Supporting Information

The dual role of BrCF₂CO₂Et: difluorocarbene-enabled access to α-trifluoromethyl ketones from sulfoxonium ylides

Chun-Yan Wu,^a Xiang-Long Chen,^a Huai-Yu Wang,^a Dong-Sheng Yang,^a Shi-Yi

Zhuang,^a You Zhou,^a Zhi-Cheng Yu,^a Yan-Dong Wu,^a Xiao Geng*^b, and An-Xin Wu*^a

^aKey Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

^bAdvanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.

page

E-mail: chwuax@mail.ccnu.edu.cn. xiaogeng_@tzc.edu.cn

Table of Contents

1.General informationS22.General procedure for the synthesis of **3**S23. Optimization of the reaction conditionsS2-S34. Characterization data for compounds in mechanistic studyS3-S55.Characterization data for compoundsS5-S176. Crystallographic data and molecular structure of **3i**S187.ReferencesS188.NMR spectra of compoundsS19-S78

1.General information

All substrates and reagents were commercially available and used without further purification. TLC analysis was performed using pre-coated glass plates. Column chromatography was performed using silica gel (200–300 mesh). ¹H spectra were recorded in CDCl₃ on 600/400 MHz NMR spectrometers and resonances (δ) are given in parts per million relative to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C spectra were recorded in CDCl₃ on 150/100 MHz NMR spectrometers and resonances (δ) are given in ppm. HRMS were obtained on a Bruker 7-tesla FT-ICR MS equipped with an electrospray source. The X-ray crystal-structure determinations were obtained on a Bruker SMART APEX CCD system. Sulfoxonium ylides **1** were known compounds, and prepared according to the reported procedures.¹ BrCF₂COOEt was commercially available and used without further purification.

2.General procedure for the synthesis of 3

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with the mixture of sulfoxonium ylide (1 mmol), BrCF₂COOEt (3 mmol), K₂CO₃ (2 mmol) and H₂O (0.5 mmol) in NMP (10 mL). The mixture was stirred at 70 °C for 5 hours. After cooling to room temperature, the mixture was quenched with water (25 mL), extracted with EtOAc (3×50 mL), the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (eluent: PE/EtOAc) to afford the products.

3. Optimization of the reaction conditions

Table S1. The influence of solvents

	b $F = \frac{1}{2}$ $K_2CO_3(2 \text{ equiv})$ $K_2CO_3(2 \text{ equiv})$ NMP(0.1 M), 70 °C, 12 M	b b 3b
entry	solvent ^a	yields ^b
1	NMP	50%
2	CH ₃ CN	12%
3	THF	20%
4	DMSO	10%
5	DMF	15%

^{*a*}Standard conditions: reactions were carried out with **1b** (1 equiv.), **2** (2 equiv.) and K_2CO_3 (2 equiv.) in NMP (0.1 M) at 70 °C for 12 h. ^{*b*}Isolated yields.

Table S2. The influence of protonic additives

	+ Br F F F $K_2CO_3(2 \text{ equiv})$ NMP(0.1 M), 70 °C, 12 h	3b
entry	protonic additives ^a	Yields ^b
1	EtOH	56%
2	MeOH	60%
3	HFIP	36%
4	<i>n</i> -BuOH	34%
5	<i>i</i> -PrOH	12%
6	HOCH ₂ CH ₂ OH	63%
7	H_2O	68%

^{*a*}Standard conditions: reactions were carried out with **1b** (1 equiv.), **2** (3 equiv.) and K_2CO_3 (2 equiv.) in NMP (0.1 M) at 70 °C for 5 h. ^{*b*}Isolated yields.

4. Characterization data for compounds in mechanistic study

The deuterium labeling experiment

conpound 13

¹H NMR (400 MHz, CDCl₃) of compound 13

1-(difluoromethyl)-1H-benzo[d]imidazole (13)

¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.83 (dd, J = 8.0, 4.8 Hz, 1H), 7.64–7.56 (m, 1H), 7.53–7.18 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 139.1, 130.3, 124.7, 124.0, 120.7, 111.0, 108.9(t, J = 248.0 Hz, ¹ J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -97.8.

5. Characterization data for compounds

3,3,3-trifluoro-1-phenylpropan-1-one (3a):

Yield 73%; 137.0 mg; yellow soild; mp 55-56 °C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 3.81 (q, *J* = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.7(q, *J* = 3.0 Hz, ³*J*_{CF}), 135.7(q, *J* = 1.0 Hz, ⁴*J*_{CF}), 134.3, 129.0(q, *J* = 275.0 Hz, ¹*J*_{CF}), 124.0, 42.141.8(q, *J* = 28.0 Hz, ²*J*_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.05. HRMS (ESI) m/z calcd for C₉H₇F₃ONa⁺ (M+Na)⁺ 211.0341, found 211.0343.

3,3,3-trifluoro-1-(p-tolyl)propan-1-one (3b):

Yield 75%; 151 mg; white solid; mp 51-52 °C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.3; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 3.76 (q, *J* =

10.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.3(q, J = 3.0 Hz, ³ J_{CF}), 145.3, 133.3(q, J = 2.0 Hz, ⁴ J_{CF}), 129.6, 128.4, 124.1(q, J = 275.0 Hz, ¹ J_{CF}), 41.9(q, J = 28.0 Hz, ² J_{CF}), 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.03. HRMS (ESI) m/z calcd for C₁₀H₁₀F₃O⁺ (M+H)⁺ 203.0678, found 203.0676.

1-(4-ethylphenyl)-3,3,3-trifluoropropan-1-one (3c)

Yield 74%; 160 mg; yellow oil; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 3.77 (q, *J* = 10.0 Hz, 2H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.26 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.3(q, *J* = 3.0 Hz, ³*J*_{CF}), 151.4, 133.5(q, *J* = 1.0 Hz, ⁴*J*_{CF}), 128.6, 128.4, 124.1(q, *J* = 275.0 Hz, ¹*J*_{CF}), 41.9(q, *J* = 28.0 Hz, ²*J*_{CF}), 28.9, 15.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.03. HRMS (ESI) m/z calcd for C₁₁H₁₁F₃ONa⁺ (M+Na)⁺ 239.0654, found 239.0651.

1-(4-(tert-butyl)phenyl)-3,3,3-trifluoropropan-1-one (3d):

Yield 70%; 170 mg; yellow oil; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 8.11–7.76 (m, 2H), 7.67–7.37 (m, 2H), 3.82 (q, *J* = 10.0 Hz, 2H), 1.61–1.22 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 158.2, 133.4, 128.4, 125.9, 124.1(q, *J* = 276.0 Hz, ¹*J*_{CF}), 41.9(q, *J* = 28.0 Hz, ²*J*_{CF}), 35.3, 31.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.97.

1-([1,1'-biphenyl]-4-yl)-3,3,3-trifluoropropan-1-one (3e):

Yield 69%; 182 mg; yellow solid; mp 120-122 °C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.48 (t, J = 7.2 Hz, 2H), 7.43 (d, J = 7.2 Hz, 1H), 3.82 (q, J = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.3(q, J = 3.0 Hz, ³ J_{CF}), 146.8, 139.3, 134.4(q, J = 2.0 Hz, ⁴ J_{CF}), 129.02, 128.96, 128.6, 127.5, 127.3,124.0(q, J = 276.0 Hz, ¹ J_{CF}), 42.0(q, J = 28.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.51. HRMS (ESI) m/z calcd for C₁₅H₁₁F₃ONa⁺ (M+Na)⁺ 287.0654, found 287.0656.

3,3,3-trifluoro-1-(4-methoxyphenyl)propan-1-one (3f):

Yield 67%; 146 mg; white solid; mp 50-51 °C; TLC (PE:EtOAc, 100:1 v/v): $R_f= 0.1$; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H), 3.74 (q, J = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.12(q, J = 3.0 Hz, ³ J_{CF}), 164.3, 130.7, 128.8(q, J = 1.0 Hz, ⁴ J_{CF}), 124.2(q, J = 306.0 Hz, ¹ J_{CF}), 114.0, 55.5, 41.6(q, J = 28.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.01. HRMS (ESI) m/z calcd for C₁₀H₉F₃O₂Na⁺ (M+Na)⁺ 241.0447, found 241.0443.

1-(4-ethoxyphenyl)-3,3,3-trifluoropropan-1-one (3g):

Yield 64%; 149 mg; yellow solid; mp 56-57 °C; TLC (PE:EtOAc, 50:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 4.11 (q, *J* = 7.2 Hz, 2H), 3.73 (q, *J* = 10.0 Hz, 2H), 1.45 (t, *J* = 7.2 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 188.1(q, *J* = 3.0 Hz, ³*J*_{CF}), 163.8, 130.8, 128.67(q, *J* = 1.0 Hz, ⁴*J*_{CF}), 124.2(q, *J* = 275.0 Hz, ¹*J*_{CF}), 114.4, 63.9,41.6(q, *J* = 28.0 Hz, ²*J*_{CF}), 14.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.99. HRMS (ESI) m/z calcd for C₁₁H₁₂F₃O₂⁺ (M+H)⁺ 233.0784, found 233.0781.

1-(4-(benzyloxy)phenyl)-3,3,3-trifluoropropan-1-one (3h):

Yield 73%; 214 mg; white solid; mp 118-120 °C; TLC (PE:EtOAc, 50:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.8 Hz, 2H), 7.38 (m, 5H), 7.02 (d, *J* = 8.8 Hz, 2H), 5.12 (s, 2H), 3.71 (q, *J* = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.1(q, *J* = 2.0 Hz, ³*J*_{CF}), 163.4, 135.8, 130.8, 129.0, 128.7, 128.3, 127.4, 124.1(q, *J* = 275.0 Hz, ¹*J*_{CF}), 114.8, 70.2, 41.7(q, *J* = 28.0 Hz, ²*J*_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.90. HRMS (ESI) m/z calcd for C₁₆H₁₃F₃O₂Na⁺ (M+Na)⁺ 317.0760, found 317.0758.

1-(4-chlorophenyl)-3,3,3-trifluoropropan-1-one (3i):

Yield 70%; 133 mg; yellow solid; mp 54-55 °C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H), 3.79 (q, J = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.6(q, J = 3.0 Hz, ³ J_{CF}), 140.8, 134.0(q, J = 1.0 Hz, ⁴ J_{CF}), 129.7, 129.2, 123.9(q, J = 275.0 Hz, ¹ J_{CF}), 42.0(q, J = 28.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.07. HRMS (ESI) m/z calcd for C₉H₆ClF₃ONa⁺ (M+Na)⁺ 244.9952, found 244.9952.

3,3,3-trifluoro-1-(4-iodophenyl)propan-1-one (3j):

Yield 57%; 179 mg; white solid; mp 93-94 °C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 3.76 (q, J = 10.0 Hz, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 189.1(q, J = 2.0 Hz, ³ J_{CF}), 138.3, 134.9(q, J = 1.0 Hz, ⁴ J_{CF}), 129.6, 123.8(q, J = 276.0 Hz, ¹ J_{CF}), 102.6, 42.0(q, J = 29.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.98. HRMS (ESI) m/z calcd for C₉H₆F₃IONa⁺ (M+Na)⁺ 336.9308, found 336.9303.

1-(4-(dimethylamino)phenyl)-3,3,3-trifluoropropan-1-one (3k):

Yield 71%; 164 mg; yellow solid; mp 104-105 °C; TLC (PE:EtOAc, 50:1 v/v): Rf= 0.23; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 9.2 Hz, 2H), 6.65 (d, J = 9.2 Hz, 2H), 3.67 (q, J = 10.4 Hz, 2H), 3.07 (s, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ 187.2(q, J = 3.0 Hz, ³ J_{CF}), 153.9, 130.8, 124.4(q, J = 306.0 Hz, ¹ J_{CF}), 123.76(q, J = 2.0 Hz, ⁴ J_{CF}), 110.7, 41.4(q, J = 27.0 Hz, ² J_{CF}), 39.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.84. HRMS (ESI) m/z calcd for C₁₁H₁₂F₃NONa⁺ (M+Na)⁺ 254.0763, found 254.0760.

3,3,3-trifluoro-1-(4-((trifluoromethyl)thio)phenyl)propan-1-one (3l):

Yield 42%; 121 mg; yellow solid; mp 51-52 °C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 3.82 (q, J = 10.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 188.88(q, J = 2.0 Hz, ³ J_{CF}), 137.0(q, J = 1.0 Hz, ⁴ J_{CF}), 135.7, 133.7, 131.6(q, J = 2.0 Hz, ³ J_{CF}), 130.4,129.13(q, J = 306.0 Hz, ¹ J_{CF}), 129.1, 124.5(q, J = 275.0 Hz, ¹ J_{CF}), 42.3(q, J = 28.0 Hz, ² J_{CF}); ¹⁹F NMR (376 MHz, CDCl₃) δ -41.50, -61.94. HRMS (ESI) m/z calcd for C₁₀H₆F₆OSNa⁺ (M+Na)⁺ 310.9936, found 310.9933.

methyl 4-(3,3,3-trifluoropropanoyl)benzoate (3m):

Yield 50%; 123 mg; yellow solid; mp 97-99 °C; TLC (PE:EtOAc, 50:1 v/v): Rf= 0.1; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.4 Hz, 2H), 7.99 (d, *J* = 8.4 Hz, 2H), 3.96 (s, 3H), 3.87 (q, *J* = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.31(q, *J* = 2.0 Hz, ³*J*_{CF}), 165.8,

138.7(q, J = 1.0 Hz, ${}^{4}J_{CF}$), 134.7, 130.0, 128.2, 123.8(q, J = 275.0 Hz, ${}^{1}J_{CF}$), 52.5, 42.3(q, J = 28.0 Hz, ${}^{2}J_{CF}$). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.1.

3,3,3-trifluoro-1-(4-nitrophenyl)propan-1-one (3n):

Yield 32%; 74 mg; yellow solid; mp 97-99 °C; TLC (PE:EtOAc, 10:1 v/v): Rf= 0.3; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.4 Hz, 2H), 8.14 (d, J = 8.4 Hz, 2H), 3.91 (q, J = 9.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5(q, J = 3.0 Hz, ³ J_{CF}), 150.9, 139.93, 139.92, 129.5, 124.2,123.6(q, J = 275.0 Hz, ¹ J_{CF}) 42.7(q, J = 29.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ - 62.0.

4-(3,3,3-trifluoropropanoyl)benzonitrile (30):

Yield 29%; 61 mg; white solid; mp 128-129 °C; TLC (PE:EtOAc, 10:1 v/v): Rf= 0.25; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H), 3.85 (q, *J* = 9.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.6(q, *J* = 2.0 Hz, ³*J*_{CF}), 138.5, 132.8, 128.8, 123.6(q, *J* = 275.0 Hz, ¹*J*_{CF}), 117.6, 117.5, 42.4(q, *J* = 29.0 Hz, ²*J*_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.1.

3,3,3-trifluoro-1-(m-tolyl)propan-1-one (3p):

Yield 70%; 141 mg; yellow oil; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.69 (m, 2H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 3.79 (q, *J* = 10.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.9(q, *J* = 3.0 Hz, ³*J*_{CF}), 138.9, 135.8, 135.0, 128.80, 128.77, 125.6, 124.0(q, *J* = 275.0 Hz, ¹*J*_{CF})119.9, 42.1(q, *J* = 28.0 Hz, ²*J*_{CF}), 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.51. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.05. HRMS (ESI) m/z calcd for C₁₀H₉F₃ONa⁺ (M+Na)⁺ 225.0498, found 225.0498.

Yield 62%; 135 mg; yellow oil; TLC (PE:EtOAc, 50:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 6.8, 5.2 Hz, 2H), 7.40 (t, J = 8.0 Hz, 1H), 7.16 (dd, J = 8.0, 2.4 Hz, 1H), 3.84 (s, 3H), 3.79 (q, J = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.6(q, J = 3.0 Hz, ³ J_{CF}), 160.0, 137.1(q, J = 2.0 Hz, ⁴ J_{CF}), 129.9, 124.1(q, J = 276.0 Hz, ¹ J_{CF}), 120.9, 120.7, 112.5, 55.44, 55.37, 42.1(q, J = 28.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.14. HRMS (ESI) m/z calcd for C₁₀H₉F₃O₂Na⁺ (M+Na)⁺ 241.0447, found 241.0447.

1-(3-bromophenyl)-3,3,3-trifluoropropan-1-one (3r):

Yield 44%; 117mg; yellow oil; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.77 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 3.78 (q, *J* = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.4(q, *J* = 2.0 Hz, ³*J*_{CF}), 137.40(q, *J* = 2.0 Hz, ⁴*J*_{CF}), 137.1, 131.4, 130.5, 126.9, 123.8(q, *J* = 275.0 Hz, ¹*J*_{CF}), 123.3, 42.2(q, *J* = 29.0 Hz, ²*J*_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.03.

1-(3-chlorophenyl)-3,3,3-trifluoropropan-1-one (3s):

Yield 48%; 106 mg; yellow oil; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 3.79 (q, J = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5(q, J = 3.0 Hz, ³ J_{CF}), 137.2(q, J = 1.0 Hz, ⁴ J_{CF}), 135.4, 134.1, 130.3, 128.4, 126.4, 123.7(q, J = 276.0 Hz, ¹ J_{CF}), 42.2(q, J = 29.0 Hz, ² J_{CF}); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.05. HRMS (ESI) m/z calcd for C₉H₆ClF₃ONa⁺ (M+Na)⁺ 244.9952, found 244.9950.

3,3,3-trifluoro-1-(2-methoxyphenyl)propan-1-one (3t):

Yield 56 %; 122 mg; yellow solid; mp 50-51 °C; TLC (PE:EtOAc, 50:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.0, 1.6 Hz, 1H), 7.57–7.48 (m, 1H), 7.06–6.97 (m, 2H), 3.94 (s, 3H), 3.88 (q, J = 10.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0(q, J = 2.0 Hz, ³ J_{CF}), 158.9, 134.9, 130.9, 126.3,124.2(q, J = 275.0 Hz, ¹ J_{CF}), 121.0, 111.6, 55.6, 46.8(q, J = 27.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.50. HRMS (ESI) m/z calcd for C₁₀H₉F₃O₂Na⁺ (M+Na)⁺ 241.0447, found 241.0447.

1-(2-ethoxyphenyl)-3,3,3-trifluoropropan-1-one (3u):

Yield 68%; 158 mg; white solid; mp 51-53 °C; TLC (PE:EtOAc, 50:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.6 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.08–6.90 (m, 2H), 4.17 (q, J = 6.8 Hz, 2H), 3.92 (q, J = 10.4 Hz, 2H), 1.51 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.16(q, J = 2.0 Hz, ³ J_{CF}), 158.4, 135.0, 130.9, 126.44(q, J = 2.0 Hz, ⁴ J_{CF}), 124.2(q, J = 275.0 Hz, ¹ J_{CF}), 120.8, 112.3, 64.3, 46.9(q, J = 27.0 Hz, ² J_{CF}), 14.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.51. HRMS (ESI) m/z calcd for C₁₁H₁₁F₃O₂Na⁺ (M+H)⁺ 233.0784, found 233.0788.

1-(3,5-dimethylphenyl)-3,3,3-trifluoropropan-1-one (3v):

Yield 68%; 147 mg; yellow oil; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 2H), 7.26 (s, 1H), 3.77 (q, *J* = 10.0 Hz, 2H), 2.38 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 190.11(q, *J* = 2.0 Hz, ³*J*_{CF}), 138.7, 135.94(q, *J* = 2.0 Hz, ⁴*J*_{CF}), 135.88, 126.1, 124.1(q, *J* = 275.0 Hz, ¹*J*_{CF}), 42.0(q, *J* = 29.0 Hz, ²*J*_{CF}), 21.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.09. HRMS (ESI) m/z calcd for C₁₁H₁₁F₃ONa⁺ (M+Na)⁺ 239.0654, found 239.0654.

3,3,3-trifluoro-1-(4-fluoro-3-methylphenyl)propan-1-one (3w):

Yield 53%;117 mg; yellow solid; mp 61-62 °C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.72 (m, 2H), 7.11 (t, *J* = 8.8 Hz, 1H), 3.77 (q, *J* = 10.0 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.4(q, *J* = 2.0 Hz, ³*J*_{CF}), 164.9(q, *J* = 255.0 Hz, ¹*J*_{CF}), 132.3, 132.1(q, *J* = 8.0 Hz, ³*J*_{CF}), 128.5, 128.4(q, *J* = 10.0 Hz, ³*J*_{CF}), 126.0(q, *J* = 18.0 Hz, ²*J*_{CF}), 123.9(q, *J* = 275.0 Hz, ¹*J*_{CF}), 115.6(q, *J* = 24.0 Hz, ²*J*_{CF}), 41.9(q, *J* = 27.0 Hz, ²*J*_{CF}), 14.48(q, *J* = 3.0 Hz, ³*J*_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.02, -107.00.

1-([1,1'-biphenyl]-4-yl)-3,3,3-trifluoropropan-1-one (3x):

Yield 58%; 136 mg; white solid; mp 85-86 °C; TLC (PE:EtOAc, 50:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.48 (t, J = 7.2 Hz, 2H), 7.43 (d, J = 7.2 Hz, 1H), 3.82 (q, J = 10.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.3(q, J = 3.0 Hz, ³ J_{CF}), 146.8, 139.3, 134.4(q, J = 2.0 Hz, ⁴ J_{CF}), 129.02, 128.96, 128.6, 127.5, 127.3,124.0(q, J = 276.0 Hz, ¹ J_{CF}), 42.0(q, J = 28.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.51. HRMS (ESI) m/z calcd for C₁₅H₁₁F₃ONa⁺ (M+Na)⁺ 287.0654, found 287.0656.

3,3,3-trifluoro-1-(naphthalen-2-yl)propan-1-one (3y):

Yield 66%; 157 mg; yellow solid; mp 83-84 °C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.15; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.98 (t, *J* = 9.6 Hz, 2H), 7.94–7.87 (m, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 3.92 (q, *J* = 10.0 Hz, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 189.61(q, *J* = 3.0 Hz, ³*J*_{CF}), 135.9, 133.2(q, *J* = 2.0 Hz, ⁴*J*_{CF}), 132.3, 130.5, 129.7, 129.2, 128.9, 127.8, 127.2, 124.08(q, *J* = 275.0 Hz, ¹*J*_{CF}), 123.4, 42.1(q, *J* = 28.0 Hz, ²*J*_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.90. HRMS (ESI) m/z calcd for C₁₃H₁₀F₃O⁺ (M+H)⁺ 239.0678, found 239.0674.

3,3,3-trifluoro-1-(furan-2-yl)propan-1-one (3z):

Yield 74%; 132 mg; yellow oil; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.24; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.32 (d, *J* = 3.6 Hz, 1H), 6.67–6.53 (m, 1H), 3.67 (q, *J* = 10.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 178.2(q, *J* = 3.0 Hz, ³*J*_{CF}), 151.9(q, *J* = 2.0 Hz, ⁴*J*_{CF}), 147.4, 123.7(q, *J* = 276.0 Hz, ¹*J*_{CF}), 118.8, 113.0, 42.2(q, *J* = 29.0 Hz, ²*J*_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.95.

3,3,3-trifluoro-1-(thiophen-2-yl)propan-1-one (3aa):

Yield 72%; 139 mg; yellow oil; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.24; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 9.2, 4.4 Hz, 2H), 7.18 (t, J = 4.4 Hz, 1H), 3.72 (q, J = 10.0 Hz, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 182.1(q, J = 3.0 Hz, ³ J_{CF}), 143.2(q, J = 2.0 Hz, ⁴ J_{CF}), 135.7, 133.4, 128.5, 123.6(q, J = 275.0 Hz, ¹ J_{CF}), 43.0(q, J = 28.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.94. HRMS (ESI) m/z calcd for C₇H₅F₃OSNa⁺ (M+Na)⁺ 216.9905, found 216.9906.

(E)-5,5,5-trifluoro-1-phenylpent-1-en-3-one (3ab):

Yield 62%; 133 mg; white solid; mp 55-56 °C; TLC (PE): Rf= 0.1; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 16.0 Hz, 1H), 7.58–7.51 (m, 2H), 7.42 (t, J = 6.0 Hz, 3H), 6.80 (d, J = 16.0 Hz, 1H), 3.47 (q, J = 10.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.13(q, J = 3.0 Hz, ³ J_{CF}), 145.3, 133.7, 131.2, 129.0, 128.6, 124.66(q, J = 2.0 Hz, ⁴ J_{CF}), 123.9(q, J = 276.0 Hz, ¹ J_{CF}), 44.5(q, J = 28.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.02. HRMS (ESI) m/z calcd for C₁₁H₉F₃ONa⁺ (M+Na)⁺ 237.0498, found 237.0493.

4,4,4-trifluoro-1-phenylbutan-2-one (3ac):

Yield 62%; 125 mg; white oil; TLC (PE): Rf= 0.1; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.30 (m, 3H), 7.20 (d, J = 6.8 Hz, 2H), 3.80 (s, 2H), 3.23 (q, J = 10.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.69(q, J = 2.0 Hz, ³ J_{CF}), 132.4, 129.5, 129.1, 127.7, 123.6(q, J = 275.0 Hz, ¹ J_{CF}), 50.60(q, J = 2.0 Hz, ⁴ J_{CF}), 45.0(q, J = 29.0 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ - 62.37. HRMS (ESI) m/z calcd for C₁₀H₉F₃ONa⁺ (M+Na)⁺ 225.0498, found 225.0497.

4,4,4-trifluoro-1-phenylbutan-2-one (3ad):

Yield 68%; 145 mg; yellow oil; TLC (PE): Rf= 0.1; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.2 Hz, 2H), 7.24–7.15 (m, 3H), 3.18 (q, J = 10.4 Hz, 2H), 2.92 (dd, J = 11.2, 4.4 Hz, 2H), 2.87–2.81 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.3(q, J = 2.0 Hz, ³ J_{CF}), 140.2, 128.7, 128.3, 126.4, 123.6(q, J = 275.0 Hz, ¹ J_{CF}), 46.4(q, J = 28.0 Hz, ² J_{CF}), 45.00, 44.98, 29.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.37. HRMS (ESI) m/z calcd for C₁₁H₁₁F₃ONa⁺ (M+Na)⁺ 239.06542, found 239.06544.

1-((1r,3R,5S)-adamantan-1-yl)-3,3,3-trifluoropropan-1-one (3ae):

Yield 67%; 164 mg; white solid; mp 59-61 °C; TLC (PE): Rf= 0.1; ¹H NMR (400 MHz, CDCl₃) δ 3.30 (q, J = 10.0 Hz, 2H), 2.08 (s, 3H), 1.79 (dd, J = 14.0, 8.0 Hz, 9H), 1.69 (d, J = 12.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.9(q, J = 2.0 Hz, ³ J_{CF}), 124.3(q, J = 275.0 Hz, ¹ J_{CF}), 47.0(q, J = 1.0 Hz, ⁴ J_{CF}), 39.1(q, J = 28.0 Hz, ² J_{CF}), 37.6, 36.3, 27.6. ¹⁹F NMR (376 MHz,

CDCl₃) δ -62.27. HRMS (ESI) m/z calcd for C₁₃H₁₇F₃ONa⁺ (M+Na)⁺ 269.1124, found 269.1124.

1,1,1-trifluoro-4-(2-fluoro-[1,1'-biphenyl]-4-yl)pentan-3-one (3af):

Yield 68%; 210 mg; yellow oil; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.48–7.42 (m, 3H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.09–6.97 (m, 2H), 3.84 (q, *J* = 6.8 Hz, 1H), 3.21 (dd, *J* = 22.4, 10.4 Hz, 2H), 1.46 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.43(q, *J* = 2.0 Hz, ³*J*_{CF}), 160.0(q, *J* = 248.0 Hz, ¹*J*_{CF}), 140(d, *J* = 8.0 Hz, ²*J*_{CF}), 135.0, 131.7(d, *J* = 4.0 Hz, ³*J*_{CF}), 128.9(d, *J* = 3.0 Hz, ³*J*_{CF}), 128.7(d, *J* = 13.0 Hz, ²*J*_{CF}), 128.57, 128.0, 123.9(d, *J* = 3.0 Hz, ³*J*_{CF}), 123.6(q, *J* = 276.0 Hz, ¹*J*_{CF}), 115.6(d, *J* = 24.0 Hz, ²*J*_{CF}), 53.1, 44.2(q, *J* = 28.0 Hz, ²*J*_{CF}), 17.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.38, -116.26. HRMS (ESI) m/z calcd for C₁₇H₁₄F₄O₃Na⁺ (M+Na)⁺ 333.0873, found 333.0885.

3,3,3-trifluoro-1-((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)propan-1-one (3ag):

Yield 62%; 227 mg; colorless oil; TLC (PE): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.4 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.90 (s, 1H), 3.49–3.16 (m, 2H), 2.96–2.74 (m, 3H), 2.36 (d, *J* = 13.2 Hz, 1H), 2.06 (dd, *J* = 12.4, 1.6 Hz, 1H), 1.85–1.72 (m, 3H), 1.58–1.47 (m, 3H), 1.23 (t, *J* = 6.8 Hz, 13H). ¹³C NMR (100 MHz, CDCl₃) δ 205.3(q, *J* = 1.0 Hz, ³*J*_{CF}), 146.5, 146.1, 134.4, 127.1, 124.3(q, *J* = 276.0 Hz, ¹*J*_{CF}), 124.12, 124.07, 53.1(q, *J* = 1.0 Hz, ⁴*J*_{CF}), 43.5, 39.8(q, *J* = 28.0 Hz, ²*J*_{CF}), 37.8, 36.9, 35.0, 33.5, 29.8, 25.2, 24.01, 23.99, 21.5, 18.3, 15.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.2. HRMS (ESI) m/z calcd for C₃₀H₃₀F₃O₂Na⁺ (M+Na)⁺ 405.1802, found 405.1810.

3-(2-fluorophenyl)-1-(2-hydroxyphenyl)-3-(2-methyl-6-(trimethylgermyl)phenyl) propan-1-one (3ah):

Yield 64%; 189 mg; white solid; mp 54-56 °C ; TLC (PE:EtOAc, 50:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 14.0, 8.8 Hz, 2H), 7.59 (s, 1H), 7.26–7.22 (m, 1H), 7.18 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.13 (d, *J* = 2.4 Hz, 1H), 3.91 (s, 3H), 3.26–3.04 (m, 2H), 1.49

(d, J = 6.8 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 200.3(q, J = 2.0 Hz, ³ J_{CF}), 158.0, 134.0, 133.9, 129.24, 129.15, 128.2, 126.9, 126.0, 123.7(q, J = 275.0 Hz, ¹ J_{CF}), 119.6, 105.6, 55.4, 53.8, 43.9(q, J = 28.0 Hz, ² J_{CF}), 17.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4. HRMS (ESI) m/z calcd for C₁₆H₁₅F₃O₂Na⁺ (M+Na)⁺ 319.0916, found 319.0927.

(38,88,98,10R,13R,148,17R)-10,13-dimethyl-17-((8)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a] phenanthren-3-yl 3,3,3-trifluoropropanoate (3ai):

Yield 71%; 352 mg; white solid; mp 99-100°C; TLC (PE); ¹H NMR (400 MHz, CDCl₃) δ 5.39 (d, *J* = 4.0 Hz, 1H), 4.79–4.57 (m, 1H), 3.15 (q, *J* = 10.0 Hz, 2H), 2.35 (d, *J* = 8.0 Hz, 2H), 2.07–1.93 (m, 2H), 1.92–1.77 (m, 3H), 1.66–1.42 (m, 7H), 1.39–0.97 (m, 17H), 0.91 (d, *J* = 6.4 Hz, 3H), 0.86 (dd, *J* = 6.8, 1.6 Hz, 6H), 0.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5(q, *J* = 4.0 Hz, ³*J*_{CF}), 139.1,123.5(q, *J* = 275.0 Hz, ¹*J*_{CF}), 123.1, 75.7, 56.7, 56.1, 50.0, 42.3, 40.0(q, *J* = 30.0 Hz, ²*J*_{CF}), 39.7, 39.5, 37.8, 36.9, 36.5, 36.2, 35.8, 31.9, 31.8, 28.3, 28.0, 27.5, 24.3, 23.9, 22.9, 22.6, 21.0, 19.3, 18.7, 11.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.48. HRMS (ESI) m/z calcd for C₃₀H₄₇F₃O₂Na⁺ (M+Na)⁺ 519.3420, found 519.3423.

1-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)-3,3,3trifluoropropan-1-one (3aj):

Yield 65%; 310 mg; white solid; mp 186-187 °C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.2; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.07–7.96 (m, 3H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.60 (s, 1H), 7.54 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 3.99– 3.84 (m, 5H), 2.18 (s, 6H), 2.11 (s, 3H), 1.80 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 189.5(q, *J* = 2.0 Hz, ³*J*_{CF}), 159.2, 142.4, 139.1, 136.5, 132.7(q, *J* = 1.0 Hz, ⁴*J*_{CF}), 132.2, 131.0, 130.4, 130.1, 129.0, 127.0, 126.0, 125.6, 124.7, 124.2(q, *J* = 275.0 Hz, ¹*J*_{CF}), 123.9, 112.1, 55.2,42.2(q, *J* = 28.0 Hz, ²*J*_{CF}), 40.6, 37.3, 37.1, 29.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.8. HRMS (ESI) m/z calcd for C₃₀H₃₀F₃O₂Na⁺ (M+Na)⁺ 479.2192, found 419.2191.

2-(benzo[d]oxazol-2-yl)-1-(4-methoxyphenyl)ethan-1-one (8):

Yield 85%; 227mg; white solid; mp 86-88°C; TLC (PE:EtOAc, 5:1 v/v): Rf= 0.3; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 2H), 7.71 (dd, J = 5.2, 3.2 Hz, 1H), 7.53–7.46 (m, 1H), 7.32 (dd, J = 5.6, 3.2 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 4.59 (s, 2H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 164.2, 160.9, 151.3, 141.2, 131.1, 128.8, 125.0, 124.4, 120.0, 114.1, 110.7, 55.6, 39.5. HRMS (ESI) m/z calcd for C₁₆H₁₄NO₃⁺ (M+H)⁺268.0968, found 268.0964.

4-fluoro-2-(m-tolyl)-6-(p-tolyl)pyrimidine (9):

Yield 83%; 230 mg; white solid; mp 57-58 °C; TLC (PE): Rf= 0.3; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 6.8 Hz, 2H), 8.07 (d, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 3H), 7.11 (s, 1H), 2.46 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3(d, *J* = 248.0 Hz), 168.6(d, *J* = 8.0 Hz), 165.4(d, *J* = 14.0 Hz), 142.0, 138.3, 136.5, 133.3(d, *J* = 4.0 Hz), 129.8, 129.1, 128.5, 127.3, 125.9, 99.0(d, *J* = 32.0 Hz), 21.6, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.2. HRMS (ESI) m/z calcd for C₁₈H₁₆FN₂⁺ (M+H)⁺ 279.1292, found 279.1301.

4-fluoro-2-(3-methoxyphenyl)-6-(p-tolyl)pyrimidine (10):

Yield 85%; 250 mg; white solid; mp 71-72°C; TLC (PE:EtOAc, 100:1 v/v): Rf= 0.3; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.6 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 3H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.13 (s, 1H), 7.06 (dd, *J* = 8.0, 2.4 Hz, 1H), 3.91 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3(d, *J* = 247.0 Hz), 168.5(d, *J* = 7.0 Hz), 165.0(d, *J* = 14.0 Hz), 159.9, 142.1, 138.0, 133.3(d, *J* = 5.0 Hz), 129.8, 129.6, 127.3, 121.2, 117.7, 113.3, 99.2(d, *J* = 31.0 Hz), 55.5, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.2. HRMS (ESI) m/z calcd for C₁₈H₁₆FO⁺ (M+H)⁺ 295.1241, found 295.1242.

(Z)-3-([1,1'-biphenyl]-4-yl)-3-fluoro-1-(4-methoxyphenyl)prop-2-en-1-one (11): Yield 64%; 212 mg; white solid; mp 131-133°C; TLC (PE:EtOAc, 5:1 v/v): Rf= 0.3; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.8 Hz, 2H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 1H), 6.96

(d, J = 8.8 Hz, 2H), 6.79 (d, J = 34.4 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.3, 164.4(d, J = 275.0 Hz, ¹ J_{CF}), 163.4, 144.1, 139.6, 131.4, 130.7, 129.7(d, J = 27.0 Hz), 128.9, 128.1, 127.4(d, J = 2.0 Hz), 127.0, 126. (d, J = 8.0 Hz), 113.7, 101.6(d, J = 8.0 Hz), 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -98.4. HRMS (ESI) m/z calcd for C₂₂H₁₈FO₂⁺ (M+H)⁺ 333.1285, found 333.1281.

Crystallographic data and molecular structure of 3i

Figure S1. X-ray crystal structure of **3i** with 30% probability ellipsoids (ORTEP) Crystal Data for Compound **3i**: CCDC 2182469 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic.

Sample preparation: In a 10 mL glass bottle, 15 mg of pure **3i** was completely dissolved in the mixed solvent of 3 mL CHCl₂, and then 2 mL of n-hexane was added slowly. After a week of solvent evaporation, some yellow transparent crystals were obtained. The crystals were mounted on a glass fiber for diffraction experiments. Intensity data were collected on a Bruker SMART APEX CCD diffractometer with Mo K α radiation (0.71073 Å) at room temperature.

Bond precision:	C-C = 0.0037 A	Wavelength=0.71073	
Cell:	a=15.120(3)	b=5.9966(13)	c=20.980(4)
Temperature:	296 K	beca-ju	gamma-90
	Calculated	Reported	
Volume	1902.2(7)	1902.3(7)	
Space group	Pbca	Pbca	
Hall group	-P 2ac 2ab	-P 2ac 2ab	
Moiety formula	C9 H6 C1 F3 O	C9 H6 C1 F3 O	
Sum formula	C9 H6 C1 F3 O	C9 H6 C1 F3 O	
Mr	222.59	222.59	
Dx,g cm-3	1.554	1.554	
Z	8	8	
Mu (mm-1)	0.409	0.409	
F000	896.0	896.0	
F000'	897.84		
h,k,lmax	18,7,25	18,7,25	
Nref	1867	1861	
Tmin, Tmax	0.943,0.960	0.561,0.746	
Tmin'	0.940		
Correction metho AbsCorr = MULTI-	od= # Reported T I -SCAN	Limits: Tmin=0.561 Tma	ax=0.746
Data completenes	ss= 0.997	Theta(max) = 25.991	
R(reflections) =	0.0534(1527)		wR2(reflections)
S = 1.067	Npar=	128	

References

(1) 1. (a) J. Vaitla, A. Bayer and K. H. Hopmann, Angew. Chem. Int. Ed., 2017, 56, 4277; (b) M. Barday, C. Janot, N. R. Halcovitch, J. Muir and C. Aïssa, Angew. Chem. Int. Ed., 2017, 56, 13117; (c) Y. Xu, X. Zhou, G. Zheng and X. Li, Org. Lett., 2017, 19, 5256; (d) C. Janot, P. Palamini, B. C. Dobson, J. Muir and C. Aïssa, Org. Lett., 2018, 21, 296.

NMR spectra of compounds

¹⁹F NMR (376 MHz, CDCl₃) of compound **3a**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl_3) of compound $\mathbf{3b}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 (ppm)

 ^1H NMR (400 MHz, CDCl₃) of compound 3c

Z7.867 Z7.847 Z7.331 Z7.310 $\begin{array}{c} f_{2,2,2,2} \\ f_{2,3,7,2,3} \\ f_{2,3,7,3,3} \\ f_{2,3,7,3} \\ f_{2,3,7,3} \\ f_{2,3,7,3} \\ f_{2,2,7,3} \\ f_{2,2,6,3} \\ f_{1,2,2,3} \\ f_{1,2,4,3} \\ f_{1,$

 ^{19}F NMR (376 MHz, CDCl_3) of compound 3c

--62.032

¹H NMR (400 MHz, CDCl₃) of compound **3e**

Г8.010 Г7.989 Г7.724 Г7.703 Г7.703 Г7.703 Г7.703 Г7.703 Г7.703 Г7.703 Г7.499 Г7.419 Г7.419 Г7.419 (-3.858 -3.833 -3.808 -3.783 ---0.000

 ^{19}F NMR (376 MHz, CDCl_3) of compound 3e

S26

¹H NMR (400 MHz, CDCl₃) of compound **3g**

 ^{19}F NMR (376 MHz, CDCl_3) of compound 3g

¹H NMR (400 MHz, CDCl₃) of compound **3i**

 ^{19}F NMR (376 MHz, CDCl₃) of compound 3i

S32

¹H NMR (400 MHz, CDCl₃) of compound **3**k

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃) of compound **3**I

L^{8,163} L^{8,142} R^{8,004} T,983 ---0.000

73.963 73.906 -3.881 -3.887 -3.887 -3.832

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of compound 3m

¹H NMR (400 MHz, CDCl₃) of compound **30**

 ^{19}F NMR (376 MHz, CDCl_3) of compound 30

¹H NMR (400 MHz, CDCl₃) of compound **3**q

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) of compound 3r

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) of compound 3s

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) of compound 3t

¹H NMR (400 MHz, CDCl₃) of compound **3u**

¹H NMR (400 MHz, CDCl₃) of compound **3**w

¹⁹F NMR (376 MHz, CDCl₃) of compound **3w**

¹H NMR (400 MHz, CDCl₃) of compound **3**y

S55

S56

¹H NMR (400 MHz, CDCl₃) of compound **3aa**

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of compound 3aa

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) of compound $\boldsymbol{3ab}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) of compound **3ac**

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl_3) of compound $\boldsymbol{3ad}$

¹H NMR (400 MHz, CDCl₃) of compound 3ae

$\begin{array}{c} 3.334\\ 3.289\\ 3.289\\ 3.289\\ 3.259\\ 3.259\\ 3.259\\ 3.259\\ 3.259\\ 3.259\\ 3.259\\ 3.259\\ 1.378\\ 1.791\\ 1.791\\ 1.778\\ 1.778\\ 1.775\\ 1.$

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl_3) of compound $\boldsymbol{3af}$

¹H NMR (400 MHz, CDCl₃) of compound **3ag**

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of compound $\boldsymbol{3ag}$

¹³C{¹H} NMR (100 MHz, CDCl₃) of compound **3ah**

¹H NMR (400 MHz, CDCl₃) of compound **3ai**

5.394
5.394
5.394
5.394
5.394
5.393
5.393
5.393
5.333
3.3155
5.337
5.333
3.3155
5.337
5.331
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.337
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347
5.347

¹⁹F NMR (376 MHz, CDCl₃) of compound 3ai

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl_3) of compound $\boldsymbol{3aj}$

¹H NMR (400 MHz, CDCl₃) of compound 11

 ^{19}F NMR (376 MHz, CDCl₃) of compound 11

S74

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl_3) of compound 10

¹H NMR (400 MHz, CDCl₃) of compound 9

¹⁹F NMR (376 MHz, CDCl₃) of compound 9

S78