Ruthenium Catalyzed Dolye-Kirmse Rearrangement Reaction

of Sulfoxonium Ylides with Sulfides or Selenides

Ying-Di Hao, Jiao Liang, Zhi-Qian Lin, Tian-Le Huang, Ya-Di Xu, Li Guo, Zhong-Zheng Yang* and Yong Wu*

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041 (P.R. China)

Table of Contents

1. General information
2. Experimental section2
2.1. Preparation of sulfoxonium ylide ^[1] 2
2.2 Preparation of allyl sulfides ^[2] 3
2.3 Preparation of allyl selenide ^[3] 3
2.4 Optimization of the reaction conditions4
2.5 Typical procedure for Rh-catalyzed Doyle–Kirmse Rearrangement Reactions
5
2.6 Reference5
3. Characterization data for the products5
4. ¹ H NMR , ¹³ C NMR and ¹⁹ F NMR spectra of new compounds

1. General information

Unless noted, all reactions were carried out in flame-dried glassware with magnetic stirring under an atmosphere of air. Solvents used were of analytical purity. All the reactions were monitored by thinlayer chromatography (TLC) and were visualized using UV light. The product purification was done using silica gel column chromatography. Thin-layer chromatography (TLC) characterization was performed with precoated silica gel GF254 (0.2 mm), while column chromatography characterization was performed with silica gel (100-200 mesh). NMR spectra were recorded on a Varian spectrometer (400 MHz for ¹H, 100 MHz for ¹³C and 376 MHz for ¹⁹F). Chemical shifts are reported in δ ppm referenced to an internal SiMe4 standard for ¹H NMR and chloroform-d (δ 77.16) for ¹³C NMR. Coupling constants were given in Hz. HRMS spectra were recorded on a Waters Q-TOF Premier.

2. Experimental section

2.1. Preparation of sulfoxonium ylide^[1]

Under N₂, trimethylsulfoxonium iodide (42.7 mmol, 3.0 equiv) was suspended in dry THF (50 mL) in a flame-dried round bottom flask that was protected from light with aluminium foil. Potassium tert-butoxide (42.7 mmol, 3.0 equiv) was added and the mixture was stirred at reflux for 2 hours. After cooling to 0 °C, benzoyl chloride (14 mmol, 1.0 equiv) in THF (10 mL) was added dropwise to the mixture via a dropping funnel. After stirring at room temperature for 4 hour, the mixture was filtered through a plug of celite (elution DCM). After evaporation of all volatiles, purification by flash chromatography (100% ethyl acetate) gave sulfoxonium ylide (64-92% white solid).

2.2 Preparation of allyl sulfides^[2]

Allyl sulfide was synthesized by addition of allyl/propargyl bromide (1.2 mmol) to the benzenethiol (1.0 mmol) in EtOH in the presence of potassium carbonate (3.0 mmol) at roomtemperature with constant stirring overnight. The crude was extracted with DCM/H₂O. The organic solution was dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by column chromatography on silica gel (68-83% colorless oil).

2.3 Preparation of allyl selenide^[3]

Phenylboric acid (5 mmol) and selenium powder (15 mmol) were added to DMSO solution (15 ml) of silver nitrate (5 mmol) and reacted in air at 130 $^{\circ}$ C for three hours. After three times of extraction with EA/H₂O, no further purification was required for the next step of synthesis .

Under the condition of N₂ protection, NaBH₄ (2.0 mmol) was dissolved in EtOH (8 ml) and added into the double-neck flask. Add the THF solution (16 ml) from the product obtained in the previous step to the flask drop by drop at 0 $^{\circ}$ C. A THF solution (8 ml) of allyl bromide (2 mmol) is then added drop by drop to the flask. Reaction at 0 $^{\circ}$ C for 30 min, quenched with water, DCM/H₂O extraction and silica gel column purification to obtain the product (52-80%, yellow oil).

2.4 Optimization of the reaction conditions

24	[Ru(p-cymene)Cl ₂] ₂	KH_2PO_5	1:2	PhF	12	60	73
25 ^e	[Ru(p-cymene)Cl ₂] ₂	KH ₂ PO ₅	1:2	PhF	12	60	66
26	[Ru(p-cymene)Cl ₂] ₂	KH ₂ PO ₅	1:2	DCM	1.5	60	14
27	[Ru(<i>p</i> -cymene)Cl ₂] ₂	KH ₂ PO ₅	1:2	DCM	3	60	32
28	[Ru(p-cymene)Cl ₂] ₂	KH ₂ PO ₅	1:2	DCM	24	60	82
29	[Ru(<i>p</i> -cymene)Cl ₂] ₂	KH_2PO_5	1:2	DCM	12	rt	trace
30	[Ru(p-cymene)Cl ₂] ₂	KH ₂ PO ₅	1:2	DCM	12	40	45
31	[Ru(p-cymene)Cl ₂] ₂	KH_2PO_5	1:2	DCM	12	80	63
32	[Ru(p-cymene)Cl ₂] ₂	KH ₂ PO ₅	1:2	DCM	12	60	78
33 ^e	Cu(MeCN) ₄ PF ₆	none	1:2	DCM	12	60	58
34 ^e	Cu(MeCN) ₄ PF ₆	KH ₂ PO ₅	1:2	DCM	12	60	61
35 ^e	CuOTf	none	1:2	DCM	12	60	49
36 ^e	CuOTf	KH₂PO₅	1:2	DCM	12	60	52

Reaction conditions: ^{*a*} **1a** (0.1 mmol scale, 1 equiv), catalyst (0.1 equiv), and additive (2 equiv) were dissolved in solvent (2.0 mL) and were stirred under Ar. ^{*b*} Isolated yield. ^{*c*} NR = not reaction. ^{*d*} reaction under air. ^{*e*} **1a** reacted with allyl selenide instead of allyl sulfide.

2.5 Typical procedure for Rh-catalyzed Doyle–Kirmse Rearrangement Reactions

To a flame-dried 15 mL thick-walled pressure bottle equipped with a magnetic stir bar was added the sulfoxonium ylide **1a** (0.1 mmol), allyl compounds **2a/4a** (0.2 mmol), [RuCl₂(*p*-cymene)]₂ (10 mol %), KH₂PO₄ (0.2 mmol). Then 2 mL DCM was added and the mixture was stirred at 60 °C for 12h under Ar. (Warning: Explosionproof cover should be used due to the potential risk of explosion). Afterwards, it was diluted with EA and solvent was removed under reduced pressure. The residue was purified by silica gel chromatography using PE/EA.

2.6 Reference

 Jianglian Li, Hua He, Mengyi Huang, Yuncan Chen, Yi Luo, Kaichuan Yan, Qiantao Wang, Yong Wu, Org. Lett. 2019, 21, 22, 9005–9008.

- [2] Xinyu Zhang, Bo Lin, Jianhui Chen, Jiajia Chen, Yanshu Luo, Yuanzhi Xia, Org. Lett.2021, 23, 3, 819–825.
- [3] (1) Tao Leng, Ge Wu,, Yun-Bing Zhou, Wenxia Gao, Jinchang Ding, Xiaobo Huang, Miaochang Liu, Huayue Wua, Adv. Synth. Catal. 2018, 360, 4336 – 4340. (2) Sripati Jana, Rene M. Koenigs, Org. Lett. 2019, 21, 10, 3653–3657.

3. Characterization data for the products

1-phenyl-2-(phenylthio)pent-4-en-1-one (3aa)

4.47 (m, 1H), 2.80 – 2.55 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 195.2, 136.1, 134.8, 134.8, 133.1, 131.5, 129.0, 128.8, 128.6, 128.6, 117.8, 50.8, 35.1. **HRMS (ESI)** calculated for [C₁₇H₁₆NaOS, M+Na]⁺: 291.0814; Found: 291.0815.

1-phenyl-2-(p-tolylthio)pent-4-en-1-one (3ab)

Yield: 75% (21.1 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.91 (m, 2H), 7.58 – 7.53 (m, 1H), 7.47 – 7.42 (m, 2H), 7.22 (dt, *J* = 8.6, 2.4 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 5.87 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.15 – 5.05 (m, 2H),

4.45 – 4.40 (m, 1H), 2.77 – 2.51 (m, 2H), 2.33 (s, 3H). ¹³**C NMR** (100 MHz, Chloroformd) δ 195.0, 139.2, 136.2, 135.4, 135.0, 133.0, 129.8, 128.6, 128.6, 127.4, 117.6, 50.8, 34.9, 21.3. **HRMS (ESI)** calculated for [C₁₈H₁₈NaOS, M+Na]⁺: 305.0971; Found: 305.0973.

phenyl-2-(m-tolylthio)pent-4-en-1-one (3ac)

(ddt, J = 72.3, 14.2, 7.5 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ

195.4, 138.7, 136.2, 135.4, 134.9, 133.1, 131.7, 131.3, 129.6, 128.8, 128.6, 128.6, 117.7, 50.9, 35.2, 21.2. **HRMS (ESI)** calculated for $[C_{18}H_{18}NaOS, M+Na]^+$: 305.0971; Found: 305.0970.

1-phenyl-2-((4-(trifluoromethyl)phenyl)thio)pent-4-en-1-one (3ad)

Yield: 65% (21.7 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.89 (m, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.45 (q, *J* = 7.9 Hz, 4H), 5.86 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.17 – 5.08 (m, 2H), 4.61 (t, *J* = 7.2

Hz, 1H), 2.71 (ddt, J = 78.7, 14.4, 7.2 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.04, 136.05, 134.73, 133.15, 132.44, 132.40, 129.20 (q, J_{C-F} = 33.3 Hz), 127.71, 127.51, 124.74 (q, J_{C-F} = 3.7 Hz), 122.73 (q, J_{C-F} = 260.0 Hz), 117.22, 49.46, 34.15. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.72. HRMS (ESI) calculated for [C₁₈H₁₅F₃NaOS, M+Na]⁺: 359.0688; Found: 359.0685.

2-((4-methoxyphenyl)thio)-1-phenylpent-4-en-1-one (3ae)

Yield: 93% (27.7 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (dd, *J* = 7.1, 1.5 Hz, 2H), 7.59 – 7.53 (m, 1H), 7.48 – 7.43 (m, 2H), 7.26 – 7.22 (m, 2H), 6.82 – 6.77 (m, 2H), 5.88 (ddt, *J* = 17.1, 10.3, 6.8 Hz, 1H), 5.15 –

5.05 (m, 2H), 4.37 (t, J = 7.3 Hz, 1H), 3.79 (s, 3H), 2.72 – 2.50 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 194.9, 160.6, 137.7, 136.2, 135.0, 133.0, 128.6, 121.1, 117.6, 114.5, 55.3, 50.8, 34.6. **HRMS (ESI)** calculated for [C₁₈H₁₈NaO₂S, M+Na]⁺: 321.0920; Found: 321.0918.

2-((4-chlorophenyl)thio)-1-phenylpent-4-en-1-one (3af)

Yield: 62% (18.7 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.89 (m, 2H), 7.57 (tt, *J* = 6.8, 1.4 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.25 (s, 3H), 5.86 (ddt, *J* = 17.1, 10.3, 6.8 Hz, 1H), 5.15 – 5.04 (m, 2H), 4.47 (t, *J* = 7.3 Hz, 1H),

2.77 – 2.51 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.9, 136.4, 135.9, 135.4, 134.5, 133.3, 129.6, 129.2, 128.7, 128.6, 118.0, 50.7, 34.8. HRMS (ESI) calculated for [C₁₇H₁₅ClNaOS, M+Na]⁺: 325.0424; Found: 325.0427.

2-(benzylthio)-1-phenylpent-4-en-1-one (3ag)

Yield: 78% (22.0 mg). Colorless wax. ¹H NMR (400 MHz, Dimethyl sulfoxide- d_6) δ 7.92 – 7.86 (m, 2H), 7.66 – 7.61 (m, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.31 – 7.22 (m, 5H), 5.78 (ddt, J =

17.0, 10.2, 6.7 Hz, 1H), 5.10 – 4.99 (m, 2H), 4.58 (dd, J = 8.2, 6.4 Hz, 1H), 3.79 (d, J = 12.6 Hz, 1H), 3.64 (d, J = 12.6 Hz, 1H), 2.79 – 2.70 (m, 1H), 2.54 (d, J = 7.0 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 195.3, 137.1, 136.0, 134.8, 133.1, 129.2, 128.6, 128.6, 128.5, 127.3, 117.6, 46.7, 34.8, 34.2. **HRMS (ESI)** calculated for [C₁₈H₁₈NaOS, M+Na]⁺: 305.0971; Found: 305.0972.

1-(3-chlorophenyl)-2-(phenylthio)pent-4-en-1-one (3ba)

Yield: 74% (22.3 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (t, *J* = 2.0 Hz, 1H), 7.72 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.43 (dd, *J* = 6.8, 1.7 Hz, 2H), 7.35 (t, *J* = 8.1 Hz, 2H), 7.30 – 7.26 (m, 2H), 5.86 (ddt, *J* =

17.0, 10.1, 6.7 Hz, 1H), 5.15 – 5.06 (m, 2H), 4.48 – 4.43 (m, 1H), 2.84 – 2.59 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.7, 137.8, 136.8, 135.3, 134.8, 132.8, 131.5, 129.8, 129.3, 129.2, 128.5, 126.4, 117.7, 44.9, 35.0. HRMS (ESI) calculated for [C₁₇H₁₅CINaOS, M+Na]⁺: 325.0424; Found: 325.0426.

1-(2-fluorophenyl)-2-(phenylthio)pent-4-en-1-one (3ca)

Yield: 58% (16.5 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 7.8 Hz, 1H), 7.60 (dt, *J* = 9.6, 2.3 Hz, 1H), 7.41 (td, *J* = 8.1, 5.5 Hz, 1H), 7.33 (dd, *J* = 7.0, 2.3 Hz, 3H), 7.30 - 7.25 (m, 3H), 5.87 (ddt, *J* = 17.1, 10.3, 6.9 Hz, 1H), 5.16 -

5.07 (m, 2H), 4.41 (dd, J = 7.9, 6.6 Hz, 1H), ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 193.8 (d, J = 2.02 Hz), 162.8 (d, J = 240.0 Hz), 138.3 (d, J = 6.3 Hz), 135.0, 134.6, 131.0, 130.2 (d, J = 7.5 Hz), 129.1, 124.2 (d, J = 3.2 Hz), 120.2, 120.0, 118.0, 115.4 (d, J = 22.5 Hz), 51.0, 34.9. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.73. **HRMS (ESI)** calculated for [C₁₇H₁₅FNaOS, M+Na]⁺: 309.0720; Found: 309.0723.

1-(2-methoxyphenyl)-2-(phenylthio)pent-4-en-1-one (3da)

Yield: 48% (14.3 mg). Yellow wax. ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.70 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.44 (ddd, *J* = 8.3, 7.3, 1.8 Hz, 1H), 7.29 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.26 – 7.20 (m, 3H), 7.02 (td, *J* = 7.5, 1.0 Hz, 1H), 6.88 (dd, *J* = 8.4, 1.0 Hz, 1H), 5.94 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.17 – 5.07 (m, 2H), 4.79 (t, *J* = 7.3 Hz, 1H), 3.77 (s, 3H), 2.81 – 2.46 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 197.4, 158.0, 135.4, 134.1, 133.4, 132.5, 131.4, 128.7, 128.1, 127.4, 120.9, 117.2, 111.4, 55.4, 55.2, 34.6. **HRMS (ESI)** calculated for [C₁₈H₁₈NaO₂S, M+Na]⁺: 321.0920; Found: 321.0921.

1-(4-methoxyphenyl)-2-(phenylthio)pent-4-en-1-one (3ea)

Yield: 82% (24.5 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (dt, *J* = 9.2, 2.4 Hz, 2H), 7.46 (d, *J* = 7.2 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.26 (d, *J* = 2.2 Hz, 2H), 6.89 (dt, *J* = 9.2, 2.6 Hz, 2H), 5.92 – 5.79 (m, 1H), 5.13 – 5.01 (m,

2H), 4.55 - 4.48 (m, 1H), 3.86 (s, 3H), 2.72 (ddt, J = 81.9, 13.8, 6.8 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.2, 163.4, 136.6, 135.7, 130.7, 129.1, 128.9, 127.1, 123.9, 117.3, 113.7, 55.5, 44.6, 35.5. HRMS (ESI) calculated for [C₁₈H₁₈NaO₂S, M+Na]⁺: 321.0920; Found:321.0918.

2-(phenylthio)-1-(p-tolyl)pent-4-en-1-one (3fa)

Yield: 82% (25.7 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.80 (m, 2H), 7.34 (dt, J = 6.3, 1.9 Hz, 2H), 7.31 – 7.26 (m, 3H), 7.23 (d, J = 8.3 Hz, 2H), 5.87 (ddt, J = 17.0, 10.3, 6.9 Hz, 1H), 5.14 – 5.04 (m, 2H), 4.48 (dd, J = 7.9,

6.6 Hz, 1H), 2.79 – 2.54 (m, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ
195.0, 144.0, 134.9, 134.7, 133.5, 131.7, 129.3, 129.0, 128.7, 128.7, 117.7, 50.8, 35.2,
21.7. HRMS (ESI) calculated for [C₁₈H₁₈NaOS, M+Na]⁺: 305.0971; Found: 305.0968.

1-(4-nitrophenyl)-2-(phenylthio)pent-4-en-1-one (3ga)

= 58.4, 14.4, 7.1 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 193.2, 150.2, 140.9,

135.1, 134.3, 130.5, 129.6, 129.4, 129.2, 123.8, 118.3, 51.4, 34.6. **HRMS (ESI)** calculated for [C₁₇H₁₅NNaO₃S, M+Na]⁺: 336.0665; Found: 336.0666.

1-cyclohexyl-2-(phenylthio)pent-4-en-1-one (3ha)

Yield: 52% (16.2 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (dd, *J* = 6.4, 3.2 Hz, 2H), 7.34 – 7.27 (m, 3H), 5.82 – 5.70 (m, 1H), 5.12 – 5.03 (m, 2H), 3.74 (t, *J* = 7.4 Hz, 1H), 2.70 – 2.37 (m, 3H), 1.78 (d, *J* = 11.7 Hz, 4H), 1.66 (d, *J* =

11.5 Hz, 1H), 1.53 – 1.41 (m, 1H), 1.25 – 1.19 (m, 3H). ¹³**C** NMR (100 MHz, Chloroform-*d*) δ 208.4, 134.6, 133.7, 132.2, 129.0, 128.3, 117.8, 54.4, 48.7, 34.6, 29.5, 28.3, 25.9, 25.8, 25.4. HRMS (ESI) calculated for $[C_{17}H_{22}NaOS, M+Na]^+$: 297.1284; Found: 297.1282.

ethyl 2-(phenylthio)pent-4-enoate (3ia)

Yield: 56% (13.2 mg). Colorless wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (dd, *J* = 7.2, 2.4 Hz, 2H), 7.30 (dd, *J* = 5.0, 2.4 Hz, 3H), 5.81 (ddt, *J* = 17.1, 10.2, 6.8 Hz, 1H), 5.21 – 5.07 (m,

2H), 4.11 (qd, J = 7.1, 1.7 Hz, 2H), 3.70 (dd, J = 8.7, 6.4 Hz, 1H),

2.69 – 2.47 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, Chloroform-*d*) δ 171.7, 133.9, 133.2, 133.1, 128.9, 128.0, 118.0, 61.2, 50.3, 35.8, 14.1. HRMS (ESI) calculated for $[C_{13}H_{16}NaO_2S, M+Na]^+$: 259.0763; Found: 259.0761.

1-phenyl-2-(phenylselanyl)pent-4-en-1-one (5aa)

Yield: 82% (25.8 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 7.7 Hz, 2H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.42 (q, *J* = 7.7 Hz, 4H), 7.35 (t, *J* = 7.3 Hz, 1H), 7.28 – 7.24 (m, 2H), 5.87 (ddt, *J* = 17.0, 10.1, 6.7 Hz, 1H), 5.14 – 5.04 (m, 2H),

4.54 (t, J = 7.4 Hz, 1H), 2.72 (ddt, J = 76.8, 14.4, 7.2 Hz, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 195.2, 136.7, 136.2, 135.6, 132.9, 131.6, 129.1, 128.5, 128.4, 126.8, 117.4, 44.7, 35.2. **HRMS (ESI)** calculated for $[C_{17}H_{16}NaOSe, M+Na]^+$: 339.0259; Found: 339.0261.

1-phenyl-2-(p-tolylselanyl)pent-4-en-1-one (5ab)

Yield: 83% (27.4 mg). Yellow wax. ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.88 (dd, *J* = 7.5, 2.0 Hz, 2H), 7.53 (td, *J* = 6.3, 5.3, 3.4 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.35 – 7.29 (m, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 5.86 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.14 – 5.03 (m, 2H), 4.52 – 4.46 (m, 1H), 2.82 – 2.56 (m, 2H), 2.34 (s, 3H). ¹³C **NMR** (100 MHz, Chloroform-*d*) δ 195.0, 139.4, 136.9, 136.2, 135.7, 132.8, 129.9, 128.5, 128.4, 122.9, 117.3, 44.6, 35.1, 21.3. **HRMS (ESI)** calculated for [C₁₈H₁₈NaOSe, M+Na]⁺: 353.0415; Found: 353.0412.

1-phenyl-2-(o-tolylselanyl)pent-4-en-1-one (5ac)

Yield: 79% (26.1 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.45 – 7.37 (m, 2H), 7.32 – 7.25 (m, 2H), 7.17 – 7.08 (m, 2H), 6.98 (td, *J* = 7.3, 2.1 Hz, 1H), 5.79 (ddt, *J* = 17.0, 10.1, 6.7 Hz, 1H), 5.08 – 4.95 (m,

2H), 4.51 - 4.45 (m, 1H), 2.87 - 2.57 (m, 2H), 2.21 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 195.7, 142.5, 137.2, 136.2, 135.6, 132.9, 130.2, 129.2, 128.8, 128.4, 128.3, 126.5, 117.4, 44.8, 35.5, 23.1. **HRMS (ESI)** calculated for [C₁₈H₁₈NaOSe, M+Na]⁺: 353.0415; Found: 353.0419.

2-((4-(tert-butyl)phenyl)selanyl)-1-phenylpent-4-en-1-one (5ad)

Yield: 87% (32.3 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.74 (m, 2H), 7.44 (tt, *J* = 6.8, 1.3 Hz, 1H), 7.35 – 7.26 (m, 4H), 7.22 – 7.17 (m, 2H), 5.80 (ddt, *J* = 17.0, 10.1, 6.8 Hz, 1H), 5.07 – 4.96 (m, 2H), 4.44 (dd, *J* =

8.3, 6.5 Hz, 1H), 2.79 – 2.51 (m, 2H), 1.23 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*)
δ 194.4, 151.3, 135.5, 135.3, 134.6, 131.8, 127.4, 127.4, 127.3, 125.2, 122.2, 116.3,
43.6, 34.1, 30.2. HRMS (ESI) calculated for [C₂₁H₂₄NaOSe, M+Na]⁺: 395.0885; Found: 395.0887.

2-((4-bromophenyl)selanyl)-1-phenylpent-4-en-1-one (5ae)

Yield: 86% (33.7 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.84 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.44 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 5.85 (ddt, *J* = 17.0, 10.3, 6.8 Hz, 1H), 5.14 – 5.05

(m, 2H), 4.56 – 4.51 (m, 1H), 2.83 – 2.55 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ

194.9, 138.4, 136.0, 135.3, 133.1, 132.3, 128.6, 128.3, 125.2, 124.1, 117.7, 44.6, 35.1. **HRMS (ESI)** calculated for [C₁₇H₁₅BrNaOSe, M+Na]⁺: 416.9364; Found: 416.9360.

2-((4-nitrophenyl)selanyl)-1-phenylpent-4-en-1-one (5af)

Yield: 78% (28.2 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-d) δ 8.12 – 7.98 (m, 2H), 7.91 – 7.72 (m, 2H), 7.61 – 7.45 (m, 3H), 7.37 (t, J = 7.7 Hz, 2H), 5.78 (ddt, J = 17.0, 10.1, 6.8 Hz, 1H), 5.19 – 4.95 (m, 2H), 4.63 (dd, J =

8.0, 6.7 Hz, 1H), 2.90 – 2.49 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 193.91, 146.91, 135.19, 134.91, 134.62, 133.67, 132.39, 127.73, 127.29, 122.76, 117.17, 44.11, 34.37. HRMS (ESI) calculated for [C₁₇H₁₅NO₃Se, M+Na]⁺: 384.0109; Found: 384.0110.

2-((2,3-dimethoxyphenyl)selanyl)-1-phenylpent-4-en-1-one (5ag)

Yield: 71% (36.7 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 8.2 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.29 (t, *J* = 7.7 Hz, 2H), 6.93 (d, *J* = 7.6 Hz, 1H), 6.89 – 6.81 (m, 2H), 5.76 (dtd, *J* = 16.9, 6.5, 3.4 Hz, 1H), 4.97 (dd, *J* = 29.8, 13.7

Hz, 2H), 4.78 – 4.71 (m, 1H), 3.80 (s, 3H), 3.70 (s, 3H), 2.95 – 2.61 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.6, 153.0, 149.4, 136.2, 135.6, 132.9, 128.5, 128.4, 127.2, 124.7, 123.8, 117.2, 113.1, 60.6, 55.9, 44.3, 36.1. HRMS (ESI) calculated for $[C_{19}H_{20}NaO_3Se, M+Na]^+$: 399.0470; Found: 399.0467.

2-((2,5-difluorophenyl)selanyl)-1-phenylpent-4-en-1-one (5ah)

Yield: 78% (27.4 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.76 (m, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.28 (q, *J* = 7.6 Hz, 1H), 6.73 (dtd, *J* = 22.1, 8.4, 2.7 Hz, 2H), 5.77 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1H), 5.07 – 4.97 (m, 2H), 4.53 (dd, *J* = 8.4, 6.4 Hz, 1H), 2.65 (ddd, *J* = 64.3, 14.7, 7.5

Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.1, 163.0 (dd, J = 251.0, 11.9 Hz) 162.8 (dd, J = 251.0, 11.9 Hz), 161.8 (dd, J = 50.8, 11.8 Hz), 139.2 (dd, J = 9.5, 2.8 Hz), 135.0, 134.1, 132.0, 127.5, 127.2, 116.6, 111.1 (dd, J = 21.2, 3.8 Hz), 107.4 (dd, J = 23.2, 4.0 Hz), 103.4 (dd, J = 28.5, 25.5 Hz), 43.2, 34.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -94.42 (d, J = 3.0 Hz),-106.48 (d, J = 3.0 Hz). HRMS (ESI) calculated for [C₁₇H₁₄F₂NaOSe, M+Na]⁺: 375.0070; Found: 375.0074.

2-(phenylselanyl)-1-(p-tolyl)pent-4-en-1-one (5ba)

6.6 Hz, 1H), 2.86 – 2.57 (m, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ
193.9, 142.7, 135.6, 134.6, 132.5, 128.2, 128.0, 128.0, 127.4, 125.9, 116.3, 43.6, 34.3,
20.6. HRMS (ESI) calculated for [C₁₈H₁₈NaOSe, M+Na]⁺: 353.0415; Found: 353.0412.

1-(4-methoxyphenyl)-2-(phenylselanyl)pent-4-en-1-one (5ca)

Yield: 89% (30.8 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 8.5 Hz, 2H), 7.37 – 7.25 (m, 5H), 6.91 (d, *J* = 8.5 Hz, 2H), 5.87 (ddt, *J* = 17.2, 10.6, 6.9 Hz, 1H), 5.08 (dd, *J* = 18.5, 13.7 Hz, 2H), 4.47 (t, *J* = 7.4 Hz, 1H),

3.86 (s, 3H), 2.67 (ddt, J = 73.4, 14.3, 7.1 Hz, 2H). ¹³**C NMR** (100 MHz, Chloroform-d) δ 194.0, 163.6, 135.0, 134.6, 131.9, 130.9, 129.0, 128.9, 128.6, 117.6, 113.8, 55.5, 50.6, 35.3. **HRMS (ESI)** calculated for [C₁₈H₁₈NaO₂Se, M+Na]⁺: 369.0364; Found: 369.0365.

1-(3-chlorophenyl)-2-(phenylselanyl)pent-4-en-1-one (5da)

Yield: 75% (26.2 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (t, *J* = 1.9 Hz, 1H), 7.72 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.49 (dd, *J* = 7.8, 2.1 Hz, 1H), 7.45 - 7.41 (m, 2H), 7.37 (t, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 7.6 Hz, 2H), 5.86 (ddt, *J* =

17.0, 10.3, 6.8 Hz, 1H), 5.15 – 5.06 (m, 2H), 4.45 (dd, J = 8.2, 6.7 Hz, 1H), 2.84 – 2.59 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 193.7, 137.8, 136.8, 135.3, 134.8, 132.8, 131.5, 129.8, 129.3, 129.2, 128.5, 126.4, 117.7, 44.9, 35.0. **HRMS (ESI)** calculated for [C₁₇H₁₅ClNaOSe, M+Na]⁺: 372.9869; Found: 372.9867.

1-(3-methoxyphenyl)-2-(phenylselanyl)pent-4-en-1-one (5ea)

Yield: 77% (26.6 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, *J* = 7.2 Hz, 2H), 7.43 – 7.39 (m, 2H), 7.38 – 7.29 (m, 2H), 7.28 (d, *J* = 7.7 Hz, 2H), 7.08 (dd, *J* = 8.2, 2.6 Hz, 1H), 5.87 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.15 – 5.04 (m, 2H), 4.55 – 4.49 (m, 1H), 3.81 (s, 3H), 2.72 (ddt, J = 75.1, 14.4, 7.1 Hz, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 195.0, 159.8, 137.6 136.6, 135.5, 129.5, 129.1, 129.1, 126.9, 120.8, 119.4, 117.5, 112.8, 55.4, 44.9, 35.3. **HRMS (ESI)** calculated for [C₁₈H₁₈NaO₂Se, M+Na]⁺: 369.0364; Found: 369.0366.

1-(2-methoxyphenyl)-2-(phenylselanyl)pent-4-en-1-one (5fa)

Yield: 77% (17.9 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.41 – 7.37 (m, 2H), 7.33 – 7.28 (m, 1H), 7.22 (dd, *J* = 8.1, 6.7 Hz, 2H), 7.03 (td, *J* = 7.5, 1.0 Hz, 1H), 6.87 (dd, *J* = 8.4, 1.0 Hz,

1H), 5.92 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.14 – 5.05 (m, 2H), 4.80 (t, J = 7.4 Hz, 1H), 3.77 (s, 3H), 2.82 – 2.49 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 196.7, 158.0, 136.4, 136.1, 133.3, 131.6, 128.8, 128.6, 127.2, 127.0, 120.9, 116.8, 111.4, 55.4, 49.9, 34.7. **HRMS (ESI)** calculated for [C₁₈H₁₈NaO₂Se, M+Na]⁺: 369.0364; Found: 369.0363.

1-(4-nitrophenyl)-2-(phenylselanyl)pent-4-en-1-one (5ga)

Yield: 43% (15.5 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 – 8.20 (m, 2H), 8.01 – 7.93 (m, 2H), 7.43 – 7.32 (m, 3H), 7.30 – 7.22 (m, 2H), 5.89 (ddt, *J* = 17.1, 10.3, 6.8 Hz, 1H), 5.19 – 5.06 (m, 2H), 4.54 – 4.44 (m, 1H),

2.89 – 2.60 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.0, 150.1, 141.1, 136.7, 135.0, 129.6, 129.3, 129.3, 126.2, 123.7, 118.0, 45.4, 34.7. HRMS (ESI) calculated for $[C_{17}H_{15}NNaO_3Se, M+Na]^+$: 384.0109; Found: 384.0112.

1-cyclohexyl-2-(phenylselanyl)pent-4-en-1-one (5ha)

Yield: 32% (10.3 mg). Yellow wax. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 7.4 Hz, 2H), 7.31 (dt, *J* = 14.7, 7.2 Hz, 3H), 5.74 (ddt, *J* = 17.1, 10.4, 6.9 Hz, 1H), 5.05 (dd, *J* = 13.6, 9.3 Hz, 2H), 3.75 (dd, *J* = 8.7, 6.3 Hz, 1H), 2.65 – 2.55 (m, 2H), 2.42

(dt, *J* = 14.2, 6.8 Hz, 1H), 1.83 – 1.74 (m, 4H), 1.23 – 1.15 (m, 4H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 207.8, 136.2, 135.5, 129.1, 128.8, 117.4, 49.0, 48.8, 34.8, 29.8, 29.7, 28.4, 26.1, 25.8, 25.3. **HRMS (ESI)** calculated for [C₁₇H₂₂NaOSe, M+Na]⁺: 345.0728;

Found: 345.0725.

4. ¹H NMR , ¹³C NMR and ¹⁹F NMR spectra of new compounds

1-phenyl-2-(phenylthio)pent-4-en-1-one (3aa)

¹H NMR of 3aa (400 MHz, Chloroform-*d*)

¹³C NMR of 3aa (100 MHz, Chloroform-d)

phenyl-2-(p-tolylthio)pent-4-en-1-one (3ab)

¹³C NMR of 3ab (100 MHz, Chloroform-d)

phenyl-2-(m-tolylthio)pent-4-en-1-one (3ac)

¹⁹F NMR of 3ad (376 MHz, Chloroform-*d*)

2-((4-methoxyphenyl)thio)-1-phenylpent-4-en-1-one (3ae)

¹³C NMR of 3ae (100 MHz, Chloroform-d)

¹³C NMR of 3af (100 MHz, Chloroform-d)

2-(benzylthio)-1-phenylpent-4-en-1-one (3ag)

¹³C NMR of 3ag (100 MHz, Chloroform-*d*)

¹³C NMR of 3ba (100 MHz, Chloroform-d)

¹³C NMR of 3ca (100 MHz, Chloroform-d)

¹⁹F NMR of 3ca (376 MHz, Chloroform-d)

1-(2-methoxyphenyl)-2-(phenylthio)pent-4-en-1-one (3da)

7.7.1
7.7.1
7.7.2
7.7.4
7.7.4
7.7.4
7.7.4
7.7.4
7.7.4
7.7.4
7.7.4
7.7.4
7.7.4
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.

¹³C NMR of 3ea (100 MHz, Chloroform-d)

2-(phenylthio)-1-(p-tolyl)pent-4-en-1-one (3fa)

¹H NMR of 3fa (400 MHz, Chloroform-d)

2.01± 1.10 2.05± 1.98± 1.98± 2.13] 2.99**≖** 1.00H 0.98-1 2.07H 5.5 5.0 f1 (ppm) 1.0 10.5 10.0 9.5 4.5 -0.5 -1. 9.0 8.5 7.5 6.0 0.0 2.5 2.0 1.5 1.0 0.5

¹³C NMR of 5ab (100 MHz, Chloroform-d)

1-phenyl-2-(o-tolylselanyl)pent-4-en-1-one (5ac)

¹H NMR of 5ac (400 MHz, Chloroform-d)

¹³C NMR of 5ac (100 MHz, Chloroform-d)

2-((4-(tert-butyl)phenyl)selanyl)-1-phenylpent-4-en-1-one (5ad)

8 8.03 8 8.01 7 7.88 8 8.01 7 7.88 7 7.75 8 8.00 7 7.75 7

¹H NMR of 5af (400 MHz, Chloroform-d)

2-((2,5-difluorophenyl)selanyl)-1-phenylpent-4-en-1-one (5ah)

¹⁹F NMR of 5ah (376 MHz, Chloroform-d)

2-(phenylselanyl)-1-(p-tolyl)pent-4-en-1-one (5ba)

¹³C NMR of 5ca (100 MHz, Chloroform-d)

¹³C NMR of 5da (100 MHz, Chloroform-d)

¹³C NMR of 5ea (100 MHz, Chloroform-d)

¹³C NMR of 5fa (100 MHz, Chloroform-d)

¹³C NMR of 5ga (100 MHz, Chloroform-*d*)

¹³C NMR of 5ha (100 MHz, Chloroform-d)