Electrochemical four-component aminochlorination tuned

by benzimidazoles

Xuan Zhan, Guiqi Gao, Yating Liang, Fengyi Li, Ke Liu, Weigang Fan, Sheng Zhang,* and Man-Bo Li* Institutes of Physical Science and Information Technology, Hefei, Anhui 230601, P. R. China. Email: shengzhang@ahu.edu.cn; mbli@ahu.edu.cn;

Supporting Information

Table	of	Contents
TUDIC	01	Contents

Part I Experimental Section	S2
1. General information	S2
2. Cyclic voltammetric experiments	S2-S13
3. ¹⁹ F NMR monitoring for <i>N</i> -chlorobenzimidazole	S14
4. Optimization of reaction conditions	S15
5. General procedure for the electrochemical aminochlorination	S16
6. Procedure for gram scale reaction and the derivatization	S17
7. Control experiments	S18-S22
8. Tunable selectivity exploration	S23-S28
9. Experimental data	S29-S51
10. References	S52
Part II NMR spectra	S53-S128

1. General Information

¹H NMR and ¹³C NMR were recorded on a Bruker 400 MHz and 600 MHz spectrometer (¹H NMR: 400MHz, ¹³C NMR: 100MHz, 150MHz). The chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz respectively. ¹H NMR spectra were referenced to the solvent residual peak (TMS, δ 0 ppm) and ¹³C{¹H} NMR spectra were referenced to the solvent residual peak (CDCl₃, δ 77.0 ppm). High Resolution mass spectra were obtained using ThermoFisher LTQ Orbitrap XL mass spectrometer. Cyclic voltammograms were recorded on electrochemical workstation CHI660E (Shanghai CH Instruments Co., Ltd.). All solvents were purified and dried according to the standard procedures unless otherwise noted. Commercially substrates were purchased and used directly. Alkene substrates¹, cinnamates², **INT-1**³ were prepared according to the literature procedures.

2. Cyclic voltammetric experiments

The electrochemical analysis was demonstrated with Ag wire as a reference electrode, which is not a stable reference electrode. CVs can be calibrated using ferrocene as an external reference. (Fig. S1) $E_0(Fc/Fc^+) = (0.09-0.02)/2 = 0.035V$.

Fig. S1. Cyclic voltammograms of ferrocene (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S2. Cyclic voltammograms of benzimidazole and MgCl₂ in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate: a. MgCl₂ (0.02 M); b. Benzimidazole (0.02 M); c. Mixture of MgCl₂ (0.02 M) and benzimidazole (0.04 M).

As shown above, $MgCl_2$ has two oxidation peaks at 1.04 V and 1.80 V, which were assigned to the process Cl⁻/Cl and Cl·/Cl⁺, respectively. Benzimidazole has a broad oxidation wave ranging from 1.0 V to 1.80 V. Upon treating $MgCl_2$ with 2 equivalents of benzimidazole, significant increase of the first oxidation peak (that is, catalytic current) of $MgCl_2$ was observed, suggesting that benzimidazole could rapidly react with chlorine radical to accelerate the process of Cl⁻/Cl·.

Fig. S3. a) Cyclic voltammograms of benzimidazole and $MgCl_2$ in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate; b) The reactionship of the anodic peak increment of MgCl₂ with the amount of benzimidazole.

To clarify the catalytic current arising from the mixture of MgCl₂ and benzimidazole (**1a**), titration experiment of MgCl₂ and **1a** was conducted in the cyclic voltammograms (Figure S3a). We noticed the increment of anodic peak is not linear relationship with the amount of **1a**. When the amount of **1a** was increased to 2 equivalents, the increase the anodic peak of MgCl₂ is sluggish. This relationship was concluded in the Figure S3b. It clearly suggested that the increment of anodic peak is not arising from the plus effect of MgCl₂ and benzimidazole, and supported the catalytic current in the reaction.

Fig. S4. Cyclic voltammograms of substrates in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon

working electrode and Pt wire, $Ag/AgNO_3$ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate: a) $MgCl_2$ (0.02 M); b) Styrene (0.02 M); c) Mixture of $MgCl_2$ (0.02 M) and styrene (0.04 M).

In the contrast, treating MgCl₂ with excessive styrene led to no significant change in the oxidation peak of MgCl₂. This result suggests that chlorine radical cannot rapidly be intercepted by styrene. The direct addition between chlorine radical and styrene might be unlikely in the aminochlorination.

As shown above, mixing MgCl₂ with 5,6-chloro-1*H*-benzo[*d*]imidazole also resulted in an obvious catalytic current. This result supports the reaction between chlorine radical and **1e**.

To better understand redox behavior of benzimidazole derivatives, a broad range of CV experiments of benzimidazole derivatives are listed below.

Fig. S6. Cyclic voltammograms of 5,6-dimethyl-1*H*-benzo[*d*]imidazole (**1b**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S7. Cyclic voltammograms of 5,6-dimethoxy-1*H*-benzo[*d*]imidazole (**1c**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S8. Cyclic voltammograms of 1*H*-imidazole (**1d**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, $Ag/AgNO_3$ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S9. Cyclic voltammograms of 5,6-chloro-1*H*-benzo[*d*]imidazole (**1e**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S10. Cyclic voltammograms of benzotriazole (**1f**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, $Ag/AgNO_3$ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S11. Cyclic voltammograms of 2-isopropyl-1*H*-benzo[*d*]imidazole (**1g**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S12. Cyclic voltammograms of *p*-toluenesulfonamide (**1h**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S13. Cyclic voltammograms of benzoic acid (**1i**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, $Ag/AgNO_3$ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S14. Cyclic voltammograms of aniline (**1j**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S15. Cyclic voltammograms of pyrrolidine (**1k**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, $Ag/AgNO_3$ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Next, a range of alkene substrates were studied, and their CV spectra were shown below.

Fig. S16. Cyclic voltammograms of styrene (**2a**) (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S17. Cyclic voltammograms of α -methyl styrene (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S18. Cyclic voltammograms of 4-methoxystyrene (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, $Ag/AgNO_3$ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S19. Cyclic voltammograms of methyl cinnamate (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, $Ag/AgNO_3$ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

Fig. S20. Cyclic voltammograms of phenylacetylene (0.02 M) in 0.1 M LiClO₄ (CH₃CN), using a glassy carbon working electrode and Pt wire, Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrodes at a 100 mV/s scan rate.

3. ¹⁹F NMR monitoring for *N*-chlorobenzimidazole

To better understand the instability of *N*-chlorobenzimidazole, fluorine-containing variant was synthesized and ¹⁹F NMR monitoring was conducted.

As shown in the ¹⁹F NMR (Figure S21), the *N*-chlorobenzimidazole is sensitive to both heat and light. Specifically, *N*-chlorobenzimidazole decomposes completly in the half hour under sunlight.

Fig. S21. ¹⁹F NMR monitoring for *N*-chlorobenzimidazole

4. Optimization of reaction conditions

Table S1. Optimization of electrochemical aminochlorination^a

	Гр		: 15mA-3h, undivided cell,' <mark>Cl'</mark> source(1 mn		
	29	N H	electrolyte (0.1 M), electrodes, solvent		
	1.0 mm	iol 0.5 mmol		Ja 3a	
		MgCl ₂	Ph	N N	
		E _{ox} = 1.04 V (CI ⁻ /CI•) 1.80 V (CI•/CI ⁺)	E _{ox} = 1.68 V	1a H	
			F	E _{ox} = 1.51 V	
Entry	Electrolyte	Electrodes	Solvent	'Cl' source	Yield (%) ^b
		- / / .			
1	Et ₄ NCIO ₄	Pt(+)-Pt(-)	CH₃CN/HFIP (9/1)	Mg <mark>Cl</mark> 2	93
2	Et ₄ NClO ₄	Pt(+)-Pt(-)	CH₃CN	Mg <mark>Cl</mark> 2	23
3	Bu ₄ NClO ₄	Pt(+)-Pt(-)	CH₃CN/HFIP (9/1)	Mg <mark>Cl</mark> 2	81
4	Bu_4NPF_6	Pt(+)-Pt(-)	CH₃CN/HFIP (9/1)	Mg <mark>Cl</mark> 2	69
5	Bu_4NBF_4	Pt(+)-Pt(-)	CH ₃ CN/HFIP (9/1)	Mg <mark>Cl</mark> ₂	60
6	Bu₄NOAc	Pt(+)-Pt(-)	CH ₃ CN/HFIP (9/1)	Mg <mark>Cl</mark> 2	trace
7	Bu₄NCl	Pt(+)-Pt(-)	CH ₃ CN/HFIP (9/1)	-	53
8	Et ₄ NClO ₄	Pt(+)-Pt(-)	CH ₃ CN/HFIP (9/1)	Na <mark>Cl</mark>	trace
9	Et_4NCIO_4	Pt(+)-Pt(-)	CH ₃ CN/HFIP (9/1)	Li <mark>C</mark> l	trace
10	Et ₄ NClO ₄	Pt(+)-Pt(-)	CH ₃ CN/HFIP (9/1)	TMS <mark>C</mark>	51
11	Et ₄ NClO ₄	Pt(+)-C(-)	CH ₃ CN/HFIP (9/1)	Mg <mark>Cl</mark> 2	53
12	Et ₄ NClO ₄	C(+)-Pt(-)	CH ₃ CN/HFIP (9/1)	Mg <mark>Cl</mark> 2	69
13	Et_4NClO_4	C(+)-C(-)	CH ₃ CN/HFIP (9/1)	Mg <mark>Cl</mark> ₂	59

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), 'Cl' source (1 mmol), electrolyte (1 mmol), solvent (10 mL), electrodes, 15 mA, 3h (3.7 F/mol), room temperature. ^{*b*} Isolated yield.

We commenced our studies using benzimidazole (**1a**) and styrene (**2a**) as pilot substrates in a mixed solvent of acetonitrile and hexafluoroisopropanol (HFIP) under constant current electrolysis (Table S1). After screening of reaction conditions, the optimal result (entry 1) was achieved with MgCl₂ as chloride source, Et₄NClO₄ as supporting electrolyte, and platinum plate as electrodes. Interestingly, the desired Ritter-type product **3a** was exclusively produced in high Markovnikov selectivity and 93% yield. Removal of HFIP led to diminished yield (entry 2), which is presumably attributed to the key role of HFIP in the process of proton-coupled electron transfer (PECT). Replacing Et₄NClO₄ with other electrolytes failed to give better yields (entry 3-7). Variation of chlorine source was also explored (entry 8-10), and organic chloride (TMSCI) proved to be better than inorganic salts (NaCl, LiCl). This result can be understood by the poor solubility of the inorganic salts in the reaction solvent. Additionally, effect of electrodes was also studied. It was found that platinum electrode is essential for high yield.

5. General procedure for the electrochemical aminochlorination

Fig. S22. Electrolysis setup (graphite rod: diameter 0.6 cm, length 10 cm; platinum plate: 1.5 cm *1.5 cm)

3a as example

An undivided cell was equipped with a magnet stirrer, platinum plates (1.5 *1.5 cm²) as electrodes (the electrolysis setup is shown in Fig. S22). Substrates styrene **2a** (115 μ L, 1 mmol), benzoimidazole **1a** (59 mg, 0.5 mmol), MgCl₂ (95 mg, 1 mmol) and Et₄NClO₄ (229 mg, 1 mmol) were added to the solvent MeCN/HFIP (9/1 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 3 hours. The reaction mixture was condensed with a rotary evaporator, the resulting mixture was purified with column chromatography (PE/EA/Et₃N = 80/40/1.2 - 60/60/1.2), and the desired product **3a** (138 mg) was observed in 93 % yield.

6. Procedure for gram scale reaction and the derivatization

Fig. S23. Gram electrolysis device (platinum mesh: length 5.0 cm, width 2.0 cm, immersion depth 2.0 cm)

An undivided cell was equipped with a magnet stirrer, platinum mesh (2.0 *2.0 cm²) as electrodes (the electrolysis setup is shown in Fig. S23). Substrates styrene **2a** (1.15 mL, 10 mmol), benzoimidazole **1a** (0.59 g, 5 mmol), MgCl₂ (0.95 g, 10 mmol) and Et₄NClO₄ (1.60 g, 7 mmol) were added to the solvent MeCN/HFIP (63/7 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (450 mA) at room temperature for 1 hours. The reaction mixture was condensed with a rotary evaporator, the resulting mixture was purified with column chromatography (PE/EA/Et₃N = 80/40/1.2 - 60/60/1.2), and the desired product **3a** (1.35 g) was observed in 91 % yield.

The sequential hydrolysis of **3a** (1.35 g) was conducted in the DCM (50 mL) and water (5 mL). By treating with TFA (18 mmol, 4 equiv), the reaction mixture was allowed to be stirred at room temperature for 6 hours. the reaction mixture was poured into dilute HCl (150 mL, 2M) and extracted with ethyl ether (50 mL*3). The combined organic phase was dried over anhydrous Na₂SO4 and condensed with a rotary evaporator. The residue was purified by column chromatography (PE/ EA= 1/1-1/1.5) on silica gel to afford the desired product **7** (837 mg) in 93 % yield.

7. Control experiments

Detection of N-chloro species

An undivided cell was equipped with a magnet stirrer, platinum plates (1.5 *1.5 cm²) as electrodes (the electrolysis setup is shown in Fig. S22). Substrates benzoimidazole **1a** (59 mg, 0.5 mmol), MgCl₂ (95 mg, 1 mmol) and LiClO₄ (106 mg, 1 mmol) were added to the solvent MeCN/HFIP (9/1 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 3 hours. The reaction mixture was condensed with a rotary evaporator, and the resulting mixture was tested with high resolution mass spectrometry (Fig. S24-S25).

Fig. S25. HRMS spectra of reaction mixture 1e and MgCl₂ (INT-2)

Aminochlorination of alkenes with N-chlorobenzimidazole

To the solution of **2a** (115 μ L, 1 mmol) in CH₃CN/HFIP (9/1 mL), *N*-chlorobenzimidazole (76 mg, 0.5 mmol) was added. After stirring at room temperature for 3 hours, the reaction mixture was condensed with a rotary evaporator, and purified with column chromatography (PE/EA/Et₃N = 80/40/1.2 - 60/60/1.2) to afford product A (51 mg, 40% yield). When we conducted the reaction in dark, product **3a** was observed in 42% yield.

Radical suppression experiment

An undivided cell was equipped with a magnet stirrer, platinum plates $(1.5*1.5 \text{ cm}^2)$ as electrodes (the electrolysis setup is shown in Fig. S22). Substrates styrene **2a** (115 µL, 1 mmol), benzoimidazole **1a** (59 mg, 0.5 mmol), MgCl₂ (95 mg, 1 mmol) Et₄NClO₄ (229 mg, 1 mmol) and radical scavengers (0.5 mmol) were added to the solvent MeCN/HFIP (9/1 mL). The resulting mixture was allowed to stir and electrolyze under constant current condition (15 mA) at room temperature for 3 hours. The reaction mixture was condensed with a rotary evaporator, the resulting mixture was purified with column chromatography (PE/EA/Et₃N = 80/40/1.2 - 60/60/1.2).

Radical clock experiment

The radical clock experiment was carried out using **7** and **9** as substrates. As shown above, neither radical-initiated cyclization nor ring-opening product was observed in both cases. These results hinted that ionic pathway might be more feasible in the transformation.

Control experiment to ruling out possible pathway

To exclude a possible pathway involving *in-situ* generation of **G**, an analog **11** was tested in the transformation. Surprisingly, no desired product **13** was detected. Instead, product **12** arising from four component reaction was obtained in 61% yield. This result indicates that stepwise Ritter-type pathway might be more likely.

Anode potential monitoring

We monitored the anode potential of the model reaction between **1a** and **2a**, it showed that the anode potential is below to 1.68V (the anodic peak of styrene) in the first 2 hours. This result clearly suggested that the reaction is initiated by the oxidation of both MgCl₂ and benzimidazole.

8. Tunable selectivity exploration Tunable stereoselectivity investigation

Using **1a** as a reactivity modulator in the reaction with cinnamate give isomers of products (dr 2.8/1) and low yield 45%. The spectra of mixture of products were shown below.

Using **1b** as a reactivity modulator in the reaction with cinnamate give isomers of products $(dr \sim 12/1)$ and low yield 8%. The spectra of mixture of products were shown below.

Using **1e** as a reactivity modulator in the reaction with cinnamate give isomers of products (dr > 20/1) and low yield 8%. The spectra of mixture of products were shown below.

Fig. S29. ¹H NMR spectra of products using 1e as a reactivity modulator

Tunable chemoselectivity investigation

The above reaction was performed to understand reaction chemoselectivity. Ratio of products was determined by ¹H NMR spectra of the crude product. Corresponding spectra are listed below.

Fig. S30. ¹H NMR spectra of products using 1a as a reactivity modulator

Fig. S31. ¹H NMR spectra of products using 1b as a reactivity modulator

Fig. S32. ¹H NMR spectra of products using 1d as a reactivity modulator

Fig. S34. ¹H NMR spectra of products using 1f as a reactivity modulator

Fig. S35. ¹H NMR spectra of products using 1g as a reactivity modulator

9. Experimental data

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-phenylethyl)ethan-1-imine **(3a)**: 138 mg, 93% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.39 (m, 7H), 4.92 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.92 (m, 2H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.3, 144.3, 141.0, 140.2, 132.3, 128.9, 128.1, 127.2, 124.7, 123.7, 120.1, 116.3, 65.4, 50.5, 15.7; HRMS (ESI): cacld for C₁₇H₁₆ClN₃ [M+H]⁺: 298.1106, found 298.1107.

N-(2-chloro-1-phenylethyl)-1-(5,6-dimethyl-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine **(3b)**: 140 mg, 86% yield; pale yellow solid, m.p. 124-126 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 1H), 8.21 (s, 1H), 7.55 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 8.0 Hz, 1H), 4.90 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.92 (m, 2H), 2.45 (s, 3H), 2.42 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.3, 142.8, 140.4, 140.2, 133.6, 132.6, 130.8, 128.8, 128.1, 127.2, 120.1, 116.5, 65.3, 50.6, 20.8, 20.1, 15.6; HRMS (ESI): cacld. for $C_{19}H_{20}CIN_3$ [M+H]⁺: 326.1419, found 346.1423.

N-(2-chloro-1-phenylethyl)-1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine **(3c)**: 142 mg, 78% yield; pale yellow solid, m.p. 129-131 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.72 (s, 1H), 8.29 (s, 1H), 7.87 (s, 1H), 7.38 (m, 5H), 4.92 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.94 (m, 2H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.0, 143.6, 142.4, 139.9, 131.4, 129.1, 128.7, 128.4, 127.9, 127.1, 121.2, 118.1, 65.6, 50.4, 15.6; HRMS (ESI): cacld. for C₁₇H₁₄Cl₃N₃ [M+H]⁺: 366.0326, found 366.0327.

1-(1*H*-benzo[*d*][1,2,3]triazol-1-yl)-*N*-(2-chloro-1-phenylethyl)ethan-1-imine **(3d)**: 52 mg, 35% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.63 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 12.0 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 3H), 7.37 (t, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 1H), 5.03

(dd, J = 4.0 Hz, J = 8.0 Hz, 1H), 3.96 (m, 2H), 2.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 155.7, 146.7, 139.9, 131.5, 129.1, 128.9, 128.2, 127.2, 125.2, 119.7, 115.8, 65.3, 50.4, 15.3; HRMS (ESI): cacld. for C₁₆H₁₅ClN₄ [M+H]⁺: 299.1058, found 299.1052.

N-(2-chloro-1-phenylethyl)-1-(1*H*-imidazol-1-yl)ethan-1-imine **(3e)**: 63 mg, 51% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.19 (s, 1H), 7.70 (s, 1H), 7.36 (m, 5H), 7.12 (s, 1H), 4.82 (t, *J* = 8.0 Hz, 1H), 3.81 (d, *J* = 8.0 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 150.6, 140.1, 130.1, 128.8, 128.2, 127.1, 65.1, 50.2, 14.9; HRMS (ESI): cacld. for $C_{13}H_{14}CIN_3$ [M+H]⁺: 248.0949, found 248.0950.

N-(2-chloro-1-phenylethyl)-1-(2-isopropyl-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine **(3f)**: 100 mg, 59% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): 7.76 (d, *J* = 8.0 Hz, 1H), 7.36 (m, 6H), 7.22 (m, 2H), 4.94 (q, *J* = 4.0 Hz, 1H), 3.89 (m, 2H), 3.49 (m, 1H), 2.48 (s, 3H), 1.40 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 159.6, 154.6, 142.4, 139.2, 133.6, 129.0, 128.4, 127.2, 122.7, 122.4, 119.5, 110.6, 66.7, 49.8, 27.1, 21.7, 19.0. HRMS (ESI): cacld. for C₂₀H₂₂ClN₃ [M+H]⁺: 340.1575, found 340.1576.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(4-fluorophenyl)ethyl)ethan-1-imine **(3g)**: 148 mg, 94% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.40 (m, 4H), 7.07 (t, *J* = 8.0 Hz, 2H), 4.92 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.89 (m, 2H), 2.52 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 162.4 (d, *J*_{*F*-*C*} = 247.6 Hz), 152.4, 144.3, 140.9, 136.0, 132.3, 128.8 (d, *J*_{*F*-*C*} = 7.6 Hz), 124.8, 123.9, 120.3, 116.3, 115.8 (d, *J*_{*F*-*C*} = 21.1 Hz), 64.7, 50.4, 15.7; HRMS (ESI): cacld. for C₁₇H₁₅ClFN₃ [M+H]⁺: 316.1011, found 316.1020.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(4-chlorophenyl)ethyl)ethan-1-imine **(3h)**: 164 mg, 99% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, *J* = 8.0 Hz, 1H), 8.31 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.38 (m, 6H), 4.90 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.88 (m, 2H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.6, 144.4, 140.9, 138.7, 134.0, 132.3, 129.1, 128.6, 124.7, 123.9, 120.3, 116.3, 64.7, 50.2, 15.7; HRMS (ESI): cacld. for C₁₇H₁₅Cl₂N₃ [M+H]⁺: 332.0716, found 332.0716.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-(4-bromophenyl)-2-chloroethyl)ethan-1-imine **(3i)**: 186 mg, 99% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, *J* = 8.0 Hz, 1H), 8.31 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.39 (m, 2H), 7.33 (d, *J* = 12.0 Hz, 2H), 4.88 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.87 (m, 2H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.6, 144.4, 140.9, 139.2, 132.3, 132.0, 128.9, 124.8, 123.9, 122.1, 120.3, 116.3, 64.8, 50.1, 15.7; HRMS (ESI): cacld. for $C_{17}H_{15}BrClN_3$ [M+H]⁺: 376.0211, found 376.0212.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(4-iodophenyl)ethyl)ethan-1-imine **(3j)**: 197 mg, 93% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.39 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.87 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.87 (m, 2H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.7, 144.4, 140.9, 139.9 138.0, 132.3, 129.1, 124.8, 123.9, 120.3, 116.3, 93.7, 64.9, 50.1, 15.7; HRMS (ESI): cacld. for $C_{17}H_{15}CIIN_3$ [M+H]⁺: 424.0072, found 424.0072.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(4-(trifluoromethyl)phenyl)ethyl)ethan-1-imine (**3k**): 172 mg, 94% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.50 (d, J = 8.0 Hz, 1H), 8.34 (s, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 7.41 (m, 2H), 5.01 (dd, J = 4.0 Hz, J = 8.0 Hz, 1H), 3.92 (m, 2H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.9, 144.3, 144.1, 140.9, 132.3, 130.5 (q, $J_{F-C} = 32.3$ Hz), 127.7, 125.9 (q, $J_{F-C} = 4.0$ Hz), 124.9, 124.0, 123.9 (q, $J_{F-C} = 273.7$ Hz), 120.3, 116.3, 65.0, 50.0, 15.7; HRMS (ESI): cacld. for C₁₈H₁₅ClF₃N₃ [M+H]⁺: 366.0979, found 366.0977.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(4-(trifluoromethoxy)phenyl)ethyl)ethan-1-imine **(3I)**: 149 mg, 78% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, *J* = 8.0 Hz, 1H), 8.35 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.40 (m, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 4.96 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.89 (m, 2H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.7, 148.9, 144.3, 141.0, 138.8, 132.3, 128.7, 124.8, 123.9, 121.3, 120.4 (q, *J*_{*F*-*C*} = 256.0 Hz), 120.2, 116.3, 64.6, 50.2, 15.7; HRMS (ESI): cacld. for C₁₈H₁₅ClF₃N₃O [M+H]⁺: 382.0929, found 382.0930.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(4-(difluoromethoxy)phenyl)ethyl)ethan-1-imine (**3m**): 85 mg, 47% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, *J* = 8.0 Hz, 1H), 8.34 (s, 1H), 7.81 (d, *J* = 4.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.38 (m, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.50 (t, *J* = 72.0 Hz, 1H), 4.93 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.90 (m, 2H), 2.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.6, 150.8, 144.3, 141.0, 137.4, 132.3, 128.7, 124.8, 123.9, 120.2, 120.0, 116.3, 115.7 (t, *J*_{*F*-*C*} = 259.0 Hz), 64.7, 50.3, 15.7; HRMS (ESI): cacld. for C₁₈H₁₆ClF₂N₃O [M+H]⁺: 364.1023, found 364.1023.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)ethyl)ethan-1-imine **(3n)**: 156 mg, 74% yield; white solid; m.p. 174-176°C; ¹H NMR (400 MHz, CDCl₃): 8.51 (d, *J* = 8.0 Hz, 1H), 8.31 (s, 1H), 7.81 (t, *J* = 8.0 Hz, 3H), 7.45 (d, *J* = 4.0 Hz, 2H), 7.37 (m, 2H), 4.92 (q, *J* = 4.0 Hz, 1H), 3.92 (m, 2H), 2.47 (s, 3H), 1.33 (s, 12H); ¹³C NMR (101 MHz, CDCl₃): δ 152.5, 144.3, 143.1, 140.9, 135.3, 132.3, 126.6, 124.6, 123.7, 120.1, 116.3, 83.8, 65.5, 50.3, 24.8, 15.7. HRMS (ESI): cacld. for C₂₃H₂₇BClN₃O₂ [M+H]⁺: 424.1958, found 424.1966.

4-(1-((1-(1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)-2-chloroethyl)benzonitrile **(30)**: 129 mg, 80% yield; pale yellow solid, m.p. 209-211 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.46 (d, *J* = 8.0 Hz, 1H), 8.35 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.40 (m, 2H), 5.00 (t, *J* = 8.0 Hz, 1H), 3.89 (d, *J* = 8.0 Hz, 2H), 2.54 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 153.1, 145.3, 144.3, 141.0, 132.7, 132.2, 128.1, 124.9, 124.0, 120.3, 118.3, 116.2, 112.1, 64.8, 49.7, 15.7; HRMS (ESI): cacld. for C₁₈H₁₅ClN₄ [M+H]⁺: 323.1058, found 323.1062.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(p-tolyl)ethyl)ethan-1-imine **(3p)**: 115 mg, 74% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, *J* = 8.0 Hz, 1H), 8.31 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.39 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 4.89 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.91 (m, 2H), 2.49 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.2, 144.4, 140.9, 138.0, 137.3, 132.4, 129.6, 127.1, 124.7, 123.7, 120.2, 116.4, 65.2, 50.6, 21.1, 15.7; HRMS (ESI): cacld. for C₁₈H₁₈ClN₃ [M+H]⁺: 312.1262, found 312.1265.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(4-ethylphenyl)ethyl)ethan-1-imine **(3q)**: 146 mg, 90% yield; white solid, m.p. 105-107 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, *J* = 8.0 Hz, 1H), 8.31 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.39 (m, 4H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.90 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.91 (m, 2H), 2.64 (q, *J* = 8.0 Hz, 2H), 2.50 (s, 3H), 1.22 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 152.2, 144.3, 144.3, 140.9, 137.4, 132.4, 128.4, 127.1, 124.7, 123.8, 120.1, 116.4, 65.3, 50.6, 28.5, 15.7, 15.4; HRMS (ESI): cacld. for C₁₉H₂₀ClN₃ [M+H]⁺: 326.1419, found 326.1416.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-(4-(tert-butyl)phenyl)-2-chloroethyl)ethan-1-imine (**3r**): 147 mg, 83% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.54 (d, J = 8.0 Hz, 1H), 8.31 (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.38 (m, 6H), 4.91 (dd, J = 4.0 Hz, J = 8.0 Hz, 1H), 3.92 (m, 2H), 2.50 (s, 3H), 1.30

(s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 151.8, 150.5, 144.2, 140.8, 140.7, 132.4, 126.0, 125.7, 124.8, 123.7, 120.0, 116.8, 62.9, 58.1, 34.4, 31.2, 22.2, 19.3; HRMS (ESI): cacld. for C₂₁H₂₄ClN₃ [M+H]⁺: 354.1732, found 354.1732.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(4-isobutylphenyl)ethyl)ethan-1-imine **(3s)**: 138 mg,78% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.54 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.38 (m, 4H), 7.14 (d, *J* = 8.0 Hz, 2H), 4.90 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.91 (m, 2H), 2.50 (s, 3H), 2.46 (d, *J* = 4.0 Hz, 2H), 1.84 (m, 1H), 0.90 (s, 3H), 0.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.2, 144.4, 141.8, 141.0, 137.4, 132.4, 129.6, 126.9, 124.6, 123.7, 120.2, 116.4, 65.3, 50.7, 45.0, 30.1, 22.3, 15.7; HRMS (ESI): cacld. for $C_{21}H_{24}CIN_3$ [M+H]⁺: 354.1732, found 354.1738.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(2-chlorophenyl)ethyl)ethan-1-imine **(3t)**: 113 mg, 68% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.54 (d, *J* = 8.0 Hz, 1H), 8.33 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.61 (m, 1H), 7.40 (m, 3H), 7.29 (m, 1H), 7.24 (m, 1H), 5.46 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.93 (m, 2H), 2.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 153.2, 144.3, 141.0, 137.6, 132.5, 132.3, 129.7, 129.2, 129.1, 127.5, 124.8, 123.9, 120.2, 116.4, 61.2, 49.0, 16.1; HRMS (ESI): cacld. for $C_{17}H_{15}Cl_2N_3$ [M+H]⁺: 332.0716, found 332.0722.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(3-chlorophenyl)ethyl)ethan-1-imine **(3u)**: 157 mg, 95% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, *J* = 8.0 Hz, 1H), 8.33 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.37 (m, 6H), 4.90 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.89 (m, 2H), 2.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.8, 144.3, 142.1, 140.9, 134.7, 132.2, 130.2, 128.4, 127.4, 125.4, 124.8, 123.9, 120.2, 116.3, 64.9, 50.2, 15.7; HRMS (ESI): cacld. for $C_{17}H_{15}Cl_2N_3$ [M+H]⁺: 332.0716, found 332.0713.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(o-tolyl)ethyl)ethan-1-imine **(3v)**: 151 mg, 97% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.54 (d, *J* = 8.0 Hz, 1H), 8.30 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.51 (q, *J* = 4.0 Hz, 1H), 7.39 (m, 2H), 7.20 (d, *J* = 4.0 Hz, 3H), 5.12 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.94 (m, 1H), 3.83 (m, 1H), 2.49 (s, 3H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.1, 144.2, 140.9, 138.5, 134.6, 132.3, 130.8, 127.8, 127.3, 126.7, 124.7, 123.8, 120.1, 116.3, 61.7, 49.6, 19.5, 16.0; HRMS (ESI): cacld. for C₁₈H₁₈ClN₃ [M+H]⁺: 312.1262, found 312.1265.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(m-tolyl)ethyl)ethan-1-imine **(3w)**: 146 mg, 94% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.53 (d, *J* = 8.0 Hz, 1H), 8.33 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.39 (m, 2H), 7.24 (m, 3H), 7.12 (d, *J* = 8.0 Hz, 1H), 4.89 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.92 (m, 2H), 2.49 (s, 3H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 152.3, 144.3, 141.0, 140.1, 138.6, 132.4, 128.9, 128.8, 127.8, 124.6, 124.2, 123.7, 120.2, 116.3, 65.5, 50.6, 21.4, 15.7; HRMS (ESI): cacld. for C₁₈H₁₈ClN₃ [M+H]⁺: 312.1262, found 312.1267.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(3,5-dichlorophenyl)ethyl)ethan-1-imine **(3x)**: 179 mg, 98% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.45 (d, *J* = 8.0 Hz, 1H), 8.34(s, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.41 (m, 2H), 7.35 (d, *J* = 4.0 Hz, 2H), 7.32 (t, *J* = 4.0 Hz, 1H), 4.87 (t, *J* = 8.0 Hz, 1H), 3.87 (d, *J* = 8.0 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 153.2, 144.3, 143.4, 141.0, 135.4, 132.2, 128.4, 125.8, 124.9, 124.0, 120.2, 116.2, 64.4, 49.8, 15.8; HRMS (ESI): cacld. for $C_{17}H_{14}Cl_3N_3$ [M+H]⁺: 366.0326, found 366.0332.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(3,5-dimethylphenyl)ethyl)ethan-1-imine **(3y)**: 120 mg, 74% yield; pale yellow solid, m.p.130-132 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.38 (m, 2H), 7.02 (s, 2H), 6.93 (s, 1H), 4.83 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.91 (m, 2H), 2.48 (s, 3H), 2.30 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 152.2, 144.3, 141.0, 140.1, 138.4, 132.4, 129.8, 124.9, 124.6, 123.7, 120.1, 116.3, 65.5, 50.6, 21.3, 15.7; HRMS (ESI): cacld. for C₁₉H₂₀ClN₃ [M+H]⁺: 326.1419, found 326.1416.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(2,6-dichlorophenyl)ethyl)ethan-1-imine **(3z)**: 181 mg, 99% yield; white solid, m.p. 183-185 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.63 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.36 (m, 4H), 7.19 (t, *J* = 8.0 Hz, 1H), 5.79 (dd, *J* = 8.0 Hz, *J* = 8.0 Hz, 1H), 4.43 (dd, *J* = 8.0 Hz, *J* = 12.0 Hz, 1H), 4.16 (dd, *J* = 8.0 Hz, *J* = 12.0 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 153.1, 144.3, 141.0, 135.2, 134.9, 132.3, 129.7, 124.7, 123.8, 120.1, 116.6, 61.9, 46.1, 16.3; HRMS (ESI): cacld. for C₁₇H₁₄Cl₃N₃ [M+H]⁺: 366.0326, found 366.0322.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-(2,6-dimethylphenyl)ethyl)ethan-1-imine **(3aa)**: 109 mg, 67% yield; white solid, m.p. 165-167 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, *J* = 8.0 Hz, 1H), 8.27 (s, 1H), 7.80 (d, *J* = 4.0 Hz, 1H), 7.37 (m, 2H), 7.09 (t, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 8.0 Hz, 2H), 5.25 (m, 1H), 4.26 (t, *J* = 8.0 Hz, 1H), 3.85 (m, 1H), 2.46 (s, 6H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.9, 144.4, 140.9, 136.5, 136.2, 132.4, 127.8, 124.6, 123.7, 120.1, 116.2, 62.2, 47.4, 21.7, 16.2; HRMS (ESI): cacld. for C₁₉H₂₀ClN₃ [M+H]⁺: 326.1419, found 326.1415.

1-(1H-benzo[d]imidazol-1-yl)-N-(2-chloro-1-cyclohexylethyl)ethan-1-imine (3ab): 65 mg, 43%
yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.39 (m, 1H), 8.35 (s, 1H), 7.80 (m, 1H), 7.36 (m, 2H), 3.87 (d, *J* = 8.0 Hz, 1H), 3.69 (m, 2H), 2.52 (s, 3H), 1.76 (m, 4H), 1.68 (m, 1H), 1.24 (m, 3H), 1.12 (m, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 151.1, 144.1, 141.0, 132.4, 124.5, 123.7, 120.0, 116.4, 66.1, 47.9, 42.0, 30.1, 28.7, 26.24, 26.16, 26.1, 15.2. HRMS (ESI): cacld. for C₁₇H₂₂ClN₃ [M+H]⁺: 304.1575, found 304.1577.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-chlorohexan-2-yl)ethan-1-imine **(3ac)**: 35 mg, 25% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.37 (m, 1H), 8.35 (s, 1H), 7.80 (m, 1H), 7.35 (m, 2H), 3.85 (m, 1H), 3.76 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.65 (dd, *J* = 8.0 Hz, *J* = 12.0 Hz, 1H), 2.54 (s, 3H), 1.76 (m, 1H), 1.66 (m, 1H), 1.33 (m, 4H), 0.90 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.1, 144.3, 141.0, 132.4, 124.5, 123.7, 120.1, 116.3, 61.2, 49.1, 34.2, 28.3, 22.6, 15.3, 13.9; HRMS (ESI): cacld. for C₁₅H₂₀ClN₃ [M+H]⁺: 278.1419, found 278.1420.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-chloro-4-methylpentan-2-yl)ethan-1-imine **(3ad)**: 85 mg, 61% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.37 (m, 1H), 8.34 (s, 1H), 7.79 (m, 1H), 7.34 (m, 2H), 3.94 (m, 1H), 3.73 (m, 1H), 3.62 (m, 1H), 2.55 (s, 3H), 1.63 (m, 2H), 1.54 (m, 1H), 0.96 (d, *J* = 4.0 Hz, 3H), 0.92 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.1, 144.3, 141.0, 132.4, 124.5, 123.6, 120.1, 116.3, 59.2, 49.4, 43.6, 25.0, 23.4, 22.0, 15.3; HRMS (ESI): cacld. for $C_{15}H_{20}CIN_3 [M+H]^+$: 278.1419, found 278.1422.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloroethyl)ethan-1-imine **(3ae)**: 69 mg, 62% yield; white oil; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (m, 1H), 8.31 (s, 1H), 7.79 (m, 1H), 7.35 (m, 2H), 3.90 (t, *J* = 4.0 Hz, 2H), 3.86 (t, *J* = 4.0 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.3, 144.3, 140.8, 132.2, 124.6, 123.7, 120.1, 116.1, 51.8, 44.8, 15.3; HRMS (ESI): cacld. for C₁₁H₁₂ClN₃ [M+H]⁺: 222.0793, found 222.0797.

1-(1H-benzo[d]imidazol-1-yl)-N-(1-chloro-2-phenylpropan-2-yl)ethan-1-imine (3af): 134 mg, 86%

yield; pale yellow solid, m.p. 117-119 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, *J* = 8.0 Hz, 1H), 8.24 (s, 1H), 7.81 (s, 1H), 7.37 (m, 7H), 4.02 (d, *J* = 12.0 Hz, 1H), 3.79 (d, *J* = 12.0 Hz, 1H), 2.05 (s, 3H), 1.86 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 151.9, 144.0, 132.5, 128.8, 127.6, 126.4, 124.8, 123.8, 120.1, 116.8, 63.1, 58.0, 22.2, 19.3; HRMS (ESI): cacld. for C₁₈H₁₈ClN₃ [M+H]⁺: 312.1262, found 312.1259.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-chloro-2-(4-fluorophenyl)propan-2-yl)ethan-1-imine **(3ag)**: 123 mg, 75% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.64 (d, *J* = 8.0 Hz, 1H), 8.23 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.39 (m, 4H), 7.07 (t, *J* = 8.0 Hz, 2H), 3.98 (d, *J* = 8.0 Hz, 1H), 3.78 (d, *J* = 8.0 Hz, 1H), 2.07 (s, 3H), 1.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 162.0 (d, *J*_{*F*-*C*} = 248.5 Hz), 152.0, 144.2, 140.6, 139.8 (d, *J*_{*F*-*C*} = 4.0 Hz), 132.3, 128.2 (d, *J*_{*F*-*C*} = 8.1 Hz), 124.9, 123.9, 120.1, 116.7, 115.7 (d, *J*_{*F*-*C*} = 21.2 Hz), 62.7, 57.9, 22.3, 19.3; HRMS (ESI): cacld. for $C_{18}H_{17}CIFN_3$ [M+H]⁺: 330.1168, found 330.1173.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-chloro-2-(4-chlorophenyl)propan-2-yl)ethan-1-imine **(3ah)**: 135 mg, 78% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.62 (d, *J* = 8.0 Hz, 1H), 8.23 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.37 (m, 6H), 3.97 (d, *J* = 12.0 Hz, 1H), 3.79 (d, *J* = 12.0 Hz, 1H), 2.07 (s, 3H), 1.83 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 152.1, 144.3, 142.5, 140.7, 133.6, 132.3, 129.0, 127.9, 124.8, 123.9, 120.2, 116.7, 62.8, 57.7, 22.2, 19.4; HRMS (ESI): cacld. for C₁₈H₁₇Cl₂N₃ [M+H]⁺: 346.0872, found 346.0870.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-chloro-2-(*p*-tolyl)propan-2-yl)ethan-1-imine **(3ai)**: 91 mg, 56% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.67 (d, *J* = 8.0 Hz, 1H), 8.22 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.39 (m, 3H), 7.27 (s, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 4.00 (d, *J* = 12.0 Hz, 1H), 3.76 (d, *J* = 12.0 Hz, 1H), 2.35 (s, 3H), 2.05 (s, 3H), 1.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.7, 144.1 140.9, 140.7, 137.3, 132.3, 129.5, 126.2, 124.8, 123.8, 120.0, 116.8, 62.9, 58.0, 22.2, 21.0, 19.2; HRMS (ESI): cacld. for C₁₉H₂₀ClN₃ [M+H]⁺: 326.1419, found 326.1416.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-chloro-2-(4-ethylphenyl)propan-2-yl)ethan-1-imine **(3aj)**: 136 mg, 80% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, *J* = 8.0 Hz, 1H), 8.22 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.39 (m, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 4.01 (d, *J* = 12.0 Hz, 1H), 3.75 (d, *J* = 8.0 Hz, 1H), 2.66 (q, *J* = 8.0 Hz, 2H), 2.06 (s, 3H), 1.83 (s, 3H), 1.24 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.7, 143.9, 143.6, 141.1, 140.6, 132.3, 128.3, 126.3, 124.9, 123.9, 119.9, 116.8, 63.0, 58.0, 28.3, 22.2, 19.3, 15.3; HRMS (ESI): cacld. for C₂₀H₂₂ClN₃ [M+H]⁺: 340.1575, found 340.1571.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-(4-(*tert*-butyl)phenyl)-1-chloropropan-2-yl)ethan-1-imine (**3ak**): 129 mg, 70% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.70 (d, *J* = 8.0 Hz, 1H), 8.23 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.39 (m, 4H), 7.30 (d, *J* = 8.0 Hz, 2H), 4.02 (d, *J* = 12.0 Hz, 1H), 3.75 (d, *J* = 8.0 Hz, 1H), 2.06 (s, 3H), 1.84 (s, 3H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 151.8, 150.5, 144.2, 140.8, 140.7, 132.4, 126.0, 125.7, 124.8, 123.7, 120.0, 116.8, 62.9, 58.1, 34.4, 31.2, 22.2, 19.3; HRMS (ESI): cacld. for C₂₂H₂₆ClN₃ [M+H]⁺: 368.1888, found 368.1888.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-chloro-2-(3-chlorophenyl)propan-2-yl)ethan-1-imine **(3al)**: 131 mg, 76% yield; white solid, m.p. 148-150 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, *J* = 8.0 Hz, 1H), 8.23 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.36 (m, 5H), 4.30 (d, *J* = 12.0 Hz, 1H), 4.19 (d, *J* = 12.0 Hz, 1H), 2.02 (s, 3H), 1.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 149.9, 144.3, 140.8, 140.2, 132.5, 132.4, 132.1, 129.5, 129.4, 127.1, 124.6, 123.7, 120.1, 116.7, 63.8, 53.0, 23.8, 18.1; HRMS (ESI): cacld. for $C_{18}H_{17}Cl_2N_3$ [M+H]⁺: 346.0872, found 346.0885.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-chloro-2-(3-chlorophenyl)propan-2-yl)ethan-1-imine (3am): 148 mg, 86% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.62 (d, *J* = 8.0 Hz, 1H), 8.24 (s, 1H), 7.81 (d, J = 4.0 Hz, 1H), 7.39 (m, 3H), 7.30 (m, 3H), 3.98 (d, J = 12.0 Hz, 1H), 3.79 (d, J = 8.0 Hz, 1H), 2.08 (s, 3H), 1.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.2, 146.1, 144.3, 140.7, 134.8, 132.3, 130.1, 127.9, 126.6, 124.9, 124.7, 123.9, 120.2, 116.7, 62.9, 57.6, 22.2, 19.4; HRMS (ESI): cacld. for C₁₈H₁₇Cl₂N₃ [M+H]⁺: 346.0872, found 346.0876.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1-cyclohexyl-1-phenylethyl)ethan-1-imine **(3an)**: 74 mg, 39% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.45 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.35 (m, 6H), 7.25 (s, 1H), 4.28 (d, *J* = 12.0 Hz, 1H), 4.23 (d, *J* = 12.0 Hz, 1H), 2.00 (t, *J* = 12.0 Hz, 1H), 2.05 (s, 3H), 1.97 (m, 2H), 1.79 (m, 2H), 1.67 (d, *J* = 12.0 Hz, 1H), 1.35 (m, 2H), 1.00 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.4, 144.2, 141.6, 141.0, 132.4, 128.2, 127.13, 127.10, 124.6, 123.6, 120.1, 116.3, 68.3, 49.4, 47.9, 28.0, 27.9, 26.9, 26.8, 26.4, 21.4, 14.1; HRMS (ESI): cacld. for C₂₃H₂₆ClN₃ [M+H]⁺: 380.1888, found 380.1885.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(5-(chloromethyl)-6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5yl)ethan-1-imine **(3ao)**: 74 mg, 42% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.73 (d, *J* = 8.0 Hz, 1H), 8.23 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.37 (m, 3H), 7.16 (d, *J* = 8.0 Hz, 3H), 4.14 (d, *J* = 12.0 Hz, 1H), 3.97 (d, *J* = 8.0 Hz, 1H), 3.04 (m, 1H), 2.76 (m, 1H), 2.36 (m, 1H), 2.16 (m, 1H), 2.01 (m, 6H), 1.70 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 151.1, 144.1, 142.3, 141.9, 140.8, 132.4, 131.7, 128.7, 127.6, 126.6, 124.8, 123.7, 119.9, 117.0, 67.0, 53.8, 35.3, 34.3, 26.7, 24.0, 19.6; HRMS (ESI): cacld. for C₂₁H₂₂ClN₃ [M+H]⁺: 352.1575, found 352.1568.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chlorocyclohexyl)ethan-1-imine **(3ap)**: 85 mg, 62% yield; pale yellow solid, m.p. 86-88 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (m, 1H), 8.31 (s, 1H), 7.78 (m, 1H), 7.33 (m, 2H), 4.06 (m, 1H), 3.60 (m, 1H), 2.51 (s, 3H), 2.36 (m, 1H), 1.82 (m, 4H), 1.63 (m, 1H), 1.44 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 150.4, 144.2, 140.9, 132.4, 124.3, 123.5, 120.0, 116.2, 65.1, 35.4, 33.3, 25.6, 23.7, 15.2; HRMS (ESI): cacld. for $C_{15}H_{18}CIN_3$ [M+H]⁺: 276.1262, found 276.1259.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-2,3-dihydro-1*H*-inden-1-yl)ethan-1-imine **(3aq)**: 138 mg, 89% yield; pale yellow solid, m.p. 103-105 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.39 (s, 1H), 8.33 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.31 (m, 4H), 7.25 (m, 1H), 7.09 (d, *J* = 4.0 Hz, 1H), 5.28 (d, *J* = 8.0 Hz, 1H), 4.61 (q, *J* = 8.0 Hz, 1H), 3.62 (dd, *J* = 4.0 Hz, *J* = 16.0 Hz, 1H), 3.30 (dd, *J* = 12.0 Hz, *J* = 16.0 Hz, 1H), 2.73 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 153.1, 144.3, 141.6, 140.99, 140.96, 139.3, 132.3, 128.4, 127.5, 124.6, 123.8, 123.6, 120.1, 116.5, 71.8, 64.2, 40.9, 15.5; HRMS (ESI): cacld. for C₁₈H₁₆ClN₃ [M+H]⁺: 310.1106, found 310.1105.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-chloro-1,2,3,4-tetrahydronaphthalen-1-yl)ethan-1-imine **(3ar)**: 150 mg, 93% yield; yellow solid, m.p. 119-121 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (s, 1H), 8.28 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.29 (m, 2H), 7.19 (m, 3H), 6.98 (d, *J* = 8.0 Hz, 1H), 4.94 (d, *J* = 8.0 Hz, 1H), 4.39 (m, 1H), 3.07 (m, 2H), 2.71 (s, 3H), 2.59 (m, 1H), 2.32 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 152.9, 144.1, 141.0, 135.3, 134.8, 132.3, 128.8, 127.6, 127.4, 126.4, 124.5, 123.7, 120.0, 116.4, 65.5, 62.6, 31.3, 28.4, 15.4; HRMS (ESI): cacld. for C₁₉H₁₈ClN₃ [M+H]⁺: 324.1262, found 324.1258.

(3*S*,5*S*,6*R*,8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-acetyl-6-chloro-5-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1yl)ethylidene)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (**3as**): 149 mg, 48% yield; pale yellow solid, m.p. 228-230 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.41 (s, 1H), 8.35 (s, 1H), 7.87 (s, 1H), 5.40 (m, 1H), 4.05 (s, 1H), 2.58 (t, *J* = 8.0 Hz, 1H), 2.51 (s, 3H), 2.26 (m, 2H), 2.14 (s, 3H), 2.08 (m, 3H), 2.00 (s, 3H), 1.95 (m, 2H), 1.80 (m, 4H), 1.61 (m, 5H), 1.47 (m, 3H), 1.38 (s, 3H), 0.71 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 170.4, 149.7, 142.6, 130.9, 128.5, 127.7, 126.1, 121.3, 116.7, 85.2, 70.6, 66.0, 63.5, 55.8, 45.9, 44.2, 40.5, 38.7, 38.5, 34.6, 33.5, 31.7, 31.4, 26.1, 24.4, 23.4, 22.7, 21.3, 21.1, 18.7, 15.0, 13.6; HRMS (ESI): cacld. for C₃₂H₄₀Cl₃N₃O₃ [M+H]⁺: 620.2208, found 620.2210.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(3-chlorobicyclo[2.2.1]heptan-2-yl)ethan-1-imine **(3at)**: 52 mg, 36% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, *J* = 8.0 Hz,1H), 8.27 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.36 (m, 2H), 4.51 (s, 1H), 3.69 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 2.44 (s, 3H), 2.41 (s, 1H), 2.35 (s, 1H), 2.08 (m, 2H), 1.95f (m, 1H), 1.56 (m, 1H), 1.37 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 149.4, 144.3, 140.8, 132.2, 124.6, 123.7, 120.2, 116.0, 64.6, 60.6, 50.2, 42.1, 38.9, 26.2, 24.0, 15.2; HRMS (ESI): cacld. for C₁₆H₁₈ClN₃ [M+H]⁺: 288.1262, found 288.1261.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-(chloromethyl)-3,3 dimethylbicyclo[2.2.1]heptan-2-yl)ethan-1imine **(3au)**: 79 mg, 48% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.33 (s, 1H), 8.26 (m, 1H), 7.79 (m, 1H), 7.33 (m, 2H), 4.01 (d, *J* = 12.0 Hz, 1H), 3.82 (m, 1H), 3.57 (d, *J* = 12.0 Hz, 1H), 2.52 (s, 3H), 1.90 (m, 4H), 1.73 (m, 2H), 1.61 (m, 1H), 1.25 (s, 3H), 1.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 149.1, 144.3, 141.2, 132.2, 124.3, 123.4, 120.2, 115.4, 64.0, 53.8, 48.8, 46.7, 46.7, 39.4, 32.7, 26.9, 21.1, 20.5, 15.4; HRMS (ESI): cacld. for C₁₉H₂₄ClN₃ [M+H]⁺: 330.1732, found 330.1729.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(8-chlorocyclooct-4-en-1-yl)ethan-1-imine **(3av)**: 74 mg, 49% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.39 (m, 1H), 8.32 (s, 1H), 7.79 (m, 1H), 7.34 (m, 2H), 5.69 (t, *J* = 4.0 Hz, 2H), 4.62 (m, 1H), 4.12 (m, 1H), 2.74 (m, 3H), 2.49 (s, 3H), 2.32 (m, 1H), 2.19 (m, 2H), 2.09 (m, 1H), 1.85 (m, 1H) ; ¹³C NMR (101 MHz, CDCl₃): δ 149.7, 144.3, 141.0, 132.4, 128.9, 128.2, 124.3, 123.5, 120.0, 116.1, 67.6, 63.9, 33.9, 32.3, 25.0, 24.2, 15.3; HRMS (ESI): cacld. for $C_{17}H_{20}CIN_3$ [M+H]⁺: 302.1419, found 302.1437.

1-(1H-benzo[d]imidazol-1-yl)-N-(1-chloro-2,3-dimethylbut-3-en-2-yl)ethan-1-imine (3aw): 98 mg,

71% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.46 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.35 (m, 2H), 5.17 (d, *J* = 20.0 Hz, 2H), 3.85 (d, *J* = 8.0 Hz, 1H), 3.77 (d, *J* = 12.0 Hz, 1H), 2.52 (s, 3H), 1.77 (s, 3H), 1.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.0, 145.6, 144.2, 140.7, 132.3, 124.6, 123.7, 120.0, 116.5, 115.2, 64.3, 54.3, 21.8, 19.4, 18.0; HRMS (ESI): cacld. for C₁₅H₁₈ClN₃ [M+H]⁺: 276.1262, found 276.1258.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(1-chloro-3-methylbut-3-en-2-yl)ethan-1-imine **(3ax)**: 93 mg, 71% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.53 (d, *J* = 8.0 Hz, 1H), 8.29 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.35 (m, 2H), 6.04 (dd, *J* = 12.0 Hz, *J* = 16.0 Hz, 1H), 5.36 (m, 2H), 3.76 (d, *J* = 12.0 Hz, 1H), 3.68 (d, *J* = 12.0 Hz, 1H), 2.53 (s, 3H), 1.56 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.4, 144.2, 140.7, 132.3, 124.7, 123.7, 120.0, 117.5, 116.7, 116.4, 61.8, 56.2, 21.4, 18.8; HRMS (ESI): cacld. for $C_{14}H_{16}CIN_3$ [M+H]⁺: 262.1106, found 262.1110.

Methyl-2-chloro-3-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)-3-phenylpropanoate **(3ay)**: 135 mg, 64% yield; pale yellow solid, m.p. 186-188 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.62 (s, 1H), 8.21 (s, 1H), 7.86 (s, 1H), 7.38 (m, 5H), 5.02 (d, *J* = 12.0 Hz, 1H), 4.77 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.7, 153.1, 143.6, 142.3, 138.3, 131.1, 128.8, 128.6, 128.1, 121.4, 1178, 67.3, 60.3, 53.0, 16.0; HRMS (ESI): cacld. for C₁₉H₁₆Cl₃N₃O₂ [M+H]⁺: 424.0381, found 424.0383.

Methyl-2-chloro-3-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)-3-(4-fluorophenyl)propanoate **(3az)**: 143 mg, 65% yield; white solid, m.p. 224-226 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.59 (s, 1H), 8.23 (s, 1H), 7.87 (s, 1H), 7.40 (m, 2H), 7.08 (t, *J* = 8.0 Hz, 2H), 5.02 (d, *J* = 12.0 Hz, 1H), 4.72 (d, *J* = 12.0 Hz, 1H), 3.80 (s, 3H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.6, 162.6 (d, *J*_{F-C} = 248.5 Hz), 153.3, 143.6, 142.3, 134.1 (d, *J*_{F-C} = 3.0 Hz), 131.1, 129.7 (d, *J*_{F-C} = 8.1 Hz), 128.9, 128.2, 121.4, 117.7, 115.8 (d, *J*_{F-C} = 22.2 Hz), 66.5, 60.3, 53.1, 16.0; HRMS (ESI): cacld. for C₁₉H₁₅Cl₃FN₃O₂ [M+H]⁺: 442.0287, found 442.0284.

Methyl-2-chloro-3-(4-chlorophenyl)-3-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)propanoate **(3ba)**: 133 mg, 58% yield; white solid, m.p. 163-165 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.57 (s, 1H), 8.22 (s, 1H), 7.88 (s, 1H), 7.36 (s, 4H), 5.01 (d, *J* = 8.0 Hz, 1H), 4.71 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.5, 153.5, 142.3, 136.8, 134.6, 129.4, 129.1, 129.0, 128.3, 121.5, 117.7, 66.6, 60.2, 53.2, 16.1; HRMS (ESI): cacld. for C₁₉H₁₅Cl₄N₃O₂ [M+H]⁺: 457.9991, found 457.9990.

Methyl-3-(4-bromophenyl)-3-chloro-2-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)propanoate **(3bb)**: 143 mg, 57% yield; white solid, m.p. 182-184 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.57 (s, 1H), 8.22 (s, 1H), 7.87 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.00 (d, *J* = 8.0 Hz, 1H), 4.71 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.4, 153.5, 143.6, 142.4, 137.3, 132.0, 131.1, 129.7, 128.9, 128.2, 122.6, 121.4, 117.7, 66.6, 60.1, 53.1, 16.0; HRMS (ESI): cacld. for C₁₉H₁₅BrCl₃N₃O₂ [M+H]⁺: 501.9486, found 501.9484.

Methyl-3-chloro-2-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)-3-(*p*-tolyl)propanoate **(3bc)**: 153 mg, 70% yield; white solid, m.p. 174-176 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.57 (s, 1H), 8.22 (s, 1H), 7.88 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.00 (d, *J* = 12.0 Hz, 1H), 4.71 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.5, 152.1, 144.5, 137.3, 132.1, 129.8, 129.0, 128.3, 122.7, 121.5, 116.9, 66.7, 60.1, 53.2, 16.1; HRMS (ESI): cacld. for C₂₀H₁₈Cl₃N₃O₂ [M+H]⁺: 438.0537, found 438.0537.

Methyl-3-chloro-2-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)-3-(4-ethylphenyl)propanoate **(3bd)**: 126 mg, 56% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.62 (s, 1H), 8.21 (s, 1H), 7.87 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 4.99 (d, *J* = 8.0 Hz, 1H), 4.76 (d, *J* = 12.0 Hz, 1H), 3.80 (s, 3H), 2.65 (q, *J* = 8.0 Hz, 2H), 2.41 (s, 3H), 1.23 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.8, 152.9, 144.7, 143.6, 142.3, 135.5, 128.9, 128.3, 128.1, 128.0, 121.4, 117.8, 67.2, 60.4, 53.0, 28.5, 16.0, 15.3; HRMS (ESI): cacld. for C₂₁H₂₀Cl₃N₃O₂ [M+H]⁺: 452.0694, found 452.0690.

Methyl-3-chloro-2-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)-3-(4-isopropylphenyl)propanoate **(3be)**: 144 mg, 62% yield; pale yellow solid, m.p. 171-173 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.61 (s, 1H), 8.21 (s, 1H), 7.87 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 4.99 (d, *J* = 8.0 Hz, 1H), 4.75 (d, *J* = 8.0 Hz, 1H), 3.79 (s, 3H), 2.88 (m, 1H), 2.41 (s, 3H), 1.25 (s, 3H), 1.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.4, 153.5, 143.6, 142.3, 137.3, 132.0, 131.0, 129.7, 128.9, 128.2, 122.6, 121.4, 117.7, 66.6, 60.1, 53.1, 16.0; HRMS (ESI): cacld. for C₂₂H₂₂Cl₃N₃O₂ [M+H]⁺: 466.0850, found 466.0848.

Methyl-3-(4-(*tert*-butyl)phenyl)-2-chloro-3-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)propanoate **(3bf)**: 129 mg, 54% yield; white solid, m.p. 189-191 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.61 (s, 1H), 8.21 (s, 1H), 7.87 (s, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.00 (d, *J* = 8.0 Hz, 1H), 4.76 (d, *J* = 8.0 Hz, 1H), 3.79 (s, 3H), 2.42 (s, 3H), 1.31 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 169.8, 152.9, 151.6, 143.6, 142.3, 135.1, 131.1, 128.8, 128.1, 127.7, 125.7, 121.4, 117.8, 67.1, 60.3, 53.0, 34.6, 31.2, 16.0; HRMS (ESI): cacld. for C₂₃H₂₄Cl₃N₃O₂ [M+H]⁺: 480.1007, found 480.0998.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2-bromo-1-phenylethyl)ethan-1-imine **(3bg)**: 99 mg, 58% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, *J* = 8.0 Hz, 1H), 8.37 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 3H), 7.34 (m, 4H), 4.99 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 3.82 (m, 2H), 2.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.3, 144.1, 141.1, 140.8, 132.3, 128.9, 128.2, 127.1, 124.8, 123.8, 120.0, 116.5, 65.3, 39.3, 15.7; HRMS (ESI): cacld. for $C_{17}H_{16}BrN_3$ [M+H]⁺: 342.0600, found 342.0601.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2,2-dichloro-1-phenylvinyl)ethan-1-imine **(5a)**: 73 mg, 44% yield; Pale yellow solid; m.p. 157-159 °C; ¹H NMR (400 MHz, CDCl₃): 8.48 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.39 (m, 5H), 2.56 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.5, 144.4, 142.6, 141.0, 135.2, 132.0, 129.0, 128.5, 128.4, 125.3, 124.4, 120.5, 116.5, 106.3, 17.8. HRMS (ESI): cacld. for $C_{17}H_{13}Cl_2N_3$ [M+H]⁺: 330.0559, found 330.0569.

N-(2,2-dichloro-1-phenylvinyl)-1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine **(5b)**: 115 mg, 58% yield; white solid; m.p. 153-155°C; ¹H NMR (400 MHz, CDCl₃): 8.65 (s, 1H), 8.29 (s, 1H), 7.89 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.40 (m, 3H), 2.54 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.3, 143.6, 142.4, 142.2, 134.9, 131.0, 129.4, 129.2, 128.7, 128.6, 128.4, 121.5, 118.0, 107.0, 17.6. HRMS (ESI): cacld. for C₁₇H₁₁Cl₄N₃ [M+H]⁺: 397.9780, found 397.9785.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2,2-dichloro-1-(4-chlorophenyl)vinyl)ethan-1-imine **(5c)**: 87 mg, 48% yield; white solid; m.p. 163-165 °C; ¹H NMR (400 MHz, CDCl₃): 8.45 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 2.54 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.8, 144.4, 141.5, 141.0, 134.9, 133.6, 132.0, 129.8, 128.7, 125.3, 124.5, 120.6, 116.4, 106.8, 17.8. HRMS (ESI): cacld. for $C_{17}H_{12}Cl_3N_3$ [M+H]⁺: 364.0170, found 364.0171.

N-(2,2-dichloro-1-(4-chlorophenyl)vinyl)-1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine **(5d)**: 109 mg, 51% yield; white solid; m.p. 163-165°C; ¹H NMR (400 MHz, CDCl₃): 8.61 (s, 1H), 8.29 (s, 1H), 7.89 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.6, 143.6, 142.4, 141.1, 135.1, 133.2, 130.9, 129.8, 129.4, 128.8, 128.7, 121.6, 117.9, 107.4, 17.6. HRMS (ESI): cacld. for $C_{17}H_{10}Cl_5N_3$ [M+H]⁺: 431.9390, found 431.9380.

1-(1*H*-benzo[*d*]imidazol-1-yl)-*N*-(2,2-dichloro-1-(4-propylphenyl)vinyl)ethan-1-imine **(5e)**: 47 mg, 25% yield; white solid; m.p. 141-143 °C; ¹H NMR (400 MHz, CDCl₃): 8.48 (d, *J* = 8.0 Hz, 1H), 8.32 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.41 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 2.59 (t, *J* = 8.0 Hz, 2H), 2.54 (s, 3H); 1.64 (q, *J* = 8.0 Hz, 2H), 0.94 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.4, 143.8, 142.6, 141.0, 132.5, 128.5, 128.3, 125.2, 124.4, 120.4, 116.5, 105.8, 37.8, 24.3, 17.7, 13.8. HRMS (ESI): cacld. for C₂₀H₁₉Cl₂N₃ [M+H]⁺: 372.1029, found 372.1034.

N-(2,2-dichloro-1-(4-propylphenyl)vinyl)-1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine **(5f)**: 79 mg, 36% yield; Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): 8.66 (s, 1H), 8.27 (s, 1H), 7.89 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 2.60 (t, *J* = 8.0 Hz, 2H), 2.53 (s, 3H), 1.65 (q, *J* = 8.0 Hz, 2H), 0.95 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.12, 144.1, 143.5, 142.4, 142.2, 132.1, 131.0, 129.4, 128.6, 128.3, 121.5, 118.1, 106.4, 37.8,24.3, 17.6, 13.8. HRMS (ESI): cacld. for C₂₀H₁₇Cl₄N₃ [M+H]⁺: 440.0249, found 440.0243.

N-(2,2-dichloro-1-(4-fluorophenyl)vinyl)-1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine **(5g)**: 89 mg, 43% yield; white solid; m.p. 135-137°C; ¹H NMR (400 MHz, CD₂Cl₂): 8.65 (s, 1H), 8.32 (s, 1H), 7.86 (s, 1H), 7.60 (t, *J* = 8.0 Hz, 2H), 7.12 (t, *J* = 8.0 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂): δ 164.6, 162.1, 153.6, 144.4, 143.5, 142.0, 131.6 (t, *J*_{*F*-*C*} = 10.1 Hz), 131.2 (d, *J*_{*F*-*C*} = 10.1 Hz), 129.5, 128.9, 122.0, 118.6, 116.1 (d, *J*_{*F*-*C*} = 20.2 Hz), 107.4, 18.1. HRMS (ESI): cacld. for C₁₇H₁₀Cl₄FN₃ [M+H]⁺: 415.9686, found 415.9679.

N-(1-(4-bromophenyl)-2,2-dichlorovinyl)-1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine **(5h)**: 62 mg, 43% yield; white solid; m.p. 171-173°C; ¹H NMR (400 MHz, CDCl₃): 8.61 (s, 1H), 8.29 (s, 1H), 7.89 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.6, 143.6, 142.4, 141.2, 133.7, 131.8, 130.9, 130.0, 129.4, 128.8, 123.4, 121.6, 117.9, 107.5, 17.6. HRMS (ESI): cacld. for $C_{17}H_{10}BrCl_4N_3$ [M+H]⁺: 475.8885, found 475.8876.

N-(2,2-dichloro-1-(4-ethylphenyl)vinyl)-1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine **(5i)**: 74 mg, 35% yield; white solid; m.p. 171-173°C; ¹H NMR (400 MHz, CDCl₃): 8.66 (s, 1H), 8.29 (s, 1H), 7.89 (s, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 2.67 (q, J = 8.0 Hz, 2H), 2.53 (s,

3H), 1.24 (t, J = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.2, 145.6, 143.5, 142.4, 142.2, 132.1, 131.0 129.4, 128.7, 128.4, 128.0, 121.5, 118.1, 106.5, 28.6, 17.6, 15.2. HRMS (ESI): cacld. for C₁₉H₁₅Cl₄N₃ [M+H]⁺: 426.0093, found 426.0095.

N-(1-(4-(tert-butyl)phenyl)-2,2-dichlorovinyl)-1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethan-1imine **(5j)**: 109 mg, 48% yield; white solid; m.p. 184-186°C; ¹H NMR (400 MHz, CDCl₃): 8.67 (s, 1H), 8.29 (s, 1H), 7.89 (s, 1H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 2.53 (s, 3H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 152.4, 152.2, 143.6, 142.4, 142.2, 131.8, 131.0, 129.4, 128.6, 128.1, 125.5, 121.5, 118.1, 106.4, 34.8, 31.2, 17.6. HRMS (ESI): cacld. for C₂₁H₁₉Cl₄N₃ [M+H]⁺: 454.0406, found 454.0408.

1-*N*-((*E*)-4-chloro-2-methylbut-2-en-1-yl)-1-(2-isopropyl-1*H*-benzo[*d*]imidazol-1-yl)ethan-1-imine (6): 71 mg, 47% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): 7.74 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 4.0 Hz, 2H), 5.82 (t, *J* = 8.0 Hz, 1H), 4.26 (d, *J* = 4.0 Hz, 2H), 4.08 (s, 2H), 3.44 (m, 1H), 2.47 (s, 3H), 1.90 (s, 3H), 1.41 (d, *J* = 8.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 159.5, 153.8, 142.3, 134.4, 131.8, 126.6, 122.8, 122.5, 119.6, 110.5, 51.3, 49.3, 27.2, 21.6, 18.4, 14.7. HRMS (ESI): cacld. for $C_{17}H_{22}ClN_3$ [M+H]⁺: 304.1575, found 304.1577.

N-(2-chloro-1-phenylethyl)acetamide **(7)**: 92 mg, 93% yield; white solid, m.p. 205-207 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.33 (m, 5H), 6.66 (d, *J* = 4.0 Hz, 1H), 5.31 (m, 1H), 3.81 (d, *J* = 4.0 Hz, 2H), 2.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.7, 138.4, 128.7, 128.1, 126.7, 53.6, 47.5, 23.2; These data are in accordance with the literature.⁴

1-(2-Chloro-1-phenylethyl)-1*H*-benzo[*d*]imidazole (**A**): 51mg, 40% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.34 (m, 5H), 7.23 (m, 3H), 5.74 (t, *J* = 8.0 Hz, 12H), 4.28 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 143.9, 141.5, 136.1, 133.5, 129.4, 129.2, 126.7, 123.4, 122.7, 120.7, 110.3, 61.4, 44.7; HRMS (ESI): cacld. for $C_{15}H_{13}CIN_2$ [M+H]⁺: 257.0840, found 257.0841.

N-allyl-*N*-(3-chloro-2-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)propyl)-4methylbenzenesulfonamide **(9)**: 100 mg, 39% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.64 (s, 1H), 8.31 (s, 1H), 7.88 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.59 (m, 1H), 5.16 (m, 2H), 4.54 (m, 1H), 3.96 (m, 3H), 3.78 (m, 2H), 3.32 (dd, *J* = 8.0 Hz, *J* = 12.0 Hz, 1H), 2.52 (s, 3H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.3, 143.9, 143.5, 142.3, 135.8, 132.3, 131.3, 129.9, 128.6, 127.8, 127.3, 121.2, 120.2, 118.0, 59.2, 53.2, 52.8, 51.5, 21.5, 15.4; HRMS (ESI): cacld. for C₂₂H₂₃Cl₃N₄O₂S [M+H]⁺: 513.0680, found 513.0669.

Dibenzyl 2-(2-chloro-1-((1-(5,6-dichloro-1*H*-benzo[*d*]imidazol-1-yl)ethylidene)amino)ethyl) cyclopropane-1,1-dicarboxylate (**11**): 147 mg, 49% yield, *dr* ≈ 1.4/1; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.51 (s, 0.55H) (major isomer), 8.45 (s, 0.39H) (minor isomer), 8.28 (s, 0.56H) (major isomer), 8.01 (s, 0.39H) (minor isomer), 7.85 (s, 1H), 7.30 (m, 7H), 7.07 (m, 3H), 5.06 (m, 4H), 3.76 (m, 3H), 2.40 (m, 3H), 2.10 (s, 1.2H) (minor isomer), 1.70 (m, 1H), 1.55 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 168.9, 168.6, 168.1, 167.7, 152.5, 152.1, 143.5, 143.4, 142.4, 142.3, 135.2, 135.1, 134.7, 131.2, 128.7, 128.63, 128.57, 128.5, 128.4, 128.3, 128.21, 128.18, 128.02, 127.96, 127.7, 127.3, 121.2, 121.02 118.0, 117.9, 67.8, 67.64, 67.61, 67.4, 59.9, 59.5, 47.94, 47.85, 33.6, 32.8, 32.7, 30.8, 19.4, 18.6, 15.34, 15.29; HRMS (ESI): cacld. for C₃₀H₂₆Cl₃N₃O₄ [M+H]⁺: 598.1062, found 598.1053.

Ethyl-*N*-(1-((2-chloro-1-phenylethyl)imino)ethyl)benzimidate **(13)**: 100 mg, 61% yield; pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.33 (m, 6H), 7.21 (m, 4H), 4.79 (t, *J* = 8.0 Hz, 1H), 4.25 (m, 2H), 3.88 (t, *J* = 8.0 Hz, 1H), 3.77 (dd, *J* = 4.0 Hz, *J* = 8.0 Hz, 1H), 1.89 (s, 3H), 1.40 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 161.7, 155.8, 141.0, 131.2, 130.9, 128.4, 128.3, 127.9, 127.7, 127.4, 64.3, 62.7, 49.6, 24.1, 14.2. HRMS (ESI): cacld. for C₁₉H₂₁ClN₂O [M+H]⁺: 329.1415, found 329.1409.

10. References

- 1. S. Zhang, D. Bedi, L. Cheng, D. K. Unruh, G. Li and M. Findlater, *J. Am. Chem. Soc.*, 2020, **142**, 8910–8917.
- 2. J. Sim, B. Ryou, M. Choi, C. Lee and C.-M. Park, Org. Lett., 2022, 24, 4264–4269.
- 3. M. D. Rosa, N. Canudas, D. Arnold and H. Yennawar, J. Org. Chem., 2013, 78, 7264–7267.
- 4. D. W. Tay, I. T. Tsoi, J. C. Er, G. Y. Leung and Y.-Y. Yeung, Org. Lett. 2013, 15, 1310–1313

NMR spectra 3a ¹H NMR

3b¹H NMR

3d ¹H NMR

3e¹H NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

3f ¹H NMR

3g ¹H NMR

86 87 88 88 89 89 89 80 <

00.00----

3h ¹³C NMR

3i ¹H NMR

S61

3j ¹H NMR

S62

80

70 60

50 40 30 20

-10

0

10

200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

S63

3l ¹H NMR

3m¹H NMR

3n ¹H NMR

30¹H NMR

3p ¹H NMR

S68

3q ¹H NMR

S69

3r ¹H NMR

3s ¹H NMR

11.0 10.5 10.0 9.5 9.0 8.5

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 f1 (ppm)

1.5 1.0

0.5 0.0 -0.5

S72
3u ¹H NMR

3v ¹H NMR

3w¹H NMR

3x ¹H NMR

3y ¹H NMR

`

3aa ¹H NMR

3ac ¹H NMR

3ad ¹H NMR

3af ¹H NMR

3ag ¹H NMR

3ah ¹H NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) 3ai ¹H NMR

60 50 40 30 20 10 Ó -10

200 190 180 170 160 150 140 130 120 110

3aj ¹H NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3ak ¹H NMR

3am ¹H NMR

3an ¹H NMR

3ao ¹H NMR

3aq ¹H NMR

F86:2-0

1.1

3au ¹H NMR

S100

80 70 60

50 40 30 20

10 0 -10

200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

3aw ¹H NMR

3ax ¹H NMR

3ay ¹H NMR

3az ¹H NMR

3ba ¹H NMR

3bb ¹H NMR

3bc ¹H NMR

3bd ¹H NMR

3be ¹H NMR

3bf ¹H NMR

3bg ¹H NMR

S111

 Ó -10

5a ¹H NMR

5c ¹H NMR

5e ¹H NMR

5f ¹H NMR

 $\begin{array}{c} -866\\ -827\\ -729\\ -729\\ -721\\ -721\\ -721\\ -721\\ -722\\ -256\\ -256\\ -256\\ -256\\ -256\\ -166\\ -166\\ -166\\ -166\\ -166\\ -166\\ -166\\ -097\\ -09$

-00.00

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm) 5i ¹H NMR

$$-\frac{-8.66}{-120} + \frac{-1}{20} + \frac{-1}{20}$$

6 ¹³C NMR

A¹H NMR

