Transition-Metal-Free Synthesis of Functional 2Arylphenols by Intermolecular $\mathbf{S}_{\mathbf{N}} \mathbf{A r}$ Reaction between Dibenzofurans and Various Nucleophiles
 Yueping Lin, Changhui Lu, Yue Zeng, Huanfeng Jiang, Liangbin Huang*

Abstract

The State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. E-mail: huanglb@scut.edu.cn.

Table of Contents

I. General Information 2
II. Methods for the Synthesis of Dibenzofuran Derivatives 3
III. Characterization of Dibenzofurans7
IV. References 24
V. Optimization Studies 24
VI. General Procedures for Transition-Metal-Free Transformation of Dibenzofurans 25
VII. Analysis Data for the Products 27
VIII. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR, ${ }^{31} \mathrm{P}$ NMR spectra 68

I. General Information

Reagents

All compounds were used as received unless otherwise noted.

Bases

All bases, unless otherwise noted, were stored and handled in a nitrogen-filled glovebox. $\mathrm{KO}^{t} \mathrm{Bu}$ was purchased from Bidepharm and used as received. The bases used were $\mathrm{NaO}^{t} \mathrm{Bu}$ (Accela), $\mathrm{LiO}^{t} \mathrm{Bu}$ (Accela)), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (Energy Chemical). Be aware of the dangers when using strong base.

Solvents:

All solvents, unless otherwise noted, were stored and handled in a nitrogen-filled glovebox. The solvent used were THF (Energy Chemical), 1,4-dioxane (Innochem), cyclopentyl Methyl ether (CPME) (Energy Chemical), toluene (Innochem), N,NDimethylformamide (DMF) (Innochem).

Analytical Methods

${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectroscopy chemical shifts are reported in ppm and referenced to TMS (tetramethylsilane) in $\mathrm{CDCl}_{3}(\delta=0 \mathrm{ppm})$ or the residual solvent peak for $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$. For ${ }^{13} \mathrm{C}$ NMR chemical shifts, the residual solvent peak $\left(\mathrm{CDCl}_{3}, \delta=77.00 \mathrm{ppm}\right)$ was used as references. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ were recorded on Bruker 400 MHz at $25^{\circ} \mathrm{C}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$. NMR spectra were recorded on Avance Bruker NMR spectrometers operating at either 400 MHz or 500 MHz and data analysis was performed using the MestReNova software. Chemical shifts are reported in parts per million (ppm), multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Coupling constants (J) are reported in Hertz. GC analyses were performed on an Agilent 7890B GC equipped with HP-5 columns ($30 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$), FID detectors, and hydrogen as the carrier gas. A sample volume of $1 \mu \mathrm{~L}$ was injected at a temperature of $250^{\circ} \mathrm{C}$ and a $15: 1$ split ratio.

The initial inlet pressure was 2.7 psi but varied as the column flow was held constant at $1 \mathrm{~mL} / \mathrm{min}$ for the duration of the run. The initial oven temperature of $60^{\circ} \mathrm{C}$ was held for 0 min followed by a temperature ramp of $50^{\circ} \mathrm{C} / \mathrm{min}$ up to $300^{\circ} \mathrm{C}$. The temperature was held at $300^{\circ} \mathrm{C}$ for 6 min . The total run time was $\sim 10.8 \mathrm{~min}$ and the FID temperature was $300{ }^{\circ} \mathrm{C}$. GC/MS analyses were performed on a Shimadzu GCMS-QP2010SE equipped with an RTX-5MS column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) with a quadrupole mass analyzer using helium as the carrier gas. The analysis method used in all cases was $5 \mu \mathrm{~L}$ injection of sample, an injection temp of $250^{\circ} \mathrm{C}$, and no split ratio. The initial inlet pressure was 7.8 psi, but varied as the column flow was held constant at 1.7 $\mathrm{mL} / \mathrm{min}$ for the duration of the run. The interface temperature was held at $250^{\circ} \mathrm{C}$, and the ion source (EI+, 30 eV) was held at $250^{\circ} \mathrm{C}$. The initial oven temperature was held at $50{ }^{\circ} \mathrm{C}$ for 1 min with the detector off, followed by a temperature ramp, with the detector on, to $250^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}$. The temperature was held at $250^{\circ} \mathrm{C}$ for 0 min , then to $280^{\circ} \mathrm{C}$ and held for 7 min . Total run time was 16.2 min . High resolution mass spectra (HRMS) was carried out on an electrospray (ESI +) ionization method (ESIquadrupole). Thin layer chromatography was performed on TLC Silica Gel 60 F254 plates. Flash chromatography was performed using silica gel 60, particle size $0.040-$ 0.063 mm using standard flash techniques. Chiral HPLC analyses were performed on SHIMADZU LC-15C system.

Procedure

Unless otherwise noted, all reactions were conducted in an oven-dried vial with a magnetic stirrer under nitrogen atmosphere. All the reaction temperatures reported are oil bath temperatures.

II. Methods for the Synthesis of Dibenzofuran Derivatives

1. Synthesis of benzofuran substrates.

1a

1d

1g

1b

$1 \mathbf{e}$

1h

1c

$1 f$

$1 i$

1j

1k

11

1m

1n

10

1p

All the substrates above were synthesized according to the literature reports. ${ }^{1-5}$ All spectroscopic data of known molecules match those previously reported in the literature. Some new dibenzofuran derivatives were synthesized with the following procedure.

2. General procedure for the preparation of dibenzofuran.

General Procedure I

The mixture of $\mathbf{S} 1(6.7 \mathrm{mmol}, 1.6 \mathrm{~g})$ and $\mathbf{S} \mathbf{2}(13.4 \mathrm{mmol}, 1.2 \mathrm{~g})$ were stirred in dimethylformamide (DMF, 100 mL) and refluxed (an oil bath) for 12 h under nitrogen condition. After cooling to room temperature, poured into ice water (50 mL), and extracted by EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The filter cake was purified by column chromatography using dichloromethane and hexane as eluents. The purified product was obtained as white solid. ${ }^{1}$

General Procedure II

The mixture of 2-bromophenols ($\mathbf{S 3}, 5 \mathrm{mmol}$), aryl halides ($\mathbf{S 4}, 5 \mathrm{mmol}$), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mmol}, 1.4 \mathrm{~g})$ in DMF (30 mL) in 100 ml rockered flask was stirred at $90^{\circ} \mathrm{C}$ (an oil bath) (for 2-chloronitrobenzene or 4-bromonitrobenzene, under reflux conditions) under an argon atmosphere and the reaction process was checked by TLC. When the starting materials was nearly consumed, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.25 \mathrm{mmol}, 56 \mathrm{mg})$ and $\mathrm{PPh}_{3}(0.5 \mathrm{mmol}, 131 \mathrm{mg})$ were added to the above mixture, which was continued to be stirred at $90^{\circ} \mathrm{C}$ (for 2-chloronitrobenzene or 4-bromonitrobenzene, under reflux conditions) under an argon atmosphere. When the reaction was complete according to TLC analysis, the reaction mixture was cooled to r.t., poured into ice water (50 mL), and extracted by EtOAc. Subsequently, the combined organic phase was washed by brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and purified by silica gel column chromatography (EtOAc /petroleum ether) to give the pure dibenzofurans. ${ }^{2}$

General Procedure III

To a mixture of $\mathbf{S 6}(4 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.08 \mathrm{mmol})$ in 1,2-dimethoxyethane (21 $\mathrm{mL})$ was added a solution of $\mathbf{S 5}(5.2 \mathrm{mmol})$ in ethanol $(21 \mathrm{~mL})$, followed by addition of 2.0 M sodium carbonate aqueous solution $(21 \mathrm{~mL})$. Then, the mixture was refluxed (an oil bath) for 24 h under nitrogen. After cooling, the solvent was removed on a rotary evaporator. The residue was dissolved in ethyl acetate (50 mL), and then the solution was washed with water (50 mL) and sat. brine $(50 \mathrm{~mL})$. The obtained organic solution was dried over anhydrous magnesium sulfate. The solvent was removed on a rotary evaporator, and the residue was purified by silica gel column chromatography using ethyl acetate as eluent to obtain product as white powder. ${ }^{3}$

General Procedure IV

To a flame-dried reaction flask charged with a magnetic stir bar, under argon, at room temperature was added $\mathbf{S} 7(5 \mathrm{mmol}, 1.1 \mathrm{~g})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The brown suspension was cooled to $0^{\circ} \mathrm{C}$ and then oxalyl chloride (2.0 M in dichloromethane, $15.0 \mathrm{~mL}, 6.3$ mmol) was added followed by anhydrous DMF (0.13 mL). The resulting brown solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h , equilibrated to room temperature, and then the solvent was evaporated and the resulting residue was used in the next step without purification. Then, to a solution of amine $\mathbf{S 8}(5 \mathrm{mmol})$ in chloroform $(50 \mathrm{~mL})$ was added dibenzo[b,d]furan-4-carbonyl chloride (5 mmol) and stirred under inert conditions for half an hour at room temperature. The resulting mixture was refluxed (an oil bath) with stirring for the next 2 hours. The reaction mixture was treated by the dropwise addition of pyridine over 10 minutes. The mixture was allowed to cool to room temperature and stirred overnight. The mixture was washed well with 0.5 M HCl , dried over MgSO_{4} and concentrated in vacuum. The crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the corresponding amide. ${ }^{4}$

General Procedure V

To $\mathbf{S 9}$ ($3 \mathrm{mmol}, 588 \mathrm{mg}$) was added tert-butylamine ($3 \mathrm{mmol}, 219 \mathrm{mg}$). The mixture was flushed with N_{2} and the vial was carefully sealed. The reaction was stirred at 100 ${ }^{\circ} \mathrm{C}$ (an oil bath) for 24 h , diluted with ether, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent afforded $751 \mathrm{mg}(99 \%)$ of the imine $\mathbf{1 p}$ as a yellow solid. ${ }^{5}$

III. Characterization of Dibenzofurans

dibenzo[b,d]furan-4-carbonitrile (1a) ${ }^{1}$

According to the general procedure I, the reaction gave 1a in 88% yield $(1138 \mathrm{mg})$ as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$
(d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,156.0$, 130.3, 128.6, 125.5, 125.4, 123.8, 122.9, 122.7, 121.0, 115.0, 112.1, 96.6.

2-methyldibenzo[b,d]furan-4-carbonitrile (1b)

According to the general procedure II, the reaction gave 1b in 77%
 yield (797 mg) as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=2.7$
$\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,154.5,132.9,130.8,128.4,125.7,125.5,123.6,122.8,120.9$, 115.1, 112.1, 95.9, 21.0. HRMS (ESI-quadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}$ 208.0757; found: 208.0757.

2-(1,3-dioxolan-2-yl)dibenzo[b,d]furan-4-carbonitrile (1c)

According to the general procedure II, the reaction gave $\mathbf{1 c}$ in 76% yield (1007 mg) as white solid (eluent: petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.58(\mathrm{~s}, 1 \mathrm{H})$, $8.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H})$, $4.18(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 156.5, 156.1, 134.9, 129.8, 129.5, 125.5, 125.4, 124.7, 122.7, 122.5, 115.2, 112.6, 102.3, 95.6, 65.6. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{3}$ 266.0812; found: 266.0812.

8-methyldibenzo [b,d]furan-4-carbonitrile (1d) ${ }^{2}$

According to the general procedure II, the reaction gave $\mathbf{1 d}$ in 70% yield (725 mg) as white solid (eluent: petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69$ (s, 1H), 7.65 (dd, $J=7.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.3,154.6,133.4,130.0,129.6,125.5,125.2,122.7,122.7$, 120.8, 115.1, 111.6, 96.4, 21.3.

dibenzo[b,d]furan-2-carbonitrile (1e)

According to the general procedure I, the reaction gave 1e in 87% yield (1125 mg) as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.95$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.66-7.58(\mathrm{~m}$, $7 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 157.9, 156.7, 130.8, 128.7, 125.3, 125.2, 123.7, 122.5, 121.0, 119.2, 112.8, 112.0, 106.5. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{NO}$ 194.0600; found: 194.0601.

3-(trifluoromethyl)dibenzo[b,d]furan-2-carbonitrile (1f)

According to the general procedure II, the reaction gave $\mathbf{1 f}$ in 66% yield (861 mg) as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 9.13(\mathrm{~s}, 1 \mathrm{H})$, $8.50(\mathrm{~s}, 1 \mathrm{H}), 8.40-8.29(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$

- $7.68(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 157.5$, $156.9,130.8,130.0,128.0,125.1,124.3,123.2,121.7,116.5,112.9,112.5,112.5$, 108.2. ${ }^{19} \mathrm{~F}$ NMR (471 MHz , DMSO- d_{6}) δ-59.5. HRMS (ESI-quadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ Calcd. for $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}$ 262.0474; found: 262.0476 .
2-(dibenzo[b,d]furan-4-yl)-4-methylpyridine (1g) ${ }^{3}$

According to the general procedure III, the reaction gave 1 g in 66% yield (684 mg) as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63$ (s, 1H), $8.28(\mathrm{dd}, J=17.4,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65(\mathrm{t}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,153.6,151.1,150.2$, 137.1, 132.0, 127.2, 127.0, 125.1, 124.3, 124.1, 123.7, 123.3, 122.9, 120.9, 120.7, 111.8, 18.3.

4-methyl-2-(3-phenyldibenzo[b,d]furan-4-yl)pyridine (1h)

According to the general procedure III, the reaction gave $\mathbf{1 h}$ in 54% yield $(724 \mathrm{mg})$ as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.53 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (dd, $J=17.3,7.7 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 5 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 156.8,154.8,154.6,149.2,146.9,140.9,140.3,130.0,127.9$, 127.3, 127.1, 126.6, 125.3, 124.4, 124.1, 123.8, 123.1, 122.8, 120.6, 120.3, 112.1, 21.0. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}$ 336.1383; found: 336.1383.

4-methyl-2-(6-phenyldibenzo[b,d]furan-4-yl)pyridine (1i) ${ }^{3}$

According to the general procedure III, the reaction gave 1i in 52% yield (697 mg) as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}$, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,153.1,153.0,149.4$, 147.5, 136.4, 128.7, 128.5, 127.8, 127.1, 126.6, 125.6, 125.2, 125.0, 124.6, 123.9, 123.5, 123.4, 123.3, 121.2, 119.8, 21.3.

2-(dibenzo[b,d]furan-4-yl)-5-methylpyridine ($\mathbf{1 j})^{3}$

According to the general procedure III, the reaction gave $\mathbf{1 j}$ in 69% yield (715 mg) as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.00$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,153.7,153.6,149.5,147.6,127.4,127.2,125.1,124.4,124.0$, 123.5, 123.2, 122.9, 121.0, 120.6, 111.8, 21.4.

4-(tert-butyl)-2-(dibenzo[b,d]furan-4-yl)pyridine (1k) ${ }^{3}$

According to the general procedure III, the reaction gave $\mathbf{1 k}$ in 74% yield (891 mg) as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.70(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $160.5,156.1,153.8,153.6,149.6,127.3,127.2,125.1,124.8,124.0,123.2,122.9$, $121.5,121.0,120.7,119.6,111.8,34.9,30.6$.

2-(dibenzo[b,d]furan-4-yl)pyrimidine (11)

According to the general procedure III, the reaction gave 11 in 61% yield $(600 \mathrm{mg})$ as white solid (eluent: petroleum ether/ethyl acetate $=20: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{~d}, J=4.8$
$\mathrm{Hz}, 2 \mathrm{H}), 8.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.7, 157.4, 156.5, 154.3, 133.8, 128.7, 127.3, 125.9, 123.6, 123.3, 122.9, 120.7, 120.4, 119.0, 112.3, 111.5.

\mathbf{N}-phenyldibenzo[b,d]furan-4-carboxamide (1m)

According to the general procedure IV, the reaction gave 1m in 89% yield $(1277 \mathrm{mg})$ as white solid (eluent: petroleum ether/ethyl acetate $=10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 9.43 (s, 1H), 8.32 (dd, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (dd, $J=7.6$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (d, $J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,155.4,152.6,138.1,129.1,129.1,127.9,124.9,124.6$, 124.4, 123.8, 123.5, 123.3, 120.9, 120.6, 118.2, 111.6. HRMS (ESI-quadrupole) m/z: [M+H]+ Calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{2}$ 288.1019; found: 288.1021.

\mathbf{N}-(4-methoxyphenyl)dibenzo[b,d]furan-4-carboxamide (1n)

According to the general procedure IV, the reaction gave $\mathbf{1 n}$ in 83% yield (1316 mg) as white solid (eluent: petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}$, 1 H), 8.07 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.97 (d, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.6, 156.7, 155.5, 152.7, 131.2, 129.1, 127.9, 124.9, 124.3, 123.9, 123.5, 123.4, 122.4, 121.0, 118.3, 116.4, 114.3, 111.7, 55.6. HRMS (ESI-quadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3}$ 318.1125; found: 318.1128.

N-benzyldibenzo[b,d]furan-4-carboxamide (10)

According to the general procedure IV, the reaction gave $\mathbf{1 0}$ in 64% yield (963 mg) as white solid (eluent: petroleum ether/ethyl acetate $=10: 1$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.86$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (m, 9H), 4.82 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7,155.3,152.8,138.4,128.9,128.6,127.6,127.5,127.3$, 124.7, 123.9, 123.5, 123.1, 123.1, 120.7, 117.7, 111.5, 43.8. HRMS (ESI-quadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{2}$ 302.1176; found: 302.1177.
(E)-N-tert-butyl-1-(dibenzo[b,d]furan-4-yl)methanimine (1p)

83% yield $(655 \mathrm{mg})$ as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dt}, J=14.4,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.38$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,155.2,149.5,127.3,124.6,124.1,123.8$, $122.9,122.8,122.0,121.6,120.6,111.6,57.9,29.8$. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO} 252.1383$; found: 252.1383.

IV. References

1. Jang, S.; Lee, K. H.; Hong, S.; Lee, J. Y.; Lee, Y., n-Type Host Materials Based on Nitrile and Triazine Substituted Tricyclic Aromatic Compounds for High-Performance Blue Thermally Activated Delayed Fluorescence Devices. Dyes and Pigments 2021, 187, 109091-109099.
2. Xu, H.; Fan, L., Synthesis of Dibenzofurans Directly from Aryl Halides and orthoBromophenols via One-Pot Consecutive $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ and Intramolecular Palladium-Catalyzed Aryl-Aryl Coupling Reactions. Chem. Pharm. Bull. 2008, 56, 1496-1498.
3. (a) Shigehiro, T.; Chen, Q.; Yagi, S.; Maeda, T.; Nakazumi, H.; Sakurai, Y., Substituent Effect on Photo- and Electroluminescence Properties of Heteroleptic Cyclometalated Platinum(II) Complexes Based on a 2-(dibenzo[b,d]furan-4yl)pyridine Ligand. Dyes and Pigments 2016, 124, 165-173. (b) Zhang, S. S.; Zheng, Y. C.; Zhang, Z. W.; Chen, S. Y.; Xie, H.; Shu, B.; Song, J. L.; Liu, Y. Z.; Zeng, Y. F.; Zhang, L., Access to Branched Allylarenes via Rhodium(III)-Catalyzed C-H Allylation of (Hetero)arenes with 2-Methylidenetrimethylene Carbonate. Org. Lett. 2021, 23, 5719-5723.
4. (a) Li, J.; Jun, H.; Zhang, S.; Yao, C.; Sun, W.; Liu, B.; Zhou, Y.; Wu, B., Synthesis of Diaryl Sulfides through C-H Bond Functionalization of Arylamides with Cobalt Salt and Elemental Sulfur. Tetrahedron Lett. 2019, 60, 895-899. (b) Longhi, E.; FernandezHernandez, J. M.; Iordache, A.; Frohlich, R.; Josel, H. P.; Cola, L. D., Ir(III) Cyclometalated Complexes Containing Phenylphenanthridine Ligands with Different Substitutions: Effects on the Electrochemiluminescence Properties. Inorg. Chem. 2020, 59, 7435-7443.
5. Zhang, H.; Larock, R. C., Synthesis of β - and γ-Carbolines by the PalladiumCatalyzed Iminoannulation of Internal Alkynes. Org. Lett. 2001, 3, 3083-3086.

V. Optimization Studies

Table S1. Selected optimization experiments for ring-opening of dibenzofuran ${ }^{[a]}$

${ }^{[a]}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}, 19.3 \mathrm{mg}), \mathbf{2 a}(0.3 \mathrm{mmol}, 18.0 \mathrm{mg}), \mathrm{KO}^{t} \mathrm{Bu}(1.5$ equiv., $0.15 \mathrm{mmol}, 16.8 \mathrm{mg}$), THF ($2 \mathrm{M}, 0.2 \mathrm{~mL}$), $80^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{[\mathrm{b}]}$ Yields were determined by GC analysis with n-dodecane as the internal standard. ${ }^{[c]}$ Isolated yield.

VI. General Procedures for Transition-Metal-Free Transformation

of Dibenzofurans

General procedure A

A sealed tube was charged with dibenzofuran $1(0.3 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(0.45 \mathrm{mmol}$, $50.5 \mathrm{mg})$ at room temperature, then THF $(2 \mathrm{M}, 0.6 \mathrm{~mL})$ and $2(0.9 \mathrm{mmol})$ was added. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ (heating mantle) for 12 h . After cooling to room temperature, the reaction mixture was diluted with DCM , filtered through a plug of silica gel, and concentrated in vacuo. The resulting crude mixture was purified by silica gel column chromatography (petroleum ether/EtOAc $=50: 1-5: 1$) to afford the corresponding product 3 .

General procedure B

A sealed tube was charged with dibenzofuran $1(0.2 \mathrm{mmol})$ and ${ }^{n} \mathrm{BuLi}(0.4 \mathrm{mmol}$, $0.25 \mathrm{~mL}, 1.6 \mathrm{~mol} / \mathrm{L}$ in THF) at room temperature, then THF ($5 \mathrm{M}, 1 \mathrm{~mL}$) and $4(0.4$ mmol) was added. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ (heating mantle) for 12 h . After cooling to room temperature, the reaction mixture was diluted with DCM, filtered through a plug of silica gel, and concentrated in vacuo. The resulting crude mixture was purified by silica gel column chromatography (petroleum ether/EtOAc $=50: 1-5: 1$) to afford the corresponding product 5 .

General procedure C

A sealed tube was charged with dibenzofuran $\mathbf{1}(0.2 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(0.2 \mathrm{mmol}$, $22.4 \mathrm{mg})$ at room temperature, then DMF $(1 \mathrm{M}, 0.2 \mathrm{~mL})$ and $\mathbf{6 a}(0.2 \mathrm{mmol}, 37.2 \mathrm{mg})$
was added. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ (heating mantle) for 8 h . After the reaction completed, the mixture was quenched with saturation NaCl solution (5 $\mathrm{mL})$, extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc $=20: 1-4: 1)$ to yield the corresponding product 7 .

VII. Analysis Data for the Products

2'-hydroxy-2-isopropoxy-[1,1'-biphenyl]-3-carbonitrile (3a)

According to the general procedure A , a sealed tube was charged with dibenzofuran $1 \mathrm{a}(0.3 \mathrm{mmol}, 57.9 \mathrm{mg})$ and $\mathrm{KO}^{t} \mathrm{Bu}(0.45 \mathrm{mmol}, 50.0 \mathrm{mg})$ at room temperature, then THF ($2 \mathrm{M}, 0.6 \mathrm{~mL}$) and $\mathbf{2 a}(0.9 \mathrm{mmol}, 54.1$ mg) was added. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ (heating mantle) for 12 h . After cooling to room temperature, the reaction mixture was diluted with DCM, filtered through a plug of silica gel, and concentrated in vacuo. The resulting crude mixture was purified by silica gel column chromatography (petroleum ether/EtOAc $=50: 1-5: 1$) to afford the corresponding product 3a in 75% yield $(57 \mathrm{mg})$ as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~m}$, $2 \mathrm{H}), 7.32(\mathrm{~m}, J=21.1,13.6,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.21$ (p, $J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.7$, 153.3, 137.3, 134.0, 132.9, 130.6, 130.3, 125.3, 125.0, 121.5, 118.6, 116.6, 108.9, 79.9, 21.9. HRMS (ESI-quadrupole) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ 254.1176; found: 254.1176.
2'-hydroxy-2-isopropoxy-5-methyl-[1,1'-biphenyl]-3-carbonitrile (3b)

According to the general procedure A, the reaction gave 3b in 71\% yield (57 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=50: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-$ $6.89(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{p}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,153.4,138.0,135.3$, 133.6, 133.0, 130.5, 130.2, 125.2, 121.4, 118.7, 116.7, 108.5, 79.8, 21.9, 20.5. HRMS (ESI-quadrupole) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ 268.1332; found: 268.1333.

5-(1,3-dioxolan-2-yl)-2'-hydroxy-2-isopropoxy-[1,1'-biphenyl]-3-carbonitrile (3c)

 According to the general procedure A , the reaction gave $\mathbf{3 c}$ in 75% yield (73 mg) as white solid (eluent: petroleum ether/ethyl acetate $=50: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.09$ 14
$-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{p}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 2 \mathrm{H})$, $4.08-4.02(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2$, $153.3,135.5,135.5,133.9,131.0,130.6,130.4,124.8,121.4,118.5,116.3,108.9$, 102.0, 80.1, 65.4, 21.9. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}$ 326.1387; found: 326.1387 .

2'-hydroxy-2-isopropoxy-5'-methyl-[1,1'-biphenyl]-3-carbonitrile (3d)

According to the general procedure A, the reaction gave 3d in 79% yield (63 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=50: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.51(\mathrm{~m}, 2 \mathrm{H})$, $7.22(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{p}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.6, 151.0, 137.2, 134.1, 132.7, 130.9, 130.8, 130.7, 125.2, 124.7, 118.5, 116.6, 108.9, 79.8, 21.9, 20.4. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ 268.1332; found: 268.1334.

2'-hydroxy-6-isopropoxy-[1,1'-biphenyl]-3-carbonitrile (3e)

According to the general procedure A, the reaction gave $\mathbf{3 e}$ in 78% yield $(59 \mathrm{mg})$ as white solid (eluent: petroleum ether/ethyl acetate $=50: 1-5: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=7.6,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H})$, $4.62(\mathrm{p}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1$, 153.7, 136.5, 133.0, 131.1, 130.2, 129.9, 124.6, 121.2, 118.7, 117.8, 114.8, 105.3, 72.9, 21.6. HRMS (ESI-quadrupole) m/z: [M-H] Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ 252.1030; found: 252.1027.

2'-hydroxy-6-isopropoxy-4-(trifluoromethyl)-[1,1'-biphenyl]-3-carbonitrile (3f)

According to the general procedure A, the reaction gave $\mathbf{3 f}$ in 59\% yield (57 mg) as yellow solid (eluent: petroleum ether/ethyl acetate $=50: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~s}, 1 \mathrm{H})$, $7.35(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.09-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.99$ $(\mathrm{s}, 1 \mathrm{H}), 4.77(\mathrm{p}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.1,153.6,138.8,133.6,133.4,133.1,131.1,130.6$, 123.1, 121.3, 117.8, 115.5, 112.3, 102.3, 73.6, 21.6. HRMS (ESI-quadrupole) m/z: [M-$\mathrm{H}]^{-}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2}$ 320.0904; found: 320.0902 .

2-ethoxy-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3g)

According to the general procedure A, the reaction gave $\mathbf{3 g}$ in 89% yield (64 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=50: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.21$ (m, 2H), 7.19 (dd, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}$,
$1 \mathrm{H}), 3.85(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $157.0,153.4,137.2,133.3,132.9,130.7,130.3,125.3,124.3,121.3,118.3,116.1$, 107.9, 72.1, 15.2. HRMS (ESI-quadrupole) m/z: [M-H] Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}$ 238.0874; found: 238.0869 .

2-butoxy-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3h)

According to the general procedure A, the reaction gave $\mathbf{3 h}$ in 82% yield $(65 \mathrm{mg})$ as colorless oil (eluent: petroleum ether/ethyl acetate $=$ $50: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31$ (m, 2H), $7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~m} 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.82$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3,153.4,137.3,133.3,133.1$, 130.7, 130.3, 125.4, 124.5, 121.4, 118.4, 116.2, 107.8, 76.2, 31.7, 18.6, 13.5. HRMS (ESI-quadrupole) m / z : [M-H] Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ 266.1187; found: 266.1184.
2-(cyclobutylmethoxy)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3i)

According to the general procedure A, the reaction gave $\mathbf{3 i}$ in 80% yield (67 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=50: 1-$ $5: 1) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=7.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23 (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, J $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ $(\mathrm{p}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61$ $-1.51(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 159.3, 155.0, 137.8, 133.7, 132.9, 131.3, 129.8, 124.4, 123.8, 119.2, 117.2, 116.1, 106.8, 77.9, 34.8, 24.2, 18.3. HRMS (ESI-quadrupole) m/z: [M-H] Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ 278.1187; found: 278.1184.
2-(hex-5-yn-1-yloxy)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3j)

According to the general procedure A , the reaction gave $\mathbf{3 j}$ in 40% yield (35 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=50: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.67(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.00$ $(\mathrm{m}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H})$, $1.80(\mathrm{p}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4$, 153.3, 137.2, 133.1, 133.0, 130.7, 130.3, 125.2, 124.2, 121.3, 118.1, 116.1, 107.7, 77.4, 76.3, 74.8, 29.1, 15.0, 3.3. HRMS (ESI-quadrupole) m/z: [M-H] Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$ 290.1186; found: 290.1182.

2'-hydroxy-2-(pent-4-en-1-yloxy)-[1,1'-biphenyl]-3-carbonitrile (3k)

According to the general procedure A , the reaction gave $\mathbf{3 k}$ in 46% yield (38 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=50: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.65 (m, 2H), 7.36 (dt, $J=11.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (dd, $J=7.4$,
$1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.77-5.59(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.88(\mathrm{~m}$, $2 \mathrm{H}), 3.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.76$ (dt, $J=8.2,6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 157.3,153.4,137.3,137.1,133.2,133.1,130.8,130.4,125.4$, 124.4, 121.4, 118.4, 116.2, 115.3, 107.8, 75.7, 29.5, 28.8. HRMS (ESI-quadrupole) m / z : [M-H] Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ 278.1187; found: 278.1185 .

2-(cyclopentyloxy)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (31)

According to the general procedure A, the reaction gave $\mathbf{3 1}$ in 68% yield $(57 \mathrm{mg})$ as colorless oil (eluent: petroleum ether/ethyl acetate $=50: 1-$ 5:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.16(\mathrm{~m}, 3 \mathrm{H})$, $7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{dt}, J=5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ $(\mathrm{s}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 2 \mathrm{H}), 1.53-1.35(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,153.5,137.3,133.8,133.1,130.6,130.3,125.1,125.1,121.5$, 118.5, 116.6, 108.3, 89.4, 32.5, 23.0. HRMS (ESI-quadrupole) m/z: [M-H] Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ 278.1187; found: 278.1185.

2-(cyclohexyloxy)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3m)

According to the general procedure A, the reaction gave $\mathbf{3 m}$ in 68% yield (60 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=50: 1-$ 5:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63$ (m, 2H), $7.41-7.23(\mathrm{~m}, 3 \mathrm{H})$, $7.13-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{t}, J=16.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.42$ (dd, $J=9.1,4.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-0.99$ $(\mathrm{m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,153.4,137.2,134.0$, 132.9, 130.6, 130.2, 125.1, 125.1, 121.4, 118.6, 116.7, 108.6, 85.5, 31.9, 24.8, 23.7. 68\% HRMS (ESI-quadrupole) m/z: [M-H] Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$ 292.1343; found: 292.1342.

2'-hydroxy-2-(((1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)-[1,1'-biphenyll-3-carbonitrile (3n)

According to the general procedure A , the reaction gave $\mathbf{3 n}$ in 93% yield $(97 \mathrm{mg})$ as colorless oil (eluent: petroleum ether/ethyl acetate $=$ $50: 1-5: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22$ (m, 2H), $7.10-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70$ $(\mathrm{m}, 1 \mathrm{H}), 1.64(\mathrm{q}, J=4.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-$ $1.22(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{~s}, 6 \mathrm{H}), 0.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.9,153.2,137.3,133.3,132.5,130.4,130.1,125.1,124.1,121.2,117.6$, 116.9, 107.3, 91.5, 49.8, 47.7, 44.4, 34.7, 27.7, 26.4, 19.6, 18.5, 13.2. HRMS (ESIquadrupole) m / z : $[\mathrm{M}-\mathrm{H}]^{-}$Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}$ 346.1813; found: 346.1810. HPLC analysis: ee $=94 \%$. ODH (80% hexanes: 20% isopropanol, $1 \mathrm{~mL} / \mathrm{min}$) $t_{\text {minor }}=13.1 \mathrm{~min}$, $t_{\text {major }}=8.0 \mathrm{~min}$.

峰号	保留时间	面积	高度	面积\％
1	8.039	7764064	546335	50.202
2	13.084	7701589	320505	49.798
总计		15465653	866840	100.000

峰号	保留时间	面积	高度	面积\％
1	8.020	24598569	1695224	97.051
2	13.075	747465	36266	2.949
总计		25346034	1731490	100.000

（R）－2＇－hydroxy－2－（（1－methoxypropan－2－yl）oxy）－［1，1＇－biphenyl］－3－carbonitrile（30）
 According to the general procedure A，the reaction gave 30 in 49% yield（ 42 mg ）as colorless oil（eluent：petroleum ether／ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{dd}, J=32.4,7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=13.0,7.5 \mathrm{~Hz}, 2 \mathrm{H})$ ， $7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.24(\mathrm{~m}, 2 \mathrm{H})$ ， $3.14(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 156.8,153.4$ ， 137．2，133．2，132．9，130．7，130．2，125．2，125．0，121．5，118．6，116．7，108．6，80．9，76．1， 58．8，16．9．HRMS（ESI－quadrupole） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd．for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}$ 284．1281； found：284．1282．HPLC analysis：ee $=96 \%$ ．ODH（ 80% hexanes： 20% isopropanol， 0.8 $\mathrm{mL} / \mathrm{min}) t_{\text {minor }}=5.8 \mathrm{~min}, t_{\text {major }}=5.5 \mathrm{~min}$ ．

2－（heptan－2－yloxy）－2＇－hydroxy－［1，1＇－biphenyl］－3－carbonitrile（3p）

According to the general procedure A ，the reaction gave $\mathbf{3 p}$ in 73% yield（ 67 mg ）as colorless oil（eluent：petroleum ether／ethyl acetate $=50: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 7.64(\mathrm{~m}, 2 \mathrm{H})$ ， $7.40-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~m}$ ， $1 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 4 \mathrm{H})$ ， $1.17-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.8,153.4,137.2,134.0,133.0,130.6,130.2,125.2,125.1,121.5$ ， $118.5,116.6,108.8,83.3,36.0,31.5,24.5,22.4,19.2,13.9 .73 \%$ HRMS（ESI－ quadrupole） m / z ：$[\mathrm{M}-\mathrm{H}]-$ Calcd．for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$ 308．1656；found：308．1655．

According to the general procedure B , the reaction gave 5a in 91% yield (63 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}$, $1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 3 \mathrm{H})$, 7.07 (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ $(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 159.8,155.0,149.2,148.2,147.0,139.0,137.6,132.1,131.7,130.4,128.8,128.7$, 125.7, 123.6, 123.1, 119.0, 115.9, 66.5, 51.6, 21.0. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ 347.1754; found: 347.1754.
3'-(4-methylpyridin-2-yl)-2'-morpholino-[1,1':4', $\mathbf{1}^{\prime \prime}$ 'terphenyl]-2-ol (5b)

According to the general procedure B , the reaction gave $\mathbf{5 b}$ in 88% yield $(74 \mathrm{mg})$ as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ 7.17 (m, 2H), $7.17-7.12$ (m, 5H), 7.09 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.04(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.43(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 159.0,155.2,148.9,148.4,146.1,141.5,141.2,140.4,139.4,137.2$, 131.7, 129.7, 128.8, 128.5, 128.0, 127.5, 126.7, 125.8, 122.8, 119.0, 115.9, 66.6, 51.4, 20.9. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} 423.2067$; found: 423.2067 .

3-(4-methylpyridin-2-yl)-2-morpholino-[1,1':3',1''-terphenyl]-2'-ol (5c)

According to the general procedure B , the reaction gave $\mathbf{5 c}$ in 86% yield (73 mg) as white solid (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.21(\mathrm{~m}, 9 \mathrm{H}), 7.13(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=$ $59.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.76(\mathrm{~d}, J=140.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $160.1,150.3,148.9,148.0,146.0,138.8,137.6,137.6,1338,131.9,130.8,130.6,130.3$, 129.6, 129.5, 128.1, 126.9, 125.0, 124.7, 123.3, 120.9, 67.0, 21.3. HRMS (ESIquadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} 423.2067$; found: 423.2067.
3'-(5-methylpyridin-2-yl)-2'-morpholino-[1,1'-biphenyl]-2-ol (5d)

According to the general procedure B , the reaction gave 5d in 57% yield $(40 \mathrm{mg})$ as yellow solid (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.26(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.0$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.3,1.9$
$\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=4.1$ $\mathrm{Hz}, 4 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 157.2$, 155.0, 149.7, 148.3, 138.9, 137.7, 137.0, 132.0, 131.7, 131.3, 130.5, 128.8, 128.7, 124.4, 123.6, 119.0, 115.9, 66.4, 51.6, 18.2. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ 347.1754; found: 347.1757.

3'-(4-(tert-butyl)pyridin-2-yl)-2'-morpholino-[1,1'-biphenyl]-2-ol (5e)

According to the general procedure B , the reaction gave $\mathbf{5 e}$ in 83% yield (65 mg) as white solid (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-$ $7.48(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=5.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=$ $7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}$, $1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 4 \mathrm{H}), 2.56-2.45(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 159.9,159.4,155.0,149.6,148.1,139.2,137.2,132.2,131.7$, 130.5, 128.9, 128.7, 123.5, 121.8, 119.4, 119.1, 116.0, 66.4, 51.6, 34.9, 30.8. HRMS (ESI-quadrupole) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ 389.2224; found: 389.2224.
2'-morpholino-3'-(pyrimidin-2-yl)-[1,1'-biphenyl]-2-ol (5f)

According to the general procedure B , the reaction gave $\mathbf{5 f}$ in 51% yield (34 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.24(\mathrm{~s}$, $1 \mathrm{H}), 8.94(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}$, $1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~m}$, $1 \mathrm{H}), 3.04(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.57-2.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) δ $168.0,157.8,155.0,148.7,138.5,137.7,132.5,131.7,130.5,128.7,128.4,123.7$, 119.8, 119.0, 115.9, 66.6, 51.4. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} 334.1550$; found: 334.1550 .
2'-hydroxy-2-morpholino-N-phenyl-[1,1'-biphenyl]-3-carboxamide (5g)

According to the general procedure B , the reaction gave $\mathbf{5 g}$ in 81% yield (61 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=18.8,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.27$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.91(\mathrm{~m}$, $2 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 1 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,156.0,153.0,142.3,138.0,129.1,127.2,125.3$, 124.6, 123.7, 123.2, 122.5, 121.9, 120.5, 120.2, 119.8, 111.8, 34.3, 33.4, 22.7, 14.0. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ 374.1650; found: 374.1650 .

2'-hydroxy-N-(4-methoxyphenyl)-2-morpholino-[1,1'-biphenyl]-3-carboxamide

According to the general procedure B , the reaction gave $\mathbf{5 h}$ in 88% yield (71 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.14(\mathrm{~m}$, $2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 4 \mathrm{H}), 3.03$ $(\mathrm{s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,156.6,153.0,145.9,136.9,135.5,132.7$, 131.2, 131.0, 129.6, 129.2, 128.1, 125.0, 121.7, 121.0, 117.7, 114.3, 66.9, 59.2, 55.5. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ 405.1809; found: 405.1811.

N-benzyl-2'-hydroxy-2-morpholino-[1,1'-biphenyl]-3-carboxamide (5i)

According to the general procedure B , the reaction gave $\mathbf{5 i}$ in 83% yield (65 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.31$ ($\mathrm{s}, 1 \mathrm{H}$), 8.99 (t, J = 6.1 $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=$ $7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$, 2H), $3.21-3.14(\mathrm{~m}, 4 \mathrm{H}), 2.72(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 169.7$, 154.9, 147.6, 139.9, 137.7, 135.5, 133.2, 131.6, 128.8, 128.7, 128.3, 128.0, 127.9, 127.3, 123.5, 119.1, 116.0, 66.8, 51.3, 43.1. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} 389.1860$; found: 389.1859 .
2'-hydroxy-2-morpholino-[1,1'-biphenyl]-3-carbaldehyde (5j)

According to the general procedure B, the reaction gave $\mathbf{5 j}$ in 77% yield $(43 \mathrm{mg})$ as colorless oil (eluent: petroleum ether/ethyl acetate $=$ 20:1-5:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.39$ (s, 1H), 9.48 $(\mathrm{s}, 1 \mathrm{H}), 7.69(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~m}$, $1 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.83(\mathrm{~s}$, 4H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) δ 192.7, 155.1, 153.2, 138.7, 137.0, 132.6, 131.5, 129.4, 128.2, 128.0, 123.9, 119.2, 115.9, 66.9, 53.1. HRMS (ESI-quadrupole) m/z: [M-$\mathrm{H}]^{-}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}$ 282.1136; found: 282.1135.

2'-(4-ethylpiperazin-1-yl)-3'-(4-methylpyridin-2-yl)-[1,1'-biphenyl]-2-ol (5k)

According to the general procedure B , the reaction gave $\mathbf{5 k}$ in 85% yield (64 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, \mathrm{~J}=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.99$ $(\mathrm{m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 5 \mathrm{H})$, $2.04-1.84,(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{dd}, \mathrm{J}=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
(126 MHz, CDCl_{3}) $\delta 168.9,160.0,153.3,148.9,147.9,145.9,137.3,133.4,131.7$, $131.2,129.2,128.9,124.9,124.3,123.2,120.7,117.7,52.2,52.1,46.2,41.3,21.2,11.8$, 11.1. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O} 374.2227$; found: 374.2229 .

2'-(4-(2-methoxyethyl)piperazin-1-yl)-3'-(4-methylpyridin-2-yl)-[1,1'-biphenyl]-2-ol (51)

According to the general procedure B , the reaction gave $\mathbf{5 1}$ in 88% yield (71 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.02(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.10$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=5.5 \mathrm{~Hz}$, 2 H), $3.27(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}$, $4 \mathrm{H}), 2.40-2.18(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4$, $153.4,148.9,147.8,145.9,137.3,137.2,133.7,131.9,131.3,129.5,129.0,125.0$, 124.2, 123.2, 120.8, 118.1, 69.8, 59.0, 58.8, 57.8, 53.3, 21.3. HRMS (ESI-quadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$ 404.2333; found: 404.2335.

3'-(4-methylpyridin-2-yl)-2'-(pyrrolidin-1-yl)-[1,1'-biphenyl]-2-ol (5m)

According to the general procedure B , the reaction gave $\mathbf{5 m}$ in 79% yield (52 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.32$

- 7.25 (m, 4H), 7.22 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=4.6$
$\mathrm{Hz}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5,155.1,148.9,148.0,142.9,138.2,137.2,133.8$, 131.5, 131.4, 129.3, 128.8, 124.7, 124.2, 123.1, 120.3, 117.7, 51.1, 24.6, 21.2. HRMS (ESI-quadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ 331.1805; found: 331.1804.
2'-(azetidin-1-yl)-3'-(4-methylpyridin-2-yl)-[1,1'-biphenyl]-2-ol (5n)

According to the general procedure B, the reaction gave 5n in 84% yield (53 mg) as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.53(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.6$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21$
$(\mathrm{s}, 1 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 4 \mathrm{H}), 3.23(\mathrm{~d}, J=23.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{p}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,154.3,148.9,148.3,146.9,133.0,131.3$, 130.3, 129.3, 128.9, 128.8, 126.7, 125.7, 122.7, 120.5, 120.3, 117.0, 57.3, 21.1, 16.9. HRMS (ESI-quadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ 317.1648; found: 317.1648.

2'-(dimethylamino)-3'-(4-methylpyridin-2-yl)-[1,1'-biphenyl]-2-ol (50)

According to the general procedure B , the reaction gave 50 in 74% yield $(45 \mathrm{mg})$ as colorless oil (eluent: petroleum ether/ethyl acetate $=20: 1-5: 1$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}$, $1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,159.8,154.0,153.7,152.0,142.6,141.4,137.5,136.2,135.4$, 133.7, 133.3, 129.6, 127.8, 127.7, 124.1, 121.1, 48.2, 25.9. HRMS (ESI-quadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ 305.1648; found: 305.1649.

2-(diphenylphosphaneyl)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (7a)

According to the general procedure C, the reaction gave 7a in 69\% yield $(52 \mathrm{mg})$ as yellow solid (eluent: petroleum ether/ethyl acetate $=15: 1-$ 2:1). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.64$ (s, 1H), 7.84 (d, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, $J=11.4,7.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 154.9,149.7,149.4,138.9,135.7,134.4,132.8,132.7,132.0,131.9$, 131.0, 129.7, 129.0, 128.9, 128.9, 128.7, 128.6, 128.3, 125.9, 120.1, 119.1, 118.7, 117.8, 116.6, 115.5. ${ }^{31} \mathrm{P}$ NMR (202 MHz , DMSO- d_{6}) $\delta-10.5$. HRMS (ESI-quadrupole) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{NOP} 380.1199$; found: 380.1200 .
2-(diphenylphosphaneyl)-2'-hydroxy-5-methyl-[1,1'-biphenyl]-3-carbonitrile (7b)

According to the general procedure C, the reaction gave 7b in 67% yield (53 mg) as white solid (eluent: petroleum ether/ethyl acetate $=15: 1-2: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 9.62(\mathrm{~s}$, $1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 8 \mathrm{H})$, $7.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, DMSO- d_{6}) $\delta 155.0,149.7,149.4,141.2,136.2,136.1,135.4,132.7,132.6,132.0$, $131.8,130.9,129.6,128.9,128.9,128.9,128.7,128.6,128.6,128.2,119.0,118.6$, 118.5, 117.9, 115.5, 20.7. ${ }^{31} \mathrm{P}$ NMR (202 MHz , DMSO- d_{6}) $\delta-12.0$. HRMS (ESIquadrupole) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NOP}$ 394.1355; found: 394.1360.
5-(1,3-dioxolan-2-yl)-2-(diphenylphosphaneyl)-2'-hydroxy-[1,1'-biphenyl]-3carbonitrile (7c)

According to the general procedure C , the reaction gave $7 \mathbf{c}$ in 82% yield (74 mg) as white solid (eluent: petroleum ether/ethyl acetate $=15: 1-2: 1$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.88-$ $7.85(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=3.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H})$, 7.20 (dd, $J=4.4,2.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.17-7.09$ (m, 2H), 6.86 (dd, J $=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 156.5,154.8,144.9,140.2,133.8,132.0,131.0$, 128.5, 128.3, 124.9, 122.6, 120.8, 116.7, 115.6, 111.7, 102.7, 101.7, 92.6, 65.7. ${ }^{31} \mathrm{P}$ NMR (202 MHz, DMSO- d_{6}) δ-10.9. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{P} 452.1410$; found: 452.1410 .

2-(diphenylphosphaneyl)-2'-hydroxy-5'-methyl-[1,1'-biphenyl]-3-carbonitrile (7d)

 According to the general procedure C, the reaction gave 7d in 71\% yield (56 mg) as white solid (eluent: petroleum ether/ethyl acetate $=15: 1-2: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.83$ (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.23(\mathrm{~m}, 11 \mathrm{H}), 6.98(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 152.6, 149.7, 149.4, 138.9, 138.7, 136.2, 136.0, 135.6, 135.5, 132.9, 132.8, 132.1, $131.9,131.5,130.9,130.1,129.0,128.9,128.7,128.6,128.3,127.4,118.6,117.8$, 115.4, 20.5. ${ }^{31} \mathrm{P}$ NMR (202 MHz, DMSO- d_{6}) $\delta-10.3$. HRMS (ESI-quadrupole) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NOP} 394.1355$; found: 394.1359.
6-(diphenylphosphaneyl)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (7e)

According to the general procedure C, the reaction gave $\mathbf{7 e}$ in 92% yield $(70 \mathrm{mg})$ as white solid (eluent: petroleum ether/ethyl acetate $=15: 1-2: 1) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.74$ (dd, $J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.66 (dd, $J=3.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (d, J $=5.0 \mathrm{~Hz}, 6 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 6 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) δ 154.7, 146.3, 146.1, 144.7, 144.6, 136.8, 136.6, 134.6, 134.1, 134.1, 133.8, 133.6, $131.3,131.3,131.0,129.9,129.4,129.4,129.1,126.7,126.7,119.0,118.7,115.9$, 111.9. ${ }^{31} \mathrm{P}$ NMR (202 MHz, DMSO- d_{6}) δ-12.3. HRMS (ESI-quadrupole) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{NOP} 380.1199$; found: 380.1204.

6-(diphenylphosphaneyl)-2'-hydroxy-4-(trifluoromethyl)-[1,1'-biphenyl]-3carbonitrile (7f)

According to the general procedure C, the reaction gave $\mathbf{7 f}$ in 56% yield (50 mg) as yellow solid (eluent: petroleum ether/ethyl acetate $=15: 1-2: 1) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 9.12(\mathrm{~s}$, $1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.83(\mathrm{~m}, 2 \mathrm{H})$, $7.78-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.60(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 157.5,156.9,133.9,130.8,130.0,129.9,129.4$, $128.0,125.1,124.3,123.2,121.7,118.8,116.5,116.1,112.9,112.5,103.4 .{ }^{19}$ F NMR (471 MHz , DMSO- d_{6}) $\delta-51.4 .{ }^{31} \mathrm{P}$ NMR (202 MHz , DMSO- d_{6}) $\delta-10.8$. HRMS (ESIquadrupole) m / z : $[\mathrm{M}-\mathrm{H}]]^{-}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NOP}$ 446.0927; found: 446.0921.

VIII. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F NMR, ${ }^{31} \mathrm{P}$ NMR spectra

dibenzo[b,d]furan-4-carbonitrile (1a)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2-methyldibenzo[b,d]furan-4-carbonitrile (1b)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
Lyp-2-225-Y2.11.fid \quad 品等

2-(1,3-dioxolan-2-yl)dibenzo[b,d]furan-4-carbonitrile (1c)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6})

8-methyldibenzo[b,d]furan-4-carbonitrile (1d)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

dibenzo[b,d]furan-2-carbonitrile (1e)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-(trifluoromethyl)dibenzo[b,d]furan-2-carbonitrile (1f)

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6})

3-(trifluoromethyl)dibenzo[b,d]furan-2-carbonitrile (1f) ${ }^{19}$ F NMR (471 MHz , DMSO- d_{6})
 LYP-2-230-2.12.fid

2-(dibenzo[b,d]furan-4-yl)-4-methylpyridine (1g)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-methyl-2-(3-phenyldibenzo[b,d]furan-4-yl)pyridine (1h)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-methyl-2-(6-phenyldibenzo[b,d]furan-4-yl)pyridine (1i)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2-(dibenzo[b,d]furan-4-yl)-5-methylpyridine (1j)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{llllllllllllllllllllllll}10 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

4-(tert-butyl)-2-(dibenzo[b,d]furan-4-yl)pyridine (1k)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

```
L2N-A61. 10.fid 




\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



2-(dibenzo[b,d]furan-4-yl)pyrimidine (11)
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\section*{ \\ }





\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(\mathbf{N}\)-phenyldibenzo[b,d]furan-4-carboxamide (1m)
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\section*{\(\mathbf{N}\)-(4-methoxyphenyl)dibenzo[b,d]furan-4-carboxamide (1n)}
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\section*{N-benzyldibenzo[b,d]furan-4-carboxamide (10)}

\section*{\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \\  \\ ๗凶iriviciciciexieieita \\ ฐัํㅜํ}

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \text { f1 } & & & & & & 90\end{array}\)
(E)-N-tert-butyl-1-(dibenzo[b,d]furan-4-yl)methanimine (1p)
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






2'-hydroxy-2-isopropoxy-[1,1'-biphenyl]-3-carbonitrile (3a) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2'-hydroxy-2-isopropoxy-5-methyl-[1,1'-biphenyl]-3-carbonitrile (3b) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


5-(1,3-dioxolan-2-yl)-2'-hydroxy-2-isopropoxy-[1,1'-biphenyl]-3-carbonitrile (3c) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2'-hydroxy-2-isopropoxy-5'-methyl-[1,1'-biphenyl]-3-carbonitrile (3d) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\(\qquad\)

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2'-hydroxy-6-isopropoxy-[1,1'-biphenyl]-3-carbonitrile (3e) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2'-hydroxy-6-isopropoxy-4-(trifluoromethyl)-[1,1'-biphenyl]-3-carbonitrile (3f) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\section*{2-ethoxy-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3g)}
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\section*{2-butoxy-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3h)}
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2-(cyclobutylmethoxy)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3i) \({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )


\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )



2-(hex-5-yn-1-yloxy)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3j)
\({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
L1r- \(<-\angle 30^{-}-14 . \mathrm{Il} 1 \mathrm{C}\)



2'-hydroxy-2-(pent-4-en-1-yloxy)-[1,1'-biphenyl]-3-carbonitrile (3k)
\({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(\int \mid\)

\({ }^{13} \mathrm{C}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



2-(cyclopentyloxy)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3I) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\section*{2-(cyclohexyloxy)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3m)} \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2'-hydroxy-2-(((1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)-[1,1'-biphenyll-3-carbonitrile (3n)
\({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



(R)-2'-hydroxy-2-((1-methoxypropan-2-yl)oxy)-[1,1'-biphenyl]-3-carbonitrile (30) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2-(heptan-2-yloxy)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (3p) \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\section*{3'-(4-methylpyridin-2-yl)-2'-morpholino-[1,1'-biphenyl]-2-ol (5a)}
\({ }^{1}\) H NMR ( 500 MHz , DMSO- \(d_{6}\) )


3'-(4-methylpyridin-2-yl)-2'-morpholino-[1,1':4',1'-terphenyl]-2-ol (5b)
\({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )


3-(4-methylpyridin-2-yl)-2-morpholino-[1,1':3',1'-terphenyl]-2'-ol (5c)
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
LYP-10-17-24.12.fid \(\quad\) 白

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






\section*{3'-(5-methylpyridin-2-yl)-2'-morpholino-[1,1'-biphenyl]-2-ol (5d)} \({ }^{1}\) H NMR ( 500 MHz , DMSO- \(d_{6}\) )


3'-(4-(tert-butyl)pyridin-2-yl)-2'-morpholino-[1,1'-biphenyl]-2-ol (5e)
\({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )


2'-morpholino-3'-(pyrimidin-2-yl)-[1,1'-biphenyl]-2-ol (5f)
\({ }^{1} \mathrm{H}\) NMR ( 400 MHz , DMSO- \(d_{6}\) )

\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )


2'-hydroxy-2-morpholino-N-phenyl-[1,1'-biphenyl]-3-carboxamide (5g) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



2'-hydroxy-N-(4-methoxyphenyl)-2-morpholino-[1,1'-biphenyl]-3-carboxamide (5h)
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
LYP-10-49-2.10.fid \(\quad\) a

\({ }^{13} \mathrm{C}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



N-benzyl-2'-hydroxy-2-morpholino-[1,1'-biphenyl]-3-carboxamide (5i)
\({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )

\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )


\section*{2'-hydroxy-2-morpholino-[1,1'-biphenyl]-3-carbaldehyde (5j)}
\({ }^{1} \mathrm{H}\) NMR ( 400 MHz , DMSO- \(d_{6}\) )

\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )


2'-(4-ethylpiperazin-1-yl)-3'-(4-methylpyridin-2-yl)-[1,1'-biphenyl]-2-ol (5k) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & \[
\begin{aligned}
& H \\
& 8 \\
& \hline
\end{aligned}
\] & & \[
8
\] & d & & & & & & & &  & \[
5
\] & \[
0
\] & & - & & & & \\
\hline . 0 & 11.5 & 11.0 & 10.5 & 10.0 & 9. 5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & \[
{ }_{\mathrm{fl}}{ }^{5.5}(\mathrm{ppm})
\] & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2. & 1.5 & 1.0 & 0.5 & 0.0 & -0. 5 & -1 \\
\hline
\end{tabular}
\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2'-(4-(2-methoxyethyl)piperazin-1-yl)-3'-(4-methylpyridin-2-yl)-[1,1'-biphenyl]-2-ol (51)
\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


3'-(4-methylpyridin-2-yl)-2'-(pyrrolidin-1-yl)-[1,1'-biphenyl]-2-ol (5m) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2'-(azetidin-1-yl)-3'-(4-methylpyridin-2-yl)-[1,1'-biphenyl]-2-ol (5n) \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\({ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(126} \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


2-(diphenylphosphaneyl)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (7a) \({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )

\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )
LYP-2-226-4.10.fid




2-(diphenylphosphaneyl)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (7a)
\({ }^{31}\) P NMR ( 202 MHz , DMSO- \(d_{6}\) )
LYP-2-226-4.14.fid

\(\frac{2}{i}\)
\begin{tabular}{llllllllllllllllllllllll}
\hline 0 & 70 & 1 \\
\hline
\end{tabular}

2-(diphenylphosphaneyl)-2'-hydroxy-5-methyl-[1,1'-biphenyl]-3-carbonitrile (7b) \({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )

\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )


2-(diphenylphosphaneyl)-2'-hydroxy-5-methyl-[1,1'-biphenyl]-3-carbonitrile (7b) \({ }^{31} \mathrm{P}\) NMR ( 202 MHz , DMSO- \(d_{6}\) )


5-(1,3-dioxolan-2-yl)-2-(diphenylphosphaneyl)-2'-hydroxy-[1,1'-biphenyl]-3carbonitrile (7c)
\({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )



\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )



5-(1,3-dioxolan-2-yl)-2-(diphenylphosphaneyl)-2'-hydroxy-[1,1'-biphenyl]-3carbonitrile (7c)
\({ }^{31}\) P NMR (202 MHz, DMSO- \(d_{6}\) )



2-(diphenylphosphaneyl)-2'-hydroxy-5'-methyl-[1,1'-biphenyl]-3-carbonitrile (7d) \({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )

 \(\int_{\text {/ // }}^{\text {J J/ }}\)

\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )



2-(diphenylphosphaneyl)-2'-hydroxy-5'-methyl-[1,1'-biphenyl]-3-carbonitrile (7d) \({ }^{31}\) P NMR ( 202 MHz , DMSO- \(d_{6}\) )
LYP-2-227-1.12.fid


6-(diphenylphosphaneyl)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (7e)
\({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )



1


\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )



6-(diphenylphosphaneyl)-2'-hydroxy-[1,1'-biphenyl]-3-carbonitrile (7e) \({ }^{31} \mathrm{P}\) NMR ( 202 MHz, DMSO- \(d_{6}\) )


6-(diphenylphosphaneyl)-2'-hydroxy-4-(trifluoromethyl)-[1,1'-biphenyl]-3carbonitrile (7f)
\({ }^{1} \mathrm{H}\) NMR ( 500 MHz , DMSO- \(d_{6}\) )

\section*{}




\({ }^{13} \mathrm{C}\) NMR ( 126 MHz , DMSO- \(d_{6}\) )

\section*{LYP-2-225-6. 11 .fid}



\footnotetext{
\(\begin{array}{llllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}\)
}

6-(diphenylphosphaneyl)-2'-hydroxy-4-(trifluoromethyl)-[1,1'-biphenyl]-3carbonitrile (7f)
\({ }^{19}\) F NMR (471 MHz, DMSO- \(d_{6}\) )


\({ }^{31}\) P NMR ( 202 MHz, DMSO- \(d_{6}\) )
LYP-2-225-6. 12.fid

```

