¹H-¹H COSY spectrum (400 MHz) of 15 in CDCl₃

0=

Methyl 2-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-glucopyranoside 16

Methyl 2-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-glucopyranoside 16

Figure S98. ¹H-¹H COSY spectrum (400 MHz) of 16 in CDCl₃

Methyl 3-O-benzylcarbamoyl-4,6-O-benzylidene-β-D-glucopyranoside 17

Methyl 3-O-benzylcarbamoyl-4,6-O-benzylidene-β-D-glucopyranoside 17

Methyl 3-*O*-benzylcarbamoyl-4,6-*O*-benzylidene-β-D-glucopyranoside **17**

Methyl 2-*O*-benzylcarbamoyl-4,6-*O*-benzylidene-β-D-galactopyranoside 18

Figure S103. ¹H NMR spectrum (400 MHz) of 18 in CDCl₃

Methyl 2-O-benzylcarbamoyl-4,6-O-benzylidene-β-D-galactopyranoside 18

Methyl 2/3-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-galactopyranoside 19a and 19b-Me₂SnCl₂

Methyl 2/3-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-galactopyranoside 19a and 19b - Me₂SnCl₂

Figure S107. ¹H-¹H COSY spectrum (600 MHz) of 19a and 19b in CDCl₃

Methyl 2/3-O-benzylcarbamoyl-4,6-O-benzylidene-α-D-galactopyranoside 19a and 19b - SnCl₂

Methyl 2-O-benzylacetyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ag

Methyl 2-O-benzylacetyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ag

Figure S110. ¹H-¹H COSY spectrum (400 MHz) of 1ag in CDCl₃

f1 (ppm)

Methyl 2-O-benzylacetyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ag

Methyl 3-O-benzylacetyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1bg

Methyl 3-O-benzylacetyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1bg

Figure S113. ¹H-¹H COSY spectrum (600 MHz) of 1bg in CDCl₃

0

Figure S114. ¹³C NMR spectrum (100 MHz) of 1bg in CDCl₃

Methyl 3-*O*-pivaloyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1bh**

S134

Methyl 3-O-pivaloyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1bh

Figure S116. ¹H-¹H COSY spectrum (400 MHz) of 1bh in CDCl₃

Methyl 3-*O*-pivaloyl-6-*O*-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside **1bh**

S136

Methyl 3-O-cyclohexanecarbonyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1bi

Methyl 3-O-cyclohexanecarbonyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1bi

Methyl 2-O-cyclohexanecarbonyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1ai

Methyl 2-O-cyclohexanecarbonyl-6-O-(*tert*-butyldimethyl)silyl-α-D-mannopyranoside 1ai

Figure S123. ¹³C NMR spectrum (100 MHz) of 1ai in CDCl₃

Methyl 3-O-benzoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1bj

Methyl 2-O-benzoyl-6-O-(tert-butyldimethyl)silyl-α-D-mannopyranoside 1aj

Figure S125. ¹H NMR spectrum (600 MHz) of 1aj in CDCl₃