Ferrocene analogues of Brooker's Merocyanine: A new library of organometallic inverted solvatochromic dyes

Ignacio Aburto,^a Fabián Martínez-Gómez,^a Carolina Aliaga^{a,b} and Moisés Domínguez*^a

^aFacultad de Química y Biología, Universidad de Santiago de Chile, Av. B.O'Higgins, 3363 Santiago, Chile. E-^bCentro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Chile mail: <u>moises.dominguez@usach.cl</u>

Supplemental material

Contents

1. Characterization data of dye 3–6	p2
2. Solvatochromic plots E _T vs. E _T ^N	p4
3. Catalán equations obtained for the solvatochromism of dyes 3–6	p6
4. Copies of the ¹ H and ¹³ C NMR spectra of dyes 3–6	p7
5. NMR Studies at different temperatures for dye 3	p11
6. EPR spectra of dyes 3–6 in water solution	p14
7. Frontier molecular orbitals of dyes 5 and 6 in water solution	p16
8. Dihedral angles of the optimized dyes 3–6 water solution	p17
9. Absorbance measurements of dyes 3–6 in protic solvents	p18
10. Absorption coefficients of dyes3–6 in protic solvents	p24
11. References	p26

1. Characterization data of dye 3–6

1.1 General methods

All NMR measurements were recorded on a Bruker Avance NEO 400 spectrometer (Bellerica, MA, USA) operating at 400.13 MHz (¹H) and 100.62 MHz (¹³C). No D-NMR experiments were carried out turning off the lock option. Tuning process was accomplished by automatization, meanwhile shimming was carried out manually, adjusting Z1 to Z4 until finding the maximum area for the signals. For the fine adjustment, X, Y, XY and YZ were used. All experiments were carried out using 32 scans (ns), 4 dummy scans (ds) and a 64K time domain (TD). IR spectra were recorded with a Spectrum Two FT-IR (ATR) Perkin Elmer spectrophotometer HRMS was performed with Varian Ionspec QFT-7 (ESI-FT ICRMS) and Agilent 6210 ESI-TOF instruments. Melting points were recorded with a Microthermal capillary melting-point apparatus and were not corrected. All reagents were reagent grade and were used without further purification. TLC was performed on TLC plates (silica gel 60, fluorescence indicator F254, 0.25 mm layer thickness). Products were purified by recrystallization from ethanol.

UV–Vis spectra were recorded on a diode array UV–vis near IR Specord S 600 (Maximum recording speed for complete spectra: 12 msec) at a room temperature of 23 ± 1 °C. The molar concentration of the dyes in the solutions employed during UV– vis measurements were *ca*. 3×10^{-5} mol/L.

1.2 Synthetic procedures

N-methylation of azaheterocycles with methyl triflate; General procedure 1.

MeOTf (1.5 mmol) was added dropwise to a stirred solution of the corresponding pyridine derivative (1.0 mmol) in dry dichloromethane (5.0 mL) under an argon atmosphere at room temperature. The resulting mixture was stirred during 2 h. After this time, the solid product was filtered off and dried under vacuum.

1,4-Dimethylpyridium triflate 11. Colorless solid, 91% yield (234 mg). ¹H NMR (400 MHz, DMSO- d_6) δ : 8.67 (d, J = 6.6 Hz, 2H), 7.81 (d, J = 6.2 Hz, 2H), 4.14 (s, 3H), 2.47 (s, 3H) ppm. The analytical data match those reported in the literature.¹

1,4-Dimethylquinolinium triflate 13. Colorless solid, 94% yield (289 mg), mp. 113-115 °C (lit.⁴ 114.6 °C). ¹H NMR (400 MHz, DMSO- d_6) δ : 9.30 – 9.19 (m, 1H), 8.46 (d, J = 8.4 Hz, 1H), 8.41 (d, J = 8.9 Hz, 1H), 8.23 – 8.15 (m, 1H), 8.02 – 7.93 (m, 2H), 4.50 (s, 3H), 2.93 (s, 3H) ppm. The analytical data match those reported in the literature.⁴

1,2-Dimethylpyridinium triflate 12. Colorless solid, 93% yield (239 mg). ¹H NMR (400 MHz, DMSO- d_6) δ : 8.91 – 8.86 (m, 1H), 8.44 – 8.35 (m, 1H), 8.02 – 7.95 (m, 1H), 7.92 – 7.83 (m, 1H), 4.17 (s, 3H), 2.73 (s, 3H) ppm. The analytical data match those reported in the literature.^{2,3}

1,2-Dimethylquinolinium 14. Colorless solid, 97% yield (298 mg). ¹H NMR (400 MHz, DMSO- d_6) δ : 9.02 (d, J = 8.6 Hz, 1H), 8.58 – 8.48 (m, 1H), 8.38 – 8.30 (m, 1H), 8.22 – 8.12 (m, 1H), 8.04 (d, J = 8.6 Hz, 1H), 7.96 – 7.88 (m, 1H), 4.38 (s, 3H), 3.01 (s, 3H) ppm. The analytical data match those reported in the literature.⁵

Condensation reactions with ferrocencarboxaldehyde; General procedure 2.

Under argon atmosphere, a mixture of the pyridinium salt (1.0 mmol), ferrocencarboxaldehyde (1.5 mmol) and a catalytic amount piperidine ($1.0 \mu L$) in dry and degassed ethanol (5 mL) was refluxed at 80 °C for 6 hours. After completion of the reaction as was notice by TLC (EtOAc), the reaction mixture was cooled down to 0 °C overnight. The desired products **3–6** were obtained as deeply colored solids after vacuum filtration.

(*E*)-1-methyl-4-[2-(ferrocene-2-yl)ethenyl]pyridinium triflate 3. Purple solid, 70% yield (340 mg), mp. 217-218 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : δ 8.73 (d, J = 6.6 Hz, 2H), 8.06 (d, J = 6.5 Hz, 2H), 7.88 (d, J = 16.0 Hz, 1H), 6.97 (d, J = 16.0 Hz, 1H), 5.04 – 4.65 (m, 2H), 4.65 – 4.48 (m, 2H), 4.23 (s, 5H), 4.18 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO- d_6) δ : 153.0, 145.2, 143.6, 122.9, 120.3, 80.5, 72.0, 70.2, 69.2, 47.0 ppm. ¹⁹F NMR (376 MHz, DMSO- d_6) δ : -78.99 ppm. FT-IR (ATR) v: 3055, 1604, 1518, 1253, 1138, 981, 820, 633 cm⁻¹. HRMS (ESI-TOF): m/z [M + H⁺] calcd for C₂₀H₂₆FeN⁺: 336.1407; found: 336.1418.

(*E*)-1-methyl-4-[2-(ferrocene-2-yl)ethenyl]quinolinium triflate 4. Purple solid, 78% yield (535 mg), mp. 225-226 °C. ¹H NMR (400 MHz, DMSO-*d₆*) δ: 9.36 – 9.09 (m, 1H), 9.05 – 8.80 (m, 1H), 8.46 – 8.36 (m, 2H), 8.32 – 7.95 (m, 3H), 7.84 (d, *J* = 15.6 Hz, 1H), 5.19 – 4.95 (m, 2H), 4.86 – 4.61 (m, 2H), 4.46 (s, 3H), 4.27 (s, 5H) ppm. ¹³C NMR (101 MHz, DMSO-*d₆*) δ: 152.7, 147.9, 146.6, 139.4, 135.2, 129.4, 126.7, 126.0, 119.6, 116.6, 115.2, 81.0, 72.6, 70.4, 70.0, 44.8 ppm. ¹⁹F NMR (376 MHz, DMSO-*d₆*) δ: -78.99 ppm. FT-IR (ATR) v: 3062, 1587, 1560, 1255, 1160, 1024, 759, 632 cm⁻¹. HRMS (ESI-TOF): m/z [M + H⁺] calcd for C₂₄H₂₈FeN⁺: 386.1562; found: 386.1571.

(*E*)-1-methyl-2-[2-(ferrocene-2-yl)ethenyl]pyridinium triflate 5. Purple solid, 30% yield (146 mg), mp. 185-186 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 8.78 (d, *J* = 6.3 Hz, 1H), 8.52 – 8.31 (m, 2H), 7.90 – 7.71 (m, 2H), 7.07 (d, *J* = 15.5 Hz, 1H), 4.90 – 4.84 (m, 2H), 4.68 – 4.60 (m, 2H), 4.27 (s, 5H), 4.25 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO- d_6) δ : 153.0, 145.99, 145.96, 144.1, 124.6, 124.1, 113.9, 80.1, 72.2, 70.3, 69.6, 46.2 ppm. ¹⁹F NMR (376 MHz, DMSO- d_6) δ : -78.99 ppm. FT-IR (ATR) v: 3097, 1607, 1564, 1445, 1260, 1174, 1028, 771, 634 cm⁻¹. HRMS (ESI-TOF): m/z [M + H⁺] calcd for C₂₀H₂₆FeN⁺: 336.1407; found: 336.1411.

(*E*)-1-methyl-2-[2-(ferrocene-2-yl)ethenyl]quinolinium triflate 6. Purple solid, 37% yield (198 mg), mp. 160-161 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 8.93 (d, *J* = 8.9 Hz, 1H), 8.59 – 8.42 (m, 2H), 8.30 (d, *J* = 7.9 Hz, 1H), 8.23 (d, *J* = 15.4 Hz, 1H), 8.18 – 8.06 (m, 1H), 7.99 – 7.81 (m, 1H), 7.40 (d, *J* = 15.4 Hz, 1H), 5.08 – 4.98 (m, 2H), 4.80 – 4.74 (m, 2H), 4.42 (s, 3H), 4.32 (s, 5H) ppm. ¹³C NMR (101 MHz, DMSO- d_6) δ : 156.2, 151.6, 143.3, 139.6, 135.0, 130.4, 128.9, 127.6, 121.1, 119.5, 115.5, 80.1, 73.4, 70.7, 70.4, 69.9, 66.8 ppm. ¹⁹F NMR (376 MHz, DMSO- d_6) δ : -78.99 ppm. FT-IR (ATR) v: 3093, 1590, 1520, 1453, 1254, 1151, 1026, 820, 634 cm⁻¹. HRMS (ESI-TOF): *m/z* [M + H⁺] calcd for C₂₄H₂₈FeN⁺: 386.1562; found: 386.1568.

1.3 Computational details

The molecular structures of **3**–**6** were optimized at the Becke-Lee-Yang-Parr B3LYP density-functional level of theory (DFT)^{6,7} employing the triple-ξ Karlsruhe basis set (def2-TZVP).⁸ Dispersion forces were accounted for with Grimme's D3 correction.⁹ Frequencies were calculated for all molecules in order to ensure energy minima. The electronic transition energy were calculated over the optimized structures with the TDDFT method at the Becke-Lee-Yang-Parr B3LYP level of theory employing the quadruple-ξ Karlsruhe basis set (def2-TZVP).⁸ The solvent effect for dichloromethane solution was included by employing the implicit CPCM solvation model.^{10,11} The RI^{12,13} and the Chain of Spheres¹⁴ approximations were employed to speed up the optimization and spectrum calculation respectively. All the calculations were carried out in ORCA 5.0.3.¹⁵

2. Solvatochromic plots $E_T vs. E_T^N$

Fig. S1 Variations in the electronic transition energy E_T of dye **4** as a function of normalized solvent polarity values E_T^N and the linear regression of the positive (blue) and negative (pink) parts of its general solvatochromic inverted profile.

Fig. S2 Variations in the electronic transition energy E_T of dye **5** as a function of normalized solvent polarity values E_T^N and the linear regression of the positive (blue) and negative (pink) parts of its general solvatochromic inverted profile.

Fig. S3 Variations in the electronic transition energy E_T of dye **6** as a function of normalized solvent polarity values E_T^N and the linear regression of the positive (blue) and negative (pink) parts of its general solvatochromic inverted profile.

Table S1.	Linear regression	s obtained for	r dyes 3–6	, and polarity	at where	solvatochromic	inversion	takes
place.								

Dye —	Equa	E Ninversion	
	Positive solvatochromism	Negative solvatochromism	
3	$E_{\rm T} = 55.09 - 13.83 E_{\rm T}^{\rm N}$	$E_{\rm T} = 49.46 + 2.77 E_{\rm T}^{\rm N}$	0.339
4	$E_{\rm T} = 48.17 - 4.89 E_{\rm T}^{\rm N}$	$E_{\rm T} = 42.17 + 6.24 E_{\rm T}^{\rm N}$	0.539
5	$E_{\rm T} = 54.72 - 6.69 E_{\rm T}^{\rm N}$	$E_{\rm T} = 50.36 + 3.45 E_{\rm T}^{\rm N}$	0.430
6	$E_{\rm T} = 49.39 - 3.94 E_{\rm T}^{\rm N}$	$E_{\rm T} = 44.56 + 5.59 E_{\rm T}^{\rm N}$	0.507

3. Catalán's equations obtained for the solvatochromism of dyes 3-6

Due	Equations				
Dye	Positive solvatochromism		Negative solvatochromism		
3	$E_{\rm T} = 59.17 - 8.04 SP - 2.28 SdP$	<i>r</i> ² = 0.972	$E_{\rm T} = 50.24 + 1.91 SA$	$r^2 = 0.984$	
4	$E_{\rm T} = 55.38 - 3.34 SB - 9.11 SP$	<i>r</i> ² = 0.861	$E_{\rm T} = 41.90 + 5.92 SdP$	$r^2 = 0.951$	
5	$E_{\rm T} = 61.77 - 3.24 SB - 9.57 SP$	$r^2 = 0.919$	$E_{\rm T} = 51.66 + 2.08 SA$	$r^2 = 0.975$	
6	$E_{\rm T} = 53.71 - 2.00 SB - 5.83 SP$	$r^2 = 0.947$	$E_{\rm T} = 44.95 + 4.60 SdP$	$r^2 = 0.960$	

Table S2. Catalán's equations obtained for the positive and negative solvatochromic part of the general inverted solvatochromic curve of dyes **3–6**.

Fig. S4 ¹H NMR spectrum of dye 3 recorded in DMSO-d₆.

Fig. S5 ¹³C NMR spectrum of dye 3 recorded in DMSO- d_6 .

Fig. S6 ¹H NMR spectrum of dye 4 recorded in DMSO-*d*₆.

Fig. S7 ¹³C NMR spectrum of dye 4 recorded in DMSO- d_6 .

Fig. S8 ¹H NMR spectrum of dye 5 recorded in DMSO-d₆.

Fig. S9 ¹³C NMR spectrum of dye 5 recorded in DMSO- d_6 .

Fig. S10 ¹H NMR spectrum of dye 6 recorded in DMSO-*d*₆.

Fig. S11 ¹³C NMR spectrum of dye 6 recorded in DMSO-*d*₆.

5. NMR Studies at different temperatures for dye 3

Fig. S12 Variation of the ¹H NMR signals of dye 3 in CD₃OD solution at different temperatures.

Fig. S13 Variation of the No-D ¹H NMR signals of dye 3 in cyclohexanol solution at different temperatures.

Fig. S14 Variation of the No-D ¹H NMR signals of dye 3 in ethyl acetate solution at different temperatures.

Fig. S15 Variation of the No-D ¹H NMR signals of dye 3 in tetrahydrofuran solution at different temperatures.

Temperature	D ₂ O	CD₃OD	No-D CyOH	No-D EtOAc	No-D THF
295	16.00	15.95	15.92	16.10	15.98
300	16.01	15.92	15.69	15.91	15.97
305	16.03	15.93	15.63	16.02	15.85
310	15.98	15.91	15.94	16.04	16.00
315	15.98	15.94	16.09	16.07	15.96
320	15.98	15.94	15.67	16.05	16.00
325	15.99	15.91	16.06	15.95	16.00
330	16.02	15.91	16.86	16.05	15.98
335	15.96	_	_	_	_
340	15.97	_	-	_	_

Table S3. Coupling constant in Hz of the ethylene bridge hydrogens of dye **3** at different temperatures in Kelvin.

6. EPR spectra of dyes 3–6 in water solution.

Fig. S16 EPR spectra of dye 3 in water solution.

Fig. S17 EPR spectra of dye 4 in water solution.

Fig. S18 EPR spectra of dye 5 in water solution.

Fig. S19 EPR spectra of dye 6 in water solution.

7. Frontier molecular orbitals of dyes 5 and 6 in water solution

Fig. S20 Frontier molecular orbitals of dyes **5** and **6** in dichloromethane solution, obtained by the TDDFT B3LYP/def2-TZVP CPCM=water method.

8. Dihedral angles of the optimized dyes 3-6 water solution

Fig. S21 Dihedral angles of the optimized structures of dyes **3**–**6** in water solution, obtained at the B3LYP/def2-TZVP CPCM=water level of theory.

9. Absorbance measurements of dye 3–6

Solvent	[Dye 3] / mol L ⁻¹	Absorbance	λ _{max} / nm
Water	$2.49 imes 10^{-5}$	0.131	544
	$4.13 imes 10^{-5}$	0.211	545
	5.77 × 10 ⁻⁵	0.290	545
	$7.39 imes 10^{-5}$	0.379	544
	$9.00 imes 10^{-5}$	0.462	545
	$1.06 imes 10^{-4}$	0.548	545
	$1.22 imes 10^{-4}$	0.620	544
1,2-Ethanediol	2.49 × 10 ⁻⁵	0.089	552
	$4.13 imes 10^{-5}$	0.163	552
	5.77 × 10 ⁻⁵	0.260	553
	$7.39 imes 10^{-5}$	0.345	554
	$9.00 imes 10^{-5}$	0.480	552
	$1.06 imes10^{-4}$	0.531	552
	$1.22 imes 10^{-4}$	0.615	552
Methanol	$2.49 imes 10^{-5}$	0.142	553
	$4.13 imes10^{-5}$	0.235	554
	$5.77 imes 10^{-5}$	0.326	554
	$7.39 imes10^{-5}$	0.418	554
	$9.00 imes10^{-5}$	0.514	554
	$1.06 imes10^{-4}$	0.607	554
	$1.22 imes10^{-4}$	0.696	555
Ethanol	2.49 × 10 ⁻⁵	0.149	558
	$4.13 imes10^{-5}$	0.246	558
	$5.77 imes 10^{-5}$	0.346	558
	$7.39 imes 10^{-5}$	0.440	557
	$9.00 imes 10^{-5}$	0.538	558
	$1.06 imes 10^{-4}$	0.633	558
	$1.22 imes 10^{-4}$	0.728	557
1-Propanol	$2.49 imes 10^{-5}$	0.149	562
	$4.13 imes 10^{-5}$	0.248	562
	$5.77 imes 10^{-5}$	0.348	562
	$7.39 imes 10^{-5}$	0.449	562
	$9.00 imes 10^{-5}$	0.552	560
	$1.06 imes 10^{-4}$	0.657	562
	$1.22 imes 10^{-4}$	0.756	562
1-Butanol	$2.49 imes 10^{-5}$	0.146	564
	$4.13 imes10^{-5}$	0.247	565
	5.77 × 10 ⁻⁵	0.350	564
	$7.39 imes 10^{-5}$	0.451	565
	$9.00 imes 10^{-5}$	0.546	564
	$1.06 imes10^{-4}$	0.646	564
	$1.22 imes 10^{-4}$	0.751	562
1-Hexanol	2.49 × 10 ⁻⁵	0.153	563
	$4.13 imes 10^{-5}$	0.258	563
	5.77 × 10 ⁻⁵	0.350	563

	$7.39 imes 10^{-5}$	0.452	562
	$9.00 imes10^{-5}$	0.552	563
	$1.06 imes10^{-4}$	0.652	563
	$1.22 imes 10^{-4}$	0.746	562
1-Octanol	$2.49 imes 10^{-5}$	0.158	559
	$4.13 imes 10^{-5}$	0.244	560
	5.77 × 10 ⁻⁵	0.337	558
	$7.39 imes 10^{-5}$	0.436	558
	$9.00 imes 10^{-5}$	0.534	556
	$1.06 imes 10^{-4}$	0.630	559
	$1.22 imes 10^{-4}$	0.728	557
1-Cyclohexanol	$2.49 imes 10^{-5}$	0.173	563
	$4.13 imes 10^{-5}$	0.275	562
	5.77 × 10 ⁻⁵	0.375	562
	7.39 × 10 ⁻⁵	0.513	562
	$9.00 imes10^{-5}$	0.559	560
	$1.06 imes 10^{-4}$	0.665	562
	$1.22 imes 10^{-4}$	0.782	564
tert-Butanol	$2.49 imes 10^{-5}$	0.148	561
	$4.13 imes 10^{-5}$	0.246	558
	5.77 × 10 ⁻⁵	0.340	559
	$7.39 imes10^{-5}$	0.433	559
	$9.00 imes10^{-5}$	0.526	556
	$1.06 imes10^{-4}$	0.617	559
	$1.22 imes 10^{-4}$	0.706	558

 Table S5. Absorbance of dye 4 in protic solvents at various concentrations.

Solvent	[Dye 4] / mol L ⁻¹	Absorbance	λ _{max} / nm
Water	$2.49 imes 10^{-5}$	0.161	592
	$4.13 imes 10^{-5}$	0.275	593
	$5.77 imes 10^{-5}$	0.389	592
	$7.39 imes 10^{-5}$	0.521	593
	$9.00 imes 10^{-5}$	0.627	595
	$1.06 imes 10^{-4}$	0.740	594
	$1.22 imes 10^{-4}$	0.836	594
1,2-Ethanediol	$2.49 imes 10^{-5}$	0.090	603
	$4.13 imes 10^{-5}$	0.226	603
	$5.77 imes 10^{-5}$	0.353	603
	$7.39 imes 10^{-5}$	0.478	603
	$9.00 imes 10^{-5}$	0.612	603
	$1.06 imes 10^{-4}$	0.737	604
	$1.22 imes 10^{-4}$	0.860	602

Methanol	2.49 × 10 ⁻⁵	0.202	607
	$4.13 imes 10^{-5}$	0.326	610
	$5.77 imes 10^{-5}$	0.449	609
	$7.39 imes 10^{-5}$	0.584	609
	$9.00 imes 10^{-5}$	0.709	611
	$1.06 imes 10^{-4}$	0.835	609
	$1.22 imes 10^{-4}$	0.960	609
Ethanol	$2.49 imes 10^{-5}$	0.186	616
	$4.13 imes 10^{-5}$	0.321	614
	5.77 × 10 ⁻⁵	0.454	612
	$7.39 imes 10^{-5}$	0.580	614
	$9.00 imes 10^{-5}$	0.711	615
	$1.06 imes 10^{-4}$	0.840	615
	$1.22 imes 10^{-4}$	0.968	612
1-Propanol	$2.49 imes 10^{-5}$	0.202	621
	$4.13 imes 10^{-5}$	0.339	624
	5.77 × 10 ⁻⁵	0.471	623
	$7.39 imes 10^{-5}$	0.606	622
	$9.00 imes 10^{-5}$	0.727	620
	$1.06 imes 10^{-4}$	0.856	621
	$1.22 imes 10^{-4}$	0.993	621
1-Butanol	$2.49 imes 10^{-5}$	0.207	623
	$4.13 imes 10^{-5}$	0.342	625
	$5.77 imes 10^{-5}$	0.481	625
	$7.39 imes 10^{-5}$	0.612	625
	$9.00 imes 10^{-5}$	0.749	625
	$1.06 imes 10^{-4}$	0.891	622
	$1.22 imes 10^{-4}$	1.029	621
1-Hexanol	$2.49 imes 10^{-5}$	0.211	627
	$4.13 imes 10^{-5}$	0.347	626
	$5.77 imes 10^{-5}$	0.471	625
	$7.39 imes 10^{-5}$	0.606	625
	$9.00 imes10^{-5}$	0.733	628
	$1.06 imes 10^{-4}$	0.855	624
	1.22 × 10 ⁻⁴	0.996	628

Table S5. Absorbance of dye 5 in protic solvents at various concentrations.

Solvent	[Dye 5] / mol L ⁻¹	Absorbance	λ _{max} / nm
Water	2.49 × 10 ⁻⁵	0.098	531
	$4.13 imes 10^{-5}$	0.164	528
	5.77 × 10 ⁻⁵	0.234	528
	$7.39 imes 10^{-5}$	0.298	530
	$9.00 imes10^{-5}$	0.358	529
	$1.06 imes 10^{-4}$	0.424	531
	$1.22 imes 10^{-4}$	0.488	530

1,2-Ethanediol	$2.49 imes 10^{-5}$	0.137	537
	$4.13 imes 10^{-5}$	0.195	537
	$5.77 imes 10^{-5}$	0.252	537
	$7.39 imes 10^{-5}$	0.333	537
	$9.00 imes10^{-5}$	0.404	539
	$1.06 imes 10^{-5}$	0.475	537
	$1.22 imes 10^{-5}$	0.537	537
Methanol	$2.49 imes 10^{-5}$	0.115	540
	$4.13 imes 10^{-5}$	0.190	542
	5.77 × 10 ⁻⁵	0.269	541
	$7.39 imes 10^{-5}$	0.349	540
	$9.00 imes10^{-5}$	0.424	539
	$1.06 imes10^{-4}$	0.501	539
	$1.22 imes10^{-4}$	0.579	540
Ethanol	2.49 × 10 ⁻⁵	0.116	540
	$4.13 imes 10^{-5}$	0.190	540
	5.77×10^{-5}	0.257	542
	7.39×10^{-5}	0.327	542
	9.00×10^{-5}	0.396	542
	1.06×10^{-4}	0.456	542
	1.22×10^{-4}	0.527	542
1-Propanol	2 49 × 10 ⁻⁵	0 129	546
	4.13×10^{-5}	0.208	546
	5.77×10^{-5}	0 291	546
	7.39×10^{-5}	0.251	546
	9.00×10^{-5}	0.446	546
	1.06×10^{-4}	0.526	545
	1.22×10^{-4}	0.606	546
1-Butanol	2.49×10^{-5}	0.118	547
	4.13×10^{-5}	0.191	547
	5.77×10^{-5}	0.278	547
	7.39×10^{-5}	0.367	548
	9.00×10^{-5}	0.440	548
	1.06×10^{-4}	0.525	547
	1.00×10^{-4}	0.606	547
1-Hevanol	2.49×10^{-5}	0.119	5/9
THEXANO	2.45×10^{-5}	0.115	549
	4.13×10^{-5}	0.284	549
	7.20×10^{-5}	0.264	545
	7.39×10^{-5}	0.307	547
	5.00×10^{-5}	0.430	549
	1.00×10^{-4}	0.557	549
1 Octanol	1.22 × 10	0.014	549
	2.49 × 10° 4 12 × 10°	0.11/	540 EAC
	4.13 × 10° 5 77 \(\) 10-5	0.194	540 E16
	J.//×⊥0° 7.20 × 10-5	0.2/4	540
	7.59 × 10 ⁻⁵	0.343	540 EAC
	9.00×10^{-4}	0.420	540
	1.00 × 10 ⁻⁴	0.505	543 EAC
1 Cuelohoverel	1.22 × 10 -	0.300	540
T-CACIONEXANOI	2.49×10^{-5}	0.109	546

$4.13 imes10^{-5}$	0.208	547
5.77 × 10 ⁻⁵	0.298	546
7.39 × 10 ⁻⁵	0.400	546
$9.00 imes 10^{-5}$	0.506	547
$1.06 imes 10^{-4}$	0.575	547
$1.22 imes 10^{-4}$	0.672	546

Table S6. Absorbance of dye 6 in protic solvents at various concentrations.

Solvent	[Dye 6] / mol L ⁻¹	Absorbance	λ _{max} / nm
Water	$2.49 imes 10^{-5}$	0.128	570
	$4.13 imes 10^{-5}$	0.216	574
	5.77 × 10 ⁻⁵	0.303	571
	7.39 × 10 ⁻⁵	0.393	574
	$9.00 imes 10^{-5}$	0.482	572
	$1.06 imes 10^{-4}$	0.573	573
	$1.22 imes 10^{-4}$	0.661	573
1,2-Ethanediol	$2.49 imes 10^{-5}$	0.116	584
	$4.13 imes 10^{-5}$	0.206	583
	5.77 × 10 ⁻⁵	0.306	583
	$7.39 imes 10^{-5}$	0.387	583
	$9.00 imes 10^{-5}$	0.478	583
	$1.06 imes 10^{-4}$	0.569	583
	$1.22 imes 10^{-4}$	0.721	584
Methanol	$2.49 imes 10^{-5}$	0.135	584
	$4.13 imes 10^{-5}$	0.235	583
	$5.77 imes 10^{-5}$	0.331	586
	$7.39 imes 10^{-5}$	0.420	587
	$9.00 imes 10^{-5}$	0.519	584
	$1.06 imes 10^{-4}$	0.610	584
	$1.22 imes 10^{-4}$	0.696	583
Ethanol	2.49 × 10 ⁻⁵	0.135	593
	$4.13 imes 10^{-5}$	0.225	587
	5.77 × 10 ⁻⁵	0.309	589
	$7.39 imes 10^{-5}$	0.402	589
	$9.00 imes 10^{-5}$	0.485	589
	$1.06 imes 10^{-4}$	0.574	592
	$1.22 imes 10^{-4}$	0.649	589
1-Propanol	$2.49 imes 10^{-5}$	0.136	594
	$4.13 imes 10^{-5}$	0.243	595
	$5.77 imes 10^{-5}$	0.363	596
	$7.39 imes 10^{-5}$	0.464	596
	$9.00 imes 10^{-5}$	0.570	596
	$1.06 imes 10^{-4}$	0.675	594
	$1.22 imes 10^{-4}$	0.778	595
1-Butanol	2.49 × 10 ⁻⁵	0.155	597

	$4.13 imes 10^{-5}$	0.267	598
	5.77 × 10 ⁻⁵	0.377	598
	$7.39 imes 10^{-5}$	0.482	598
	$9.00 imes10^{-5}$	0.592	598
	$1.06 imes10^{-4}$	0.706	598
	$1.22 imes 10^{-4}$	0.816	598
1-Hexanol	$2.49 imes 10^{-5}$	0.173	601
	$4.13 imes 10^{-5}$	0.276	601
	5.77 × 10 ⁻⁵	0.388	601
	$7.39 imes10^{-5}$	0.495	601
	$9.00 imes10^{-5}$	0.598	600
	$1.06 imes10^{-4}$	0.714	601
	$1.22 imes 10^{-4}$	0.827	601
1-Octanol	$2.49 imes 10^{-5}$	0.157	604
	$4.13 imes 10^{-5}$	0.256	601
	$5.77 imes 10^{-5}$	0.365	602
	$7.39 imes 10^{-5}$	0.493	602
	$9.00 imes 10^{-5}$	0.589	602
	$1.06 imes 10^{-4}$	0.703	603
	$1.22 imes 10^{-4}$	0.797	601
1-Cyclohexanol	$2.49 imes 10^{-5}$	0.153	603
	$4.13 imes 10^{-5}$	0.236	602
	5.77 × 10 ⁻⁵	0.354	603
	$7.39 imes 10^{-5}$	0.469	602
	$9.00 imes10^{-5}$	0.594	602
	$1.06 imes 10^{-4}$	0.751	602
	$1.22 imes 10^{-4}$	0.832	599

10. Absorption coefficients of dyes 3-6 in protic solvents

Solvent	Dye 3	Dye 4	Dye 5	Dye 6
Water	5103.2	7052.3	4004.7	5497.4
1,2-Ethanediol	5585.0	7928.9	4220.9	5995.0
Methanol	5722.7	7843.1	4782.6	5785.9
Ethanol	5968.1	8037.6	4202.4	5329.1
1-Propanol	6281.8	8088.2	4908.2	6612.2
1-Butanol	6200.2	8461.3	5066.2	6786.3
1-Hexanol	6113.3	8018.6	5151.4	6730.1
1-Octanol	5917.5	a	4679.6	6709.0
Cyclohexanol	6153.7	a	5809.9	7303.6
<i>tert</i> -butanol	5741.4	a	_a	a

Table S7. Absorption coefficients ϵ in L mol⁻¹ cm⁻¹ of dyes **3–6** in protic solvents.

^aNot recorded because the dye exhibited positive solvatochromism in this solvent.

Fig. S22 Correlation of the molar absorption coefficient at the UV/Vis peak maximum, as the function of the electronic transition energy E_T of dye **3** in all the solvents where this dye displays negative solvatochromism.

Fig. S23 Correlation of the molar absorption coefficient at the UV/Vis peak maximum, as the function of the electronic transition energy E_T of dye **4** in all the solvents where this dye displays negative solvatochromism.

Fig. S24 Correlation of the molar absorption coefficient at the UV/Vis peak maximum, as the function of the electronic transition energy E_T of dye **5** in all the solvents where this dye displays negative solvatochromism.

Fig. S25 Correlation of the molar absorption coefficient at the UV/Vis peak maximum, as the function of the electronic transition energy E_T of dye **6** in all the solvents where this dye displays negative solvatochromism.

9. References

- 1 S. R. Marder, J. W. Perry, B. G. Tiemann and W. P. Schaefer, Organometallics, 1991, 10, 1896–1901.
- 2 J. A. Cabeza, I. del Río, E. Pérez-Carreño, M. G. Sánchez-Vega and D. Vázquez-García, Organometallics, 2010, **29**, 4464–4471.
- 3 J. A. Bautista-Martinez, L. Tang, J.-P. Belieres, R. Zeller, C. A. Angell and C. Friesen, J. Phys. Chem. C Nanomater. Interfaces, 2009, **113**, 12586–12593.
- 4 A. Motaleb, A. Bera and P. Maity, Org. Biomol. Chem., 2018, 16, 5081–5085.
- 5 H. Neelakantan, H.-Y. Wang, V. Vance, J. D. Hommel, S. F. McHardy and S. J. Watowich, *J. Med. Chem.*, 2017, **60**, 5015–5028.
- 6 A. D. Becke, Phys. Rev. A Gen. Phys., 1988, **38**, 3098–3100.
- 7 J. P. Perdew, *Phys. Rev. B Condens. Matter*, 1986, **33**, 8822–8824.
- 8 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.
- 9 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 10 R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, *Chem. Phys. Lett.*, 1989, **162**, 165–169.
- 11 V. Barone and M. Cossi, J. Phys. Chem. A, 1998, **102**, 1995–2001.
- 12 K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.*, 1995, **242**, 652–660.
- 13 F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065.
- 14 F. Neese, F. Wennmohs, A. Hansen and U. Becker, *Chem. Phys.*, 2009, **356**, 98–109.
- 15 F. Neese, WIREs Comput Mol Sci, 2018, 8, 33.