Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Aza-Wolff Rearrangement of *N*-Fluoroalkyl Triazoles to Ketenimines

Anna Kubíčková^{a,b} Athanasios Markos,^a Svatava Voltrová,^a Anežka Marková,^a Josef Filgas,^b Blanka Klepetářová,^a Petr Slavíček^b and Petr Beier^{*a}

 A. Kubíčková, Dr. A. Markos, Dr. S. Voltrová, A. Marková, Dr. B. Klepetářová, Dr. P. Beier The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2, 16610 Prague 6 (Czech Republic) E-mail: beier@uochb.cas.cz

A. Kubíčková, J. Filgas, Prof. P. Slavíček
 University of Chemistry and Technology,
 Technická 5, 166 28 Prague 6 (Czech Republic)

Contents

1 General information	S2
2 Synthesis of starting triazoles 1	S3
3 Synthesis of ketenimines 2 – solvent optimization	S6
4 Characterization of ketenimines 2 – structure and calculations	S6
5 Synthesis of <i>N</i> -fluoroalkyl-ketenimines 2 (General procedure – table)	S14
6 Ketenimines 2 – characterization	S16
7 Reactivity of ketenimines 2 – general methods	S22
8 Reactivity of ketenimines 2 – product characterization	S23
9 Crystallographic data	S29
10 References	S31
11 Copies of NMR spectra	S32

1 General information

All commercially available chemicals were used as received unless stated otherwise, column chromatography was performed using silica gel 60 (0.040-0.063 mm). Automated flash column chromatography was performed on Teledyne ISCO CombiFlash Rf+ Lumen Automated Flash Chromatography System with UV/Vis detection. ¹H, ¹³C, and ¹⁹F NMR spectra were measured at ambient temperature using 5 mm diameter NMR tubes. ¹³C NMR spectra were proton decoupled. The chemical shift values (δ) are reported in ppm relative to internal Me₄Si (0 ppm for ¹H and ¹³C NMR) or residual solvents and internal CFCl₃ (0 ppm for ¹⁹F NMR). Coupling constants (*J*) are reported in Hertz. Structural elucidation was aided by additional acquisition of ¹³C APT, 1D ¹H NOESY and/or various 2D spectra (1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC, 13C-19F HMBC, 1H-¹H ROESY). High resolution mass spectra (HRMS) were recorded on a Waters Micromass AutoSpec Ultima or Agilent 7890A GC coupled with Waters GCT Premier orthogonal acceleration time-of-flight detector using electron impact (EI) ionization, on an LTQ Orbitrap XL using electrospray ionization (ESI), and on a Bruker solariX 94 ESI/MALDI-FT-ICR using dual ESI/MALDI ionization. Microwave experiments were done on CEM Focused Microwave™ Synthesis System, Model Discover. The method was set-up to 300 W, temperature 140-160 °C, hold time 20-180 min. LRMS spectra were recorded on Agilent 7890A GC (column HP-5MS, 30 m × 0.25 mm × 0.25 µm, 5% phenyl methylpolysiloxane) coupled with 5975C quadrupole mass selective electron impact (EI) detector (70 eV). IR spectra (CHCl₃ film) were measured on Bruker IFS 55 Equinox or Bruker Alpha-P spectrometer.

2 Synthesis of starting triazoles 1

5-Unsubstituted triazoles 1d, 1i, 1k, 1m, 1q, 1t, 1u, 1v were prepared according to literature.^[1]

4-(2-Methoxyphenyl)-1-(pentafluoroethyl)-1H-1,2,3-triazole (1d): Yield: 65%; ¹H NMR (400 MHz, CDCl₃) δ

 $\begin{array}{l} \begin{array}{l} & \mathbb{N}_{\mathsf{N}} \subset_{2} \mathbb{F}_{5} \\ & \mathbb{N}_{\mathsf{N}} \subset_{2} \mathbb{F}_{5} \end{array} \\ & \mathbb{N}_{\mathsf{N}} \subset_{2} \mathbb{F}_{5} \\ & \mathbb{N}_{\mathsf{N}} \subset_{2} \mathbb{F}_{5} \end{array} \\ & \mathbb{N}_{\mathsf{N}} \subset_{2} \mathbb{F}_{5} \\ & \mathbb{N}_{\mathsf{N}} \subset_{2} \mathbb{F}_{5} \end{array} \\ & \mathbb{N}_{\mathsf{N}} \subset_{2} \mathbb{F}_{5} \\ & \mathbb{N}_{\mathsf{N}} \subset_{2} \mathbb{F}_{5} \end{array} \\ & \mathbb{N}_{\mathsf{N}} \subset_{2} \mathbb{P}_{5} \\ & \mathbb{N}_{\mathsf{N}} \\ & \mathbb{N}_{\mathsf{N}} \simeq_{2} \mathbb{P}_{5} \\ & \mathbb{N}_{\mathsf{N}} \\ & \mathbb{N}_{\mathsf{N}} \simeq_{2} \mathbb{P}_{5} \\ & \mathbb{N}_{\mathsf{N}} \simeq_{2} = \mathbb{P}_{5} \\ & \mathbb{N}_{\mathbb$

84.3 (s, 3F), -99.1 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₁H₉OF₅N₃: 294.06603, found 294.06600. 1-(*Pentafluoroethyl*)-4-(*phenanthren-9-yl*)-1H-1,2,3-triazole (**1i**): Yield: 88%; ¹H NMR (400 MHz, CDCl₃) δ

8.79 (d, J = 8.3 Hz, 1H), 8.72 (d, J = 8.3 Hz, 1H), 8.26 (s, 1H), 8.24 (d, J = 8.3 Hz, 1H), 8.03 (s, 1H), 7.93 (dd, J = 7.9, 1.4 Hz, 1H), 7.79–7.57 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 148.02, 131.03, 130.92, 130.89, 129.73, 129.58, 129.17, 127.89, 127.37, 127.26, 127.22, 125.71, 124.68, 123.32, 122.78, 121.21, 117.25 (qt, J = 287.5, 82.4 Hz), 110.50 (tq, J = 270.1, 43.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -

84.19, -98.83; HRMS (APCI⁺) *m*/*z* calcd for C₁₈H₁₁F₅N₃: 364.08676, found 364.08707.

4-Cyclohexyl-1-(pentafluoroethyl)-1H-1,2,3-triazole (1k): Yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s,

1H), 2.87-2.74 (m, 1H), 2.09-2.05 (m, 2H), 1.83-1.80 (m, 2H), 1.74 (d, J = 13.0 Hz, 1H), 1.48-1.36 (m, 4H), 1.32-1.21 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 118.0, 117.2 (qt, J = 287.5, 41.6 Hz), 110.3 (tq, J = 269.9, 43.0 Hz), 35.1, 32.7, 26.0, 25.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.4 (s, 3F), -98.9 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₀H₁₃F₅N₃:

270.10241, found 270.10248.

1-(Pentafluoroethyl)-1H-1,2,3-triazol-4-yl)propan-2-yl acetate (1m): Yield: 78%; ¹H NMR (400 MHz, CDCl₃)

AcO

δ 7.75 (s, 1H), 5.18 (h, *J* = 6.3 Hz, 1H), 3.05 (d, *J* = 6.1 Hz, 2H), 1.98 (s, 3H), 1.28 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.40, 145.08, 120.57, 117.08 (qt, *J* = 287.3, 41.4 Hz), 110.22 (tq, *J* = 267.3, 43.1 Hz), 69.34, 31.87, 21.19, 19.65; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.5 (s, 2F), -99.2 (s, 3F); HRMS (ESI⁺) *m/z* calcd for C₉H₁₁O₂F₅N₃:

288.07659, found 288.07686.

4-(2-Methoxyphenyl)-1-(trifluoromethyl)-1H-1,2,3-triazole (1q): Yield: 77%; ¹H NMR (400 MHz, CDCl₃)

δ 8.41 (d, J = 0.5 Hz, 1H), 8.39 (dd, J = 7.8, 1.7 Hz, 1H), 7.39 (ddd, J = 8.3, 7.4, 1.7 Hz, 1H), 7.12 (td, J = 7.6, 1.1 Hz, 1H), 7.02 (dd, J = 8.4, 1.0 Hz, 1H), 3.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 144.0, 130.3, 128.3, 121.3, 120.4, 117.9 (q, J = 267.4 Hz), 117.6, 111.0, 55.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.3 (s, 3F); HRMS (ESI+) m/z calcd

for C₁₀H₈OF₃N₃: 243.0619, found 243.0623.

4-(4-Methoxyphenyl)-1-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-1H-1,2,3-triazole (1t): Yield: 91%; ¹H NMR

(400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.83 (d, J = 8.9 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.30 (d, J = 7.1 Hz, 1H), 7.17 (d, J = 7.7 Hz, 2H), 7.00 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 148.6, 148.3, 129.9, 127.6, 127.2, 121.8, 121.7, 117.5, 115.9 (tt, ¹ J_{CF} = 273.2 Hz, ² J_{CF} = 36.8 Hz, CF₂), 114.6, 111.6 (tt, ¹ J_{CF} = 271.1 Hz, ² J_{CF} = 43.5 Hz, CF₂), 55.5;

¹⁹F NMR (376 MHz, CDCl₃) δ -86.20 (t, *J* = 3.7 Hz, 2F), -99.31 (t, *J* = 3.6 Hz, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₄F₄N₃O₂: 368.10167, found 368.10175.

4-([1,1'-Biphenyl]-4-yl)-1-(1,1,2,2-tetrafluoro-2-phenoxyethyl)-1H-1,2,3-triazole (1u): Yield: 88%; ¹H NMR

N^{/N}N-CF₂CF₂OPh

(400 MHz, CDCl₃) δ 8.23 (s, 1H), 8.02–7.96 (m, 2H), 7.76–7.69 (m, 2H), 7.67– 7.63 (m, 2H), 7.51–7.44 (m, 2H), 7.41–7.35 (m, 3H), 7.33–7.27 (m, 1H), 7.18 (ddt, *J* = 8.6, 2.1, 0.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 148.2, 142.1, 140.4, 130.0, 129.0, 128.0, 127.8, 127.2, 127.1, 126.7, 126.6, 121.8,

118.4, 115.9 (tt, J = 276.8, 37.8 Hz), 111.6 (tt, J = 271.3, 42.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -86.20 (t, J = 3.5 Hz, 2F), -99.31 (t, J = 3.6 Hz, 2F); HRMS (ESI⁺) m/z calcd for C₂₂H₁₆F₄N₃O: 414.12240, found 414.12236.

4-([1,1'-Biphenyl]-4-yl)-1-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)-1H-1,2,3-triazole (1v): Yield:

97%; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.02–7.98 (m, 2H), 7.76–7.72 (m, 2H), 7.69–7.65 (m, 2H), 7.52–7.47 (m, 2H), 7.43– 7.38 (m, 1H), 7.13–7.08 (m, 2H), 6.89 (d, *J* = 9.2 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 148.1, 142.0, 141.8, 140.4, 129.0, 128.0, 127.8, 127.2, 126.7, 126.6, 123.0, 118.4,

115.9 (tt, J = 275.0, 37.6 Hz), 114.8, 111.6 (tt, J = 270.9, 42.0 Hz), 55.7; ¹⁹F NMR (376 MHz, CDCl₃) δ - 86.51 (t, J = 3.7 Hz, 2F), -99.26 (t, J = 3.7 Hz, 2F); HRMS (ESI⁺) m/z calcd for C₂₃H₁₈F₄N₃O₂: 444.13297, found 444.13313.

5-Chlorosubstituted triazole **1y and** 5-bromosubstituted triazoles **1aa**, **1ab**, **1ac** were synthesized according to literature.^[2]

5-Chloro-1-(pentafluoroethyl)-4-(p-tolyl)-1H-1,2,3-triazole (1y): Yield: 39%; ¹H NMR (400 MHz, CDCl₃) δ

N-C₂F₅ 7.84-7.77 (m, 2H), 7.68-7.59 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 139.9, 129.7, 127.0, 124.6, 121.9, 117.1 (qt, *J* = 288.0, 39.0 Hz), 110.9 (tq, *J* = 271.9, 43.3 Hz), 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.5 (s, 2F), -97.3 (s, 3F); HRMS (ESI) *m/z* calcd for C₁₁H₈ClF₅N₃: 312.03214, found 312.03218. 5-Bromo-1-(pentafluoroethyl)-4-(p-tolyl)-1H-1,2,3-triazole (1aa): Yield: 13%; ¹H NMR (400 MHz, CDCl₃) δ

 $\begin{array}{l} \mathsf{N}^{-\mathsf{C}_{2}\mathsf{F}_{5}} & 7.89\text{-}7.84 \ (\mathsf{m}, 2\mathsf{H}), 7.34\text{-}7.29 \ (\mathsf{m}, 2\mathsf{H}), 2.43 \ (\mathsf{s}, 3\mathsf{H}); {}^{13}\mathsf{C} \ \mathsf{NMR} \ (101 \ \mathsf{MHz}, \mathsf{CDCl}_3) \ \delta \ 147.1, \\ & 139.9, \ 129.7, \ 127.6, \ 124.9, \ 117.1 \ (\mathsf{qt}, \ J = 288.1, \ 39.1 \ \mathsf{Hz}), \ 111.1 \ (\mathsf{tq}, \ J = 271.9, \ 43.3 \\ & \mathsf{Hz}), \ 106.3, \ 21.6; {}^{19}\mathsf{F} \ \mathsf{NMR} \ (376 \ \mathsf{MHz}, \mathsf{CDCl}_3) \ \delta \ -82.0 \ (\mathsf{s}, 2\mathsf{F}), \ -95.7 \ (\mathsf{s}, 3\mathsf{F}); \ \mathsf{HRMS} \ (\mathsf{ESI}^+) \\ & m/z \ \mathsf{calcd} \ \mathsf{for} \ \mathsf{C}_{11}\mathsf{H}_8\mathsf{BrF}_5\mathsf{N}_3: \ 355.98163, \ \mathsf{found} \ 355.98171. \end{array}$

5-Bromo-4-(4-bromophenyl)-1-(pentafluoroethyl)-1H-1,2,3-triazole (1ab): Yield: 18%; ¹H NMR (400 MHz,

 $\begin{array}{c} \text{N}_{\text{N}} \sim C_2 F_5 \\ \text{Br} \end{array} \begin{array}{c} \text{CDCl}_3 \end{array} \delta 7.89 - 7.85 \ (\text{m}, 2\text{H}), \ 7.66 - 7.62 \ (\text{m}, 2\text{H}); \ ^{13}\text{C} \ \text{NMR} \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 146.1, \\ 132.3, \ 129.1, \ 126.8, \ 124.2, \ 117.1 \ (\text{qt}, \ J = 288.2, \ 39.0 \ \text{Hz}), \ 111.1 \ (\text{tq}, \ J = 272.5, \ 43.3 \\ \text{Hz}), \ 106.9; \ ^{19}\text{F} \ \text{NMR} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ -82.0 \ (\text{s}, \ 2\text{F}), \ -95.8 \ (\text{s}, \ 3\text{F}); \ \text{HRMS} \ (\text{ESI}^+) \\ m/z \ \text{calcd for} \ C_{10}\text{H}_5\text{Br}_2\text{F}_5\text{N}_3: \ 419.87649, \ \text{found} \ 419.87627. \end{array}$

5-Bromo-4-cyclohexyl-1-(pentafluoroethyl)-1H-1,2,3-triazole (1ac): Yield: 13%; ¹H NMR (400 MHz, CDCl₃)

δ 2.72 (tt, *J* = 12.0, 3.3 Hz, 1H), 1.90-1.82 (m, 4H), 1.79-1.67 (m, 3H), 1.47-1.25 (m, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 117.1 (qt, *J* = 287.8, 39.4 Hz), 111.0 (tq, *J* = 271.0, 42.6 Hz), 106.9, 34.7, 31.5, 26.3, 25.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.3 (s, 2F), -95.9 (s, 3F); HRMS (ESI⁺) *m/z* calcd for C₁₀H₁₂BrF₅N₃: 348.01293, found

348.01324.

5-lodosubstituted triazoles **1ae**, **1af**, **1ag**, **1ah** were prepared according to literature.^[1] 5-lodo-1-(pentafluoroethyl)-4-(p-tolyl)-1H-1,2,3-triazole (**1ae**): Yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ

N^NC₂F₅ 7.82-7.78 139.7, 129 Hz), 70.9, *m*/z calcd

7.82-7.78 (m, 2H), 7.34-7.30 (m, 2H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 139.7, 129.4, 128.3, 125.5, 117.1 (qt, *J* = 288.0, 39.0 Hz), 111.2 (tq, *J* = 270.9, 42.8 Hz), 70.9, 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.5 (s, 2F), -93.4 (s, 3F); HRMS (ESI⁺) *m/z* calcd for C₁₁H₈F₅IN₃: 403.96756, found 403.96776.

4-(4-Bromophenyl)-5-iodo-1-(pentafluoroethyl)-1H-1,2,3-triazole (**1af**): Yield: 65%; ¹H NMR (400 MHz, N^{-N} C₂F₅ CDCl₃) δ 7.84-7.77 (m, 1H), 7.68-7.59 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 132.1, 130.0, 127.5, 124.2, 117.1 (qt, *J* = 288.0, 38.8 Hz), 111.3 (tq, *J* = 271.8, 43.1 Hz), 71.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.5 (s, 2F), -93.4 (s, 3F); HRMS (APCI) Br m/z calcd for C₁₀H₅BrF₅IN₃: 467.86262, found 467.86310.

5-lodo-4-(4-nitrophenyl)-1-(pentafluoroethyl)-1H-1,2,3-triazole (**1ag**): Yield: 24%; ¹H NMR (400 MHz,

 $\sum_{i=1}^{N-C_2F_5} CDCl_3) \ \delta \ 8.39-8.35 \ (m,\ 2H),\ 8.19-8.14 \ (m,\ 2H);\ {}^{13}C \ NMR \ (101 \ MHz,\ CDCl_3) \ \delta \ 150.4, \\ 148.4,\ 134.8,\ 129.2,\ 124.1,\ 117.1 \ (qt,\ J=288.2,\ 38.7 \ Hz),\ 111.3 \ (tq,\ J=272.7,\ 43.2 \ Hz),\ 72.8;\ {}^{19}F \ NMR \ (376 \ MHz,\ CDCl_3) \ \delta \ -81.5 \ (s,\ 2F),\ -93.5 \ (s,\ 3F);\ HRMS \ (APCl) \ m/z \ calcd \ for \ C_{10}H_5F_5IN_4O_2:\ 434.93828,\ found\ 434.93875.$

4-([1,1'-Biphenyl]-4-yl)-5-iodo-1-(pentafluoroethyl)-1H-1,2,3-triazole (1ah): Yield: 36%; ¹H NMR (400 MHz,

CDCl₃) δ 8.03–7.99 (m, 2H), 7.77-7.72 (m, 2H), 7.68-7.64 (m, 2H), 7.51-7.45 (m, 2H), 7.42-7.37 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 142.5, 140.3, 129.1, 128.9, 128.0, 127.5, 127.4, 127.3, 117.2 (qt, *J* = 288.0, 39.0 Hz), 111.3 (tq, *J* = 271.8, 42.9 Hz), 71.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -81.4 (s, 2F), -93.3 (s, 3F); HRMS (ESI+) *m/z* calcd for C₁₆H₁₀F₅IN₃: 465.98341, found 465.98319.

3 Synthesis of ketenimines 2 – solvent optimization

Thermal decomposition of **1a** can be carried out in wide variety of aprotic solvents with exception of dipolar solvents (Scheme S1). Partial decomposition of THF at higher temperature was observed. The reaction was found to be concentration independent.

Scheme S1 Solvent optimization of the thermal decomposition of triazole 1a.

Table S1 Calculated and experimental NMR and IR data for ketenimine 2a.

4 Characterization of ketenimines 2 - structure and calculations

The ¹³C NMR spectra of prepared ketenimines **2** support the proposed bent C=C=N-R structure. The resonances of the central carbon (C_{α}) appear at very low fields at 196-210 ppm, whereas C_{β} chemical shifts depended strongly on the adjacent atom and were between 31 and 87 ppm.

 $\begin{array}{c|cccc} C\beta_{C\alpha} & 2a & {}^{13}C \ NMR & IR \\ \hline & & & & & \\ \hline & & & & \\ Ph & & & \\ 2a & & CF_2CF_3 \\ \hline & & & & \\ Ph & & & \\ 2a & & Calculated \\ \hline & & & \\ 2a & & Calculated \\ \hline & & & \\ 197.6 & 65.5 & 2004 \\ \hline \end{array}$

Calculated ¹³C NMR shifts of **2a** (see below for computational details) matched well with experimental values in CDCl₃ (Table S1). Calculated IR asymmetric $\nu_{C=C=N}$ frequency also compared well with the experiment (Table S1 and Figure S1, see below for computational details).

Figure S1 Calculated (red line) and experimental (blue line) IR spectra of **2a** in CHCl₃. Absorption signals corresponding to the solvents were removed.

¹³*C NMR* calculations: For the ¹³*C* NMR calculations was used the geometry optimized at the CASSCF(4,4)/6-31+g* level with CHCl₃ as solvent considered at the PCM level. We compared The PBE0, B3LYP and MP2 methods and the basis sets cc-pVDZ, cc-pVTZ and cc-pVQZ and also their augmented versions in order to find the best match for the similar molecules with the NMR characterization available in literature. The selected method for the final calculations was the PBE0/cc-pVDZ with CHCl₃ as solvent at the PCM level.

IR spectra calculations: The B3LYP/6-31+g* method for the geometry optimization as well as for the frequency calculation was chosen as the necessary vibrational scaling factors for CASSCF are not available in the NIST database.^[3] CHCl₃ was used as the solvent (at the PCM level) during the optimization as well as for the frequency calculations. The calculated frequencies are shown in Table S2.

Table S2 Assignments of vibrations to peaks in the IR spectra (Figure S1) of the studied ketenimine. The frequencies were calculated at the B3LYP/6-31+g^{*} level with the geometries optimized at the same level, and the scaling factor from Reference ^[3] was used. X means the C_β hydrogen atom.

Wavenumber (cm ⁻¹)	Vibration
666	Benzene
756	Benzene + N + CF ₂ CF ₃
887	Benzene + $C(X)$
978	C(F ₂)
1073	C(F ₂)
1134	Benzene + $C(X)$ + CF_2CF_3
1276	Benzene + CF ₂ CF ₃
1379	C(X) + N
2004	C=C=N
3073	Benzene

Moreover, inspired by the recent work of Li and co-workers^[4], we synthesized triazole **1n** in order to trap the potentially formed ketenimine **2n** via a six-membered intermediate which would lead to decomposition of the ketenimine. Indeed, when triazole **1n** was heated in the microwave reactor, full decomposition of the starting material was observed with no ketenimine formation (Scheme S2). One carbon longer derivative **2m** formed in good yield and displayed standard stability.

Ab initio energy calculations: We performed optimizations at different levels of electronic structure theory. The structures considered for the calculations are shown in Scheme S3. We were not able to find the singlet minima for carbene and nitrene structure using the MP2, DFT/PBE and DFT/PBE0 methods and 6-31+g* basis. The optimizations in the singlet states converged to ketenimine (for carbene) and to 2*H*-azirine (for nitrene). While the carbene and nitrene structures have a triplet ground state, the triazole is of singlet multiplicity in its ground state and the participation of the triplet intermediates would require a singlet–triplet

transition. That would make such process improbable. We were able to locate the singlet minima for nitrene and carbene with the multireference CASSCF approach (with active spaces (4,4) and (8,8) and the $6-31+g^*$ basis set), but that was achieved only thanks to frequent re-calculations of the Hessian. The perturbatively enhanced multireference method NEVPT2(4,4)/ $6-31+g^*$ confirmed the CASSCF results. These findings point to a very shallow energetic minima with low energetic barriers leading to a decomposition.

Scheme S3 *Left:* Reactive species considered in the *ab initio* calculations of the reaction mechanism (R = Me, R = H, R = CF₃). *Right:* Calculated energies of the structures (related to the starting triazole) expected in the reaction mechanism. The geometries were optimized at the CASSCF(4,4)/6-31+g^{*} level and the energies were calculated using the CCSD(T)/aug-cc-pVDZ method.

For the optimized structures, we calculated single point energies with the very accurate CCSD(T) method with the aug-cc-pVDZ basis. The results indicate very high energies of carbene and nitrene. It is, therefore, improbable that they would be involved in the mechanism (see Scheme S3). To further check the reliability of the CASSCF geometries, we optimized the ketenimine and 2*H*-azirine molecules also at the CCSD(T)/6-31+g* level. The resulting energy difference is the same as with the CASSCF geometries, i. e. 0.6 eV.

In order to explore the entropic effects, we calculated thermal corrections for temperatures 100, 120, 150, 170 and 200 °C at the BMK/6-31+g* level for the CASSCF geometries. The respective differences were of the order of 10^{-4} eV. We also calculated the energy difference between 2*H*-azirine and ketenimine, assuming DCM as the solvent (at the PCM level) at the CCSD(T)/aug-cc-pVDZ level observing the energy shift of only 0.03 eV.

Optimized structures:

Triazole optimized at the CASSCF(4,4)/6-31+g* level

Ν	-0.09853724283576	0.00005169176575	0.05200096511915
С	-0.11531222354998	0.00026046314722	1.42497059458876
С	1.19965149048486	0.00012810220409	1.76277726635035
Ν	1.92577477686718	0.00059548709321	0.58820580847089
Ν	1.15412977216501	-0.00020367243426	-0.39404091203031

С	1.87542752453746	-0.00012461083357	3.09923678130603
Н	-1.01947273712610	0.00029156426119	1.99047630409335
Н	2.94806588454204	-0.00003397679622	2.95591647516969
Н	1.60948510865035	0.87781020991056	3.67753711357528
Н	1.60958848032723	-0.87833855458088	3.67717048627454
С	-1.17128600451418	-0.00007964426302	-0.86744126852347
F	-2.30182248012822	0.00006874747986	-0.19409414884119
F	-1.14709923997707	1.05874933992457	-1.64118222894665
F	-1.14715910944282	-1.05917514687849	-1.64081723660643

<u>Diazo</u> optimized at the CASSCF(4,4)/6-31+g* level

F	0.02082537693694	-0.04861126316311	-0.44252157865449
F	-0.22257812975854	-0.40842112356871	1.64154899060751
F	1.72832555456441	-0.29906720677167	0.80396827598880
Ν	0.57482316798000	1.60170933300136	1.06399779737077
С	0.52144660110526	0.24835734258260	0.76247153649763
Н	-0.22917090599725	2.16449552424754	-0.75308199087830
Н	-0.62843898587756	4.50474905225047	-1.39495620785884
Н	-1.08117069157376	5.54094642634013	-0.06259707158098
С	-0.26639988571374	4.95551929435194	-0.47867556710785
Н	0.53797939675131	5.63376736768735	-0.74815187046128
С	0.16441595258059	2.45668856044016	0.20952330024637
С	0.18533014729020	3.85024233448407	0.43799599109524
Ν	0.68049243182215	4.20435465377339	1.64575796846002
Ν	1.08889596988999	4.48880670434447	2.63952242627540

<u>Carbene</u> optimized at the CASSCF(4,4)/6-31+g* level

F	-0.11489120951159	-0.08531193934261	-0.19878354359674
F	-0.12212733501402	-0.18434760878199	1.92383166913836
F	1.72719412697700	-0.18428907243788	0.85586409342488
Ν	0.60594591918371	1.73218348917181	1.04954316468391
С	0.51570063316458	0.33160399348617	0.89318944170701
Н	-0.45004967152510	2.09637395901152	-0.77920129205266
Н	0.10712277128107	5.05758231528695	-1.57728472417399
Н	-1.41942663535202	5.05747086845574	-0.69629429042046
С	-0.33886230301347	5.05335930579391	-0.58700283813914
Н	-0.05054144341196	5.97044272641305	-0.08728770539907

С	0.04112729110338	2.54112354870215	0.07138548715709
С	0.10976485611841	3.87121141424116	0.19024753767081

<u>1*H*-Azirine</u> optimized at the CASSCF(4,4)/6-31+g* level

Н	0.16532778254735	5.67113173272894	0.28641862344092
Н	0.19714667957601	5.24781321847814	-1.41945302497038
С	-0.26913645952715	5.02725197521870	-0.46615611963506
Н	-1.32785457794374	5.24780452547118	-0.53905685184940
С	-0.05480908874344	3.60735115754330	-0.09491641636294
С	-0.11004409759312	2.31292937441889	-0.19058512771002
Ν	0.56797741549715	2.74277927047341	0.98377638506709
С	1.23109726207027	2.57169181281127	2.13231386335104
F	2.45829991242590	3.12035230287005	2.14928000601395
F	0.63220820713216	3.12035963744055	3.20359219621586
F	1.38066881177641	1.28118150334442	2.39138346290683
Н	-0.37635584721780	1.39075648920112	-0.65185199646789

<u>Ketenimine</u> optimized at the CASSCF(4,4)/6-31+g* level

Н	-0.45159204808794	5.58932253016240	-0.00998212460848
Н	0.74240258915770	5.03677847305563	-1.17195943283104
С	-0.13380028860786	4.74117566454067	-0.60595136054758
Н	-0.92535403778272	4.49962889860876	-1.30379468019409
С	0.18836444868053	3.56914232467378	0.29009014564464
С	-0.36804103539183	2.38993583904416	0.19724080274303
Ν	-0.97025703788174	1.32445689705611	0.19054975603038
С	-0.51520680881539	0.24981609828494	-0.60215401412158
F	0.56315940083551	0.51660136790632	-1.32415700876942
F	-0.22709529042442	-0.78120273304688	0.16468397637497
F	-1.46326113457081	-0.11966925265228	-1.43812603732176
Н	0.94459024288898	3.67388289236638	1.04960197760095

<u>Nitrene</u> optimized at the CASSCF(4,4)/6-31+g* level

Н	-0.03802265213818	5.97103973266285	-0.01366735088592
Н	0.17542871938445	5.04010503884042	-1.48411719105569
С	-0.28495396459421	5.03622158613059	-0.50044150029842
Н	-1.36025729822296	5.00776760637031	-0.64552813032651
С	0.19759213422397	3.89066613730885	0.33885784989815

С	0.00900457191727	2.46901481590480	0.02303494347140
Ν	0.44489577178058	1.54597092170114	0.74245102121685
Н	0.74679086611376	4.07812523435341	1.24025793074194
С	-0.76224036681147	2.05091706255065	-1.26077027989731
F	-0.83276388684005	0.74867232397186	-1.38807935413273
F	-1.99409210926031	2.52983294589097	-1.23346782283920
F	-0.16454578555285	2.53867759431414	-2.33423511589254

<u>2H-Azirine</u> optimized at the CASSCF(4,4)/6-31+g* level

0.23074234628509	5.38117593688448	-0.64206466669086
-0.11500582231045	4.22600069845392	-0.11984173652845
-0.14408706629284	4.35662150958692	1.19454095700650
-1.33914965910286	3.93806234375823	-0.52265099813889
0.83392034468327	3.14512753113792	-0.51530775409442
1.23369758118202	1.77237373445002	-0.44431533247842
2.47053603944881	1.95160911021295	1.30684842079302
1.97492540555400	1.18162940285894	0.72707420331651
1.28676423727120	0.65254226862647	1.38024417790266
2.72310579720708	0.47381382279926	0.38581118618728
0.77168021519755	1.07430018530711	-1.12146912329191
1.88038058087712	3.03120045592376	-1.18724433398303
	0.23074234628509 -0.11500582231045 -0.14408706629284 -1.33914965910286 0.83392034468327 1.23369758118202 2.47053603944881 1.97492540555400 1.28676423727120 2.72310579720708 0.77168021519755 1.88038058087712	0.230742346285095.38117593688448-0.115005822310454.22600069845392-0.144087066292844.35662150958692-1.339149659102863.938062343758230.833920344683273.145127531137921.233697581182021.772373734450022.470536039448811.951609110212951.974925405554001.181629402858941.286764237271200.652542268626472.723105797207080.473813822799260.771680215197551.074300185307111.880380580877123.03120045592376

<u>**2a** ketenimine</u> optimized at the CASSCF(4,4)/6-31+g* level

F	-1.26261286709461	1.67736412721285	2.51153478996074
С	0.06410979426460	1.70458754407484	2.53503784431529
F	0.49733341292530	0.67991339501943	1.79935824442558
F	1.83594231916246	3.05546720562523	1.81789022772939
С	0.51988180924687	2.99411027815370	1.83507698672456
F	0.05689476847154	4.05081601001365	2.45788610408125
F	0.08550067179744	3.01118264616686	0.59607327021535
Ν	0.50653470030066	1.67400253463284	3.87743841692700
С	1.28377682853374	0.82402844346476	4.27393850087860
С	2.09824931014154	-0.04262960252803	4.79686080715355
Н	1.63707899333057	-0.92570641213727	5.20321751440305
С	3.57246915920757	0.08205804524225	4.86421544935037
С	4.30586811779518	-0.94735416824470	5.45504420478282
С	5.69070647789044	-0.86828990960957	5.54548916241143

С	6.36008041300018	0.24119843449709	5.04587189074357
С	5.63598614841416	1.27129829051178	4.45509622678480
С	4.25322228402470	1.19466628339732	4.36311802384735
Н	3.79596627867559	-1.81055059511156	5.84545519904596
Н	6.24044876111039	-1.67045850057344	6.00411621816343
Н	7.43109867290566	0.30382935632429	5.11475366178591
Н	6.14583951586970	2.13369948463175	4.06489154660154
Н	3.71050343002631	2.00014210923593	3.90123770966842

2a ketenimine optimized at the B3LYP/6-31+g* level

С	4.23142649631423	1.18975098641971	4.41427760583845
С	3.56348430333277	0.03351141572260	4.86318723504627
С	4.31818703849725	-1.00820505881273	5.43333310482145
С	5.70618300279061	-0.89663962716907	5.55371003828239
С	6.36158756128409	0.25578986925164	5.10729471388940
С	5.61678330990760	1.29768471970803	4.53770219465177
С	2.10129544591296	-0.12652730884941	4.76714129919416
С	1.25515929782661	0.73478440702145	4.24753076738019
Ν	0.44900146444233	1.59975723448631	3.88322017180557
С	-0.00643949673671	1.68732688377391	2.53713474512565
С	0.53087124024751	2.97167257983814	1.83811227779796
F	0.05783245172554	3.05168777907421	0.58380816247760
F	-1.36633853289046	1.75426778267207	2.53586779846851
F	0.34223581442812	0.62380917105321	1.75074247338620
F	1.87549333986405	2.94157393191318	1.78692171515532
F	0.15147960967146	4.07057300399357	2.50935134871475
Н	1.66119910166482	-1.04969566163013	5.14405579841645
Н	3.81387240665485	-1.90627420508018	5.78266928709235
Н	6.27343860240305	-1.71178903939747	5.99646106045286
Н	7.44120753118545	0.34324803428551	5.20119295972819
Н	6.11676822263479	2.19725560635838	4.18718708523993
Н	3.66862478883897	2.00722649536705	3.96958415703442

5 Synthesis of *N*-fluoroalkyl-ketenimines 2 (General procedure)

No	Compd.	R _F	Х	R	n (mmol)	T (℃)	Time (min)	Yield (%)
1	2a	C_2F_5	Н	Ph	0.20	155	60	97
2	2b	C_2F_5	Н	Tol	0.20	150	40	97
3	2c	C_2F_5	Н	$4-\text{MeO-C}_6\text{H}_4$	0.20	160	40	97
4	2d	C_2F_5	Н	$2-MeO-C_6H_4$	0.20	160	60	97
5	2e	C_2F_5	Н	$4-F-C_6H_4$	0.20	150	60	97
6	2f	C_2F_5	Н	4-Br-C ₆ H ₄	0.25	155	60	97
7	2g	C_2F_5	Н	$4-NO_2-C_6H_4$	0.25	175	180	97
8	2h	C_2F_5	Н	naphthalen-1-yl	0.20	160	40	97
9	2i	C_2F_5	Н	phenanthren-9-yl	0.25	155	30	97
10	2j	C_2F_5	Н	thiophen-1-yl	0.20	150	60	97
11	2k	C_2F_5	Н	cyclohexyl	0.30	150	60	67
12	21	C_2F_5	Н	dodecan-1-yl	0.53	150	60	95
13	2m	C_2F_5	Н	(2-AcO)-propyl	0.35	150	60	77
14	2n	C_2F_5	Н	AcO-CH ₂	0.35	150	60	0
15	2o	CF ₃	Н	Ph	0.25	160	180	80
16	2р	CF ₃	Н	$4-\text{MeO-C}_6\text{H}_4$	0.20	140	60	97
17	2q	CF ₃	Н	$2-MeO-C_6H_4$	0.20	160	60	97
18	2r	CF_2CF_2Br	Н	Ph	0.20	160	60	97
19	2s	CF_2CF_2O-Ph	Н	Tol	0.34	160	60	97
20	2t	CF_2CF_2O-Ph	Н	$4-\text{MeO-C}_6\text{H}_4$	0.20	160	60	97
21	2u	CF_2CF_2O-Ph	Н	$4-Ph-C_6H_4$	0.30	155	120	97
22	2v	CF ₂ CF ₂ O-4-MeO-Ph	Н	$4-Ph-C_6H_4$	0.25	165	120	96
23	2w	CF_2CF_2S -Ph	Н	Ph	0.25	165	60	90
24	2x	C_2F_5	CI	Ph	0.33	150	60	87
25	2у	C_2F_5	CI	Tol	0.30	150	60	97
26	2z	C_2F_5	Br	Ph	0.49	150	60	97
27	2aa	C_2F_5	Br	Tol	0.17	150	60	97
28	2ab	C_2F_5	Br	4-Br-C ₆ H ₄	0.15	150	60	93
29	2ac	C_2F_5	Br	cyclohexyl	0.14	150	60	92
30	2ad	C_2F_5	I	Ph	0.20	130	30	97
31	2ae	C_2F_5	Ι	Tol	0.20	130	40	97
32	2af	C_2F_5	Ι	$4-Br-C_6H_4$	0.20	130	30	97
33	2ag	C_2F_5	Ι	$4-NO_2-C_6H_4$	0.16	130	30	96
34	2ah	C_2F_5	Ι	$4-Ph-C_6H_4$	0.13	130	30	92
35	2ai	C_2F_5	Ι	cyclohexyl	0.20	140	60	89
36	2aj	C_2F_5	I	<i>n</i> -butyl	0.24	150	40	97
37	2ak	CF₂H	I	Tol	0.20	130	45	95
38	2al	C_2F_5	<i>n</i> -Pr	Ph	0.23	160	75	90
39	2am	CF₂H	Н	Ph	0.30	165	180	0
40	2an	Et	Н	Ph	0.30	165	180	0

Triazole **1** (0.1-0.5 mmol) in DCE (3 mL) was heated under MW irradiation to 140-160 $^{\circ}$ C for the time given below (20 min to 3 h). The solvent was then evaporated under reduced pressure.

Gas chromatogram and mass spectrum (GCMS) of triazole 1a (ketenimine 2a).

DSC (red line) and TG (black line) analyses of 4-(*p*-tolyl)-1-(perfluoroethyl)-1*H*-1,2,3-triazole **1b** (9.972 mg)

6 Ketenimines 2 - characterization

N-(Pentafluoroethyl)-2-phenylethen-1-imine (2a): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.31 (m,

96.69 (m, 2F); IR (CHCl₃) 3065 (w), 3034 (w), 1600 (w) 1498 (m), 1458 (m), 1352 (m), 1287 (m), 1197 (s), 1031 (m), 765 (m), 692 (m) (Ph), 2026 (s) (C=C=N), 1213 (s), 1161 (m, ν (CF₃), ν (CF₂)); HRMS (EI⁺) *m/z* calcd for C₁₀H₆F₅N: 235.0420, found 235.0421.

N-(Pentafluoroethyl)-2-(p-tolyl)ethen-1-imine (2b): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.12 (dd, 4H),

5.72–5.65 (m, 1H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 206.0 (t, *J* = 11.4 Hz), 137.6, 130.1, 126.8, 124.4, 117.7 (qt, *J* = 286.4, 41.5 Hz), 111.6 (tq, *J* = 265.6, 39.4 Hz), 64.9, 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.8, -96.41 to -96.90 (m, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₁H₉F₅N: 250.0655, found 250.0654.

2-(4-Methoxyphenyl)-N-(pentafluoroethyl)ethen-1-imine (2c): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.10–

•=N-C₂F

7.06 (m, 2H), 6.92–6.87 (m, 2H), 5.70–5.66 (m, 1H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.1 (t, *J* = 11.6 Hz), 159.2, 128.0, 119.1, 117.7 (qt, *J* = 286.4, 41.5 Hz), 115.0, 111.6 (tq, *J* = 265.2 Hz, 39.5 Hz), 64.7, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.7 (s, 3F), -96.72 to -96.88 (m, 2F); HRMS (ESI⁺) *m/z* calcd for

C₁₁H₈OF₅N: 265.05206, found 265.05172.

2-(2-Methoxyphenyl)-N-(pentafluoroethyl)ethen-1-imine (2d): Yellow oil; ¹H NMR (400 MHz, CDCl₃)

δ 7.26–7.21 (m, 1H), 7.07 (dd, *J* = 7.5, 1.7 Hz, 1H), 6.93 (td, *J* = 7.5, 1.1 Hz, 1H), 6.87 (d, *J* = 8.3 Hz, 1H), 5.66–5.61 (m, 1H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.2 (t, *J* = 11.3 Hz), 156.6, 128.7, 127.9, 121.2, 117.9 (qt, *J* = 286.3, 42.0 Hz),

117.1, 111.6 (tq, J = 264.3, 39.4 Hz), 110.6, 60.6, 55.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –85.6 (s, 3F), -96.69 to -96.89 (m, 2F); HRMS (EI⁺) m/z calcd for C₁₁H₈OF₅N: 265.0526, found 265.0525.

2-(4-Fluorophenyl)-N-(pentafluoroethyl)ethen-1-imine (2e): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.15–

E•=**N**−**C**₂**F**₅ 7.10 (m, 2H), 7.08–7.02 (m, 2H), 5.71–5.66 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 205.0 (t, *J* = 10.6 Hz), 162.19 (d, *J* = 247.6 Hz), 128.38 (d, *J* = 8.1 Hz), 123.49 (d, *J* = 3.5 Hz), 116.57 (d, *J* = 22.2 Hz), 119.1 (qt, *J* = 284.1, 41.2 Hz), 111.6 (tq, *J* = 263.8, 38.9 Hz), 64.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.7 (s, 3F), -96.61 to -96.76 (m, 2F),

-114.4 (tt, J = 8.5, 5.2 Hz, 1F). HRMS (EI⁺) m/z calcd for C₁₀H₅F₆N: 253.0326, found 253.0329.

2-(4-Bromophenyl)-N-(pentafluoroethyl)ethen-1-imine (2f): Brown oil; 1H NMR (400 MHz, CDCl₃) δ 7.48-

7.42 (m, 2H), 7.05–6.96 (m, 2H), 5.67–5.63 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 204.0 (t, J = 11.3 Hz), 132.6, 128.3, 126.9, 121.2, 117.6 (dt, J = 286.4, 41.1 Hz), 111.4 (td, J = 265.6, 39.8 Hz), 64.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.72, -96.45 to -96.58 (m, 2F). HRMS (EI⁺) m/z calcd for C₁₀H₅BrF₅N: 312.9520, found 312.9522.

2-(4-Nitrophenyl)-N-(pentafluoroethyl)ethen-1-imine (2g): Brown oil; 1H NMR (400 MHz, CDCl₃) δ 8.23-

8.15 (m, 2H), 7.33–7.27 (m, 2H), 5.81–5.77 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 200.7 (t, J = 10.9 Hz), 146.8, 136.1, 127.2, 124.7, 117.5 (dt, J = 286.5, 40.9 Hz), 111.4 (td, J = 266.7, 40.2 Hz), 64.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.64 (s, 3F), -95.98 to -96.06 (m, 2F). HRMS (EI⁺) m/z calcd for C₁₀H₅F₅N₂O₂: 280.0266, found

280.0264.

2-(Naphthalen-1-yl)-N-(pentafluoroethyl)ethen-1-imine (2h): Yellow oil; 1H NMR (400 MHz, CDCl₃) & 8.06-

7.37 (m, 7H), 6.37–6.19 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.8, 134.2, 130.7, 129.1, 128.5, 126.8, 126.4, 126.0, 125.9, 124.1, 123.5, 117.7 (qt, *J* = 286.5, 41.3 Hz), 111.7 (tq, J=265.8, 39.8), 61.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.7 (s, 3F), -96.37 to -96.75 (m, 2F); HRMS (EI⁺) *m/z* calcd for C₁₄H₈F₅N: 285.0577, found 285.0578.

N-(Pentafluoroethyl)-2-(phenanthren-9-yl)ethen-1-imine (2i): White crystals; m.p. 64-66 ℃; ¹H NMR (400

MHz, CDCl₃) δ 8.79–8.71 (d, *J* = 8.1 Hz, 1H), 8.66 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 7.8, 1.7 Hz, 1H), 7.84 (d, *J* = 7.8, 1.7 Hz, 1H), 7.77–7.55 (m, 5H), 6.31–6.25 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4 (t, *J* = 11.4 Hz), 131.5, 131.1, 130.2, 129.6, 128.4, 127.2, 127.2, 127.1, 124.3, 123.5, 122.8, 122.7, 117.8 (qt, *J* = 286.4, 41.6 Hz), 111.8 (tq, *J* = 265.7, 39.6 Hz), 61.5. ¹⁹F NMR (376 MHz, CDCl₃)

 δ -85.57 (s, 3F), -96.42 to -96.62 (m, 2F). HRMS (EI⁺) *m/z* calcd for C₁₈H₁₀F₅N: 335.0728, found 335.0727. X-ray analysis - see Section 9 – Crystallographic data.

N-(Pentafluoroethyl)-2-(thiophen-3-yl)ethen-1-imine (2j): Yellow oil; 1H NMR (400 MHz, CDCl₃) δ 7.34 (dd,

 $J = 5.1, 3.0 \text{ Hz}, 1\text{H}, 7.08 \text{ (dd}, J = 3.0, 1.3 \text{ Hz}, 1\text{H}), 6.88 \text{ (dd}, J = 5.0, 1.3 \text{ Hz}, 1\text{H}), 5.84-5.81 \text{ (m, 1H)}; {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCI}_3) \delta 206.9, 127.3, 126.0, 125.9, 121.4, 117.6 (qt, J = 286.4, 41.4 \text{ Hz}), 111.5 (tq, J = 265.0, 39.5 \text{ Hz}), 60.1; {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCI}_3)$

 δ -85.6 (s, 3F), -96.69 to -96.94 (m, 2F); HRMS (APCI) m/z calcd for C_8H_4F_5NS: 240.99791, found 240.99782.

2-Cyclohexyl-N-(pentafluoroethyl)ethen-1-imine (2k): Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 4.56–4.48

 $\begin{array}{c} \mathsf{H} \\ \bullet = \mathsf{N}^{-}\mathsf{C}_{2}\mathsf{F}_{5} \end{array} \qquad (\mathsf{m}, 1\mathsf{H}), 2.21 (\mathsf{tdd}, J = 11.0, 6.5, 3.3 \,\mathsf{Hz}, 1\mathsf{H}), 1.85 - 1.70 (\mathsf{m}, 3\mathsf{H}), 1.70 - 1.61 (\mathsf{m}, 1\mathsf{H}), \\ 1.41 - 1.09 (\mathsf{m}, 6\mathsf{H}); {}^{13}\mathsf{C} \ \mathsf{NMR} (101 \ \mathsf{MHz}, \mathsf{CDCI}_{3}) \ \delta \ 203.3 (\mathsf{t}, J = 11.9 \ \mathsf{Hz}), 117.8 (\mathsf{qt}, J = 286.2, 42.3 \ \mathsf{Hz}), 111.7 (\mathsf{tq}, J = 264.0, 39.1 \ \mathsf{Hz}), 65.0, 33.6, 33.3, 25.9, 25.8; {}^{19}\mathsf{F} \\ \mathsf{NMR} (376 \ \mathsf{MHz}, \mathsf{CDCI}_{3}) \ \delta \ \cdot 85.8 (\mathsf{s}, 3\mathsf{F}), {}^{-}97.37 \ \mathsf{to} \ -97.51 (\mathsf{m}, 2\mathsf{F}); \mathsf{IR} (\mathsf{CHCI}_{3}) \ 2928 (\mathsf{m}), 2856 (\mathsf{m}, v(\mathsf{C}\cdot\mathsf{H})), \end{array}$

1450 (m), 1343 (m, δ (CH₂)), 948 (m), 896 (m, cyclohexane), 2029 (s, C=C=N), 1217 (s), 1157 (m, ν (CF₃), ν (CF₂)); HRMS (APCI) *m/z* calcd for C₁₀H₁₃F₅N: 242.09627, found 242.09607.

2-Dodecyl-N-(pentafluoroethyl)ethen-1-imine (21): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.49 (tt, J = 7.3,

 $\begin{array}{l} \begin{array}{l} H\\ \hline \\ C_{12}H_{25} \end{array} & \begin{array}{l} 2.7 \ \text{Hz}, 1 \text{H} \end{pmatrix}, 2.12 \ (\text{q}, J = 7.3 \ \text{Hz}, 2 \text{H}), 1.44 \ (\text{q}, J = 7.1 \ \text{Hz}, 2 \text{H}), 1.27 \ (\text{s}, 18 \text{H}), 0.91 - 0.85 \ (\text{m}, 3 \text{H}); ^{13}\text{C} \ \text{NMR} \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 203.4, 129.5, 117.9 \ (\text{qt}, J = 286.2, 42.1 \ \text{Hz}), 111.8 \ (\text{tq}, J = 263.5, 39.1 \ \text{Hz}), 58.7, 32.1, 29.82, 29.81, 29.77, 29.7, 29.5, 29.4, 29.0, 22.9, 14.3, 1.2; ^{19}\text{F} \ \text{NMR} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ -86.0 \ (\text{s}, 3 \text{F}), -96.5 \ (\text{dd}, J = 5.5, 2.6 \ \text{Hz}, 2 \text{F}); \ \text{HRMS} \ (\text{EI}^+) \ m/z \ \text{calcd for } C_{16}H_{26}F_5 \text{N} \\ 327.1980, \ \text{found} \ 327.1979. \end{array}$

5-((Pentafluoroethyl)imino)pent-4-en-2-yl acetate (2m): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.92 (dt, J

43.6, 21.1, 19.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -86.0 (s, 3F), -97.34 to -97.71 (m, 2F); HRMS (APCI) *m/z* calcd for C₉H₁₁F₅NO₂: 260.07045 found 260.07041.

2-Phenyl-N-(trifluoromethyl)ethen-1-imine (20): Brown oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.18 (m, 5H),

•=N-CF₃ 5.73–5.67 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.85 (q, *J* = 8.7 Hz), 129.40, 127.59, 126.87, 120.03 (q, *J* = 265.7 Hz), 65.51; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.74 to -57.95 (m, 3F); HRMS (EI⁺) m/z calcd for C₉H₆F₃N: 185.0447, found 185.0447.

2-(4-Methoxyphenyl)-N-(trifluoromethyl)ethen-1-imine (2p): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.11-

MeC

7.07 (m, 2H), 6.94–6.85 (m, 2H), 5.67–5.63 (m, 1H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.8 (q, *J* = 8.8 Hz), 159.2, 128.1, 120.1 (q, *J* = 265.8 Hz), 119.3, 115.0, 65.2, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.03 to -58.14 (m, 3F); HRMS (EI⁺) *m*/*z* calcd for C₁₀H₈OF₃N: 215.0558, found 215.0558.

2-(2-Methoxyphenyl)-N-(trifluoromethyl)ethen-1-imine (2g): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.29–

 $\begin{array}{c} \text{H} \\ \text{Image series} \\ \text{Image series}$

N-(2-Bromo-1,1,2,2-tetrafluoroethyl)-2-phenylethen-1-imine (2r): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

= $N-CF_2CF_2Br$ 7.37–7.31 (m, 2H), 7.27–7.21 (tt, J = 7.40, 1.28, 1H), 7.20–7.15 (m, 2H), 5.69– 5.65 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 204.2 (t, J = 11.1 Hz), 129.0, 127.6, 127.2, 126.6, 114.5 (tt, J=313.8, 43.6), 112.9 (tt, J=296.6, 31.1), 64.6; ¹⁹F NMR

(376 MHz, CDCl₃) δ -67.67 (t, *J* = 5.1 Hz, 2F), -92.00 to -93.06 (m, 2F); HRMS (EI⁺) *m/z* calcd for C₁₀H₆BrF₄N: 294.9620, found 294.9622.

N-(1,1,2,2-Tetrafluoro-2-phenoxyethyl)-2-(p-tolyl)ethen-1-imine (2s): Yellow oil; ¹H NMR (400 MHz, CDCl₃)

 $= \mathbb{N} - \mathbb{CF}_2 \mathbb{CF}_2 \mathbb{OPh}$ $\delta 7.42 - 7.36 \text{ (m, 2H), } 7.32 - 7.27 \text{ (m, 1H), } 7.25 - 7.21 \text{ (m, 2H), } 7.15 - 7.08 \text{ (m, 4H), } 5.64 - 5.60 \text{ (m, 1H), } 2.33 \text{ (s, 3H); } {}^{13}\mathbb{C} \text{ NMR (101 MHz, CDCl_3)} \delta 204.1 \text{ (t, } J = 11.9 \text{ Hz}), \\ 149.1, 137.1, 130.0, 129.8, 126.7, 126.7, 125.2, 121.8, 116.4 \text{ (tt, } J = 276.2, 37.6 \text{ Hz}), \\ 112.9 \text{ (tt, } J = 263.8, 38.4 \text{ Hz}), \\ 64.2, 21.3; \, {}^{19}\mathbb{F} \text{ NMR (376)}$

MHz, CDCl₃) δ -86.89 to -87.50 (m, 2F), -95.82 to -95.94 (m, 2F); HRMS (EI⁺) *m*/*z* calcd for C₁₇H₁₃F₄NO: 323.0933, found 323.0935.

2-(4-Methoxyphenyl)-N-(1,1,2,2-tetrafluoro-2-phenoxyethyl)ethen-1-imine (2t): Yellow oil; ¹H NMR (400

•=N-CF₂CF₂OPh

MeO

MHz, CDCl₃) δ 7.43–7.36 (m, 2H), 7.32–7.27 (m, 1H), 7.27–7.20 (m, 2H), 7.15–7.11 (m, 2H), 6.89–6.85 (m, 2H), 5.64–5.61 (m, 1H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.1 (t, *J* = 11.8 Hz), 159.0, 149.1, 129.8, 127.9, 126.7, 121.8, 120.0, 116.4 (tt, *J* = 274.7, 37.2 Hz), 114.9, 112.9 (tt,

 $J = 264.3, 37.2 \text{ Hz}), 63.9, 55.4; {}^{19}\text{F NMR} (376 \text{ MHz}, \text{CDCI}_3) \delta - 86.80 \text{ to } -87.51 \text{ (m, 2F)}, -95.58 \text{ to } -96.43 \text{ (m, 2F)}; \text{HRMS (EI}^+) m/z \text{ calcd for } C_{17}\text{H}_{13}\text{F}_4\text{NO}_2$: 339.08769, found 339.08743.

2-([1,1'-Biphenyl]-4-yl)-N-(1,1,2,2-tetrafluoro-2-phenoxyethyl)ethen-1-imine (2u): Yellow oil; ¹H NMR (400

H --CF₂CF₂OPh Ph

MHz, CDCl₃) δ 7.60–7.54 (m, 2H), 7.48–7.21 (m, 12H), 5.69–5.67 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.2 (t, *J* = 11.8 Hz), 149.1, 140.6, 140.1, 130.9, 129.9, 129.0, 128.0, 127.6, 127.2, 127.0, 126.8, 121.8, 116.4 (tt, *J* = 267.7, 38.0 Hz), 112.9 (tt, *J* = 263.7, 38.4 Hz), 64.0; ¹⁹F NMR (376 MHz,

CDCl₃) δ -86.78 to -87.52 (m, 2F), -95.42 to -96.13 (m, 2F); HRMS (EI⁺) *m*/*z* calcd for C₂₂H₁₅F₄NO: 385.1084, found 385.1099.

2-([1,1'-Biphenyl]-4-yl)-N-(1,1,2,2-tetrafluoro-2-(4-methoxyphenoxy)ethyl)ethen-1-imine (2v): Yellow oil; ¹H

NMR (400 MHz, CDCl₃) δ 7.66–7.54 (m, 4H), 7.51–7.45 (m, 2H), 7.40–7.35 (m, 1H), 7.31–7.27 (m, 2H), 7.20–7.16 (m, 2H), 6.96– 6.83 (m, 2H), 5.70–5.67 (m, 1H), 3.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1 (t, *J* = 11.9 Hz), 158.2, 142.2 (t, *J* = 1.8 Hz), 140.5,

140.1, 129.0, 129.0, 127.9, 127.6, 127.1, 127.0, 123.1, 116.4 (tt, J = 275.2, 37.8 Hz), 114.7, 112.9 (tt, J = 264.5, 38.6 Hz), 64.0, 55.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -87.06 to -87.83 (m, 2F), -95.58 to -95.68 (m, 2F); HRMS (EI⁺) m/z calcd for C₂₃H₁₇F₄NO₂: 415.1190, found 415.1197.

2-Phenyl-N-(1,1,2,2-tetrafluoro-2-(phenylthio)ethyl)ethen-1-imine (2w): Orange oil; product contains ca 8%

•=N-CF₂CF₂SPh of impurities (starting triazole **1w**), chromatographic separation was not successful; ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.67 (m, 2H), 7.56–7.15 (m, 8H), 5.62–5.58 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.9 (t, *J* = 11.7 Hz),

137.4, 130.9, 129.5, 129.3, 128.6, 127.2, 126.8, 123.7 (t, *J* = 2.6 Hz), 122.7 (tt, *J* = 289.6, 38.8 Hz), 115.2

(tt, J = 265.6, 32.2 Hz), 64.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -89.83 to -90.38 (m, 2F), -91.09 to -92.14 (m, 2F); HRMS (APCI) *m/z* calcd for C₁₆H₁₁F₄NS: 325.0542, found 325.0543.

2-Chloro-N-(pentafluoroethyl)-2-phenylethen-1-imine (2x): Yellow oil; 1H NMR (400 MHz, CDCl₃) & 7.49-

 $= N - C_2 F_5$ 7.42 (m, 2H), 7.40–7.29 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.4 (t, *J* = 11.1 Hz), 129.3, 129.0, 127.9, 125.3, 117.6 (qt, *J* = 286.7, 40.5 Hz), 111.5 (tq, *J* = 267.3, 40.0 Hz), 87.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.4 (s, 3F), -96.77 to -96.99 (m, 2F); IR

 $(CHCl_3) \ 3075 \ (w), \ 1494 \ (m), \ 1450 \ (m), \ 712 \ (m, \ Ph), \ 2028 \ (s, \ C=C=N), \ 1344 \ (s), \ 1140 \ (s), \ 1043 \ (s, \ \nu(CF_3), \ \nu(CF_2)); \ HRMS \ (APCI) \ m/z \ calcd \ for \ C_{10}H_6CIF_5N \ [M+H]: \ 270.01034, \ found \ 270.01088.$

HRMS (APCI) m/z calcd for C₁₁H₈CIF₅N [M+H]: 284.02599, found 284.02652.

2-Bromo-N-(pentafluoroethyl)-2-phenylethen-1-imine (2z): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45–

7.38 (m, 4H), 7.36–7.31 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 204.0 (t, *J* = 11.2 Hz), 129.3, 129.0, 128.9, 126.6, 117.7 (qt, *J* = 286.6, 40.7 Hz), 111.2 (tq, *J* = 266.8, 40.0 Hz), 70.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.4 (s, 3F), -96.33 to -96.84 (m, 2F); IR

 $(CHCI_3)$ 3068 (w), 3035 (w), 1597 (m), 1493 (m), 1449 (m, Ph), 2026 (s, C=C=N), 1344 (s), 1173 (s), 1043 (s, $v(CF_3)$, $v(CF_2)$); HRMS (APCI) *m/z* calcd for C₁₀H₅BrF₅N: 312.95200, found 312.95186.

2-Bromo-N-(pentafluoroethyl)-2-(p-tolyl)ethen-1-imine (2aa): Yellow oil; 1H NMR (400 MHz, CDCI3) & 7.29-

 $= N - C_2 F_5$ 7.25 (m, 2H), 7.24–7.21 (m, 2H), 3.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.8 (t, J = 11.2 Hz), 139.2, 129.9, 126.4, 124.6, 117.5 (qt, J = 286.8, 40.8 Hz), 111.1 (tq, J = 266.6, 39.9 Hz), 70.5, 21.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.4 (s, 3F), -96.61 to -

96.87 (m, 2F); HRMS (APCI) *m/z* calcd for C₁₀H₅BrF₅N: 312.95200, found 312.95186. *2-Bromo-2-(4-bromophenyl)-N-(pentafluoroethyl))ethen-1-imine* (**2ab**): Yellow oil; ¹H NMR (400 MHz,

CDCl₃) δ 7.56–7.51 (m, 2H), 7.25–7.21 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1 (t, *J* = 11.2 Hz), 132.5, 128.0, 127.0, 123.0, 117.6 (qt, *J* = 286.9, 40.6 Hz), 111.1 (tq, *J* = 267.2, 40.1 Hz), 69.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.4 (s, 3F), -96.16 to -96.79 (m, 2F); HRMS (APCI) *m*/*z* calcd for C₁₀H₄Br₂F₅N: 390.86252, found

390.86190.

2-Bromo-2-(cyclohexyl)-N-(pentafluoroethyl))ethen-1-imine (2ac): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

•= $N-C_2F_5$ 2.24 (tt, J = 11.1, 3.5 Hz, 1H), 1.98–1.92 (m, 2H), 1.79 (dt, J = 12.4, 3.1 Hz, 2H), 1.71–1.63 (m, 1H), 1.39–1.14 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 202.7 (t, J = 11.6 Hz), 117.7 (qt, J = 286.7, 41.4 Hz), 111.1 (tq, J = 265.4, 39.5 Hz), 74.7, 43.6,

39.82 31.6, 25.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.4 (s, 3F), -97.53 to -97.63 (m, 2F); HRMS (APCI) *m/z* calcd for C₁₀H₁₀BrF₅N [M-H]: 317.99113, found 317.99100.

2-lodo-N-(pentafluoroethyl)-2-phenylethen-1-imine (2ad): Yellow oil; 1H NMR (400 MHz, CDCl₃) & 7.41-

•=N-C₂F₅

7.34 (m, 4H), 7.31–7.25 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 196.0 (d, *J* = 11.4 Hz), 129.2, 128.6, 128.3, 128.0, 117.7 (qt, *J* = 286.8, 41.1 Hz), 111.3 (tq, *J* = 266.1, 40.0 Hz), 31.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.3 (s, 3F), -95.49 to -95.99 (m, 2F);

IR (CHCl₃) 3089 (w), 3066 (w), 3012 (w), 1596 (m), 1579 (w), 1492 (m), 1447 (m, Ph), 2017 (s, C=C=N), 1343 (s), 1132 (s), 1041 (s, $v(CF_3)$, $v(CF_2)$); HRMS (APCI) *m*/*z* calcd for C₁₀H₅F₅IN: 360.93813, found 360.93823.

2-lodo-N-(pentafluoroethyl)-2-(p-tolyl)ethen-1-imine (2ae): Yellow oil; 1H NMR (400 MHz, CDCl₃) & 7.32-

•= $N-C_2F_5$ 7.25 (m, 2H), 7.21–7.13 (m, 2H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.0, 139.1, 130.0, 128.1, 125.4, 117.9 (qt, *J* = 286.8, 41.3 Hz), 111.5 (tq, *J* = 265.8, 39.8 Hz), 32.0, 21.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.3 (s, 3F), -96.24 to -96.52 (m, 2F). HRMS (APCI) *m/z* calcd for C₁₁H₇F₅IN: 374.95378, found 374.95354.

2-(4-Bromophenyl)-2-iodo-N-(pentafluoroethyl)ethen-1-imine (2af): Yellow oil; ¹H NMR (400 MHz, CDCl₃)

δ 7.50–7.46 (m, 2H), 7.26–7.22 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 195.5 (t, *J* = 11.1 Hz), 132.5, 129.5, 127.7, 122.7, 117.8 (qt, *J* = 286.9, 41.1 Hz), 111.3 (tq, *J* = 266.4, 40.1 Hz), 30.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.2 (s, 3F), -95.72 to -96.53 (m, 2F). HRMS (APCI) *m/z* calcd for C₁₀H₄BrF₅IN: 438.84865, found 438.84837.

2-lodo-2-(4-nitrophenyl)-N-(pentafluoroethyl)ethen-1-imine (**2ag**): Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

8.24–8.19 (m, 2H), 7.56–7.51 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.9 (t, *J* = 11.0 Hz), 147.4, 136.0, 128.7, 124.5, 117.7 (qt, *J* = 286.9, 40.7 Hz), 111.3 (tq, *J* = 267.4, 40.5 Hz), 28.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.2 (s, 3F), -95.55 to -95.80 (m, 2F). HRMS (APCI) *m/z* calcd for C₁₀H₄F₅IN₂O₂: 405.92321, found 405.92303.

2-([1,1'-Biphenyl]-4-yl)-2-iodo-N-(pentafluoroethyl)ethen-1-imine (2ah): Yellow amorphous solid; ¹H NMR

(400 MHz, CDCl₃) δ 7.63–7.58 (m, 4H), 7.50–7.45 (m, 4H), 7.42–7.36 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 196.6 (t, *J* = 11.2 Hz), 141.7, 140.0, 133.1, 129.1, 128.6, 128.0, 127.9, 127.2, 117.9 (qt, *J* = 286.9, 41.2 Hz), 111.4 (tq, *J* = 266.1, 40.1 Hz),

30.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.2 (s, 3F), -95.86 to -96.49 (m, 2F). HRMS (APCI) *m*/*z* calcd for C₁₆H₉F₅IN: 436.96943, found 436.96903.

2-Cyclohexyl-2-iodo-N-(pentafluoroethyl)ethen-1-imine (2ai): Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ

•= $N-C_2F_5$ 2.02–1.91 (m, 3H), 1.77 (dt, J = 12.8, 3.3 Hz, 2H), 1.64 (dt, J = 12.7, 3.3 Hz, 1H), 1.39–1.26 (m, 2H), 1.25–1.08 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.0 (t, J = 11.5 Hz), 118.0 (qt, J = 286.7, 41.8 Hz), 111.2 (tq, J = 264.7, 39.7 Hz), 40.4, 38.0,

33.0, 32.7, 25.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.4 (s, 3F), -97.14 to -97.24 (m, 2F); HRMS (APCI) *m/z* calcd for C₁₀H₁₂F₅IN: 367.99291, found 367.99249.

2-Butyl-2-iodo-N-(pentafluoroethyl)ethen-1-imine (**2aj**): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 2.30 (t,

 $J = 7.2 \text{ Hz}, 2\text{H}, 1.48 \text{ (p, } J = 7.5, 7.0 \text{ Hz}, 2\text{H}), 1.36 \text{ (dq, } J = 14.7, 6.3 \text{ Hz}, 2\text{H}), 0.92 \text{ (t, } J = 7.3 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCI}_3) \delta 195.6 \text{ (t, } J = 11.6 \text{ Hz}), 117.9 \text{ (qt, } J = 286.7, 41.7 \text{ Hz}), 111.2 \text{ (tq, } J = 264.9, 39.5 \text{ Hz}), 36.5, 32.6, 31.0, 21.6, 13.6; {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, 38.5) \text{ MR} + 10.5 \text{ MR} + 10$

CDCl₃) δ -85.5 (s, 3F), -97.27 to -97.42 (m, 2F); HRMS (APCI) *m*/*z* calcd for C₈H₁₀F₅IN: 341.97726, found 341.97664.

N-(Difluoromethyl)-2-iodo-2-(p-tolyl)ethen-1-imine (2ak): Orange oil; ¹H NMR (400 MHz, CDCl₃) & 7.29-

 $\begin{array}{c} \textbf{-CHF}_{2} \\ \textbf{-CHF}_{2} \end{array} \begin{array}{c} \textbf{7.26} \ (m, \ 2H), \ \textbf{7.16-7.13} \ (m, \ 2H), \ \textbf{6.60} \ (t, \ J = \ \textbf{65.8} \ \text{Hz}, \ 1H), \ \textbf{2.36} \ (s, \ \textbf{3H}); \ ^{13}\text{C} \ \text{NMR} \\ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ \textbf{192.8} \ (t, \ J = \ \textbf{14.1} \ \text{Hz}), \ \textbf{138.3}, \ \textbf{130.0}, \ \textbf{129.8}, \ \textbf{127.8}, \ \textbf{111.5} \ (t, \ J = \ \textbf{254.4} \ \text{Hz}), \ \textbf{30.4}, \ \textbf{21.2}; \ ^{19}\text{F} \ \text{NMR} \ (\textbf{376} \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ \textbf{-90.37} \ \text{to} \ \textbf{-94.68} \ (m, \ 2F); \ \text{HRMS} \end{array}$

N-(*Pentafluoroethyl*)-2-phenylpent-1-en-1-imine (**2al**): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.35 *n*-Pr *n*-C₂F₅ (m, 2H), 7.30–7.21 (m, 3H), 2.58–2.45 (m, 2H), 1.72–1.51 (m, 2H), 1.05 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.0 (t, *J* = 11.4 Hz), 129.2, 128.6, 127.5, 126.0, 117.8 (qt, *J* = 286.1, 41.7 Hz), 111.9 (tq, *J* = 264.8, 39.2 Hz), 77.1, 28.6, 20.8, 13.8;

¹⁹F NMR (376 MHz, CDCl₃) δ -85.7 (s, 3F), -96.56 to -96.62 (m, 2F); HRMS (APCI) *m/z* calcd for C₁₃H₁₃F₅N [M+H]: 278.09627, found 278.09647.

7 Reactivity of ketenimines 2 - general methods

Preparation of cyclobutenimines from phenylacetylene (General procedure): Triazole 1 (0.25 or 0.5 mmol) in DCE (1.5 or 3 mL) was heated under MW irradiation according to the general procedure for ketenimine preparation. The formation of ketenimine **2** was monitored by ¹⁹F NMR. Then, phenylacetylene (2 equiv.) was added and the solution was heated under MW irradiation to 100 °C (for R = H) or 170 °C (for R = n-Pr) for 1 h. After the complete conversion of ketenimine the solvent was evaporated under reduced pressure and the residue was chromatographed (silica gel, pentane/DCM or cyclohexane/DCM).

Preparation of cyclobutenimines from diphenylacetylene (General procedure): Triazole **1** (0.25 or 0.5 mmol) and diphenylacetylene (2 equiv.) in DCE (1.5 or 3 mL) were heated under MW irradiation to 165-170 °C for 1-2 h. The formation of the product was monitored by ¹⁹F NMR. After the complete conversion of ketenimine the solvent was evaporated under reduced pressure and the residue was chromatographed (silica gel, cyclohexane/DCM).

Preparation of cyclobutanimines (General procedure): Triazole **1** (0.25 or 0.5 mmol) in DCE (1.5 or 3 mL) was heated under MW irradiation according to the general procedure for ketenimine preparation. The formation of ketenimine **2** was monitored by ¹⁹F NMR. Then 2-ethylbut-1-ene (3 equiv.) was added and the reaction mixture was stirred overnight at 40 °C. After the complete conversion of ketenimine the solvent was evaporated under reduced pressure and the residue was chromatographed (silica gel, cyclohexane/EtOAc) when necessary.

Addition of nucleophiles to ketenimines (General procedure): Triazole 1 (0.25 or 0.5 mmol) in DCE (1.5 or 3 mL) was heated under MW irradiation according to the general procedure for ketenimine preparation. The formation of ketenimine 2 was monitored by ¹⁹F NMR. Then the nucleophile amine (1 equiv.) or alcohol (3 equiv.) or thiol (3 equiv.) was added and the reaction mixture was stirred for 30 min at RT. The solvent was evaporated under reduced pressure and the residue was chromatographed (silica gel, cyclohexane/EtOAc) when necessary.

Preparation of amidine **14f**: Triazole **1a** (0.5 mmol) in DCE (3 mL) was heated under MW irradiation according to general procedure for ketenimine preparation. The solvent was evaporated under reduced pressure and CDCl₃ (0.5 ml) was added. NMR tube was charged with p-TolCH₂NH₂ (1 equiv.) and the solution of ketenimine was added under inert atmosphere. The solution of crude amidine was then used for characterization analyses.

8 Reactivity of ketenimines 2 – product characterization

 $\begin{array}{ll} (E) -3, 4 - Diphenyl-N-(trifluoromethyl)cyclobut-2-en-1-imine ((E) - 9a): \mbox{ Yield: 59 \%, } E/Z = 75:25, \mbox{ white solid;} \\ \mbox{Ph} & \mbox{N-CF_3} & \mbox{1H NMR (401 MHz, CDCl_3) δ 7.59-7.27 (m, 10H), $6.86 (q, J = 2.5 Hz, 1H), $4.97 (s, 1H); $\mbox{13C NMR (101 MHz, CDCl_3) δ 174.5 (q, J = 9.5 Hz], $169.2, $135.3, $132.5, $130.1, $129.2, $129.1, $129.0, $128.2, $127.8, $127.1, $124.2 (q, J = 262.3 Hz], $58.9; 19F NMR (377 MHz, $CDCl_3) δ -56.5 (d, J = 2.5 Hz, $3F$); $HRMS (EI^+) m/z calcd for $C_{17}H_{12}F_3N: $287.0916, found $287.0917. \end{array}

(Z)-3,4-Diphenyl-N-(trifluoromethyl)cyclobut-2-en-1-imine ((Z)-**9a**): ¹H NMR (401 MHz, CDCl₃) δ 7.61–7.28

(m, 10H), 6.83 (s, 1H), 5.06 (q, J = 1.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.7 (q, J = 9.1 Hz), 169.0, 135.6, 132.2, 130.2, 129.2, 129.1, 129.0, 128.9, 128.2, 127.8, 123.5 (q, J = 261.9 Hz), 60.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -54.7 (d, J = 1.6 Hz, 3F); HRMS (EI⁺) m/z calcd for C₁₇H₁₂F₃N: 287.0916, found 287.0917.

 $\begin{array}{l} (E) \text{-}N\text{-}(Perfluoroethyl)\text{-}3,4\text{-}diphenylcyclobut\text{-}2\text{-}en\text{-}1\text{-}imine} ((E)\text{-}9b)\text{:} \text{Yield: }72 \ \%, \ E/Z = 80:20, \text{ white solid; }^{1}\text{H} \\ \hline \text{Ph} \\ & \text{Ph}$

= 4.0 Hz, 1F); HRMS (ESI⁺) m/z calcd for C₁₈H₁₃F₅N: 338.09630, found 338.09627.

(Z)-N-(Perfluoroethyl)-3,4-diphenylcyclobut-2-en-1-imine ((Z)-9b): ¹H NMR (401 MHz, CDCl₃) δ 7.61–7.27

Ph N Ph

Ph

(4-MeO)Ph

(m, 10H), 6.87 (s, 1H), 5.06 (t, J = 1.8 Hz, 1H).; ¹³C NMR (101 MHz, CDCl₃) δ 174.2 (t, J = 10.5 Hz), 169.6 (t, J = 1.7 Hz), 135.7, 132.3, 130.2, 129.4, 129.1, 128.9, 128.8, 128.1, 127.7, 118.3 (qt, J = 285.7, 44.0 Hz), 115.2 (tq, J = 263.0, 39.2 Hz), 61.0.; ¹⁹F NMR (377 MHz, CDCl₃) δ -86.1 to -86.5 (m, 3F), -94.0 (dt, J = 198.2, 1.7 Hz, 1F), -96.2 (dt, J = 198.2, 1.8

Hz, 1F); HRMS (ESI⁺) *m/z* calcd for C₁₈H₁₃F₅N: 338.09630, found 338.09627. (*E*)-*3*-(*4*-*Methoxyphenyl*)-*N*-(*perfluoroethyl*)-*4*-*phenyl*-*4*-*propylcyclobut*-*2*-*en*-1-*imine* ((*E*)-*9c*): Yield: 81 %,

 $E/Z = 96:4, \text{ colorless liquid; }^{1}\text{H NMR (401 MHz, CDCl_3) } \delta 7.52-7.48 (m, 2H), 7.46-7.42 (m, 2H), 7.35-7.30 (m, 2H), 7.29-7.26 (m, 1H), 6.96-6.90 (m, 2H), 6.64 (t, J = 3.6 \text{ Hz}, 1\text{H}), 3.86 (s, 3\text{H}), 2.50 (ddd, J = 14.1, 12.3, 4.5 \text{ Hz}, 1\text{H}), 2.19 (ddd, J = 14.1, 12.3, 4.5 \text{ Hz}, 11\text{H}), 2.19 (ddd, J = 14.1, 12.3, 4.5 \text{ Hz}, 11\text{H}), 2.19 (ddd, J = 14.1, 12.3, 4.5 \text{ Hz}, 11\text{H}), 2.19 (ddd, J = 14.1, 12.3, 4.5 \text{ Hz}, 11\text{H}), 2.19 (ddd, J = 14.1, 12.3, 4.5 \text{ Hz}, 11\text{H}), 2.19 (ddd, J = 14.1, 12.3, 4.5 \text{ Hz}, 11\text{H}), 2.19 (ddd, J = 14.1, 12.3, 12 \text{Hz}, 11\text{Hz}), 2.19 (ddd, J = 14.1, 12.3, 12 \text{Hz}), 2.10 ($

12.5, 4.5 Hz, 1H), 1.48–1.35 (m, 1H), 1.28–1.15 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 178.9 (t, J = 12.5 Hz), 172.1 (t, J = 1.8 Hz), 162.9, 140.0, 131.0, 128.6, 127.5, 126.7, 124.5, 123.3, 118.7 (qt, J = 286.8, 45.1 Hz), 116.3 (tq, J = 259.2, 38.5 Hz), 114.8, 66.0, 55.6, 34.0, 18.7, 14.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -85.6 (3F), -94.5 (dd, J = 197.6, 3.1 Hz, 1F), -95.7 (dd, J = 198.5, 3.9 Hz, 1F); HRMS (ESI⁺) m/z calcd for C₂₂H₂₁F₅NO: 410.15378, found 410.15348.

(*E*)-*N*-(*Perfluoroethyl*)-2,3,4-triphenylcyclobut-2-en-1-imine (**10b**): Yield: 75 %, white solid, m.p. 106-108 C_2F_5 °C; ¹H NMR (401 MHz, CDCl₃) δ 7.96–7.89 (m, 2H), 7.65–7.58 (m, 2H), 7.54–7.27 (m, 11H), 5.10 (t, *J* = 2.4 Hz, 1H).; ¹³C NMR (101 MHz, CDCl₃) δ 173.6 (t, *J* = 10.2 Hz), 160.8 (t, *J* = 1.5 Hz), 141.8, 136.7, 131.7, 131.4, 129.8, 129.6, 129.1, 129.0, 128.9, 128.9, 128.4, 128.1, 128.0, 118.4 (qt, *J* = 286.1, 44.0 Hz), 115.6 (ddq, *J* = 267.3, 264.3, 39.0 Hz), 61.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -86.1 (m, 3F), -93.4 (dm, *J* = 197.8 Hz, 2F), -95.8 (dm, *J* = 197.8 Hz, 2F); IR (cm⁻¹, CHCl₃) 1696 (m, C=N), 1612 (w, C=C), 3088 (w), 3066 (w), 1599 (w), 1588 (w), 1498 (w), 1485 (w), 1455 (w), 1445 (w), 700 (m), 690 (m, Ph), 1364 (w, CF₃), 1162 (m, C₂F₅); HRMS (APCI⁺) m/z calcd for C₂₄H₁₇F₅N: 414.12778, found 414.12757. X-ray analysis: see section 9 Crystallographic data.

(*E*)-3,3-Diethyl-2-phenyl-N-(trifluoromethyl)cyclobutan-1-imine ((*E*)-11a): Yield: 79 %, *E*/*Z* = 92:8, orange
Ph
N~CF₃ liquid; ¹H NMR (401 MHz, CDCl₃) δ 7.35–7.22 (m, 5H), 4.28 (q, *J* = 2.4 Hz, 1H), 2.88 (m, 2H), 1.78 (q, *J* = 7.4 Hz, 2H), 1.27 (q, *J* = 7.4 Hz, 2H), 1.00 (t, *J* = 7.4 Hz, 3H), 0.65 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.2 (q, *J* = 9.6 Hz), 134.9, 128.9, 128.5, 127.4, 123.7 (q, *J* = 263.7 Hz), 63.0, 46.9, 42.5 (q, *J* = 1.4 Hz), 31.0, 26.0, 9.0, 8.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -58.1 (q, *J* = 2.2 Hz, 3F); IR (cm⁻¹, CHCl₃) 1708 (m, C=N), 3089 (w), 3065 (w), 3009 (w), 1603 (w), 1579 (w), 1497 (w), 1069 (m), 1032 (w), 698 (m, Ph), 1398 (w), 1245 (s, CF₃), 2968 (w), 2939 (w), 2879 (w), 2862 (w), 1459 (w); HRMS (EI) *m/z* calcd for C₁₅H₁₈F₃N: 269.1386, found 269.1384.

(*Z*)-3,3-Diethyl-2-phenyl-N-(trifluoromethyl)cyclobutan-1-imine ((*Z*)-**11a**): ¹⁹F NMR (377 MHz, CDCl₃) δ - CF_3 58.4 (q, *J* = 2.1 Hz, 3F).; HRMS (EI) *m/z* calcd for C₁₅H₁₈F₃N: 269.1386, found 269.1384.

(*E*)-3,3-Diethyl-N-(perfluoroethyl)-2-phenylcyclobutan-1-imine ((*E*)-11b): Yield: 89 %, *E*/*Z* = 93:7, orange Ph N~C₂F₅ liquid; ¹H NMR (401 MHz, CDCl₃) δ 7.35–7.20 (m, 5H), 4.30 (t, *J* = 2.9 Hz, 1H), 2.90 (t, *J* = 3.4 Hz, 2H), 1.78 (q, *J* = 7.4 Hz, 2H), 1.26 (q, *J* = 7.4 Hz, 2H), 1.00 (t, *J* = 7.4 Hz, 3H), 0.64 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.8 (t, *J* = 12.5 Hz), 135.0, 128.9, 128.5, 127.4, 118.6 (qt, *J* = 286.1, 43.3 Hz), 115.7 (ddq, *J* = 267.5, 258.2, 38.7 Hz), 63.7, 47.9, 42.8 (t, *J* = 1.4 Hz), 30.9, 26.0, 8.9, 8.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -85.9 (s, 3F), -97.0 (dq, *J* = 201.3, 3.4 Hz, 1F), -99.3 (dq, *J* = 201.3, 3.3 Hz, 1F); IR (cm⁻¹, CHCl₃) 1710 (m, C=N), 3089 (w), 3065 (w), 3009 (w), 1603 (w), 1582 (w), 1497 (w), 1065 (m), 699 (m, Ph), 1381 (w, CF₃), 1161 (m, C₂F₅), 2968 (w), 2939 (w), 2879 (w), 2862 (w), 1459 (w); HRMS (EI) *m/z* calcd for C₁₆H₁₈F₅N: 319.1354, found 319.1356.

 $\begin{array}{l} (Z)-3,3-Diethyl-2-phenyl-N-(trifluoromethyl)cyclobutan-1-imine~((Z)-11b):~^{19}F~NMR~(377~MHz,~CDCl_3)~\delta - \\ & \begin{array}{c} C_2F_5 \\ N \end{array} \\ & \begin{array}{c} 86.2~(s,~3F),~^{9}7.9~(dm,~J=202.0~Hz,~1F),~^{10}0.7~(dt,~J=202.0,~3.4~Hz,~1F);~HRMS~(EI) \\ & \begin{array}{c} N \end{array} \\ & \begin{array}{c} m/z~calcd~for~C_{16}H_{18}F_5N:~319.1354,~found~319.1356. \end{array}$

for $C_{11}H_{12}F_3NO$: 231.0866, found 231.0867.

Ethyl (E)-N-(perfluoroethyl)-2-phenylacetimidate (12b): Yield: 43 %, colorless liquid; ¹H NMR (400 MHz,

 $\begin{array}{l} \begin{array}{c} C_2F_5 \\ \text{OEt} \end{array} \begin{array}{c} \text{CDCl}_3 \end{array} \delta \ 7.36-7.24 \ (\text{m}, 5\text{H}), \ 4.22 \ (\text{q}, \ J=7.1 \ \text{Hz}, 2\text{H}), \ 3.84 \ (\text{s}, 2\text{H}), \ 1.26 \ (\text{t}, \ J=7.1 \ \text{Hz}, 3\text{H}); \\ \begin{array}{c} \text{H} \end{array} \\ \begin{array}{c} \text{H} \end{array} \\ \begin{array}{c} \text{OEt} \end{array} \end{array} \begin{array}{c} \text{N} \\ \text{OEt} \end{array} \begin{array}{c} \text{N} \\ \text{Hz} \end{array} , \ 101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 172.6, \ 134.1, \ 129.2, \ 128.7, \ 127.3, \ 118.5 \ (\text{qt}, \ J=285.0, \ 45.9 \ \text{Hz}), \ 114.3 \ (\text{tq}, \ J=265.3, \ 38.9 \ \text{Hz}), \ 64.4, \ 39.9 \ (\text{t}, \ J=2.1 \ \text{Hz}), \ 13.7; \ ^{19}\text{F} \ \text{NMR} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ -87.39 \ (\text{s}, 3\text{F}), \ -90.70 \ (\text{s}, 2\text{F}); \ \text{IR} \ (\text{cm}^{-1}, \ \text{CHCl}_3) \ 1668 \ (\text{s}), \ 1646 \ (\text{m}, \ \text{C=N}), \ 3090 \ (\text{w}), \ 3067 \ (\text{w}), \ 3037 \ (\text{w}), \ 1603 \ (\text{w}), \ 1586 \ (\text{w}), \ 1496 \ (\text{m}), \ 701 \ (\text{m}, \ \text{Ph}), \ 1353 \ (\text{w}, \ \text{CF}_3), \ 1168 \ (\text{m}, \ C_2\text{F}_5), \ 2986 \ (\text{w}), \ 2941 \ (\text{w}), \ 2908 \ (\text{w}), \ 2871 \ (\text{w}), \ 1477 \ (\text{w}), \ 1466 \ (\text{w}), \ 1445 \ (\text{w}), \ 1411 \ (\text{w}), \ 1318 \ (\text{s}), \ 1188 \ (\text{s}), \ 951 \ (\text{m}), \ 939 \ (\text{m}, \ \text{OEt}); \ \text{HRMS} \ (\text{ESI}^+) \ m/z \ \text{calcd for} \ C_{12}\text{H}_{13}\text{F}_5\text{NO}: \ 282.09118, \ \text{found} \ 282.09128. \end{array}$

(Z)-N-((E)-1-(ethylthio)-2-phenylvinyl)-2,2,2-trifluoroacetimidoyl fluoride (12b'): ¹⁹F NMR Yield: ca 16 %, ¹⁹F
 Ph NMR (376 MHz, CDCl₃) δ -41.41 (m, 1F), -72.99 (m, 3F).

N CF₃ OEt F

Ethyl (E)-N-(perfluoroethyl)-2-phenylpentanimidate (12c): Yield: 60 %, colorless liquid; ¹H NMR (400 MHz, *n*-Pr C₂F₅ CDCl₃) δ 7.38–7.24 (m, 5H), 4.32–4.14 (m, 2H), 4.08 (td, *J* = 7.7, 1.0 Hz, 1H), 2.07–1.97 (m, *N* 1H), 1.85 (dddd, *J* = 13.3, 9.8, 7.5, 5.7 Hz, 1H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.28–1.23 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 138.7, 128.63, 128.5, 127.5, 118.5 (qt, *J* = 285.0, 46.0 Hz), 118.5 (tq, *J* = 284.6, 46.0 Hz), 64.2, 49.9, 36.4, 20.8, 13.9, 13.6; ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -87.61 (d, J = 1.5 Hz, 3F), -88.88 (d, J = 201.0 Hz, 1F), -90.21 (d, J = 201.0 Hz, 1F); HRMS (EI⁺) m/z calcd for C₁₅H₁₈F₅NO: 323.1203, found 323.1300.

Ethyl (E)-2-phenyl-N-(trifluoromethyl)ethanimidothioate (13a): Yield: 97 %, colorless liquid; ¹H NMR (400 CF₃ MHz, CDCl₃) δ 7.41–7.26 (m, 5H), 4.00 (s, 2H), 2.96 (q, *J* = 7.4 Hz, 2H), 1.27 (t, J = 7.4 Hz, 2H

Ph $(J = 261.0 \text{ Hz}), 43.3 \text{ (q, } J = 1.6 \text{ Hz}), 25.9, 13.1; 19 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 19 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 19 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 19 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 19 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ MHz, CDCl}_3) \delta -52.7 \text{ (s, } J = 1.6 \text{ Hz}), 25.9, 13.1; 10 F NMR (376 \text{ Mz}), 10 F NMR (376 \text{$

3F).; IR (cm⁻¹, CHCl₃) 1611 (s, C=N), 3090 (w), 3067 (w), 3033 (w), 1600 (s), 1497 (m), 699 (m, Ph), 1246 (s), 1130 (s, CF₃), 2976 (w), 2933 (w), 2875 (w), 1455 (m), 1408 (w), 1376 (w), 1311 (w, SEt); HRMS (EI⁺) *m/z* calcd for C₁₁H₁₂F₃NS: 247.0637, found 247.0639.

Ethyl (E)-N-(perfluoroethyl)-2-phenylethanimidothioate (13b): Yield: 59 %, colorless liquid; ¹H NMR (400

 $\begin{array}{l} C_2F_5 \\ N\\ N\\ SEt \end{array} \qquad \text{MHz, CDCl}_3) \ \delta \ 7.39-7.26 \ (\text{m}, 5\text{H}), \ 4.04 \ (\text{s}, 2\text{H}), \ 2.93 \ (\text{q}, J=7.4 \ \text{Hz}, 2\text{H}), \ 1.25 \ (\text{t}, J=7.4 \ \text{Hz}, 3\text{H}); \ ^{13}\text{C} \ \text{NMR} \ (101 \ \text{MHz, CDCl}_3) \ \delta \ 187.8, \ 134.5, \ 129.8, \ 128.8, \ 127.7, \ 118.5 \ (\text{qt}, J=285.1, 45.1 \ \text{Hz}), \ 113.5 \ (\text{tg}, J=271.3, \ 38.7 \ \text{Hz}), \ 44.3, \ 26.3, \ 13.0; \ ^{19}\text{F} \ \text{NMR} \ (376 \ \text{MHz, CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ - 3.5 \ \text{MHz} \ (376 \ \text{MHz}, \ \text{MHz} \ (376 \ \text{MHz}, \ \text{Mz} \ (376 \ \text{Mz} \ \text{Mz} \ (376 \ \text{Mz} \ \text{Mz} \ \text{Mz} \ (376 \ \text{Mz} \ \text{Mz} \ \text{Mz} \ \text{Mz} \ \text{Mz} \ (376 \ \text{Mz} \ \text{Mz} \ \text{Mz} \ \text{Mz} \ \text{Mz} \ (376 \ \text{Mz} \ \text{M$

86.9 (s, 3F), -92.9 (s, 2F); IR (cm⁻¹, CHCl₃) 1623 (s), 1596 (s, C=N), 3090 (w), 3067 (w), 3009 (m), 1497 (m), 699 (s, Ph), 1345 (w, CF₃), 1179 (s, C₂F₅), 2976 (w), 2934 (w), 2876 (w), 1455 (m), 1412 (w), 1306 (w, SEt); HRMS (ESI⁺) *m/z* calcd for C₁₂H₁₃F₅NS: 298.06834, found 298.06860.

(*Z*)-*N*-((*E*)-1-(*Ethylthio*)-2-phenylvinyl)-2,2,2-trifluoroacetimidoyl fluoride (**13b**'): ¹⁹F NMR Yield: ca 16 %, ¹⁹F Ph NMR (376 MHz, CDCl₃) δ -41.51 (m, 1F), -72.88 (m, 3F). (Z)-N-((E)-1-(Ethylthio)-2-phenylpent-1-en-1-yl)-2,2,2-trifluoroacetimidoyl fluoride (13c'): Yield: 76 %, colorless liguid; ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.20 (m, 5H), 2.56–2.33 (m, 4H), 1.32–1.24 (m, 2H), 1.14 (t, J = 7.3 Hz, 3H), 0.84 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 135.9 (dq, J = 364.4, 44.0 Hz), 140.4 (d, J = 2.0 Hz), 139.9, 129.7 (d, J

= 1.8 Hz), 128.9, 128.1, 127.6, 115.4 (qd, J = 276.8, 66.8 Hz), 27.2, 21.0, 14.7, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.2 (q, J = 5.7 Hz, 1F), -72.7 (d, J = 5.4 Hz, 3F).; HRMS (APCI⁺) m/z calcd for C₁₅H₁₈F₄NS: 320.10906, found 320.10934.

(E)-N,N-DibutyI-2-phenyI-N'-(trifluoromethyl)acetimidamide (**14a**): ¹⁹F NMR yield: guantitative; brown liquid;

ÇF₃ ¹⁹F NMR (376 MHz, CDCl₃) δ -45.43 (s, 3F); LRMS (EI) *m/z* calcd for C₁₇H₂₅F₃N₂: 314.2, found 314.2.

Bu Bu[^]

Ph

Ph

Ph

(E)-N,N-Diisopropyl-N'-(perfluoroethyl)-2-phenylacetimidamide (14b): ¹⁹F NMR yield: 77%; brown liquid; ¹⁹F NMR (376 MHz, CDCl₃) δ -83.0 to -83.2 (m, 2F), -87.3 to -87.5 (m, 3F).

(E)-N,N-DibutyI-N'-(perfluoroethyI)-2-phenylacetimidamide (**14c**): ¹⁹F NMR yield: guantitative; brown liquid;

¹H NMR (400 MHz, CDCl₃) δ 7.39–7.31 (m, 2H), 7.29–7.25 (m, 1H), 7.21–7.14 (m, 2H), Ph 4.03 (s, 2H), 3.53–3.42 (m, 2H), 3.12–3.03 (m, 2H), 1.71–1.59 (m, 2H), 1.34 (m, 4H), 1.24– Bu' Bu 1.10 (m, 2H), 0.98 (t, J = 7.4, 3H), 0.84 (t, J = 7.3 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -83.5 (s, 2F), -87.2 to -87.5 (m, 3F).

(E)-N,N-Diallyl-N'-(perfluoroethyl)-2-phenylacetimidamide (14d): ¹⁹F NMR yield: quantitative; brown liquid;

 C_2F_5 ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.30 (m, 2H), 7.22–7.27 (m, 1H), 7.17–7.12 (m, 2H), 5.87 (ddt, J = 16.6, 10.1, 6.2 Hz, 1H), 5.53 (ddt, J = 15.7, 10.2, 5.0 Hz, 1H), 5.22–5.06 (m, 4H), 4.14 (d, J = 6.2 Hz, 2H), 4.03–3.99 (m, 2H), 3.72 (t, J = 6.4 Hz, 2H); ¹⁹F NMR $(376 \text{ MHz}, \text{CDCI}_3) \delta$ -85.1 (s, 2F), -87.4 (t, J = 2.2 Hz, 3F).

(E)-N'-(Perfluoroethyl)-N,N.2-triphenylacetimidamide (14e): ¹⁹F NMR yield: guantitative; orange oil; ¹H NMR (400 MHz, CDCl₃) δ 7.30–6.84 (m, 15H), 4.05 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -87.1 Ph (m, 2F), -87.4 (m, 3F).

(E)-N,N-Bis(4-methylbenzyl)-N'-(perfluoroethyl)-2-phenylacetimidamide (14f): Yield: quantitative; brown C_2F_5 liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.17 (m, 11H), 6.99 (d, J = 7.7 Hz, 2H), 4.86 (s, 2H), 4.33 (s, 2H), 4.13 (s, 2H), 2.42 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 137.7, Ph Tol Tol

137.5, 134.9, 134.0, 132.9, 129.9, 129.4, 129.1, 128.9, 127.8, 127.1, 126.3, 118.1 (tq, J = 284.3, 48.5 Hz), 115.7 (qt, J = 269.4, 38.1 Hz), 50.4, 50.3, 37.3, 21.2, 21.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.8 (s, 2F), -87.1 (s, 3F).; HRMS (ESI⁺) m/z calcd for C₂₆H₂₆F₅N₂: 461.20121, found 461.20107.

(E)-1-Morpholino-N-(perfluoroethyl)-2-phenylethan-1-imine (14g): ¹⁹F NMR yield: 82%; brown liquid; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.0 (s, 2F), -87.3 to -87.4 (m, 3F).

(E)-N-Benzyl-N'-(perfluoroethyl)-2-phenylacetimidamide (14h): ¹⁹F NMR yield: quantitative; brown liquid; $C_2 \vdash_5$ decomposed at room temperature on air; ¹⁹F NMR (376 MHz, CDCl₃) δ -85.93 (s, 2F), -Ph 87.17 to -87.34 (m, 3F).

(E)-N-(1-(Diisopropylamino)-2-phenylethylidene)-2,2,2-trifluoroacetamide (15b): Yield: 66 %, orange oil; ¹H

NMR (400 MHz, CDCl₃) δ 7.34–7.28 (m, 2H), 7.27–7.19 (m, 3H), 4.16 (s, 2H), 4.11 (hept, CF_3 J = 6.7 Hz, 1H), 3.67–3.50 (m, 1H), 1.51 (d, J = 6.9 Hz, 6H), 0.95 (d, J = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 162.5 (q, J = 35.5 Hz), 135.1, 129.1, 128.0, 127.2, 117.3 (q, J = 287.9 Hz), 51.4, 49.3, 37.8, 19.9, 19.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.5 (s, 3F); HRMS (ESI+) *m/z* calcd for C₁₆H₂₂F₃ON₂: 315.16787, found 315.16769.

(E)-N-(1-(Dibutylamino)-2-phenylethylidene)-2,2,2-trifluoroacetamide (15c): Yield: 74 %, orange oil; ¹H

CF₃ Ph Bu Bu

Ph

Ph

NMR (400 MHz, CDCl₃) δ 7.42–7.13 (m, 5H), 4.23 (s, 2H), 3.67–3.52 (m, 2H), 3.35–3.21 (m, 2H), 1.69–1.59 (m, 2H), 1.47–1.28 (m, 4H), 1.28–1.17 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H), 0.87 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 163.8 (q, J = 35.4 Hz), 134.8, 129.0, 128.1, 127.2, 117.1 (g, J = 288.0 Hz), 49.6, 49.5, 36.1, 30.3, 29.0, 20.1,

20.0, 13.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.4 (s, 3F); HRMS (ESI⁺) *m/z* calcd for C₁₈H₂₆F₃ON₂: 343.19917, found 343.19894.

(E)-N-(1-(Diallylamino)-2-phenylethylidene)-2,2,2-trifluoroacetamide (15d): Yield: 68 %, orange oil; ¹H NMR

 CF_3 $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.37 - 7.17 \text{ (m, 5H)}, 5.83 \text{ (ddt, } J = 16.7, 11.8, 4.0 \text{ Hz}, 1\text{H}), 5.53 \text{ (ddt, } J = 16.7, 11.8, 10.8,$ J = 16.4, 10.4, 5.4 Hz, 1H), 5.29–5.12 (m, 4H), 4.24 (d, J = 6.5 Hz, 2H), 4.21 (s, 2H), Ph 3.91 (d, J = 5.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 164.6 (g, J = 35.7 Hz), 134.4, 130.8, 130.8, 129.2, 128.1, 127.4, 119.6, 119.0, 117.0 (q, J = 288.1 Hz), 51.6, 50.8, 36.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.5 (s, 3F); HRMS (EI) *m/z* calcd for C₁₆H₁₇F₃ON₂: 310.1287, found 310.1285.

(E)-N-(1-(Diphenylamino)-2-phenylethylidene)-2,2,2-trifluoroacetamide (15e): Yield: 68 %, off-white solid, CF₃ m.p. 105-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.27 (m, 7H), 7.25–7.03 (m, 5H), 7.03–6.97 (m, 1H), 4.11–4.09 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 164.9 (q, J = Ph

36.6 Hz), 142.9 (bs), 141.6 (bs), 134.6, 129.7 (bs), 129.3 (bs), 128.8 (bs), 128.7, 128.7, 128.0 (bs), 127.6 (bs), 127.1, 126.4 (bs), 116.5 (q, J = 288.1 Hz), 37.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.4 (s, 3F); HRMS (ESI⁺) *m*/*z* calcd for C₂₂H₁₈F₃ON₂: 383.13657, found 383.13643.

Crystallographic data.

(E)-2,2,2-Trifluoro-N-(1-morpholino-2-phenylethylidene)acetamide (15g): Yield: 52 %, yellow oil; ¹H NMR

(400 MHz, CDCl₃) δ 7.35–7.26 (m, 2H), 7.26–7.18 (m, 3H), 4.21 (s, 2H), 3.93 (dd, *J* = 5.7, 4.2 Hz, 2H), 3.73–3.66 (m, 2H), 3.46 (td, *J* = 4.4, 1.1 Hz, 2H), 3.42–3.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 164.9 (q, *J* = 35.9 Hz), 134.3, 129.2, 127.9, 127.4, 116.9 (q, *J* = 287.9 Hz), 66.2, 66.0, 47.4, 45.9, 35.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.4 (s, 3F); HRMS (EI) *m*/*z* calcd for C₁₄H₁₅F₃O₂N₂: 300.1080, found 300.1087.

9 Crystallographic data

Single-crystal diffraction data of **2i**, **10b** and **15f** were collected at 180 K using Bruker D8 VENTURE system equipped with a Photon 100 CMOS detector, a multilayer monochromator, and a Cu-K α (**2i**, **15f**) or Mo-K α (**10b**) Incoatec microfocus sealed tube ($\lambda = 1.54178$ Å and 0.71073 Å respectively). The frames were integrated with the with Bruker SAINT^[5] software package. The structure was solved by direct methods with SIR92^[6] and were refined by full-matrix least-squares on F with CRYSTALS.^[7] The positional and anisotropic thermal parameters of all non-hydrogen atoms were refined. All hydrogen atoms were located in a difference Fourier map and then they were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularise their geometry, then their positions were refined with riding constraints.

Crystal data for **2i** (*light yellow, 0.047 x 0.053 x 0.956 mm*): $C_{18}H_{10}F_5N_1$, monoclinic, space group P_{2_1} , a = 11.4557(5) Å, b = 5.2006(2) Å, c = 13.2348(5) Å, $\beta = 109.7150(18)^\circ$, V = 742.26(5) Å³, Z = 2, M = 335.27, 16615 reflections measured, 2691 independent reflections. Final R = 0.062, wR = 0.069, GoF = 1.069 for 2563 reflections with $I > 2\sigma(I)$ and 218 parameters. Flack parameter x = 0.2(3). CCDC 2251499.

Crystal data for **10b** (colorless, 0.021 x 0.046 x 0.081 mm): C₂₄H₁₆F₅N₁, triclinic, space group *P*-1, a = 9.3435(3) Å, b = 10.6287(4) Å, c = 11.0605(4)) Å, $\alpha = 66.5847(13)^{\circ}$, $\beta = 85.0791(13)^{\circ}$, $\gamma = 78.7344(13)^{\circ}$, V = 988.49(4) Å³, Z = 2, M = 413.39, 73711 reflections measured, 4532 independent reflections. Final R = 0.045, wR = 0.041, GoF = 1.062 for 2835 reflections with $I > 2\sigma(I)$ and 272 parameters. CCDC 2251500.

Crystal data for **15f** (*light yellow, 0.136 x 0.378 x 0.552 mm*): C₂₆H₂₅F₃N₂O₁, triclinic, space group *P*-1, a = 9.2049(3) Å, b = 11.1696(4) Å, c = 11.5661(4) Å, $\alpha = 100.8672(13)^{\circ}$, $\beta = 106.0273(12)^{\circ}$, $\gamma = 94.3334(12)^{\circ}$, V = 1112.14(7) Å³, Z = 2, M = 438.49, 41508 reflections measured, 4048 independent reflections. Final R = 0.060, wR = 0.064, GoF = 1.107 for 3872 reflections with $I > 2\sigma(I)$ and 290 parameters. CCDC 2251498.

10 References

- (1) Blastik, Z. E.; Voltrová, S.; Matoušek, V.; Jurásek, B.; Manley, D. W.; Klepetářová, B.; Beier, P. *Angew. Chem., Int. Ed.* **2017**, *56*, 346.
- (2) Markos, A.; Janecký, L.; Chvojka, T.; Martinek, T.; Martinez-Seara, H.; Klepetářová, B.; Beier, P. *Adv. Synth. Catal.* **2021**, *363*, 3258.
- (3) https://cccbdb.nist.gov/vibscalejust.asp
- (4) Cen, M.; Xiang, Q.; Xu, Y.; Duan, S.; Lv, Y.; Xu, Z.-F.; Li, C.-Y. Org. Chem. Front. 2020, 7, 596.
- (5) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, **2015**.
- Altomare, A.; Cascarano, G.; Giacovazzo G.; Guagliardi A.; Burla M. C.; Polidori, G.; Camalli, M. J. Appl. Cryst. 1994, 27, 435.
- Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Cryst. 2003, 36, 1487.

11 Copies of NMR spectra

¹H NMR spectrum of 1d (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1d** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1d** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1i** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1i** (CDCl₃, 101 MHz)

									·					1	· · · ·		· · · ·				
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
f1 (ppm)																					
¹⁹F NMR spectrum of **1i** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1k** (CDCl₃, 400 MHz)

¹³C NMR spectrum of 1k (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of 1k (CDCl₃, 376 MHz)

¹H NMR spectrum of **1m** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1m** (CDCl₃, 101 MHz)

		·						·														·	
210	200	190	180	170	160	150	140	130	120	110 f	100 1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10	

¹⁹F NMR spectrum of **1m** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1q** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1q** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of 1q (CDCl₃, 376 MHz)

¹H NMR spectrum of 1t (CDCl₃, 400 MHz)

¹³C NMR spectrum of 1t (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1t** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1u** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1u** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1u** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1v** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1v** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1v** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1y** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1y** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1y** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1aa** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1aa** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1aa** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1ab** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1ab** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1ab** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1ac** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1ac** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1ac** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1ae** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1ae** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1ae** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1af** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1af** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1af** (CDCl₃, 376 MHz)

¹H NMR spectrum of **1ag** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **1ag** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1ag** (CDCl₃, 376 MHz)

¹³C NMR spectrum of **1ah** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **1ah** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2a** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2a** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2a** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2b** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2b** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2b** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2c** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2c** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of 2c (CDCl₃, 376 MHz)

¹H NMR spectrum of **2d** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2d** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2d** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2e** (CDCl₃, 400 MHz)

¹³C NMR spectrum of 2e (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2e** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2f** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2f** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2f** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2g** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2g** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2g** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2h** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2h** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2h** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2i** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2i** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2i** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2j** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2j** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2j** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2k** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2k** (CDCl₃, 101 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

¹⁹F NMR spectrum of **2k** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2l** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2l** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2l** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2m** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2m** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2m** (CDCl₃, 376 MHz)

¹H NMR spectrum of **20** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **20** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **20** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2p** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2p** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2p** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2q** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2q** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2q** (CDCl₃, 376 MHz)

H NMR spectrum of 2r (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2r** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2r** (CDCl₃, 376 MHz)

¹H NMR spectrum of 2s (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2s** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2s** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2t** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2t** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2t** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2u** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2u** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2u** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2v** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2v** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2v** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2w** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2w** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2w** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2x** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2x** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2x** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2y** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2y** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2y** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2z** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2z** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2z** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2aa** (CDCl₃, 400 MHz)

¹³C NMR spectrum of 2aa (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of 2aa (CDCl₃, 376 MHz)

¹H NMR spectrum of **2ab** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2ab** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2ab** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2ac** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2ac** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2ac** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2ad** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2ad** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2ad** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2ae** (CDCl₃, 400 MHz)

¹³C NMR spectrum of 2ae (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of 2ae (CDCl₃, 376 MHz)

¹H NMR spectrum of **2af** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2af** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2af** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2ag** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2ag** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2ag** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2ah** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2ah** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2ah** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2ai** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2ai** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2ai** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2aj** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2aj** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2aj** (CDCl₃, 376 MHz)

NMR spectrum of 2ak (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2ak** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2ak** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2al** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2al** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **2al** (CDCl₃, 376 MHz)

¹H NMR spectrum of **9a** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **9a** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **9a** (CDCl₃, 376 MHz)

¹H-¹⁹F HOESY NMR spectrum of **9a** (CDCl₃)

¹H NMR spectrum of **9b** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **9b** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **9b** (CDCl₃, 376 MHz)

¹H NMR spectrum of **9c** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **9c** (CDCl₃, 376 MHz)

¹H NMR spectrum of **10a** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **10a** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **10a** (CDCl₃, 376 MHz)

¹³C NMR spectrum of **10b** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **10b** (CDCl₃, 376 MHz)

¹H NMR spectrum of **11a** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **11a** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **11a** (CDCl₃, 376 MHz)

¹H-¹⁹F HOESY NMR spectrum of **11a** (CDCl₃)

¹H NMR spectrum of **11b** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **11b** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **11b** (CDCl₃, 376 MHz)

¹H-¹⁹F HOESY NMR spectrum of **11b** (CDCl₃)

¹H NMR spectrum of **12a** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **12a** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **12a** (CDCl₃, 376 MHz)

¹H NMR spectrum of **12b** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **12b** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **12b'** (CDCl₃, 376 MHz)

¹³C NMR spectrum of **12c** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **12c** (CDCl₃, 376 MHz)

¹H NMR spectrum of **13a** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **13a** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **13a** (CDCl₃, 376 MHz)

¹H-¹⁹F HOESY NMR spectrum of 13a (CDCl₃)

¹³C NMR spectrum of **13b** (CDCl₃, 101 MHz)

S231

¹⁹F NMR spectrum of **13b'** (CDCl₃, 376 MHz)

¹H NMR spectrum of **13c'** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **13c'** (CDCl₃, 376 MHz)

¹⁹F NMR spectrum of 14a (CDCl₃, 376 MHz)

¹⁹F NMR spectrum of **14b** (CDCl₃, 376 MHz)

¹H NMR spectrum of **14c** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **14c** (CDCl₃, 376 MHz)

¹H NMR spectrum of 14e (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **14e** (CDCl₃, 376 MHz)

¹H NMR spectrum of **14f** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **14f** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **14f** (CDCl₃, 376 MHz)

¹⁹F NMR spectrum of 14g (CDCl₃, 376 MHz)

¹⁹F NMR spectrum of **14h** (CDCl₃, 376 MHz)

¹H NMR spectrum of **15b** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **15b** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **15b** (CDCl₃, 376 MHz)

¹H NMR spectrum of **15c** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **15c** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **15c** (CDCl₃, 376 MHz)

¹H NMR spectrum of **15d** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **15d** (CDCl₃, 101 MHz)

^{19}F NMR spectrum of 15d (CDCl₃, 376 MHz)

¹H NMR spectrum of **15e** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **15e** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **15e** (CDCl₃, 376 MHz)

¹H NMR spectrum of **15f** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **15f** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **15f** (CDCl₃, 376 MHz)

¹H NMR spectrum of **15g** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **15g** (CDCl₃, 101 MHz)

¹⁹F NMR spectrum of **15g** (CDCl₃, 376 MHz)

