Electronic supplementary information

for

Formal [4+1] cycloaddtions of ketiminoboranes and isonitriles

Jie Cui and Tongdao Wang*

Zhang Dayu School of Chemistry, Dalian University of Technology,

Dalian 116024, P. R. China. Email: wangtd@dlut.edu.cn

Table of Contents

General Information	3
<i>In-situ</i> generation and characterization of compound 1	4
Synthesis and characterization of compound 1-IMes	7
General Procedure I	16
Synthesis and characterization of compound 5a	16
Synthesis and characterization of compound 5b	21
Synthesis and characterization of compound 5c	24
Synthesis and characterization of compound 5d	
Synthesis and characterization of compound 5e	31
Synthesis and characterization of compound 5f	35
General Procedure II	
Synthesis and characterization of compound 5g	40
Synthesis and characterization of compound 5h	44
Synthesis and characterization of compound 5i	48
Synthesis and characterization of compound 5j	52
Synthesis and characterization of compound 5k	56
Synthesis and characterization of compound 51	60
Synthesis and characterization of compound 5m	64
Control experiments	68

General Information

All manipulations were performed under an atmosphere of dry and oxygen-free N₂ by means of standard Schlenk or glovebox techniques. *n*-hexane and dichloromethane (DCM) were collected from a (Mikrouna) solvent purification system and stored over activated 3 Å molecular sieves. Dichloromethane-d₂ (CD₂Cl₂), Chloroform-d (CDCl₃) and benzene-d₆ (C₆D₆) were degassed, dried over calcium hydride and stored over 3 Å molecular sieves in the glovebox for at least 8 h prior to use. Unless otherwise noted, all chemicals were used as purchased. The following instruments were used for physical characterization of the compounds: HRMS: Agilent 6224 TOF LC/MS; NMR: Bruker Avance II 400MHz spectrometer (¹H: 400 MHz, ¹³C: 101 MHz, ¹⁹F: 377 MHz, ¹¹B: 128 MHz). NMR chemical shifts are given relative to SiMe₄ and referenced to the respective solvent signals (¹H and ¹³C). Some NMR assignments were supported by additional 2D NMR experiments.

X-Ray diffraction: Single-crystal X-ray diffraction data were collected on a Bruker D8 Venture CMOS-based diffractometer (**1-IMes** and **5a**) with graphite-monochromated Mo_{Ka} radiation ($\lambda = 0.71073$ Å) and a dual source Rigaku Oxford Diffraction four-circle diffractometer (**5j**), equipped with a Hybrid Pixel Array detector and Cu_{Ka} radiation ($\lambda =$ 1.54184 Å). All of the data were corrected for absorption effects using the multi-scan technique. Final unit cell parameters were based on all observed reflections from integration of all frame data. The structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization that implanted in Olex2. For all compounds, all non-H atoms were refined anisotropically unless otherwise stated, and hydrogen atoms were introduced at their geometric positions and refined as riding atoms unless otherwise stated. CCDC 2256776-2256778 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures/.

In-situ generation and characterization of compound 1

Scheme S1

In an NMR tube, a solution of 2,5-dimethylhexa-2,4-diene (16.6 mg, 0.15 mmol) and $HB(C_6F_5)_2$ (51.9 mg, 0.15 mmol) in C_6D_6 (0.6 mL) was kept at room temperature for 1 h, then NMR spectra was conducted.

¹**H** NMR (400 MHz, 299 K, C₆D₆): $\delta = 4.43$ (d, ³J_{HH} = 10.0 Hz, 1H,

=CH), 2.76 (t, ${}^{3}J_{\text{HH}}$ = 10.0 Hz, 1H, BCH), 1.68 and 0.77 (each s, each 3H, CH₃), 1.56 (m, 1H, CH^{*i*Pr}), 1.16 (d, ${}^{3}J_{\text{HH}}$ = 4.4 Hz, 3H, CH₃^{*i*Pr}), 0.89 (d, ${}^{3}J_{\text{HH}}$ = 4.8 Hz, 3H, CH₃^{*i*Pr}).

¹³C {¹H} NMR (101 MHz, 299K, C₆D₆): $\delta = 168.1 (=C)$, 146.9 (dm, ¹*J*_{FC} = 247.2 Hz, *C*₆F₅), 141.7 (dm, ¹*J*_{FC} = 254.7 Hz, *C*₆F₅), 137.7 (dm, ¹*J*_{FC} = 254.3 Hz, *C*₆F₅), 114.0 (brm, *i*-*C*₆F₅), 106.0 (=*C*H), 53.7 (B*C*H), 31.5 (*C*H^{*i*Pr}), 27.8, 20.8 (*C*H₃), 23.2 (*C*H₃^{*i*Pr}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, C_6D_6): $\delta^1H/\delta^{13}C$: 4.43/106.0 (=*CH*), 2.76/53.7 (B*CH*), 1.68/27.8 (*CH*₃), 1.56/31.5 (*CH*^{*i*Pr}), (1.16, 0.89)/23.2 (*CH*₃^{*i*Pr}), 0.77/20.8 (*CH*₃).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, C₆D₆): δ^{1} H/ δ^{13} C: 4.43/20.8, 27.8, 31.5, 53.7 (=CH/CH₃, CH₃, CH^{iPr}, BCH), 2.76/23.2, 31.5, 106.0, 168.1 (BCH/CH₃^{*i*Pr}, CH^{*i*Pr}, =CH, =C), 1.68/106.0, 168.1 (CH₃/=CH, =C), 0.89/31.5, 53.7 (CH₃^{*i*Pr}/CH^{*i*Pr}, BCH).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, C₆D₆): $\delta = 34.3$ (v_{1/2} ~ 741 Hz). ¹⁹**F** {¹**H**} **NMR** (377 MHz, 299K, C₆D₆): $\delta = -130.1$ (m, 4F, *o*-C₆F₅), -152.7 (t, ³*J*_{FF} = 20.7 Hz, 2F, *p*-C₆F₅), -162.0 (m, 4F, *m*-C₆F₅) [$\Delta \delta^{19}F_{m,p} =$ 9.3].

HRMS (ESI): m/z calcd for C₂₀H₁₅BF₁₀: 473.1140 [M+H₂O-H]⁻; found: 473.1136.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S2 ${}^{13}C{}^{1}H$ NMR (101 MHz, 299K, C₆D₆) spectrum of compound 1.

-126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 f1 (ppm)

Fig. S3 19 F{H} NMR (377 MHz, 299K, C₆D₆) spectrum of compound 1.

Fig. S4¹¹B NMR (128 MHz, 299K, C₆D₆) spectrum of compound 1.

Synthesis and characterization of compound 1-IMes

Scheme S2

The compound **1** (0.3 mmol) was *in-situ* prepared according to the above procedure. Then IMes (91.4 mg, 0.3 mmol) was added to give an orange

solution. The reaction mixture was stirred at room temperature for 4 h. After completion, all the volatiles were removed in vacuo. The obtained residue was washed with *n*-hexane (3×2 mL) and dried in vacuo to give a yellow solid **1-IMes**. Yield: 146.4 mg, 64%.

Crystals suitable for the X-ray crystal structure analysis were obtained from a two-layer procedure using a solution of compound **1-Imes** in CH_2Cl_2 covered with *n*-hexane at room temperature.

¹**H NMR** (400 MHz, 299 K, CD₂Cl₂): $\delta = 7.07$ and 6.97 (each m, each 2H, Mes), 6.78 and 6.40 (each s, each 1H, C*H*=C*H*), 4.91 (d, ³*J*_{HH} = 11.2 Hz, 1H, =C*H*), 2.40, 2.34, 2.26, 2.20, 1.92 and 1.51 (each s, each 3H, C*H*₃^{Mes}), 2.40 (m, 1H, BC*H*), 2.18 (m, 1H, C*H*^{iPr}), 1.41 and 1.39 (each s, each 3H, C*H*₃), -0.16 (d, ³*J*_{HH} = 6.4 Hz, 3H, C*H*₃^{iPr}), -0.38 (d, ³*J*_{HH} = 6.0 Hz, 3H, C*H*₃^{iPr}).

¹³C {¹H} NMR (101 MHz, 299K, CD₂Cl₂): δ = 140.6, 139.8, 137.43, 137.40, 135.9, 135.6, 135.3, 135.22, 135.20, 131.6, 130.0, 129.9, 129.0, 128.9, 128.6, 128.2, 126.5, 125.6, 32.8, 26.1, 25.6, 21.0, 20.7, 19.7, 19.5, 18.92, 18.85, 18.5, 18.3, 17.7, 17.6, 17.5, 17.4, 17.2, 17.14, 17.11, 17.1.

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CD_2Cl_2): $\delta = -12.1 (v_{1/2} \sim 89 \text{ Hz}).$

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -119.4$, -121.0, -122.6, 127.5 (each m, each 1F, *o*-C₆F₅), -161.9 (t, ${}^{3}J_{FF} = 20.7$ Hz, 1F, *p*-C₆F₅), -162.8 (t, ${}^{3}J_{FF} = 20.4$ Hz, 1F, *p*-C₆F₅), -166.7 (m, 2F, *m*-C₆F₅), -167.7 (m, 1F, *m*-C₆F₅), -169.2 (m, 1F, *m*-C₆F₅).

HRMS (ESI): m/z calcd for $C_{41}H_{39}BF_{10}N_2$: 795.2741 [M+Cl]⁻; found: 795.2736.

Fig. S5 ¹H NMR (400 MHz, 299K, CD_2Cl_2) spectrum of compound 1-IMes.

Fig. S6 13 C {H} NMR (101 MHz, 299K, CD₂Cl₂) spectrum of compound 1-IMes.

Fig. S7 $^{19}F{H}$ NMR (377 MHz, 299K, CD_2Cl_2) spectrum of compound 1-IMes.

1-IMes.

X-ray crystal structure analysis of compound 1-IMes: formula $C_{41}H_{39}BF_{10}N_2$, M = 760.55, colourless crystal, $0.1 \times 0.1 \times 0.1 mm$, a = 41.95(7), b = 11.256(17), c = 16.35(2) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 110.28(4)^{\circ}$, V = 7242(19) Å³, $\rho_{calc} = 1.395$ gcm⁻³, $\mu = 0.117$ mm⁻¹, empirical absorption correction ($0.6568 \le T \le 0.7458$), Z = 8, monoclinic, space group C2/c, $\lambda = 0.71073$ Å, T = 120.0 K, ω and φ scans, 33864 reflections collected ($\pm h$, $\pm k$, $\pm l$), 6166 independent ($R_{int} = 0.3375$) and 2532 observed reflections [$I > 2\sigma(I)$], 498 refined parameters, R = 0.0713, $wR^2 = 0.1249$, max. (min.) residual electron density 0.32 (-0.27) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

Fig. S9 A view of the molecular structure of compound 1-IMes.

In-situ generation and characterization of compound 3a

Scheme S3

In an NMR tube, compound **2a** (6.2 mg, 0.15 mmol) was added to a solution of *in-situ* generated compound **1** (0.15 mmol) in C_6D_6 (0.6 mL). The mixture was kept at room temperature for 6 h, then NMR spectra was conducted.

¹**H NMR** (400 MHz, 299 K, C₆D₆): $\delta = 5.34$ (dd, ³*J*_{HH} = 16.0 and 5.6 Hz, 1H, =C*H*^{*i*Pr}), 5.29 (d, ³*J*_{HH} = 16.0 Hz, 1H, =C*H*^{-CMe₂}), 2.11 (m, 1H, C*H*^{*i*Pr}), 1.81 (s, 3H, C*H*₃^{C=N}), 1.06 (s, 6H, C*H*₃^C), 0.87 (d, ³*J*_{HH} = 6.8 Hz, 6H, C*H*₃^{*i*Pr}). ¹³C {H} NMR (101 MHz, 299K, C₆D₆): $\delta = 166.0 \ (C^{=N})$, 148.3 (dm, ¹*J*_{FC} = 245.3 Hz, *C*₆F₅), 142.1 (dm, ¹*J*_{FC} = 255.0 Hz, *C*₆F₅), 137.7 (dm, ¹*J*_{FC} = 250.9 Hz, *C*₆F₅), 138.0 (=*C*H^{*i*Pr}), 131.5 (=*C*H^{-CMe₂}), 109.8 (brm, *i*-*C*₆F₅), 45.1 (*C*^{CH=}), 31.6 (*C*H^{*i*Pr}), 24.7 (*C*H₃^C), 22.9 (*C*H₃^{C=N}), 22.4 (*C*H₃^{*i*Pr}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, C₆D₆): δ^1 H/ δ^{13} C: 5.34/138.0 (=*CH*^{*i*Pr}), 5.29/131.5 (=*CH*^{-CMe₂}), 2.11/31.6 (*CH*^{*i*Pr}), 1.81/22.9 (*CH*₃^{C=N}), 1.06/24.7 (*CH*₃^C), 0.87/22.4 (*CH*₃^{*i*Pr}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, C₆D₆): δ^{1} H/ δ^{13} C: 5.34/45.1, 31.6 (=C $H^{iPr}/C^{CH=}$, C H^{iPr}), 5.29/24.7, 138.0 (=C H^{-CMe_2}/CH_3^{-C} , =C H^{iPr}), 1.81/45.1, 166.0 (C $H_3^{-C}/C^{-CH=}$, C^{=N}), 1.06/45.1, 131.5, 166.0 (C $H_3^{-C}/C^{-CH=}$, =C H^{-CMe_2} , C^{=N}), 0.87/31.6, 138.0 (C H_3^{iPr}/CH^{iPr} , =C H^{iPr}).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, C_6D_6): $\delta = 20.9 (v_{1/2} \sim 318 \text{ Hz})$.

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, C₆D₆): $\delta = -132.8$ (m, 4F, o-C₆F₅), -152.5 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, p-C₆F₅), -162.3 (m, 4F, m-C₆F₅) [$\Delta \delta^{19}F_{m,p} =$ 9.8].

HRMS (ESI): m/z calcd for $C_{22}H_{18}BF_{10}N$: 498.1446 [M+H]⁺; found: 498.1437.

Fig. S10 ¹H NMR (400 MHz, 299K, C_6D_6) spectrum of compound 3a.

Fig. S11 ¹³C {¹H} NMR (101 MHz, 299K, C_6D_6) spectrum of compound 3a.

-126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 f1 (ppm)

Fig. S12 ${}^{19}F{}^{1}H$ NMR (377 MHz, 299K, C₆D₆) spectrum of compound 3a.

....

Scheme S4

A solution of 2,5-dimethylhexa-2,4-diene (55.1 mg, 0.5 mmol) and $HB(C_6F_5)_2$ (173.0 mg, 0.5 mmol) in CH_2Cl_2 (2 mL) was stirred at room temperature for 1 h to *in-situ* generate compound **1**. After that, acetonitrile (20.5 mg, 0.5 mmol) was added to give a colourless solution. The reaction mixture was stirred at room temperature for another 4 h to *in-situ* generate compound **3a**. Finally, isonitriles **4** (0.5 mmol) were added to the mixture to give products **5**. Specific purification methods were described for each compound.

Synthesis and characterization of compound 5a

 $B(C_6F_5)_2$ 5a

The compound **3a** was *in-situ* prepared according to the General Procedure I. Then 2,6-dimethylphenylisonitrile (Xyl-N=C **4a**, 65.6 mg, 0.5 mmol) was added to give a pale yellow solution immediately. The solution was stirred at room temperature for 6 h. Then all the volatiles were removed in vacuo. The obtained residue was washed with *n*-hexane $(3\times2 \text{ mL})$ and dried in vacuo to give a white solid **5a**. Yield: 223.0 mg, 71%.

Crystals suitable for the X-ray crystal structure analysis were obtained from a two-layer procedure using a solution of compound 5a in CH₂Cl₂ covered with *n*-hexane at room temperature.

¹**H NMR** (400 MHz, 299 K, CDCl₃): $\delta = 7.41$ and 6.88 (each br, each 1H, NH), 7.12 (m, 3H, Xyl), 5.57 (dd, ${}^{3}J_{\text{HH}} = 16.0$ and 7.2 Hz, 1H, $=CH^{i\text{Pr}}$), 5.43 (d, ${}^{3}J_{\text{HH}} = 15.6$ Hz, 1H, $=CH^{-\text{CMe}_{2}}$), 4.85 (s, 1H, $CH^{\text{C=N}}$), 2.34 (m, 1H, $CH^{i\text{Pr}}$), 2.06 (s, 6H, CH_{3}^{Xyl}), 1.27 (s, 6H, CH_{3}^{C}), 1.00 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 6H, $CH_{3}^{i\text{Pr}}$).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 191.8$ (brm, BC), 191.1 (*C*^{=N}), 147.9 (dm, ¹*J*_{FC} = 238.1 Hz, *C*₆F₅), 139.7 (dm, ¹*J*_{FC} = 231.7 Hz, *C*₆F₅), 137.2 (dm, ¹*J*_{FC} = 232.7 Hz, *C*₆F₅), 139.0 (=*C*H^{*i*Pr}), 137.1, 135.4, 128.8, 127.7 (Xyl), 130.8 (=*C*H^{-CMe₂}), 118.2 (brm, *i*-*C*₆F₅), 95.4 (*C*H^{C=N}), 40.6 (*C*^{CH₃}), 31.4 (*C*H^{*i*Pr}), 26.1 (*C*H₃^C), 22.6 (*C*H₃^{*i*Pr}), 17.8 (*C*H₃^{Xyl}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 5.57/139.0 (=*CH*^{*i*Pr}), 5.43/130.8 (=*CH*^{-CMe₂}), 4.85/95.4 (*CH*^{C=N}), 2.34/31.4 (*CH*^{*i*Pr}), 2.06/17.8 (*CH*₃^{Xyl}), 1.27/26.1 (*CH*₃^C), 1.00/22.6 (*CH*₃^{*i*Pr}).

¹H, ¹³C GHMBC (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 7.41/95.4 (NH/CH^{C=N}), 5.57/130.8 (=CH^{iPr}/=CH^{-CMe₂}), 5.43/139.0 (=CH^{-CMe₂}/=CH^{iPr}), 4.85/191.1 (CH^{C=N}/C^{=N}), 1.27/(40.6, 130.8) (CH₃^C/C^{-CH₃}), =CH^{-CMe₂}), 1.00/(31.4, 139.0) (CH₃^{iPr}/CH^{iPr}, =CH^{iPr}).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): $\delta = -7.7 (v_{1/2} \sim 62 \text{ Hz}).$

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -133.8$ (m, 4F, o-C₆F₅), -158.0 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, p-C₆F₅), -163.2 (m, 4F, m-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 5.2$].

HRMS (ESI): m/z calcd for $C_{31}H_{27}BF_{10}N_2$: 627.2035 [M-H]⁻; found: 627.2052.

Fig. S14 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5a.

Fig. S15 ¹³C {H} NMR (101 MHz, 299K, CDCl₃) spectrum of compound

5a.

Fig. S16 ¹⁹F{H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound 5a.

5 f1 (ppm) 0

-5

-15

-20

-25

-30

-35

-40

-10

50

45

40

35

30

25

15

10

Fig. S17 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound **5a**. **X-ray crystal structure analysis of compound 5a:** formula $C_{31}H_{27}BF_{10}N_2$, M = 628.35, colourless crystal, $0.41 \times 0.35 \times 0.21$ mm, a = 9.8832(10), b = 12.8668(13), c = 13.2576(15) Å, $a = 118.991(3)^{\circ}$, $\beta =$ $94.734(3)^{\circ}$, $\gamma = 91.945(3)^{\circ}$, V = 1464.3(3) Å³, $\rho_{calc} = 1.425$ gcm⁻³, $\mu =$ 0.128 mm⁻¹, empirical absorption correction (0.6749 ≤ T ≤ 0.7456), Z = 2, triclinic, space group *P-1*, $\lambda = 0.71073$ Å, T = 200.0 K, ω and φ scans, 23798 reflections collected (±h, ±k, ±l), 6630 independent ($R_{int} = 0.0917$) and 3332 observed reflections [$I > 2\sigma(I)$], 403 refined parameters, R = 0.0614, $wR^2 = 0.1528$, max. (min.) residual electron density 0.33 (-0.31) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

Fig. S18 A view of the molecular structure of compound 5a.

Synthesis and characterization of compound 5b

The compound **3a** was *in-situ* prepared according to the General Procedure I. Then 'BuN \equiv C **4b** (41.6 mg, 0.5 mmol) was added to give a pale yellow solution immediately. The solution was stirred at room temperature for 6 h. Then all the volatiles were removed in vacuo. The *n*-hexane (1 mL) was added and then stored at -25 °C for 1 h. After filtration, the obtained residue was dried in vacuo to give white solid **5b**.

Yield: 217.6 mg, 75%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): $\delta = 6.49$ and 6.33 (each br, each 1H, NH), 5.57 (dd, ${}^{3}J_{\text{HH}} = 16.0$ and 6.8 Hz, 1H, $=CH^{i\text{Pr}}$), 5.45 (d, ${}^{3}J_{\text{HH}} = 16.0$ Hz, 1H, $=CH^{-\text{CMe}_{2}}$), 5.36 (s, 1H, $CH^{\text{C=N}}$), 2.34 (m, 1H, $CH^{i\text{Pr}}$), 1.35 (s, 9H, $CH_{3}^{t\text{Bu}}$), 1.34 (s, 6H, CH_{3}^{C}), 1.00 (d, ${}^{3}J_{\text{HH}} = 6.7$ Hz, 6H, $CH_{3}^{i\text{Pr}}$).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 190.8$ (brm, BC), 189.7 (*C*^{=N}), 147.9 (dm, ¹*J*_{FC} = 238.6 Hz, *C*₆F₅), 139.4 (dm, ¹*J*_{FC} = 250.0 Hz, *C*₆F₅), 137.2 (dm, ¹*J*_{FC} = 253.1 Hz, *C*₆F₅), 138.4 (=*C*H^{*i*Pr}), 131.3 (=*C*H^{-CMe₂}), 118.5 (brm, *i*-*C*₆F₅), 93.7 (*C*H^{C=N}), 53.6 (*C*^{*i*Bu}), 40.5 (*C*^{CH₃}), 31.4 (*C*H^{*i*Pr}), 28.5 (*C*H₃^{*i*Bu}), 26.3 (*C*H₃^C), 22.7 (*C*H₃^{*i*Pr}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 5.57/138.4 (=*CH*^{*i*Pr}), 5.45/131.3 (=*CH*^{-CMe₂}), 5.36/93.7 (*CH*^{C=N}), 2.34/31.4 (*CH*^{*i*Pr}), 1.35/28.5 (*CH*₃^{*t*Bu}), 1.34/26.3 (*CH*₃^C), 1.00/22.7 (*CH*₃^{*i*Pr}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 5.57/(22.7, 40.5, 131.3) (=C H^{iPr}/CH_{3}^{iPr} , $C^{CH_{3}}$, =C $H^{-CMe_{2}}$), 5.45/(26.3, 31.4, 40.5, 138.4, 189.7) (C $H^{-CMe_{2}}/CH_{3}^{C}$, CH^{iPr} , $C^{CH_{3}}$, =C H^{iPr} , $C^{=N}$), 5.36/189.7 (C $H^{C=N}/C^{=N}$), 1.34/(40.5, 131.3, 189.7) (C $H_{3}^{C}/C^{CH_{3}}$, =C $H^{-CMe_{2}}$, $C^{=N}$), 1.35/53.6 (C H_{3}^{IBu}/C^{IBu}), 1.00/(31.4, 138.4) (C H_{3}^{iPr}/CH^{iPr} , =C H^{iPr}).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): $\delta = -7.2$ ($v_{1/2} \sim 47$ Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -133.9$ (m, 4F, o-C₆F₅), -158.6 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, p-C₆F₅), -163.6 (m, 4F, m-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 5.0$]. **HRMS (ESI)**: m/z calcd for $C_{27}H_{27}BF_{10}N_2$: 579.2035 [M-H]⁻; found: 579.2051.

Fig. S19 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5b.

Fig. S20 ¹³C {H} NMR (101 MHz, 299K, CDCl₃) spectrum of compound **5b**.

Fig. S21 ¹⁹F{H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **5b**.

Fig. S22 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 5b.

Synthesis and characterization of compound 5c

The compound **3a** was prepared in-situ according to the General Procedure I. Then Cy-N \equiv C (54.6 mg, 0.5 mmol) was added to give a pale yellow solution immediately. The solution was stirred at 60 °C for 24 h. Then all the volatiles were removed in vacuo. The *n*-hexane (1 mL) was added and then stored at -25 °C for 1 h. After filtration, the obtained residue was dried in vacuo to give white solid **5c**. Yield: 218.3 mg, 72%.

¹**H NMR** (400 MHz, 299 K, CD₂Cl₂): $\delta = 6.49$ (br, 1H, N*H*), 6.18 (br, 1H, N*H*^{Cy}), 5.58 (dd, ³*J*_{HH} = 15.8 and 6.7 Hz, 1H, =C*H*^{*i*Pr}), 5.47 (d, ³*J*_{HH} = 15.9 Hz, 1H, =C*H*^{-CMe₂}), 5.28 (s, 1H, C*H*^{C=N}), 3.30 (m, 1H, C*H*^{Cy}), 2.33 (m, 1H, C*H*^{*i*Pr}), 1.96-1.24 (m, 10H, C*H*₂^{Cy}), 1.33 (s, 6H, C*H*₃^C), 1.00 (d, ³*J*_{HH} = 6.8 Hz, 6H, C*H*₃^{*i*Pr}).

¹³C {¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 192.3$ (brm, BC), 190.5 (*C*^{=N}), 148.2 (dm, ¹*J*_{FC} = 241.9 Hz, *C*₆F₅), 139.9 (dm, ¹*J*_{FC} = 217.7 Hz, *C*₆F₅), 137.3 (dm, ¹*J*_{FC} = 216.5 Hz, *C*₆F₅), 138.6 (=*C*H^{*i*Pr}), 131.6 (=*C*H^{-CMe₂}), 119.5 (brm, *i*-*C*₆F₅), 92.6 (*C*H^{C=N}), 54.3 (*C*H^{Cy}), 40.8 (*C*^{CH₃}), 32.2, 25.9, 24.9 (*C*H₂^{Cy}), 31.7 (*C*H^{*i*Pr}), 26.4 (*C*H₃^C), 22.7 (*C*H₃^{*i*Pr}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^1 H/ δ^{13} C: 5.58/138.6 (=*CH*^{*i*Pr}), 5.47/131.6 (=*CH*^{-CMe₂}), 5.28/92.6 (*CH*^{C=N}), 3.30/54.3 (*CH*^{Cy}), 2.33/31.7 (*CH*^{*i*Pr}), 1.94/32.2 (*CH*₂^{Cy}), 1.76/25.1 (*CH*₂^{Cy}), 1.33/26.4 (*CH*₃^C), 1.00/22.7 (*CH*₃^{*i*Pr}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^1 H/ δ^{13} C: 5.28/190.5 (CH^{C=N}/C^{=N}), 5.58/(40.8, 131.6) (=CH^{iPr}/C^{CH₃}, =CH^{-CMe₂}),

S25

5.47/138.6 (= CH^{-CMe_2} /= CH^{iPr}), 1.33/40.8 (CH_3^{C}/C^{CH_3}), 1.00/31.7 (CH_3^{iPr}/CH^{iPr}).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CD₂Cl₂): $\delta = -7.8 (v_{1/2} \sim 50 \text{ Hz}).$ ¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -134.1$ (m, 4F, o-C₆F₅), -159.7 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, p-C₆F₅), -164.6 (m, 4F, m-C₆F₅) [$\Delta \delta^{19}F_{m,p} =$

4.9].

HRMS (ESI): m/z calcd for $C_{29}H_{29}BF_{10}N_2$: 605.2191 [M-H]⁻; found: 605.2199.

Fig. S23 ¹H NMR (400 MHz, 299K, CD₂Cl₂) spectrum of compound 5c.

compound 5c.

Fig. S25 ${}^{19}F{}^{1}H$ NMR (377 MHz, 299K, CD₂Cl₂) spectrum of compound 5c.

Synthesis and characterization of compound 5d

The compound **3a** was prepared in-situ according to the General Procedure I. Then BnN=C **4d** (58.6 mg, 0.5 mmol) was added to give a black solution. The solution was stirred at 60 °C for 24 h. Then all the volatiles were removed in vacuo. The *n*-hexane (1 mL) was added and then stored at -25 °C for 1 h. After filtration, the obtained residue was dried in vacuo to give a black solid **5d**. Yield: 205.8 mg, 67%.

¹**H NMR** (400 MHz, 299 K, CD₂Cl₂): $\delta = 7.38-7.27$ (m, 5H, Ph), 6.74 (br, 1H, N*H*), 6.49 (br, 1H, N*H*^{Bn}), 5.61 (dd, ³*J*_{HH} = 15.6 and 6.8 Hz, 1H,

= CH^{iPr}), 5.48 (d, ${}^{3}J_{\text{HH}}$ = 15.6 Hz, 1H, = $CH^{-CMe_{2}}$), 5.39 (s, 1H, $CH^{C=N}$), 4.38 (d, ${}^{3}J_{\text{HH}}$ = 5.2 Hz, 2H, CH_{2}^{Ph}), 2.34 (m, 1H, CH^{iPr}), 1.34 (s, 6H, CH_{3}^{C}), 1.01 (d, ${}^{3}J_{\text{HH}}$ = 6.8 Hz, 6H, CH_{3}^{iPr}).

¹³C {¹H} NMR (101 MHz, 299K, CD₂Cl₂): $\delta = 193.2$ (brm, BC), 191.1 (*C*^{=N}), 148.2 (dm, ¹*J*_{FC} = 238.5 Hz, *C*₆F₅), 139.8 (dm, ¹*J*_{FC} = 233.4 Hz, *C*₆F₅), 137.5 (dm, ¹*J*_{FC} = 230.6 Hz, *C*₆F₅), 137.5, 129.2, 128.2, 128.0 (Ph), 138.9 (=*C*H^{*i*Pr}), 131.3 (=*C*H^{-CMe₂}), 118.6 (brm, *i*-*C*₆F₅), 93.8 (*C*H^{C=N}), 50.2 (*C*H₂^{Ph}), 40.9 (*C*^{CH₃}), 31.7 (*C*H^{*i*Pr}), 26.3 (*C*H₃^C), 22.6 (*C*H₃^{*i*Pr}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^1 H/ δ^{13} C: 5.61/138.9 (=*CH*^{*i*Pr}), 5.48/131.3 (=*CH*^{-CMe₂}), 5.39/93.8 (*CH*^{C=N}), 4.38/50.2 (*CH*₂^{Ph}), 2.34/31.7 (*CH*^{*i*Pr}), 1.34/26.3 (*CH*₃^C), 1.01/22.6 (*CH*₃^{*i*Pr}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CD₂Cl₂): δ^{1} H/ δ^{13} C: 5.39, /191.1 (CH^{C=N}/C^{=N}), 5.61/(22.6, 40.9, 131.3) (=CH^{*i*Pr}/CH₃^{*i*Pr}, C^{CH₃}, =CH^{-CMe₂}), 5.48/(26.3, 31.7, 40.9) (=CH^{-CMe₂}/CH₃^C, CH^{*i*Pr}, C^{CH₃}), 1.34/(40.9, 131.3) (CH₃^C/C^{CH₃}, =CH^{-CMe₂}), 1.01/(31.7, 138.9) (CH₃^{*i*Pr}/CH^{*i*Pr}, =CH^{*i*Pr}).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CD₂Cl₂): $\delta = -7.7 (v_{1/2} \sim 49 \text{ Hz}).$

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CD₂Cl₂): $\delta = -134.1$ (m, 4F, o-C₆F₅), -159.5 (t, ${}^{3}J_{FF} = 20.2$ Hz, 2F, p-C₆F₅), -164.4 (m, 4F, m-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 5.0$].

HRMS (ESI): m/z calcd for $C_{30}H_{25}BF_{10}N_2$: 613.1878 [M-H]⁻; found: 613.1870.

Fig. S27¹H NMR (400 MHz, 299K, CD₂Cl₂) spectrum of compound 5d.

compound 5d.

Fig. S29 ¹⁹F{H} NMR (377 MHz, 299K, CD₂Cl₂) spectrum of compound **5d**.

Fig. S30 ¹¹B NMR (128 MHz, 299K, CD₂Cl₂) spectrum of compound 5d.

Synthesis and characterization of compound 5e

The compound **3a** was prepared in-situ according to the General Procedure I. Then $TsCH_2N\equiv C$ **4e** (97.6 mg, 0.5 mmol) was added to give a pale yellow solution immediately. The solution was stirred at room temperature for 18 h. After that, the reaction mixture was concentrated to 1 mL, which was added to *n*-hexane (20 mL) to give a yellow precipitate. After filtration, the obtained residue was dried in vacuo to give yellow solid **5e**. Yield: 218.1 mg, 63%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): $\delta = 7.53$ (d, ${}^{3}J_{\text{HH}} = 7.4$ Hz, 2H, Ph), 7.19 (d, ${}^{3}J_{\text{HH}} = 7.3$ Hz, 2H, Ph), 7.08 (br, 1H, NH), 6.36 (br, 1H, NH^{CH₂Ts}), 5.57 (dd, ${}^{3}J_{\text{HH}} = 15.8$ and 6.9 Hz, 1H, =CH^{*i*Pr}), 5.35 (d, ${}^{3}J_{\text{HH}} = 15.9$ Hz, 1H, =CH^{-CMe₂}), 5.18 (s, 1H, CH^{C=N}), 4.58 (d, ${}^{3}J_{\text{HH}} = 6.6$ Hz, 2H, CH₂^{Ts}), 2.41 (s, 3H, CH₃^{Ts}), 2.34 (m, 1H, CH^{*i*Pr}), 1.22 (s, 6H, CH₃^C), 1.01 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 6H, CH₃^{*i*Pr}).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 191.5$ (*C*^{=N}), 190.4 (brm, B*C*), 147.7 (dm, ¹*J*_{FC} = 239.8 Hz, *C*₆F₅), 139.8 (dm, ¹*J*_{FC} = 234.4 Hz, *C*₆F₅), 137.2 (dm, ¹*J*_{FC} = 245.9 Hz, *C*₆F₅), 145.8, 134.2, 129.9, 128.9 (Ph), 139.8 (=*C*H^{*i*Pr}), 130.0 (=*C*H^{-CMe₂}), 116.9 (brm, *i*-*C*₆F₅), 95.6 (*C*H^{*C*=N}), 66.6 (*C*H₂^{Ts}), 40.8 (*C*^{CH₃}), 31.4 (*C*H^{*i*Pr}), 25.9 (*C*H₃^C), 22.6 (*C*H₃^{*i*Pr}), 21.7 (*C*H₃^{Ts}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^1 H/ δ^{13} C: 7.53/128.9 and 7.19/129.9 (Ph), 5.57/139.8 (=*CH*^{*i*Pr}), 5.35/130.0

S32

 $(=CH^{-CMe_2}), 5.18/95.6 (CH^{C=N}), 4.58/66.6 (CH_2^{Ts}), 2.41/21.7 (CH_3^{Ts}), 2.34/31.4 (CH^{iPr}), 1.22/25.9 (CH_3^{C}), 1.00/22.6 (CH_3^{iPr}).$

¹H, ¹³C GHMBC (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 5.18/191.5 (CH^{C=N}/C^{=N}), 7.08/95.6 (NH/CH^{C=N}), 6.36/(66.6, 95.6) (NH^{CH₂Ts}/CH₂Ts, CH^{C=N}), 5.57/(22.6, 40.8, 130.0) (=CH^{*i*}Pr/CH₃^{*i*}Pr, C^{CH₃}, =CH^{-CMe₂}), 5.35/(25.9, 31.4, 40.8, 139.8) (=CH^{-CMe₂}/CH₃^C, CH^{*i*}Pr, C^{CH₃}, =CH^{*i*}Pr), 1.22/(25.9, 40.8, 130.0) (CH₃^C/CH₃^C, CH^{*i*}Pr, C^{CH₃}, =CH^{-CMe₂}), 1.00/(31.4, 139.8) (CH₃^{*i*}Pr/CH^{*i*}Pr, =CH^{*i*}Pr).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): $\delta = -7.6$ ($v_{1/2} \sim 69$ Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): δ = -133.7 (m, 4F, *o*-C₆F₅), -157.3 (t, ³*J*_{FF} = 20.7 Hz, 2F, *p*-C₆F₅), -162.7 (m, 4F, *m*-C₆F₅) [Δδ¹⁹F_{*m*,*p*} = 5.4].

HRMS (ESI): m/z calcd for C₃₁H₂₇BF₁₀N₂O₂S: 691.1654 [M-H]⁻; found: 691.1662.

Fig. S31 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5e.

compound 5e.

Fig. S33 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **5e**.

Fig. S34 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 5e.

Synthesis and characterization of compound 5f

The compound 3a was prepared in-situ according to the General

Procedure I. Then $Ph_3P=N-N\equiv C$ **4f** (151.2 mg, 0.5 mmol) was added to give an orange solution immediately. The solution was stirred at room temperature for 18 h. After that, the reaction mixture was concentrated to 1 mL, which was added to *n*-hexane (20 mL) to give a yellow precipitate. After filtration, the obtained residue was dried in vacuo to give orange solid **5f**. Yield: 271.8 mg, 68%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): $\delta = 7.71$ (br, 1H, N*H*N), 7.66-7.44 (m, 15H, Ph), 5.93 (br, 1H, N*H*), 5.64 (s, 1H, C*H*^{C=N}), 5.52 (dd, ³*J*_{HH} = 15.6 and 6.4 Hz, 1H, =C*H*^{*i*Pr}), 5.43 (d, ³*J*_{HH} = 15.6 Hz, 1H, =C*H*^{-CMe₂}), 2.31 (m, 1H, C*H*^{*i*Pr}), 1.27 (s, 6H, C*H*₃^C), 0.99 (d, ³*J*_{HH} = 6.8 Hz, 6H, C*H*₃^{*i*Pr}).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 188.5$ (brm, BC), 187.3 ($C^{=N}$), 147.7 (dm, ${}^{1}J_{FC} = 238.9$ Hz, $C_{6}F_{5}$), 139.1 (dm, ${}^{1}J_{FC} = 250.5$ Hz, $C_{6}F_{5}$), 137.0 (dm, ${}^{1}J_{FC} = 255.2$ Hz, $C_{6}F_{5}$), 137.4 (= CH^{iPr}), 132.8 (d, ${}^{3}J_{PC} = 9.1$ Hz, *m*-Ph), 132.7 (d, ${}^{4}J_{PC} = 2.8$ Hz, *p*-Ph), 129.0 (d, ${}^{2}J_{PC} = 11.8$ Hz, *m*-Ph), 127.7 (d, ${}^{1}J_{PC} = 93.7$ Hz, *i*-Ph), 132.1 (= $CH^{-CMe_{2}}$), 119.7 (brm, *i*- $C_{6}F_{5}$), 92.3 ($CH^{C=N}$), 40.1 ($C^{CH_{3}}$), 31.3 (CH^{iPr}), 26.5 (CH_{3}^{-C}), 22.7 (CH_{3}^{iPr}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 5.64/92.3 (*CH*^{C=N}), 5.52/137.4 (=*CH*^{iPr}), 5.43/132.1 (=*CH*^{-CMe₂}), 2.31/31.3 (*CH*^{iPr}), 1.27/26.5 (*CH*₃^C), 0.99/22.7 (*CH*₃^{iPr}).
¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 7.71/(92.3, 187.3, 188.5) (NHN/CH^{C=N}, C^{=N}, BC), 5.93/(40.1, 92.3) (NH^{=C}/C^{CH3}, =CH^{-CMe2}), 5.64/187.3 (CH^{C=N}/C^{=N}), 5.52/(22.7, 40.1) (=CH^{*i*}P^{*i*}/CH₃^{*i*}P^{*r*}, C^{CH3}), 5.43/(26.5, 31.3, 92.3) (=CH^{-CMe2}/CH₃^C, CH^{*i*}P^{*r*}, CH^{*i*}P^{*r*}, CH^{C=N}), 1.27/(40.1, 132.1, 187.3) (CH₃^C/C^{CH3}, =CH^{-CMe2}, C^{=N}), 0.99/(31.3, 137.4) (CH₃^{*i*}P^{*r*}/CH^{*i*}P^{*r*}, =CH^{*i*}P^{*r*}).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): δ = -8.4 ($v_{1/2} \sim 62$ Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -134.4$ (m, 4F, o-C₆F₅), -159.7 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, p-C₆F₅), -164.2 (m, 4F, m-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 4.5$].

HRMS (ESI): m/z calcd for $C_{41}H_{33}BF_{10}N_3P$: 800.2418 [M+H]⁺; found: 800.2417.

compound 5f.

Fig. S37 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **5f**.

Fig. S38¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 5f.

General Procedure II

Scheme S5

The compound **3** was *in-situ* prepared according to the General Procedure I [2,5-dimethylhexa-2,4-diene (0.5 mmol), HB(C₆F₅)₂ (0.5 mmol) and R-C=N nitriles **2** (0.5 mmol) in toluene (2 mL)]. Then Xyl-N=C **4a** (0.5 mmol) was added to the mixture. After completion, all the volatiles were removed in vacuo. The obtained residue was washed with *n*-hexane (2×1.5 mL) and dried in vacuo to afford target products.

Synthesis and characterization of compound 5g

The compound **5g** was *in-situ* prepared according to the General Procedure II [2,5-dimethylhexa-2,4-diene (55.1 mg, 0.5 mmol), $HB(C_6F_5)_2$ (173.0 mg, 0.5 mmol), $CICH_2C\equiv N$ (37.8 mg, 0.5 mmol) and $XyI-N\equiv C$ (65.6 mg, 0.5 mmol) in toluene (2 mL)]. $XyI-N\equiv C$ was added to the solution of in-situ generated **3g** to give a pale yellow solution immediately. Then the mixture was stirred at room temperature for 43 h. The product **5g** was isolated as a gray solid. Yield: 210.7 mg, 61%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): $\delta = 7.36$ and 7.33 (each br, each 1H, NH), 7.10 (t, ${}^{3}J_{HH} = 7.6$ Hz, 1H, *p*-Ph), 7.05 (d, ${}^{3}J_{HH} = 7.6$ Hz, 2H, *m*-Ph), 5.58 (dd, ${}^{3}J_{HH} = 16.0$ and 5.6 Hz, 1H, $=CH^{iPr}$), 5.53 (d, ${}^{3}J_{HH} = 16.0$ Hz, 1H, $=CH^{-CMe_{2}}$), 2.35 (m, 1H, CH^{iPr}), 2.02 (s, 6H, CH_{3}^{-Ph}), 1.48 (s, 6H, CH_{3}^{-C}), 1.01 (d, ${}^{3}J_{HH} = 6.8$ Hz, 6H, CH_{3}^{iPr}).

¹³C {H} NMR (101 MHz, 299K, CDCl₃): $\delta = 187.8 \ (C^{=N})$, 182.1 (brm, BC), 147.9 (dm, ${}^{1}J_{FC} = 238.5 \text{ Hz}$, $C_{6}F_{5}$), 139.8 (dm, ${}^{1}J_{FC} = 251.9 \text{ Hz}$, $C_{6}F_{5}$), 137.4 (dm, ${}^{1}J_{FC} = 277.6 \text{ Hz}$, $C_{6}F_{5}$), 139.9 (= CH^{iPr}), 136.7, 136.1,

127.7, 127.7 (Ph), 130.3 (= CH^{-CMe_2}), 117.3 (brm, $i-C_6F_5$), 97.5 (C^{Cl}), 41.6 (C^{CH_3}), 31.5 (CH^{iPr}), 24.6 (CH_3^{C}), 22.4 (CH_3^{iPr}), 18.2 (CH_3^{Ph}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^1 H/ δ^{13} C: 5.58/139.9 (=*CH*^{*i*Pr}), 5.53/130.3 (=*CH*^{-CMe₂}), 2.35/31.5 (*CH*^{*i*Pr}), 2.02/18.2 (*CH*₃^{Ph}), 1.48/24.6 (*CH*₃^C), 1.01/22.4 (*CH*₃^{*i*Pr}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 7.33/97.5 (N*H*/*C*^{Cl}), 5.53/24.6 (=C*H*^{-CMe₂/*C*H₃^C), 5.58/41.6 (=C*H*^{*i*Pr}/*C*^{CH₃}), 1.48/(41.6, 130.3, 187.8) (C*H*₃^C/*C*H₃^C, =*C*H^{-CMe₂}, *C*^{=N}), 1.01/(31.5, 139.9) (C*H*₃^{*i*Pr}/*C*H^{*i*Pr}, =*C*H^{*i*Pr}).}

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): δ = -8.3 ($v_{1/2} \sim 69$ Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -134.0$ (m, 4F, o-C₆F₅), -157.1 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, p-C₆F₅), -162.6 (m, 4F, m-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 5.5$].

HRMS (ESI): m/z calcd for $C_{31}H_{26}BClF_{10}N_2$: 661.1645 [M-H]⁻; found: 661.1639.

Fig. S39 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5g.

-128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 f1 (ppm)

Fig. S41 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound

5g.

Fig. S42 ¹¹B{¹H} NMR (128 MHz, 299K, CDCl₃) spectrum of compound

5g.

Synthesis and characterization of compound 5h

The compound **5h** was *in-situ* prepared according to the General Procedure II [2,5-dimethylhexa-2,4-diene (55.1 mg, 0.5 mmol), $HB(C_6F_5)_2$ (173.0 mg, 0.5 mmol), 4-OMe-PhCH₂C=N (73.6 mg, 0.5 mmol) and Xyl-N=C (65.6 mg, 0.5 mmol) in toluene (2 mL)]. The solution of in-situ generated **3h** with Xyl-N=C was stirred at 80°C for 28 h. The product **5h** was isolated as a gray solid. Yield: 235.0 mg, 64%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): 7.15 and 7.13 (each br, each 1H, N*H*), 6.73-6.33 (m, 7H, Ph), 5.43 (dd, ${}^{3}J_{\text{HH}} = 15.6$ and 6.0 Hz, 1H, = $CH^{i\text{Pr}}$), 5.36 (d, ${}^{3}J_{\text{HH}} = 15.6$ Hz, 1H, = $CH^{-\text{CMe}_{2}}$), 3.64 (s, 3H, CH_{3}^{OMe}), 2.25 (m, 1H, $CH^{i\text{Pr}}$), 1.88 (s, 6H, CH_{3}^{Ph}), 1.11 (s, 6H, CH_{3}^{C}), 0.96 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 6H, $CH_{3}^{i\text{Pr}}$).

¹³C {**H**} **NMR** (101 MHz, 299K, CDCl₃): $\delta = 189.6 (C^{=N})$, 188.4 (brm, BC), 148.0 (dm, ${}^{1}J_{FC} = 240.0$ Hz, $C_{6}F_{5}$), 139.6 (dm, ${}^{1}J_{FC} = 242.8$ Hz, $C_{6}F_{5}$), 137.4 (dm, ${}^{1}J_{FC} = 249.9$ Hz, $C_{6}F_{5}$), 138.1 (= CH^{iPr}), 158.4, 137.1, 135.3, 132.9, 127.9, 127.1, 126.9, 112.5 (Ph), 132.1 (= $CH^{-CMe_{2}}$), 118.5

(brm, i- C_6F_5), 111.5 (C^{Ph}), 55.3 (CH_3^{OMe}), 42.3 (C^{CH_3}), 31.2 (CH^{iPr}), 26.1 (CH_3^{C}), 22.4 (CH_3^{iPr}), 18.3 (CH_3^{Ph}).

¹H, ¹³C GHSQC (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 5.43/138.1 (=*CH*^{*i*Pr}), 5.36/132.1 (=*CH*^{-CMe₂}), 3.64/55.3 (*CH*₃^{OMe}), 2.25/31.2 (*CH*^{*i*Pr}), 1.88/18.3 (*CH*₃^{Ph}), 1.11/26.1 (*CH*₃^C), 0.96/22.4 (*CH*₃^{*i*Pr}). ¹H, ¹³C GHMBC (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 7.15/111.5 (N*H*/*C*^{Ph}), 5.43/(31.2, 42.3) (=*CH*^{*i*Pr}/*CH*^{*i*Pr}, *C*^{CH₃}), 5.36/(26.1, 31.2) (=*C*H^{-CMe₂/*C*H₃^C, *C*H^{*i*Pr}), 3.64/158.4 (*CH*₃^{OMe}/Ph), 1.88/(127.9, 135.3, 137.1) (*CH*₃^{Ph}/Ph, Ph, Ph), 1.11/(42.3, 132.1, 189.6) (*CH*₃^C/*C*^{CH₃}, =*C*H^{-CMe₂}, *C*^{=N}), 0.96/(31.2, 138.1) (*CH*₃^{*i*Pr}/*C*H^{*i*Pr}, =*C*H^{*i*Pr}).}

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): $\delta = -8.4$ (v_{1/2} ~ 72 Hz).

¹⁹**F{H} NMR** (377 MHz, 299K, CDCl₃): $\delta = -133.8$ (m, 4F, o-C₆F₅), -158.0 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, p-C₆F₅), -163.1 (m, 4F, m-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 5.1$].

HRMS (ESI): m/z calcd for C₃₈H₃₃BF₁₀N₂O: 733.2453 [M-H]⁻; found: 733.2442.

Fig. S43 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5h.

compound 5h.

Fig. S45 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **5h**.

Synthesis and characterization of compound 5i

The compound **5i** was *in-situ* prepared according to the General Procedure II [2,5-dimethylhexa-2,4-diene (55.1 mg, 0.5 mmol), HB(C₆F₅)₂ (173.0 mg, 0.5 mmol), 2-OMe-PhCH₂C=N (73.6 mg, 0.5 mmol) and Xyl-N=C (65.1 mg, 0.5 mmol) in toluene (2 mL)]. The solution of in-situ generated **3i** with Xyl-N=C was stirred at 80°C for 28 h. The product **5i** was isolated as a yellow solid. Yield: 275.4 mg, 75%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): 7.14 and 7.13 (each br, each 1H, NH), 6.91-6.22 (m, 7H, Ph), 5.46-5.38 (m, 2H, = CH^{iPr} and = CH^{-CMe_2}), 3.51 (s, 3H, CH_3^{OMe}), 2.23 (m, 1H, CH^{iPr}), 1.89 (s, 6H, CH_3^{Ph}), 1.07 and 1.05 (each s, each 3H, CH_3^{C}), 0.96 and 0.95 (each d, ${}^{3}J_{HH}$ = 6.4 Hz, each 3H, CH_3^{iPr}).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 189.9 (C^{=N})$, 189.2 (brm, BC), 148.0 (dm, ${}^{1}J_{FC} = 238.1$ Hz, $C_{6}F_{5}$), 139.5 (dm, ${}^{1}J_{FC} = 256.6$ Hz, $C_{6}F_{5}$), 137.3 (dm, ${}^{1}J_{FC} = 248.8$ Hz, $C_{6}F_{5}$), 137.7 (= CH^{iPr}), 157.9, 137.0, 135.9, 133.5, 128.7, 127.5, 127.1, 126.9, 123.7, 118.9, 108.5 (Ph), 132.2 (= CH^{-CMe_2}), 119.1 (brm, *i*- $C_{6}F_{5}$), 107.2 (C^{Ph}), 53.9 (CH_{3}^{OMe}), 42.3 ($C^{CH_{3}}$),

31.2 (*C*H^{*i*Pr}), 25.5 and 25.2 (*C*H₃^C), 22.52 and 22.50 (*C*H₃^{*i*Pr}), 18.6 and 17.9 (*C*H₃^{Ph}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^1 H/ δ^{13} C: 5.41/137.7 (=*CH*^{*i*Pr}), 5.40/132.2 (=*CH*^{-CMe₂}), 3.51/53.9 (*CH*₃^{OMe}), 2.23/31.2 (*CH*^{*i*Pr}), 1.89/18.2 (*CH*₃^{Ph}), (1.07, 1.05)/(25.5, 25.2) (*CH*₃^C), (0.96, 0.95)/(22.52, 22.50) (*CH*₃^{*i*Pr}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 7.14/107.2 (N*H*/ C^{Ph}), 3.51/157.9 (C*H*₃^{OMe}/Ph), 1.06/(42.3, 132.2, 189.9) (C*H*₃^C/ C^{CH_3} , =CH^{-CMe₂}, C^{=N}), 0.96/(31.2, 137.7) (C*H*₃^{*i*Pr}/CH^{*i*Pr}, =CH^{*i*Pr}).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): δ = -8.3 (v_{1/2} ~ 68 Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): δ = -133.6, 133.8 (each m, each 2F, *o*-C₆F₅), -158.3, 158.5 (each t, ³*J*_{FF} = 20.7 and 20.4 Hz, each 1F, *p*-C₆F₅), -163.4 (m, 4F, *m*-C₆F₅) [$\Delta \delta^{19}F_{m,p}$ = 5.1 and 4.9].

HRMS (ESI): m/z calcd for C₃₈H₃₃BF₁₀N₂O: 733.2453 [M-H]⁻; found: 733.2461.

Fig. S47 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5i.

S50

Fig. S49 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **5***i*.

Fig. S50 ¹¹B{¹H} NMR (128 MHz, 299K, CDCl₃) spectrum of compound

5i.

Synthesis and characterization of compound 5j

The compound **5j** was *in-situ* prepared according to the General Procedure II [2,5-dimethylhexa-2,4-diene (55.1 mg, 0.5 mmol), $HB(C_6F_5)_2$ (173.0 mg, 0.5 mmol), $PhCH_2C\equiv N$ (58.6 mg, 0.5 mmol) and $Xyl-N\equiv C$ (65.6 mg, 0.5 mmol) in toluene (2 mL)]. $Xyl-N\equiv C$ was added to the solution of in-situ generated **3j** to give a pale yellow solution immediately. Then the solution was stirred at 80°C for 28 h. The product **5j** was isolated as a white solid. Yield: 239.5 mg, 68%.

Crystals suitable for the X-ray crystal structure analysis were obtained from a two-layer procedure using a solution of compound 5j in CH₂Cl₂ covered with *n*-hexane at room temperature.

¹**H NMR** (400 MHz, 299 K, CDCl₃): 7.16 and 7.15 (each br, each 1H, NH), 6.86-6.56 (m, 8H, Ph), 5.42 (dd, ${}^{3}J_{\text{HH}} = 16.0$ and 6.4 Hz, 1H, =CH^{*i*Pr}), 5.34 (d, ${}^{3}J_{\text{HH}} = 15.6$ Hz, 1H, =CH^{-CMe₂}), 2.24 (m, 1H, CH^{*i*Pr}), 1.88 (s, 6H, CH₃^{Ph}), 1.08 (s, 6H, CH₃^C), 0.95 (d, ${}^{3}J_{\text{HH}} = 6.8$ Hz, 6H, CH₃^{*i*Pr}). ¹³C {¹H} **NMR** (101 MHz, 299K, CDCl₃): δ = 189.3 (C^{=N}), 188.2 (brm, BC), 148.0 (dm, ${}^{1}J_{\text{FC}} = 238.1$ Hz, C₆F₅), 139.6 (dm, ${}^{1}J_{\text{FC}} = 250.8$ Hz, C_6F_5), 137.4 (dm, ${}^1J_{FC} = 250.2$ Hz, C_6F_5), 138.1 (= CH^{iPr}), 136.9, 135.3, 134.8, 131.9, 127.8, 127.3, 126.9, 126.8 (Ph), 132.1 (= CH^{-CMe_2}), 118.5 (brm, *i*- C_6F_5), 112.0 (C^{Ph}), 42.3 (C^{CH_3}), 31.2 (CH^{iPr}), 26.1 (CH_3^{C}), 22.4 (CH_3^{iPr}), 18.2 (CH_3^{Ph}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^1 H/ δ^{13} C: 5.42/138.1 (=*CH*^{*i*Pr}), 5.34/132.1 (=*CH*^{-CMe₂}), 2.24/31.2 (*CH*^{*i*Pr}), 1.88/18.2 (*CH*₃^{Ph}), 1.08/26.1 (*CH*₃^C), 0.95/22.4 (*CH*₃^{*i*Pr}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 7.16/112.0 (N*H*/*C*^{Ph}), 5.42/42.3 (=*CH*^{*i*Pr}/*C*^{CH₃}), 5.34/31.2 (=*CH*^{-CMe₂/*C*H^{*i*Pr}), 1.88/(127.8, 135.3, 136.9) (*CH*₃^{Ph}/Ph, Ph, Ph), 1.08/(42.3, 132.1, 189.3) (*CH*₃^C/*C*^{CH₃}, =*C*H^{-CMe₂}, *C*^{=N}), 0.95/(31.2, 138.1) (*CH*₃^{*i*Pr}/*C*H^{*i*Pr}, =*C*H^{*i*Pr}).}

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): $\delta = -8.3$ ($v_{1/2} \sim 68$ Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -133.8$ (m, 4F, *o*-C₆F₅), -157.9 (t, ${}^{3}J_{FF} = 20.7$ Hz, 2F, *p*-C₆F₅), -163.0 (m, 4F, *m*-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 5.1$].

HRMS (ESI): m/z calcd for $C_{31}H_{31}BF_{10}N_2$: 703.2348 [M-H]⁻; found: 703.2338.

Fig. S51 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5j.

-128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 Fig. S53 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound 5j.

50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 f1 (ppm)

Fig. S54 ¹¹B NMR (128 MHz, 299K, CDCl₃) spectrum of compound 5j.

X-ray crystal structure analysis of compound 5j: formula $C_{37}H_{31}BF_{10}N_2$, M = 704.45, colourless crystal, $0.31 \times 0.23 \times 0.10$ mm, a = 11.60718(19), b = 14.4681(3), c = 20.6391(3) Å, $\alpha = \gamma = 90^{\circ}$, $\beta =$ $90.6787(16)^{\circ}$, V = 3465.76(10) Å³, $\rho_{calc} = 1.350$ gcm⁻³, $\mu = 1.006$ mm⁻¹, empirical absorption correction (0.39110 \leq T \leq 1.00000), Z = 4, monoclinic, space group $P2_1/n$, $\lambda = 1.54184$ Å, T = 296.22(11) K, ω and φ scans, 19308 reflections collected ($\pm h$, $\pm k$, $\pm l$), 6102 independent ($R_{int} = 0.0178$) and 5176 observed reflections [$I > 2\sigma(I)$], 460 refined parameters, R = 0.0643, $wR^2 = 0.2051$, max. (min.) residual electron density 0.41 (-0.39) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

Fig. S55 A view of the molecular structure of compound 5j.

Synthesis and characterization of compound 5k

The compound **5k** was *in-situ* prepared according to the General Procedure II [2,5-dimethylhexa-2,4-diene (55.1 mg, 0.5 mmol), $HB(C_6F_5)_2$ (173.0 mg, 0.5 mmol), 4-CF₃-PhCH₂C=N (92.6 mg, 0.5 mmol) and Xyl-N=C (65.6 mg, 0.5 mmol) in toluene (2 mL)]. The solution of in-situ generated **3k** with Xyl-N=C was stirred at 80°C for 28 h. The product **5k** was isolated as a white solid. Yield: 258.8 mg, 67%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): 7.26 and 7.21 (each br, each 1H, NH), 7.04 (m, 2H, *m*-Ph^{CF3}), 6.95 (m, 2H, *o*-Ph^{CF3}), 6.69 (t, ${}^{3}J_{HH} = 7.6$ Hz, 1H, *p*-Ph^{CH3}), 6.55 (d, ${}^{3}J_{HH} = 7.6$ Hz, 2H, *m*-Ph^{CH3}), 5.40 (dd, ${}^{3}J_{HH} = 16.0$ and 6.0 Hz, 1H, =C H^{iPr}), 5.32 (d, *J* = 16.0 Hz, 1H, =C H^{-CMe_2}), 2.21 (m, 1H, CH^{iPr}), 1.87 (s, 6H, CH_3^{Ph}), 1.12 (s, 6H, CH_3^{C}), 0.93 (d, ${}^{3}J_{HH} = 6.4$ Hz, 6H, CH_3^{iPr}).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 189.3$ (brm, BC), 188.9 ($C^{=N}$), 148.0 (dm, ${}^{1}J_{FC} = 238.3$ Hz, $C_{6}F_{5}$), 139.7 (dm, ${}^{1}J_{FC} = 251.0$ Hz, $C_{6}F_{5}$), 137.4 (dm, ${}^{1}J_{FC} = 248.6$ Hz, $C_{6}F_{5}$), 139.0 (*i*-Ph^{CF3}), 138.3 (=CH^{*i*Pr}), 136.6 (*i*-Ph^{CH3}), 135.2 (*o*-Ph^{CH3}), 132.2 (*o*-Ph^{CF3}), 131.7 (=CH^{-CMe₂}), 128.9 (q, ${}^{2}J_{FC} = 32.0$ Hz, *p*-Ph^{CF3}), 128.0 (*m*-Ph^{CH3}), 127.8 (*p*-Ph^{CH3}), 124.2 (q, ${}^{1}J_{FC} = 273.0$ Hz, *C*F₃), 123.6 (q, ${}^{3}J_{FC} = 3.9$ Hz, *m*-Ph^{CF3}), 118.2 (brm, *i*- $C_{6}F_{5}$), 110.4 (C^{Ph}), 42.3 (C^{CH_3}), 31.2 (CH^{iPr}), 26.3 (CH_{3}^{C}), 22.3 (CH_{3}^{iPr}), 18.2 (CH_{3}^{Ph}).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 7.04/123.6 (*m*-Ph^{CF3}), 6.95/132.2 (*o*-Ph^{CF3}), 6.71/127.8 (*p*-Ph^{CH3}), 6.53/128.0 (*m*-Ph^{CH3}), 5.40/138.3 (=*CH*^{*i*Pr}), 5.32/131.7 (=*CH*^{-CMe₂}), 2.21/31.2 (*CH*^{*i*Pr}), 1.87/18.2 (*CH*₃^{Ph}), 1.12/26.3 (*CH*₃^C), 0.93/22.3 (*CH*₃^{*i*Pr}).

S57

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: (7.26, 6.95/110.4 (N*H*/*C*^{Ph}), 7.06/(123.7, 139.0) (*m*-Ph^{CF3}/*m*-Ph^{CF3}, *i*-Ph^{CF3}), 6.95/128.9 (*o*-Ph^{CF3}/*p*-Ph^{CF3}), 6.70/135.2 (*p*-Ph^{CH3}/*o*-Ph^{CH3}), 6.55/(18.2, 136.6) (*m*-Ph^{CH3}/*C*H₃^{Ph}, *i*-Ph^{CH3}), 1.87/(128.0, 135.2) (CH₃^{Ph}/*m*-Ph^{CH3}, *o*-Ph^{CH3}), 1.12/(42.3, 131.7, 188.9) (CH₃^C/*C*^{CH3}, =*C*H^{-CMe2}, *C*^{=N}), 0.93/(31.2, 138.3) (CH₃^{iPr}/CH^{iPr}, =*C*H^{iPr}).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): $\delta = -8.2$ ($v_{1/2} \sim 75$ Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -63.0$ (s, CF₃), -133.7 (m, 4F, *o*-C₆F₅), -157.5 (t, ³*J*_{FF} = 24.1 Hz, 2F, *p*-C₆F₅), -162.8 (m, 4F, *m*-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 5.3$].

HRMS (ESI): m/z calcd for C₃₈H₃₀BF₁₃N₂: 771.2221 [M-H]⁻; found: 771.2212.

- 2.205 - 1.868

1.118 0.940 0.924

Fig. S56 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5k.

compound 5k.

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -17 f1 (ppm)

Fig. S58 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound

5k.

Fig. S59 ¹¹B{¹H} NMR (128 MHz, 299K, CDCl₃) spectrum of compound **5**k.

Synthesis and characterization of compound 51

The compound **5**I was *in-situ* prepared according to the General Procedure II [2,5-dimethylhexa-2,4-diene (55.1 mg, 0.5 mmol), $HB(C_6F_5)_2$ (173.0 mg, 0.5 mmol), $^nPrC\equiv N$ (34.6 mg, 0.5 mmol) and Xyl-N=C (65.6 mg, 0.5 mmol) in toluene (2 mL)]. Xyl-N=C was added to the solution of *in-situ* generated **3**I to give a pale yellow solution immediately. The mixture was stirred at 100°C for 31 h. The product **5**I was isolated as a gray solid. Yield: 200.2 mg, 61%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): $\delta = 7.18$ (br, 1H, N*H*), 7.09-7.00 (m, 4H, N*H* and Ph), 5.55-5.46 (m, 2H, =C*H*^{*i*Pr} and =C*H*^{-CMe₂}), 2.29 (m, 1H, C*H*^{*i*Pr}), 2.00 (s, 6H, C*H*₃^{Ph}), 1.66 (q, ³*J*_{HH} = 7.2 Hz, 2H, C*H*₂^{Et}), 1.40 (s, 6H, C*H*₃^C), 0.97 (d, ³*J*_{HH} = 6.8 Hz, 6H, C*H*₃^{*i*Pr}), 0.41 (t, ³*J*_{HH} = 7.2 Hz, 3H, C*H*₃^{Et}).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 190.2 (C^{=N})$, 186.8 (brm, BC), 147.8 (dm, ¹*J*_{FC} = 237.8 Hz, *C*₆F₅), 139.5 (dm, ¹*J*_{FC} = 250.9 Hz, *C*₆F₅), 137.3 (dm, ¹*J*_{FC} = 251.3 Hz, *C*₆F₅), 137.6 (=*C*H^{*i*Pr}), 137.6, 135.1, 128.1, 127.0 (Ph), 131.5 (=*C*H^{-CMe₂), 119.1 (brm, *i*-*C*₆F₅), 113.0 (*C*^{Et}), 41.6 (*C*^{CH₃}), 31.3 (*C*H^{*i*Pr}), 26.4 (*C*H₃^C), 22.4 (*C*H₃^{*i*Pr}), 18.3 (*C*H₂^{Et}), 18.2 (*C*H₃^{Ph}), 15.0 (*C*H₃^{Et}).}

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 5.50/137.6 (=*CH*^{*i*Pr}), 5.49/131.5 (=*CH*^{-CMe₂}), 2.29/31.3 (*CH*^{*i*Pr}), 2.00/18.2 (*CH*₃^{Ph}), 1.66/18.3 (*CH*₂^{Et}), 1.40/26.4 (*CH*₃^C), 0.97/22.4 (*CH*₃^{*i*Pr}), 0.41/15.0 (*CH*₃^{Et}).

¹**H**, ¹³**C GHMBC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 7.18/113.0 (N*H*/*C*^{Et}), 5.49/(26.4, 31.3) (=C*H*^{-CMe₂/*C*H₃^C, *C*H^{*i*Pr}), 5.50/41.6 (=C*H*^{*i*Pr}/*C*^{CH₃}), 1.40/(41.6, 131.5, 190.2) (C*H*₃^C/*C*^{CH₃}, =*C*H^{-CMe₂}, *C*^{=N}), 0.97/(31.3, 137.6) (C*H*₃^{*i*Pr}/*C*H^{*i*Pr}, =*C*H^{*i*Pr}), 0.41/(18.3, 113.0) (C*H*₃^{Et}/*C*H₂^{Et}, *C*^{Et}).}

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): $\delta = -8.5$ ($v_{1/2} \sim 67$ Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -133.9$ (d, ${}^{3}J_{FF} = 18.5$ Hz, 4F, *o*-C₆F₅), -158.2 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, *p*-C₆F₅), -163.1 (m, 4F, *m*-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 4.9$].

HRMS (ESI): m/z calcd for $C_{33}H_{31}BF_{10}N_2$: 655.2348 [M-H]⁻; found: 655.2357.

Fig. S60 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5l.

compound 51.

Fig. S62 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **51**.

Fig. S63 ¹¹B{¹H} NMR (128 MHz, 299K, CDCl₃) spectrum of compound **5**l.

Synthesis and characterization of compound 5m

The compound **5m** was *in-situ* prepared according to the General Procedure II [2,5-dimethylhexa-2,4-diene (55.1 mg, 0.5 mmol), $HB(C_6F_5)_2$ (173.0 mg, 0.5 mmol), $^nBuC\equiv N$ (41.6 mg, 0.5 mmol) and Xyl-N=C (65.6 mg, 0.5 mmol) in toluene (2 mL)]. Xyl-N=C was added to the solution of *in-situ* generated **3m** to give a pale yellow solution immediately. Then the solution was stirred at 100°C for 31 h. The product **5m** was isolated as a pale yellow solid. Yield: 221.2 mg, 66%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): $\delta = 7.18$ (br, 1H, N*H*), 7.08-7.00 (m, 4H, N*H* and Ph), 5.54-5.46 (m, 2H, =C*H*^{*i*Pr} and =C*H*^{-CMe₂}), 2.28 (m, 1H, C*H*^{*i*Pr}), 1.98 (s, 6H, C*H*₃^{Ph}), 1.53 (br, 2H, C*H*₂CH₂CH₃), 1.38 (s, 6H, C*H*₃^C), 0.96 (d, ³*J*_{HH} = 6.8 Hz, 6H, C*H*₃^{*i*Pr}), 0.83 (m, 2H, CH₃C*H*₂CH₂), 0.20 (t, ³*J*_{HH} = 7.2 Hz, 3H, CH₂CH₂C*H*₃).

¹³C {¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 190.2 (C^{=N})$, 186.9 (brm, BC), 147.8 (dm, ¹*J*_{FC} = 238.2 Hz, *C*₆F₅), 139.5 (dm, ¹*J*_{FC} = 250.8 Hz, *C*₆F₅), 137.3 (dm, ¹*J*_{FC} = 251.2 Hz, *C*₆F₅), 137.6 (=*C*H^{*i*Pr}), 137.4, 135.1, 128.1, 126.9 (Ph), 131.5 (=*C*H^{-CMe₂}), 119.1 (brm, *i*-*C*₆F₅), 111.8 (*C*^{*n*Pr}), 41.6 (*C*^{CH₃}), 31.3 (*C*H^{*i*Pr}), 27.8 (*C*H₂CH₂CH₃), 26.4 (*C*H₃^C), 23.8 (CH₂CH₂CH₃), 22.4 (*C*H₃^{*i*Pr}), 18.2 (*C*H₃^{Ph}), 13.8 (CH₂CH₂CH₃).

¹**H**, ¹³**C GHSQC** (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 5.50/137.6 (=*CH*^{*i*Pr}), 5.49/131.5 (=*CH*^{-CMe₂}), 2.28/31.3 (*CH*^{*i*Pr}), 1.98/18.2 (*CH*₃^{Ph}), 1.53/27.8 (*CH*₂CH₂CH₃), 1.38/26.4 (*CH*₃^C), 0.96/22.4 (*CH*₃^{*i*Pr}), 0.83/23.8 (CH₂CH₂CH₃), 0.20/13.8 (CH₂CH₂CH₃).

¹H, ¹³C GHMBC (400 MHz/101 MHz, 299K, CDCl₃): δ^{1} H/ δ^{13} C: 7.18/111.8 (NH/ C^{nPr}), 5.50/41.6 (=C H^{iPr}/C^{CH_3}), 5.49/(26.4, 31.3) (=C H^{-CMe_2}/CH_3^{-C} , C H^{iPr}), 1.38/(41.6, 131.5, 190.2) (C H_3^{-C}/C^{-CH_3} , =C H^{-CMe_2} , C=N), 0.96/(31.3, 137.6) (C H_3^{iPr}/CH^{iPr} , =C H^{iPr}), 0.20/(23.8, 27.8) (CH₂CH₂CH₂CH₃/CH₂CH₂CH₃, CH₂CH₂CH₃).

¹¹**B** {¹**H**} **NMR** (128 MHz, 299 K, CDCl₃): $\delta = -8.5$ ($v_{1/2} \sim 69$ Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 299K, CDCl₃): $\delta = -133.9$ (m, 4F, *o*-C₆F₅), -158.2 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, *p*-C₆F₅), -163.1 (m, 4F, *m*-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 4.8$].

HRMS (ESI): m/z calcd for $C_{34}H_{33}BF_{10}N_2$: 669.2504 [M-H]⁻; found: 669.2513.

Fig. S64 ¹H NMR (400 MHz, 299K, CDCl₃) spectrum of compound 5m.

compound 5m.

Fig. S66 ¹⁹F{¹H} NMR (377 MHz, 299K, CDCl₃) spectrum of compound **5m**.

Fig. S67 ¹¹B{¹H} NMR (128 MHz, 299K, CDCl₃) spectrum of compound **5m**.

Control experiments

Scheme S6

Deuterium-labeled experiment: The compound **1** was prepared in-situ according to the General Procedure I. After that, **2a-D** (22.1 mg, 0.5 mmol) was added to give a colourless solution. The reaction mixture was stirred at room temperature for 4 h to *in-situ* generate compound **3a-D**.

Then Xyl-N=C (65.6 mg, 0.5 mmol) was added and the mixture was stirred for another 6 h at room temperature. Atfer that, all the volatiles were removed in vacuo. The obtained residue was washed with *n*-hexane (1×2 mL) and dried in vacuo to give a white solid **5a-D**. Yield: 164.2 mg, 52%.

¹**H NMR** (400 MHz, 299 K, CDCl₃): $\delta = 7.18-7.10$ (m, 3H, Ph), 5.58 (dd, ³*J*_{HH} = 15.6 and 6.8 Hz, 1H, =*CH*^{*i*Pr}), 5.43 (d, ³*J*_{HH} = 16.0 Hz, 1H, =*CH*^{-CMe₂}), 2.34 (m, 1H, *CH*^{*i*Pr}), 2.07 (s, 6H, *CH*₃^{Ph}), 1.28 (s, 6H, *CH*₃^C), 1.01 (d, ³*J*_{HH} = 6.4 Hz, 6H, *CH*₃^{*i*Pr}).

5a-D.

Fig. S69 ¹H NMR (400 MHz, 299K, CDCl₃) spectra of (1) isolated compound 5a-D, (2) isolated compound 5a.

Fig. S70 (1) ²H NMR (77 MHz, 299K, CH_2Cl_2) spectrum of isolated compound **5a-D**, (2) ¹H NMR (400 MHz, 299K, CD_2Cl_2) spectrum of isolated compound **5a-D**.

Scheme S7

Crossover experiment: In an NMR tube, 2,5-dimethylhexa-2,4-diene (15.5 mg, 0.14 mmol) and HB(C₆F₅)₂ (48.5 mg, 0.14 mmol) were dissolved in CDCl₃ (0.6 mL). The NMR tube was kept at room temperature for 1 h to *in-situ* generate compound **1**. After that, ClCH₂C=N (5.3 mg, 0.07 mmol) and CD₃C=N (3.1 mg, 0.07 mmol) were added to the solution. The reaction mixture was kept at room temperature for another 4 h to in-situ generate compounds **3g** and **3a-D**. Then Xyl-N=C (18.4 mg, 0.14 mmol) was added to the mixture. After the NMR tube was kept at room temperature for 43 h, NMR experiments were conducted.

Fig. S71 ¹H NMR (400 MHz, 299K, CDCl₃) spectra of (1) *in-situ* crossover reaction, (2) isolated compound **5g**, (3) isolated compound **5a**.

$$R^{1} = H^{H} = B(C_{6}F_{5})_{2}$$

Scheme S8

Investigation on reaction of 3n with 4a: In an NMR tube, The compound 3n and 3o was *in-situ* prepared according to the General Procedure I [2,5-dimethylhexa-2,4-diene (6.7 mg, 0.06 mmol), HB(C₆F₅)₂ (20.8 mg, 0.06 mmol) and C₃H₅C=N 2n (4.1 mg, 0.06 mmol) in C₆D₆ (0.6 mL)]. Then Xyl-N=C 4a (7.9 mg, 0.06 mmol) was added to the
solution. Both of **3n** and **4a** remained unchanged when the mixture was changed from room temperature to 120 °C.

Scheme S9

Investigation on reaction of 3n with 4a: Reaction of 3n with 4a: In an NMR tube, The compound 3n and 3o was *in-situ* prepared according to the General Procedure I [2,5-dimethylhexa-2,4-diene (6.7 mg, 0.06 mmol), HB(C₆F₅)₂ (20.8 mg, 0.06 mmol) and PhC=N 2o (6.2 mg, 0.06 mmol) in C₆D₆ (0.6 mL)]. Then Xyl-N=C 4a (7.9 mg, 0.06 mmol) was added to the solution. Both of 3o and 4a remained unchanged when the mixture was changed from room temperature to 120 °C.