Enriching calixarene functionality with 1,3-diketone groups

Maria Sakovich, Daria Sokolova, Ivan Alekseev, Ivan Lentin, Alexander Gorbunov, Maria Malakhova, Ivan Ershov, Rustem Zairov, Ilia Korniltsev, Sergey Podyachev, Stanislav Bezzubov, Vladimir Kovalev, Ivan Vatsouro

Supplementary Information

Contents

Synthesis and characterization of novel compounds NMR spectra of novel compounds	
References	

Synthesis and characterization of novel compounds

General experimental methods: ¹H and ¹³C NMR spectra were acquired on Bruker Avance 400 and Avance 600 instruments at 20 °C and chemical shifts are reported as ppm referenced to solvent signals. ESI mass spectra were obtained from Sciex TripleTOF 5600+ and Thermo Scientific LTQ Orbitrap spectrometers. Chemicals received from commercial sources were used without further purification. Compounds **1**,^[S1] **2**,^[S2] **3**,^[S3] **4**,^[S4] **9**,^[S5] **11**,^[S6] **15**,^[S5] **19**,^[S7] **26**,^[S8] **27**,^[S9] **46**^[S10] and **47**^[S11] were prepared according to the published procedures, the procedure for the preparation of known calizarene **20**^[S12] was improved.

Calixarene 1-acylbenzotriazole **5**. A solution of acid **1** (0.252 g, 0.303 mmol), 1,2,3-benzotriazole (0.216 g, 1.82 mmol) and N,N'-diisopropylcarbodiimide (DIC, 0.281 mL, 1.82 mmol) in dry dichloromethane (3 mL) was stirred at room temperature for 24 h. Aqueous

HCl (2 M) was added at vigorous stirring, the organic layer was separated, the aqueous layer was washed with dichloromethane. The combined organic phase was washed with water, and the solvent was evaporated under reduced pressure. Methanol was added to the residue and the mixture was cooled to -18 °C. The solid formed was filtered, washed with cold methanol and dried. Yield 0.207 g (73%), white solid. M.p. 213–215 °C. ¹H NMR (400 MHz, CDCl₃): $\delta =$ 8.39–8.35 (m, 1H; ArH_{Bt}), 8.17–8.14 (m, 1H; ArH_{Bt}), 7.70–7.64 (m, 1H; ArH_{Bt}), 7.56–7.50 (m, 1H; ArH_{Bt}), 7.03 (s, 2H; ArH), 6.99 (s, 2H; ArH), 6.60 (d, 2H, ${}^{4}J=2.4$ Hz; ArH), 6.58 (d, 2H, ${}^{4}J$ = 2.4 Hz; ArH), 6.11 (s, 2H; CH₂CO), 4.87 (d, 2H, ${}^{2}J$ = 12.9 Hz; ArCH₂Ar), 4.41 (d, 2H, ^{2}J = 12.5 Hz; ArCH₂Ar), 3.86–3.66 (m, 2H; OCH₂), 3.28 (d, 2H, ^{2}J = 12.9 Hz; ArCH₂Ar), 3.12 (d, $2H_{2}^{2}J = 12.5 Hz; ArCH_{2}Ar), 2.12-2.00 (m, 2H; OCH_{2}CH_{2}), 1.99-1.86 (m, 4H; OCH_{2}CH_{2}), 1.24 (s, 2H)$ 9H; C(CH₃)₃), 1.23 (s, 9H; C(CH₃)₃), 0.94 (t, 6H, ${}^{3}J = 7.4$ Hz; CH₃), 0.93 (s, 18H; C(CH₃)₃), 0.69 (t, 3H, ${}^{3}J = 7.5$ Hz; CH₃) ppm; ${}^{13}C$ NMR (100 MHz, CDCl₃); $\delta = 169.66$ (C=O), 154.17, 153.45, 153.19, 145.81, 145.27, 144.65, 144.18, 135.06, 134.48, 132.74, 132.33, 131.11 (C_{Ar}), 130.31, 126.07, 125.85, 125.23, 124.76, 124.60, 120.14, 114.21 (CH_{Ar}), 77.45, 76.77, 71.69 (OCH₂), 33.98, 33.95, 33.66 (C(CH₃)₃), 31.88 (ArCH₂Ar), 31.63, 31.56, 31.27 (C(CH₃)₃), 30.96 (ArCH₂Ar), 23.32, 23.30 (OCH₂<u>C</u>H₂), 10.51, 9.73 (CH₃) ppm. ESI-MS *m*/*z*: 951.6360 [M+NH₄]⁺ for C₆₁H₈₃N₄O₅ (951.6358).

Calixarene 1-acylbenzotriazole **6** was prepared as described for compound **5** from acid **2** (0.688 g, 0.80 mmol), 1,2,3-benzotriazole (0.190 g, 1.60 mmol) and DIC (0.247 mL, 1.60 mmol) in dry dichloromethane (40 mL). Yield 0.637 g (83%), white solid. M.p. 122–

124 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.36-8.32$ (m, 1H; ArH_{Bt}), 8.16–8.12 (m, 1H; ArH_{Bt}), 7.70–7.64 (m, 1H; ArH_{Bt}), 7.55–7.49 (m, 1H; ArH_{Bt}), 6.87 (s, 2H; ArH), 6.86 (s, 2H; ArH), 6.68 (d, 2H, ⁴*J* = 2.4 Hz; ArH), 6.67 (d, 2H, ⁴*J* = 2.4 Hz; ArH), 4.41 (d, 4H, ²*J* = 12.4 Hz; ArCH₂Ar), 4.12–4.06 (m, 2H; OCH₂), 3.90–3.83 (m, 2H; OCH₂), 3.81–3.72 (m, 4H; OCH₂), 3.64–3.58 (m, 2H; CH₂CO), 3.14 (d, 2H, ²*J* = 12.4 Hz; ArCH₂Ar), 3.10 (d, 2H, ²*J* = 12.4 Hz; ArCH₂Ar), 2.70–2.63 (m, 2H; OCH₂C<u>H₂CH₂), 2.06–1.88 (m, 6H; OCH₂C<u>H</u>₂CH₃), 1.15 (s, 9H; C(CH₃)₃), 1.14 (s, 9H; C(CH₃)₃), 0.99 (s, 18H; C(CH₃)₃), 0.93 (t, 6H, ³*J* = 7.5 Hz; CH₃), 0.92 (m, 3H, ³*J* = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.24$ (C=O), 153.93, 153.59, 153.29, 146.24, 144.72, 144.26, 144.11, 134.35, 134.32, 133.30, 133.13, 131.17 (C_{Ar}), 130.33, 126.07, 125.17, 125.00, 124.83, 124.69, 120.15, 114.47 (CH_{Ar}), 77.16, 76.85, 73.73 (OCH₂), 33.89, 33.86, 33.72 (<u>C</u>(CH₃)₃), 32.52 (<u>C</u>H₂CO), 31.55, 31.52, 31.37 (C(<u>C</u>H₃)₃), 31.14, 31.06 (ArCH₂Ar), 25.04 (OCH₂<u>CH</u>₂CH₂), 23.37, 23.22 (OCH₂<u>CH</u>₂), 10.33, 10.16 (CH₃) ppm. ESI-MS *m/z*: 1000.5963 [M+K]⁺ for C₆₃H₈₃KN₃O₅ (1000.5964).</u>

Calixarene bis(1-acylbenzotriazole) **7** was prepared as described for compound **5** from bis(acid) **3** (2.54 g, 3.00 mmol), 1,2,3-benzotriazole (4.28 g, 36.0 mmol) and DIC (5.57 mL, 36.0 mmol) in dry dichloromethane (30 mL). The product was additionally purified by

crystallization from dichloromethane/hexane. Yield 2.17 g (69%), white solid. M.p. 233–235 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.18-8.14$ (m, 2H; ArH_{Bt}), 7.92–7.89 (m, 2H; ArH_{Bt}), 7.58–7.53 (m, 2H; ArH_{Bt}), 7.48–7.43 (m, 2H; ArH_{Bt}), 7.11 (s, 4H; ArH), 6.55 (s, 4H; ArH), 6.14 (s, 4H; OCH₂CO), 4.89 (d, 4H, ²*J* = 13.0 Hz; ArCH₂Ar), 3.77–3.71 (m, 4H; OC<u>H₂CH₂), 3.29 (d, 4H, ²*J* = 13.0 Hz; ArCH₂Ar), 1.86–1.75 (m, 4H; OCH₂C<u>H₂), 1.30 (s, 18H; C(CH₃)₃), 0.90 (s, 18H; C(CH₃)₃), 0.81 (t, 6H, ³*J* = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.54$ (C=O), 153.70, 153.22, 145.63, 145.52, 144.39, 134.81, 132.00, 131.10 (C_{Ar}), 130.06, 126.04, 125.77, 124.64, 119.91, 114.06 (CH_{Ar}), 77.61, 71.78 (OCH₂), 34.04, 33.63 (<u>C</u>(CH₃)₃), 31.86 (ArCH₂Ar), 31.61, 31.20 (C(<u>CH₃)₃), 23.12 (OCH₂<u>CH₂</u>), 10.43 (CH₃) ppm. ESI-MS *m/z*: 1073.5886 [M+Na]⁺ for C₆₆H₇₈NaN₆O₆ (1073.5875).</u></u></u>

Calixarene bis(1-acylbenzotriazole) **8** was prepared as described for compound **5** from bis(acid) **4** (3.62 g, 4.00 mmol), 1,2,3-benzotriazole (1.90 g, 16.0 mmol) and DIC (2.47 mL, 16.0 mmol) in dry dichloromethane (200 mL). Yield 4.03 g (91%), white solid. M.p. 267–269 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.15–8.11 (m, 2H; ArH_{Bt}),

8.04–8.00 (m, 2H; ArH_{Bt}), 7.51–7.45 (m, 2H; ArH_{Bt}), 7.42–7.36 (m, 2H; ArH_{Bt}), 7.02 (s, 4H; ArH), 6.56 (s, 4H; ArH), 4.43 (d, 4H, ^{2}J = 12.5 Hz; ArCH₂Ar), 4.23–4.17 (m, 4H; OCH₂), 3.74–3.69 (m,

4H; OCH₂), 3.63–3.57 (m, 4H; CH₂CO), 3.15 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 2.78–2.67 (m, 4H; OCH₂C<u>H₂</u>), 1.94–1.83 (m, 4H; OCH₂C<u>H₂</u>), 1.25 (s, 18H; C(CH₃)₃), 0.89 (s, 18H; C(CH₃)₃), 0.89 (t, 6H, ${}^{3}J$ = 7.5 Hz; CH₂CH₂C<u>H₃</u>) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 172.24 (C=O), 153.99, 152.73, 146.03, 144.90, 144.02, 135.11, 132.41, 130.98 (C_{Ar}), 130.15, 125.85, 125.35, 124.57, 119.94, 114.20 (CH_{Ar}), 77.46, 73.74 (OCH₂), 33.98, 33.61 (<u>C</u>(CH₃)₃), 32.14 (ArCH₂Ar), 31.62, 31.21 (C(<u>C</u>H₃)₃), 31.08, 24.60 (OCH₂<u>C</u>H₂<u>C</u>H₂), 23.41 (OCH₂<u>C</u>H₂), 10.41 (CH₃) ppm. ESI-MS *m/z*: 1124.6951 [M+NH₄]⁺ for C₇₀H₉₀N₇O₆ (1124.6947).

Calixarene bis(1-acylbenzotriazole) **10** was prepared as described for compound **5** from bis(acid) **9** (0.765 g, 1.23 mmol), 1,2,3-benzotriazole (0.584 g, 4.90 mmol) and DIC (0.758 mL, 4.90 mmol) in dry dichloromethane (60 mL). Yield 0.760 g (75%), white solid. M.p.

151–153 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.34-8.30$ (m, 2H; ArH_{Bt}), 7.82–7.79 (m, 2H; ArH_{Bt}), 7.68–7.63 (m, 2H; ArH_{Bt}), 7.49–7.43 (m, 2H; ArH_{Bt}), 7.15 (d, 4H, ³*J* = 7.5 Hz; ArH), 7.10 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.80 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.36 (t, 2H, ³*J* = 7.5 Hz; ArH), 4.81 (s, 4H; CH₂CO), 4.12 (d, 4H, ²*J* = 15.0 Hz; ArCH₂Ar), 3.80 (d, 4H, ²*J* = 15.0 Hz; ArCH₂Ar), 3.60–3.55 (m, 4H; OCH₂), 1.58–1.47 (m, 4H; OCH₂C<u>H</u>₂), 0.88 (t, 6H, ³*J* = 7.6 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.83$ (C=O), 157.24, 155.54, 145.47, 134.69, 133.65, 131.10 (C_{Ar}), 130.56, 130.24, 130.20, 125.94, 122.44, 122.24, 119.90, 114.18 (CH_{Ar}), 73.08, 71.12 (OCH₂), 37.11 (ArCH₂Ar), 22.68 (OCH₂<u>C</u>H₂), 10.12 (CH₃) ppm. ESI-MS *m/z*: 844.3825 [M+NH₄]⁺ for C₅₀H₅₀N₇O₆ (844.3817).

Calixarene bis(ester) **12**. A mixture of calixarene **11** (0.652 g, 1.00 mmol) and anhydrous Cs_2CO_3 (1.30 g, 4.00 mmol) in dry DMF (25 mL) was stirred at room temperature for 1 h. 1-Iodopropane (0.485 mL, 5.00 mmol) was added and the mixture was stirred at room temperature for 48 h. The solvent was removed under reduced pressure and the residue was parted between

dichloromethane and aqueous HCl (2 M). The organic layer was separated, washed with water, and the solvent was evaporated. The product was purified by column chromatography (silica, gradient from dichloromethane to dichloromethane/ethanol 100:1) followed by crystallization from a dichloromethane/methanol mixture. Yield 0.435 g (59%), white solid. M.p. 115–117 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.00 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.99 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.72 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.71 (t, 2H, ³*J* = 7.5 Hz; ArH), 4.16 (q, 4H, ³*J* = 7.2 Hz; OCH₂CH₃), 3.69 (d, 4H, ²*J* = 15.0 Hz; ArCH₂Ar), 3.64 (d, 4H, ²*J* = 15.0 Hz; ArCH₂Ar), 3.57–3.52 (m, 4H; OCH₂), 3.47–3.42 (m, 4H; OCH₂), 2.24 (t, 4H, ³*J* = 7.3 Hz; CH₂CO), 1.85–1.75 (m, 4H; OCH₂CH₂), 1.51–1.40 (m, 4H; OCH₂CH₂), 1.29 (t, 6H, ³*J* = 7.2 Hz; OCH₂CH₃), 0.81 (t, 6H, ³*J* = 7.5 Hz; CH₃)

ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.54$ (C=O), 156.62, 156.35, 133.83, 133.64 (C_{Ar}), 129.72, 129.56, 121.81, 121.67 (CH_{Ar}), 72.82, 69.92 (OCH₂), 60.22 (O<u>C</u>H₂CH₃), 37.06 (ArCH₂Ar), 30.58 (<u>C</u>H₂CO), 25.28, 23.03 (OCH₂<u>C</u>H₂), 14.27 (OCH₂<u>C</u>H₃), 10.23 (CH₃) ppm. ESI-MS *m*/*z*: 754.4313 [M+NH₄]⁺ for C₄₆H₆₀NO₈ (754.4313).

Calixarene bis(acid) **13**. To a stirred solution of calixarene **12** (0.368 g, 0.50 mmol) in a mixture of methanol (15 mL) and THF (10 mL) a solution of K_2CO_3 (0.414 g, 3.00 mmol) in water (5 mL) was added. The mixture was stirred at reflux for 6 h, cooled and the solvents were evaporated under reduced pressure. The residue was parted between dichloromethane and

aqueous HCl (2 M). The organic layer was separated, washed with water, dried, and the solvent was evaporated. Yield 0.324 g (95%), white solid. M.p. 208–210 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.07 (d, 4H, ³*J* = 7.5 Hz; ArH), 7.03 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.90–6.85 (m, 2H; ArH), 6.80 (t, 2H, ³*J* = 7.5 Hz; ArH), 3.82 (d, 4H, ²*J* = 16.1 Hz; ArCH₂Ar), 3.78 (d, 4H, ²*J* = 16.1 Hz; ArCH₂Ar), 3.52–3.46 (m, 4H; OCH₂), 3.40–3.34 (m, 4H; OCH₂), 2.12–2.03 (m, 4H; CH₂CO), 1.76–1.67 (m, 4H; OCH₂C<u>H</u>₂), 1.32–1.18 (m, 4H; OCH₂C<u>H</u>₂), 0.71 (t, 6H, ³*J* = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 180.79 (C=O), 156.85, 156.61, 134.15, 133.87 (C_{Ar}), 129.74, 129.59, 122.25, 122.14 (CH_{Ar}), 71.85, 69.02 (OCH₂), 38.17 (ArCH₂Ar), 30.95 (<u>C</u>H₂CO), 25.15, 22.42 (OCH₂<u>C</u>H₂), 9.97 (CH₃) ppm. ESI-MS *m*/*z*: 698.3687 [M+NH₄]⁺ for C₄₂H₅₂NO₈ (698.3687).

Calixarene bis(1-acylbenzotriazole) **14** was prepared as described for compound **5** from bis(acid) **13** (0.270 g, 0.40 mmol), 1,2,3-benzotriazole (0.190 g, 1.60 mmol) and DIC (0.247 mL, 1.60 mmol) in dry dichloromethane (20 mL). Yield 0.290 g (82%), white solid. M.p. 221–223 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.15-8.10$ (m,

2H; ArH_{Bt}), 8.00–7.96 (m, 2H; ArH_{Bt}), 7.55–7.49 (m, 2H; ArH_{Bt}), 7.41–7.36 (m, 2H; ArH_{Bt}), 7.08 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 7.03 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 6.77 (t, 2H, ${}^{3}J$ = 7.5 Hz; ArH), 6.74 (t, 2H, ${}^{3}J$ = 7.5 Hz; ArH), 3.80 (d, 4H, ${}^{2}J$ = 15.6 Hz; ArCH₂Ar), 3.76 (d, 4H, ${}^{2}J$ = 15.6 Hz; ArCH₂Ar), 3.60–3.55 (m, 4H; OCH₂), 3.44–3.38 (m, 4H; OCH₂), 3.25–3.19 (m, 4H; CH₂CO), 1.94–1.85 (m, 4H; OCH₂C<u>H₂</u>), 1.37–1.26 (m, 4H; OCH₂C<u>H₂</u>), 0.74 (t, 6H, ${}^{3}J$ = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 172.27 (C=O), 156.81, 156.34, 145.92, 134.07, 133.83, 130.90 (C_{Ar}), 130.05, 129.70, 129.50, 125.79, 122.17, 122.11, 119.86, 114.24 (CH_{Ar}), 72.21, 69.13 (OCH₂), 37.77 (ArCH₂Ar), 31.99 (<u>C</u>H₂CO), 24.26, 22.68 (OCH₂<u>C</u>H₂), 10.09 (CH₃) ppm. ESI-MS *m/z*: 900.4444 [M+NH₄]⁺ for C₅₄H₅₈N₇O₆ (900.4443).

Crowned calixarene bis(1-acylbenzotriazole) **16** was prepared as described for compound **5** from bis(acid) **15** (0.279 g, 0.40 mmol), 1,2,3-benzotriazole (0.190 g, 1.60 mmol) and DIC (0.247 mL, 1.60 mmol) in dry dichloromethane (20 mL). Yield 0.223 g (62%), white solid. M.p. 126–128 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.28–

8.24 (m, 4H; ArH_{Bt}), 7.70–7.67 (m, 4H; ArH_{Bt}), 7.66–7.60 (m, 4H; ArH_{Bt}), 7.46–7.40 (m, 4H; ArH_{Bt}), 7.21 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 7.12 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 6.94 (t, 2H, ${}^{3}J$ = 7.5 Hz; ArH), 6.32 (t, 2H, ${}^{3}J$ = 7.5 Hz; ArH), 4.65 (s, 4H; OCH₂CO), 4.30 (d, 4H, ${}^{2}J$ = 16.1 Hz; ArCH₂Ar), 3.91 (d, 4H, ${}^{2}J$ = 16.1 Hz; ArCH₂Ar), 3.74–3.69 (m, 4H; OCH₂), 3.67–3.61 (m, 8H; OCH₂), 3.28–3.22 (m, 4H; OCH₂) ppm; ${}^{13}C$ NMR (100 MHz, CDCl₃): δ = 169.03 (C=O), 156.51, 155.71, 145.31, 135.07, 133.91, 131.10 (C_{Ar}), 130.31, 130.09, 130.06, 125.79, 123.04, 122.77, 119.77, 114.12 (CH_{Ar}), 73.21, 70.97, 70.96, 69.44, 68.10 (OCH₂), 37.88 (ArCH₂Ar) ppm. ESI-MS *m/z*: 918.3859 [M+NH₄]⁺ for C₅₂H₅₂N₇O₉ (918.3821).

Crowned calixarene bis(acid) **17**. A mixture of calixarene **11** (1.30 g, 2.00 mmol), anhydrous Cs_2CO_3 (1.96 g, 6.00 mmol) and tetraethylene glycol ditosylate (1.10 g, 2.20 mmol) in dry acetonitrile (120 mL) was stirred at 75 °C for 24 h. The solvent was removed under reduced pressure and the residue was parted between dichloromethane and aqueous HCl (2 M). The

organic layer was separated, washed with water, and the solvent was evaporated. The product was purified by column chromatography (silica, gradient from dichloromethane to dichloromethane/ethanol 100:1) to obtain a fraction (0.824 g) containing the desired crowned bis(ester). A solution of KOH (90%, 0.56 g, 9.00 mmol) in ethanol (30 mL) was added to the sample and the mixture was stirred at reflux for 6 h. After cooling, the solvent was evaporated under reduced pressure and aqueous HCl (2 M) was added to the residue. The sticky solid formed was separated, washed with water and THF (rapidly), dried and then dissolved in ethanol. Diethyl ether was added and the solid formed was separated, washed with diethyl ether and dried. Yield 0.535 g (36%), white solid. M.p. 263–265 °C. ¹H NMR (400 MHz, DMSO- d_6): $\delta =$ 12.09 (bs, 2H; CO₂H), 7.31 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 7.18 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 6.94 (t, 2H, ${}^{3}J = 7.5$ Hz; ArH), 6.82 (t, 4H, ${}^{3}J = 7.5$ Hz; ArH), 3.99–3.92 (m, 4H; OCH₂), 3.81 (d, 4H, $^{2}J = 15.2$ Hz; ArCH₂Ar), 3.76–3.70 (m, 4H; OCH₂), 3.74 (d, 4H, $^{2}J = 15.2$ Hz; ArCH₂Ar), 3.66–3.58 (m, 12H, OCH₂), 2.20–2.13 (m, 4H; CH₂CO), 1.78–1.68 (m, 4H; CH₂CH₂CH₂) ppm; ¹³C NMR $(100 \text{ MHz}, \text{DMSO-}d_6): \delta = 174.53 \text{ (C=O)}, 156.94, 154.77, 135.92, 133.48 \text{ (C}_{Ar}), 130.77, 130.42, 130.4$ 123.03, 121.86 (CH_{Ar}), 70.63, 70.15, 69.73, 69.57, 69.46 (OCH₂), 36.13 (ArCH₂Ar), 29.47 (CH₂CO), 24.46 (CH₂CH₂CH₂) ppm. ESI-MS m/z: 772.3689 [M+NH₄]⁺ for C₄₄H₅₄NO₁₁ (772.3691).

Crowned calixarene bis(1-acylbenzotriazole) **18** was prepared as described for compound **5** from bis(acid) **17** (0.490 g, 0.65 mmol), 1,2,3-benzotriazole (0.309 g, 2.60 mmol) and DIC (0.402 mL, 2.60 mmol) in dry dichloromethane (40 mL). Yield 0.432 g (70%), white solid. M.p. 77–79 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.10–

8.06 (m, 2H; ArH_{Bt}), 7.98–7.94 (m, 2H; ArH_{Bt}), 7.51–7.45 (m, 2H; ArH_{Bt}), 7.38–7.33 (m, 2H; ArH_{Bt}), 7.11 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 7.09 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 6.89 (t, 2H, ${}^{3}J$ = 7.5 Hz; ArH), 6.76 (t, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 3.88 (bs, 8H, ArCH₂Ar), 3.64–3.53 (m, 12H, OCH₂), 3.47–3.41 (m, 4H; OCH₂), 3.15–3.05 (m, 8H; OCH₂+CH₂CO), 1.77–1.68 (m, 4H; CH₂CH₂CH₂) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 172.24 (C=O), 156.56, 156.07, 145.91, 134.11, 134.03, 130.89 (C_{Ar}), 130.02, 129.27, 129.26, 125.76, 122.83, 122.72, 119.85, 114.22 (CH_{Ar}), 72.82, 70.68, 69.69, 68.75, 68.01 (OCH₂), 38.16 (ArCH₂Ar), 31.87 (CH₂CO), 23.98 (CH₂CH₂CH₂) ppm. ESI-MS *m/z*: 974.4484 [M+NH₄]⁺ for C₅₆H₆₀N₇O₉ (974.4447).

Propargylated calixarene bis(ester) **20**. To a stirred suspension of dipropargyl ether **19** (1.15 g, 1.59 mmol) in dry THF (114 mL) NaH (60%, 0.380 g, 9.51 mmol) was added. The mixture was stirred at room temperature for 30 min, ethyl bromoacetate (0.879 mL, 7.93 mmol) was added and the mixture

was stirred at 60 °C for 24 h. After cooling to room temperature, the reaction was quenched with several drops of aqueous HCl (2 M) and the solvent was removed under reduced pressure. The residue was parted between dichloromethane and aqueous HCl (2 M). The organic layer was separated, washed with water, dried, and the solvent was evaporated to almost dryness. Methanol was added and the solid formed was separated, washed with methanol and dried. Yield 1.03 g (72%), white solid. The analytical data for the obtained compounds were similar to those reported previously.^[S12]

Propargylated calixarene bis(ester) **21**. To a stirred suspension of dipropargyl ether **19** (2.17 g, 3.00 mmol) in dry DMF (90 mL) NaH (60%, 0.720 g, 18.0 mmol) was added. The mixture was stirred at room temperature for 30 min, ethyl 4-bromobutyrate (2.15 mL, 15.0 mmol) was added and the mixture was stirred at room temperature for 48 h. The reaction was guenched

with several drops of aqueous HCl (2 M) and the solvent was removed under reduced pressure. The residue was parted between dichloromethane and aqueous HCl (2 M). The organic layer was separated, washed with water, dried, and the solvent was evaporated to almost dryness. Methanol was added and the solid formed was separated, washed with methanol and dried. Yield 2.67 g (93%), white solid. M.p. 128–130 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.07 (s, 4H; ArH), 6.45

(s, 4H; ArH), 4.96 (d, 4H, ${}^{4}J$ = 2.4 Hz; CH₂C=CH), 4.48 (d, 4H, ${}^{2}J$ = 12.8 Hz; ArCH₂Ar), 4.15 (q, 4H, ${}^{3}J$ = 7.1 Hz; OCH₂CH₃), 3.80–3.73 (m, 4H; OCH₂CH₂), 3.14 (d, 4H, ${}^{2}J$ = 12.8 Hz; ArCH₂Ar), 2.63–2.57 (m, 4H; CH₂CO), 2.45 (t, 2H, ${}^{4}J$ = 2.4 Hz; CH₂C=CH), 2.33–2.23 (m, 4H; OCH₂CH₂), 1.30 (s, 18H; C(CH₃)₃), 1.26 (t, 6H, ${}^{3}J$ = 7.1 Hz; CH₃), 0.82 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 173.44 (C=O), 152.83, 151.13, 145.81, 144.35, 136.15, 131.86 (C_{Ar}), 125.41, 124.43 (CH_{Ar}), 81.39 (CH₂C=CH), 74.64, 74.53 (CH₂C=CH, OCH₂CH₂), 60.33, 59.76 (CH₂C=CH, OCH₂CH₃), 34.09, 33.55 (C(CH₃)₃), 31.68 (ArCH₂Ar or OCH₂CH₂), 31.62 (C(CH₃)₃), 31.36 (CH₂CO or ArCH₂Ar), 31.09 (C(CH₃)₃), 25.76 (OCH₂CH₂), 14.27 (CH₃) ppm. ESI-MS *m/z*: 953.5924 [M+H]⁺ for C₆2H₈₁O₈ (953.5926).

Triazolated calixarene bis(ester) **22**. Under argon, a freshly prepared solution of CuI (0.078 g, 0.41 mmol) and triethylamine (1.14 mL, 8.2 mmol) in toluene (10 mL) was added to a stirred solution of calixarene **20** (1.22 g, 1.36 mmol) in toluene (50 mL). Benzyl azide (0.435 g, 3.27 mmol) was added and the mixture was stirred at 60 °C for 24 h. After

cooling, the solvent was removed under reduced pressure, the residue was suspended in dichloromethane, aqueous Na₂S₂O₃ (10%) was added and the heterogeneous mixture was intensively stirred for at least 2 h. The organic phase was separated, the aqueous phase was extracted with dichloromethane. The combined organic fractions were washed with water, dried and the solvent was evaporated. The product was purified by column chromatography (silica, gradient from dichloromethane to dichloromethane/ethanol 20:1). Yield 1.13 g (71%), white solid. M.p. 102–104 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.68 (s, 2H; ArH_{Trz}), 7.35–7.30 (m, 6H; ArH_{Ph}), 7.25–7.21 (m, 4H; ArH_{Ph}), 6.85 (s, 4H; ArH), 6.50 (s, 4H; ArH), 5.49 (s, 4H; NCH₂), 5.21 (s, 4H; OCH₂Trz), 4.45 (s, 4H; CH₂CO), 4.30 (d, 4H, ²*J* = 12.9 Hz; ArCH₂Ar), 4.11 (q, 4H, ³*J* = 7.2 Hz; OCH₂CH₃) 2.94 (d, 4H, ²*J* = 12.9 Hz; ArCH₂Ar), 1.19 (t, 6H, ³*J* = 7.2 Hz; CH₃), 1.18 (s, 18H; C(CH₃)₃), 0.88 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 170.38 (C=O), 152.90, 152.39, 145.33, 145.05, 144.62, 135.36, 135.14, 132.17 (C_{Ar}), 128.85, 128.33, 127.83, 125.20, 124.84, 124.46 (CH_{Ar}), 71.79 (CH₂CO), 65.91 (OCH₂Trz), 60.50 (OCH₂CH₃), 53.72 (NCH₂), 33.89, 33.59 (C(CH₃)₃), 31.70 (ArCH₂Ar), 31.52, 31.12 (C(CH₃)₃), 14.14 (CH₃) ppm. ESI-MS *m/z*: 1185.6400 [M+Na]⁺ for C₇₂H₈₆NaN₆O₈ (1185.6399).

Triazolated calixarene bis(ester) **23** was prepared as described for compound **22** from calixarene **21** (1.91 g, 2.01 mmol), benzyl azide (0.639 g, 4.80 mmol), CuI (0.114 g, 0.60 mmol) and triethylamine (1.67 mL, 12.0 mmol) in toluene (60 mL). Yield 2.21 g (90%), white solid. M.p. 109–111 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.59 (s, 2H;

ArH_{Trz}), 7.39–7.29 (m, 10H; ArH_{Ph}), 6.82 (s, 4H; ArH), 6.53 (s, 4H; ArH), 5.56 (s, 4H; NCH₂), 4.96 (s, 4H; OCH₂Trz), 4.19 (d, 4H, ${}^{2}J$ =12.6 Hz; ArCH₂Ar), 4.12 (q, 4H, ${}^{3}J$ =7.1 Hz; OC<u>H₂CH₃), 3.78–3.71 (m, 4H; OCH₂CH₂), 2.88 (d, 4H, ${}^{2}J$ =12.6 Hz; ArCH₂Ar), 2.22–2.16 (m, 4H; CH₂CO), 2.09–2.00 (m, 4H; OCH₂C<u>H₂), 1.25 (t, 6H, ${}^{3}J$ =7.1 Hz; CH₃), 1.16 (s, 18H; C(CH₃)₃), 0.92 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 173.72 (C=O), 153.71, 151.44, 144.81, 144.69, 144.58, 135.34, 134.36, 133.25 (C_{Ar}), 128.94, 128.48, 128.08, 125.08, 124.70, 123.78 (CH_{Ar}), 73.80 (O<u>C</u>H₂CH₂), 67.31 (OCH₂Trz), 60.15 (O<u>C</u>H₂CH₃), 53.81 (NCH₂), 33.87, 33.66 (<u>C</u>(CH₃)₃), 31.52, 31.22 (C(<u>C</u>H₃)₃), 31.12 (ArCH₂Ar), 30.68 (<u>C</u>H₂CO), 25.14 (OCH₂<u>C</u>H₂), 14.28 (CH₂<u>C</u>H₃) ppm. ESI-MS *m*/*z*: 1219.7203 [M+H]⁺ for C₇₆H₉₅N₆O₈ (1219.7206).</u></u>

Triazolated calixarene bis(acid) **24**. To a stirred solution of calixarene **22** (2.65 g, 2.28 mmol) in ethanol (100 mL) a solution of KOH (90%, 5.11 g, 82.1 mmol) in ethanol (30 mL) was added. The mixture was stirred at reflux for 6 h and cooled to room temperature. The solvent was removed under reduced pressure, auqeous HCl (2 M) was added and the product was

extracted with dichloromethane. The solution was wahsed with water, brine, dried and the solvent was evaporated. Yield 2.52 g (100%), white solid. M.p. 147–149 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.67 (s, 2H; ArH_{Trz}), 7.40–7.31 (m, 10H; ArH_{Ph}), 7.06 (s, 4H; ArH), 6.52 (s, 4H; ArH), 5.59 (s, 4H; NCH₂), 4.96 (s, 4H; OCH₂Trz), 4.29 (s, 4H; CH₂CO), 4.10 (d, 4H, ²*J* = 13.0 Hz; ArCH₂Ar), 3.09 (d, 4H, ²*J* = 13.0 Hz; ArCH₂Ar), 1.30 (s, 18H; C(CH₃)₃), 0.82 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 170.11 (C=O), 152.58, 149.57, 147.16, 146.19, 142.80, 134.59, 134.41, 132.24 (C_{Ar}), 129.06, 128.66, 128.39, 125.88, 125.29, 124.92 (CH_{Ar}), 71.66 (CH₂CO), 68.54 (OCH₂Trz), 54.38 (NCH₂), 34.12, 33.68 (C(CH₃)₃), 31.51 (C(CH₃)₃), 31.17 (ArCH₂Ar), 30.89 (C(CH₃)₃) ppm. ESI-MS *m*/*z*: 1107.5952 [M+H]⁺ for C₆₈H₇₉N₆O₈ (1107.5954).

Triazolated calixarene bis(acid) **25** was prepared as described for compound **24** from calixarene **23** (2.21 g, 1.81 mmol) and KOH (90%, 4.06 g, 65.3 mmol) in ethanol (100 mL). Yield 2.00 g (95%), white solid. M.p. 147–149 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.45 (s, 2H; ArH_{Trz}), 7.34–7.27 (m, 10H; ArH_{Ph}), 6.95 (s, 4H; ArH), 6.41 (s, 4H; ArH), 5.54 (s,

4H; NCH₂), 4.88 (s, 4H; OCH₂Trz), 4.17 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 3.84–3.76 (m, 4H; OCH₂CH₂), 2.85 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 2.41–2.32 (m, 4H; CH₂CO), 2.12–2.02 (m, 4H; OCH₂CH₂), 1.28 (s, 18H; C(CH₃)₃), 0.81 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 178.08 (C=O), 154.10, 150.99, 144,81, 144.64, 144.24, 135.12, 134.98, 132.47 (C_{Ar}), 128.97,

128.58, 128.37, 125.29, 124.56, 123.83 (CH_{Ar}), 73.84 (O<u>C</u>H₂CH₂), 67.21 (OCH₂Trz), 54.11 (NCH₂), 34.00, 33.57 (<u>C</u>(CH₃)₃), 31.67 (C(<u>C</u>H₃)₃), 31.30 (ArCH₂Ar, <u>C</u>H₂CO), 31.07 (C(<u>C</u>H₃)₃), 25.14 (OCH₂<u>C</u>H₂) ppm. ESI-MS m/z: 1163.6587 [M+H]⁺ for C₇₂H₈₇N₆O₈ (1163.6580).

^{Hu} ^{Hu} ^{Hu} ^{Eu} ^{2-Azidoethylated calixarene bis(ester) **28** was prepared as described for compound **21** from bis(azide) **26** (1.10 g, 1.40 mmol), ethyl bromoacetate (0.78 mL, 7.0 mmol) and NaH (60%, 0.336 g, 8.4 mmol) in DMF (42 mL). Yield 0.910 g (68%), white solid. M.p. 196–198 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.03$ (s, 4H; ArH), 6.53 (s, 4H; ArH), 4.44 (s, 4H; OCH₂CO), 4.43 (4H, ²J = 12.7 Hz; ArCH₂Ar), 4.30 (q, 4H, ³J = 7.1 Hz; OCH₂CH₃), 4.27–4.22 (m, 4H; OCH₂CH₂), 4.10–4.03 (m, 4H; CH₂N₃), 3.17 (4H, ²J = 12.7 Hz; ArCH₂Ar), 1.32 (t, 6H, ³J = 7.1 Hz; CH₃), 1.27 (s, 18H; C(CH₃)₃), 0.86 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.44$ (C=O), 153.85, 151.54, 145.43, 145.18, 134.67, 131.94 (C_{Ar}), 125.57, 125.01 (CH_{Ar}), 72.00, 71.70 (OCH₂), 60.91 (O<u>C</u>H₂CH₃), 50.84 (CH₂N₃), 34.03, 33.65 (<u>C</u>(CH₃)₃), 31.59, 31.08 (C(<u>C</u>H₃)₃), 30.99 (ArCH₂Ar), 14.23 (CH₃) ppm. ESI-MS *m*/*z*: 976.5915 [M+NH₄]⁺ for C₅₆H₇₈N₇O₈ (976.5906).}

2-Azidoethylated calixarene bis(ester) **29** was prepared as described for compound **21** from bis(azide) **26** (1.37 g, 1.74 mmol), ethyl 4-bromobutyrate (1.25 mL, 8.7 mmol) and NaH (60%, 0.418 g, 10.4 mmol) in DMF (53 mL). Yield 0.818 g (46%), white solid. M.p. 105–107 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.89$ (s, 4H; ArH), 6.65 (s, 4H; ArH), 4.32 (d, 4H, ²J=12.6 Hz;

ArCH₂Ar), 4.15 (q, 4H, ${}^{3}J$ = 7.2 Hz; OCH₂CH₃), 4.10–4.05 (m, 4H; OCH₂CH₂N₃), 3.92–3.87 (m, 4H; CH₂N₃), 3.87–3.82 (m, 4H; OCH₂CH₂CH₂), 3.16 (d, 4H, ${}^{2}J$ = 12.6 Hz; ArCH₂Ar), 2.52–2.46 (m, 4H; CH₂CO), 2.33–2.24 (m, 4H; OCH₂CH₂CH₂), 1.26 (t, 6H, ${}^{3}J$ = 7.2 Hz; CH₃), 1.15 (s, 18H; C(CH₃)₃), 0.97 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 173.16 (C=O), 152.74, 152.62, 145.34, 144.67, 134.09, 132.85 (C_{Ar}), 125.35, 124.92 (CH_{Ar}), 74.50, 71.57 (OCH₂), 60.40 (O<u>C</u>H₂CH₃), 50.68 (CH₂N₃), 33.92, 33.77 (<u>C</u>(CH₃)₃), 31.45, 31.27 (C(<u>C</u>H₃)₃), 30.94, 30.85 (ArCH₂Ar, <u>C</u>H₂CO), 25.50 (OCH₂<u>C</u>H₂CH₂), 14.22 (<u>C</u>H₃) ppm. ESI-MS *m/z*: 1032.6540 [M+NH₄]⁺ for C₆₀H₈₆N₇O₈ (1032.6532).

3-Azidopropylated calixarene bis(ester) 30 was prepared as described for compound 21 from bis(azide) 27 (1.14 g, 1.40 mmol), ethyl bromoacetate (0.78 mL, 7.0 mmol) and NaH (60%, 0.336 g, 8.4 mmol) in DMF (42 mL). Yield 0.914 g (66%), white solid. M.p. 189–191 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.93 (s, 4H; ArH), 6.63 (s, 4H; ArH), 4.53 (s, 4H; OCH₂CO),

4.48 (d, 4H, ${}^{2}J=12.7$ Hz; ArCH₂Ar), 4.24 (q, 4H, ${}^{3}J=7.1$ Hz; OCH₂CH₃), 4.09–4.03 (m, 4H; OCH₂CH₂CH₂), 3.57–3.49 (m, 4H, CH₂N₃), 3.17 (d, 4H, ${}^{2}J$ = 12.7 Hz; ArCH₂Ar), 2.41–2.31 (m, 4H; OCH₂CH₂CH₂), 1.29 (t, 6H, ${}^{3}J$ = 7.1 Hz; CH₃), 1.19 (s, 18H; C(CH₃)₃), 0.94 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 169.62 (C=O), 153.85, 152.19, 145.01, 144.99, 134.29, 132.52 (C_{Ar}), 125.36, 125.12 (CH_{Ar}), 72.10, 71.60 (OCH₂), 60.63 (OCH₂CH₃), 49.09 (CH₂N₃), 33.92, 33.71 ($\underline{C}(CH_3)_3$), 31.53 ($\underline{C}(\underline{C}H_3)_3$), 31.26 (ArCH₂Ar), 31.20 ($\underline{C}(\underline{C}H_3)_3$), 29.42 $(OCH_2CH_2CH_2)$, 14.21 (OCH_2CH_3) ppm. ESI-MS m/z: 1004.6228 $[M+NH_4]^+$ for $C_{58}H_{82}N_7O_8$ (1004.6219).

3-Azidopropylated calixarene bis(ester) 31 was prepared as described for compound 21 from bis(azide) 27 (2.12 g, 2.60 mmol), ethyl 4-bromobutyrate (1.86 mL, 13.0 mmol) and NaH (60%, 0.624 g, 15.6 mmol) in DMF (42 mL). Yield 2.07 g (76%), white solid. M.p. 82–84 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.88$ (s, 4H; ArH), 6.65 (s, 4H; ArH), 4.31 (d, 4H, ²J = 12.6 Hz; ArCH₂Ar), 4.15 (q, 4H, ${}^{3}J$ = 7.1 Hz; OCH₂CH₃), 4.02–3.96 (m, 4H, OCH₂), 3.86–3.79 (m, 4H; OCH₂), 3.56– 3.49 (m, 4H; CH₂N₃), 3.14 (d, 4H, ²J = 12.6 Hz; ArCH₂Ar), 2.52–2.46 (m, 4H; CH₂CO), 2.35–2.20 (m, 8H; OCH₂CH₂CH₂), 1.26 (t, 6H, ${}^{3}J$ = 7.1 Hz; CH₃), 1.15 (s, 18H; C(CH₃)₃), 0.98 (s, 18H; $C(CH_3)_3$ ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.12$ (C=O), 153.32, 152.71, 144.93, 144.57, 134.13, 132.93 (CAr), 125.28, 124.91 (CHAr), 74.40, 71.99 (OCH₂), 60.39 (OCH₂CH₃) 48.91 (CH₂N₃), 33.90, 33.73 (C(CH₃)₃), 31.49, 31.30 (C(CH₃)₃), 31.05, 30.97 (ArCH₂Ar, CH₂CO),

29.65, 25.57 (OCH₂CH₂CH₂), 14.25 (CH₃) ppm. ESI-MS m/z: 1060.6855 [M+NH₄]⁺ for C₆₂H₉₀N₇O₈ (1060.6845).

Triazolated calixarene bis(ester) 32. A solution of calixarene 28 (0.900 g, 0.94 mmol), phenylacetylene (0.248 mL, 2.26 mmol) and CuI (0.054 g, 0.28 mmol) in the mixture of toluene (56 mL) and triethylamine (14 mL) was stirred at room temperature for 72 h. The solvens were removed under reduced pressure, and the residue was suspended in dichloromethane.

Aqueous HCl (2 M) was added and the heterogeneous mixture was intensively stirred for at least 2 h. The organic phase was separated, the aqueous phase was extracted with dichloromethane. The combined organic fractions were washed with aqueous Na_2SO_3 (5%), water, dried and the solvent was evaporated to almost dryness. Methanol was added, and the solid formed was separated, washed with methanol and dried. Yield 0.525 g (48%), yellowish solid. M.p. 253-255 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.05 (s, 2H; ArH_{Trz}), 7.77–7.73 (m, 4H; ArH_{Ph}), 7.31– 7.21 (m, 6H; ArH_{Ph}), 7.15 (s, 4H; ArH), 6.50 (s, 4H; ArH), 5.45–5.37 (m, 4H; NCH₂), 4.67–4.60 (m, 4H; OCH₂CH₂), 4.43 (s, 4H; CH₂CO), 4.39 (d, 4H, ${}^{2}J=12.7$ Hz; ArCH₂Ar), 4.16 (q, 4H,

 ${}^{3}J$ = 7.2 Hz; OC<u>H</u>₂CH₃), 3.22 (d, 4H, ${}^{2}J$ = 12.7 Hz; ArCH₂Ar), 1.34 (s, 18H; C(CH₃)₃), 1.18 (t, 6H, ${}^{3}J$ = 7.2 Hz; CH₃), 0.82 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 169.53 (C=O), 153.71, 151.05, 147.44, 146.17, 145.45, 135.08, 131.54, 130.80 (C_{Ar}), 128.65, 127.73, 125.83, 125.52, 125.06, 120.68 (CH_{Ar}), 72.24, 72.03 (OCH₂), 61.11 (O<u>C</u>H₂CH₃), 49.17 (NCH₂), 34.16, 33.63 (<u>C</u>(CH₃)₃), 31.65 (C(<u>C</u>H₃)₃), 30.98 (C(<u>C</u>H₃)₃, ArCH₂Ar), 14.05 (CH₃) ppm. ESI-MS *m/z*: 1163.6584 [M+H]⁺ for C₇₂H₈₇N₆O₈ (1163.6580).

Triazolated calixarene bis(ester) **33** was prepared as described for compound **32** from calixarene **29** (1.207 g, 1.19 mmol), phenylacetylene (0.313 mL, 2.86 mmol) and CuI (0.068 g, 0.36 mmol) in the mixture of toluene (80 mL) and triethylamine (20 mL). Instead of crystallization from methanol, the product was purified by column chromatography (silica,

gradient from dichloromethane to dichloromethane/ethanol 20:1). Yield 0.958 g (66%), white solid. M.p. 101–103 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.11 (s, 2H; ArH_{Trz}), 7.93–7.88 (m, 4H; ArH_{Ph}), 7.40–7.34 (m, 4H; ArH_{Ph}), 7.33–7.27 (m, 2H; ArH_{Ph}), 7.11 (s, 4H; ArH), 6.51 (4H; ArH), 5.26–5.19 (m, 4H; NCH₂), 4.62–4.55 (m, 4H; OC<u>H</u>₂CH₂N), 4.31 (d, 4H, ²*J* = 12.7 Hz; ArCH₂Ar), 4.00 (q, 4H, ³*J* = 7.1 Hz; OC<u>H</u>₂CH₃), 3.80–3.74 (m, 4H; OC<u>H</u>₂CH₂CH₂), 3.22 (d, 4H, ²*J* = 12.7 Hz; ArCH₂Ar), 2.43–2.37 (m, 4H; CH₂CO), 2.24–2.15 (m, 4H; OCH₂C<u>H</u>₂CH₂), 1.31 (s, 18H; C(CH₃)₃), 1.10 (t, 6H, ³*J* = 7.1 Hz; CH₃), 0.85 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 172.93 (C=O), 153.12, 151.89, 147.89, 146.20, 144.79, 134.98, 131.75, 130.69 (C_{Ar}), 128.70, 127.94, 125.84, 125.72, 124.80, 120.46 (CH_{Ar}), 74.85, 71.62 (OCH₂), 60.44 (O<u>C</u>H₂CH₃), 49.41 (NCH₂), 34.13, 33.64 (<u>C</u>(CH₃)₃), 31.60, 31.09 (C(<u>C</u>H₃)₃), 31.02, 30.75 (<u>C</u>H₂CO, ArCH₂Ar), 25.62 (CH₂CH₂CH₂), 14.09 (CH₃) ppm. ESI-MS *m/z*: 1219.7206 [M+H]⁺ for C₇₆H₉₅N₆O₈ (1219.7206).

Triazolated calixarene bis(ester) **34** was prepared as described for compound **33** from calixarene **30** (0.858 g, 0.87 mmol), phenylacetylene (0.229 mL, 2.09 mmol) and CuI (0.050 g, 0.26 mmol) in the mixture of toluene (56 mL) and triethylamine (14 mL). Yield 0.607 g (59%), yellowish solid. M.p. 106–108 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (s, 2H; ArH_{Trz}), 7.84–7.80 (m, 4H; ArH_{Ph}), 7.40–7.34 (m, 4H; ArH_{Ph}), 7.31–7.26 (m, 2H; ArH_{Ph}), 7.07 (s, 4H;

ArH), 6.51 (s, 4H; ArH), 4.56–4.50 (m, 4H; NCH₂), 4.43 (d, 4H, ${}^{2}J$ = 12.7 Hz; ArCH₂Ar), 4.39 (s, 4H; CH₂CO), 4.18–4.13 (m, 4H; OC<u>H</u>₂CH₂), 4.12 (q, 4H, ${}^{3}J$ = 7.2 Hz; OC<u>H</u>₂CH₃), 3.16 (d, 4H, ${}^{2}J$ = 12.7 Hz; ArCH₂Ar), 2.81–2.71 (m, 4H; CH₂C<u>H</u>₂CH₂), 1.29 (s, 18H; C(CH₃)₃), 1.17 (t, 6H, ${}^{3}J$ = 7.2 Hz; CH₃), 0.85 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 169.46 (C=O), 154.06, 151.56, 147.39, 145.33, 145.10, 134.98, 131.80, 130.94 (C_{Ar}), 128.74, 127.86,

125.66, 125.53, 124.96, 120.33 (CH_{Ar}), 71.97, 71.65 (OCH₂), 60.74 (O<u>C</u>H₂CH₃), 48.01 (NCH₂), 34.04, 33.63 (<u>C</u>(CH₃)₃), 31.63 (C(<u>C</u>H₃)₃), 31.06 (C(<u>C</u>H₃)₃, ArCH₂Ar), 30.67 (CH₂<u>C</u>H₂CH₂), 14.06 (CH₃) ppm. ESI-MS m/z: 1191.6894 [M+H]⁺ for C₇₄H₉₁N₆O₈ (1191.6893).

Triazolated calixarene bis(ester) **35** was prepared as described for compound **33** from calixarene **31** (2.19 g, 2.10 mmol), phenylacetylene (0.553 mL, 5.04 mmol) and CuI (0.120 g, 0.63 mmol) in the mixture of toluene (140 mL) and triethylamine (35 mL). The product was additionally purified by crystallization from hexane. Yield 1.32 g (50%), yellowish solid. M.p. 84–86 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (s, 2H;

ArH_{Trz}), 7.84–7.79 (m, 4H; ArH_{Ph}), 7.41–7.34 (m, 4H; ArH_{Ph}), 7.32–7.26 (m, 2H; ArH_{Ph}), 6.95 (s, 4H; ArH), 6.58 (s, 4H; ArH), 4.53–4.46 (m, 4H; NCH₂), 4.30 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 4.06 (q, 4H, ${}^{3}J$ = 7.1 Hz; OCH₂CH₃), 4.04–3.97 (m, 4H; CH₂CH₂CH₂CH₂N), 3.80–3.73 (m, 4H, OCH₂CH₂CH₂CO), 3.14 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 2.71–2.60 (m, 4H; CH₂CH₂N), 2.47–2.41 (m, 4H; CH₂CO), 2.27–2.16 (m, 4H; CH₂CH₂CO), 1.20 (s, 18H; C(CH₃)₃), 1.18 (t, 6H, ${}^{3}J$ = 7.1 Hz; CH₃), 0.91 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 173.24 (C=O), 153.31, 152.34, 147.48, 145.24, 144.57, 134.52, 132.47, 130.74 (C_{Ar}), 128.75, 127.94, 125.55, 125.43, 124.81, 120.37 (CH_{Ar}), 74.48, 71.44 (OCH₂), 60.41 (OCH₂CH₂CH₂), 4rCH₂Ar, CH₂CO), 25.61 (CH₂CH₂CH₂), 14.17 (CH₃) ppm. ESI-MS *m*/*z*: 1247.7518 [M+H]⁺ for C₇₈H₉₉N₆O₈ (1247.7519).

Triazolated calixarene bis(acid) **36** was prepared as described for compound **13** from calixarene **32** (0.541 g, 0.47 mmol) and K_2CO_3 (0.773 g, 5.60 mmol) in the mixture of methanol (36 mL), THF (9.3 mL) and water (3.6 mL). The product was additionally purified by crystallization from a dichloromethane solution upon addition of methanol. Yield 0.488 g (95%), white solid. M.p.

208–210 °C. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.55$ (s, 2H; ArH_{Trz}), 7.87–7.82 (m, 4H; ArH_{Ph}), 7.44–7.38 (m, 4H; ArH_{Ph}), 7.36–7.30 (m, 2H; ArH_{Ph}) 7.21 (s, 4H; ArH), 6.55 (s, 4H; ArH), 5.44–5.37 (m, 4H, NCH₂), 4.61–4.54 (m, 4H; OC<u>H</u>₂CH₂), 4.36 (d, 4H, ²*J* = 12.8 Hz; ArCH₂Ar), 4.35 (s, 4H; CH₂CO), 3.24 (d, 4H, ²*J* = 12.8 Hz; ArCH₂Ar), 1.28 (s, 18H; C(CH₃)₃), 0.83 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 170.83$ (C=O), 153.68, 151.11, 146.08, 145.25, 144.22, 134.82, 131.63, 130.90 (C_{Ar}), 128.86, 127.78, 125.57, 125.16, 124.68, 121.74 (CH_{Ar}), 71.97, 71.89 (OCH₂), 48.64 (NCH₂), 33.87, 33.34 (<u>C</u>(CH₃)₃), 31.42, 30.80 (C(<u>CH₃)₃</u>), 30.27 (ArCH₂Ar) ppm. ESI-MS *m*/*z*: 1107.5957 [M+H]⁺ for C₆₈H₇₉N₆O₈ (1107.5954).

Triazolated calixarene bis(acid) **37** was prepared as described for compound **13** from calixarene **33** (0.455 g, 0.37 mmol) and K_2CO_3 (0.63 g, 4.57 mmol) in the mixture of methanol (29 mL), THF (7.6 mL) and water (2.9 mL). To the residue obtained after concentration of the reaction mixture, aqueous HCl (2 M) was added, and the suspension was stirred at

room temperature for 24 h. The solid was filtered, washed with water and dried. Yield 0.391 g (90%), white solid. M.p. 272–274 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.63 (s, 2H; ArH_{Trz}), 7.90–7.83 (m, 4H; ArH_{Ph}), 7.47–7.40 (m, 4H; ArH_{Ph}), 7.36–7.30 (m, 2H; ArH_{Ph}), 6.95 (s, 4H; ArH), 6.68 (s, 4H; ArH), 5.11–5.02 (m, 4H; NCH₂), 4.50–4.42 (m, 4H; OC<u>H</u>₂CH₂N), 4.22 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 3.75–3.66 (m, 4H; OC<u>H</u>₂CH₂CH₂), 3.16 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 2.37–2.30 (m, 4H; CH₂CO), 2.15–2.05 (m, 4H; OCH₂CH₂CH₂), 1.12 (s, 18H; C(CH₃)₃), 0.95 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 174.30 (C=O), 152.68, 152.46, 146.44, 144.71, 143.78, 133.76, 132.58, 130.81 (C_{Ar}), 128.88, 127.84, 125.21, 125.17, 124.68, 121.50 (CH_{Ar}), 74.38, 71.67 (OCH₂), 49.30 (NCH₂), 33.66, 33.43 (<u>C</u>(CH₃)₃), 31.23, 31.02 (C(<u>CH₃)₃</u>), 30.29, 30.24 (ArCH₂Ar, CH₂CO), 25.09 (CH₂<u>C</u>H₂CH₂) ppm. ESI-MS *m/z*: 1163.6585 [M+H]⁺ for C₇₂H₈₇N₆O₈ (1163.6580).

Triazolated calixarene bis(acid) **38** was prepared as described for compound **13** from calixarene **34** (1.55 g, 1.30 mmol) and K₂CO₃ (2.14 g, 15.5 mmol) in the mixture of methanol (103 mL), THF (26.3 mL) and water (10.3 mL). The product was additionally purified by crystallization from a dichloromethane solution upon addition of hexane. Yield 1.17 g (79%), white solid. M.p. 181–183 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 12.2 (bs, 2H; CO₂H), 8.53 (s, 2H;

ArH_{Trz}), 7.86–7.81 (m, 4H; ArH_{Ph}), 7.46–7.40 (m, 4H; ArH_{Ph}), 7.35–7.29 (m, 2H; ArH_{Ph}), 6.97 (s, 4H; ArH), 6.73 (s, 4H; ArH), 4.66–4.59 (m, 4H; NCH₂), 4.61 (s, 4H; CH₂CO), 4.46 (d, 4H, ${}^{2}J$ = 12.6 Hz; ArCH₂Ar), 3.87–3.80 (m, 4H; OC<u>H</u>₂CH₂), 3.19 (d, 4H, ${}^{2}J$ = 12.6 Hz; ArCH₂Ar), 2.59–2.50 (m, 4H; CH₂CH₂), 1.13 (s, 18H; C(CH₃)₃), 0.95 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.89 (C=O), 152.30, 151.97, 146.36, 144.94, 144.30, 133.64, 132.82, 130.83 (C_{Ar}), 128.89, 127.80, 125.29, 125.17, 124.95, 121.22 (CH_{Ar}), 72.33, 71.50 (OCH₂), 47.16 (NCH₂), 33.66, 33.48 (<u>C</u>(CH₃)₃), 31.19, 30.97 (C(<u>CH₃)₃</u>), 30.27 (ArCH₂Ar), 22.09 (CH₂<u>C</u>H₂CH₂) ppm. ESI-MS *m*/*z*: 1135.6266 [M+H]⁺ for C₇₀H₈₃N₆O₈ (1135.6267).

Triazolated calixarene bis(acid) **39** was prepared as described for compound **37** from calixarene **35** (0.947 g, 0.76 mmol) and K₂CO₃ (1.26 g, 9.13 mmol) in the mixture of methanol (60 mL), THF (16 mL) and water (6 mL). Yield 0.890 g (98%), white solid. M.p. 288–290 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 12.1 (bs, 2H; CO₂H), 8.52 (s, 2H; ArH_{Trz}),

7.88–7.82 (m, 4H; ArH_{Ph}), 7.46–7.39 (m, 4H; ArH_{Ph}), 7.35–7.29 (m, 2H; ArH_{Ph}), 6.86 (s, 4H; ArH), 6.72 (s, 4H; ArH), 4.66–4.58 (m, 4H; NCH₂), 4.26 (d, 4H, ${}^{2}J$ =12.5 Hz; ArCH₂Ar), 3.90–3.83 (m, 4H; CH₂CH₂CH₂CH₂N), 3.82–3.74 (m, 4H; OCH₂CH₂CH₂CO), 3.12 (d, 4H, ${}^{2}J$ =12.5 Hz; ArCH₂Ar), 2.61–2.52 (m, 4H; CH₂CH₂N), 2.41–2.34 (m, 4H; CH₂CO), 2.17–2.08 (m, 4H; CH₂CH₂CO), 1.07 (s, 18H; C(CH₃)₃), 0.98 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, DMSOd₆): δ = 174.34 (C=O), 152.98, 152.68, 146.42, 144.07, 143.67, 133.54, 132.92, 130.75 (C_{Ar}), 128.86, 127.82, 125.15, 124.90, 124.65, 121.19 (CH_{Ar}), 74.10, 71.61 (OCH₂), 47.03 (NCH₂), 33.54, 33.43 (C(CH₃)₃), 31.17, 31.06 (C(CH₃)₃), 30.50, 30.31, 30.22 (CH₂CH₂CH₂CH₂, ArCH₂Ar, CH₂CO), 25.12 (CH₂CH₂CH₂) ppm. ESI-MS *m*/*z*: 1191.6892 [M+H]⁺ for C₇₄H₉₁N₆O₈ (1191.6893).

Triazolated calixarene bis(1-acylbenzotriazole) **40**. To a stirred solution of 1,2,3-benzotriazole (0.410 g, 3.45 mmol) in dry dichloromethane (3 mL) SOCl₂ (0.094 mL, 1.29 mmol) was added. The mixture was stirred at room temperature for 20 min and then transferred to a stirred solution of bis(acid) **24** (0.477 g, 0.431 mmol)

in dry dichloromethane (5.5 mL) and the mixture was stirred at room temperature for 24 h. Aqueous HCl (2 M, 8 mL) was added and the mixture was intensively stirred for 10 min. The organic layer was separated, the aqueous layer was washed with dichloromethane. The combined organic phase was washed twice with aqueous HCl (2 M), water, brine, dried, and then evaporated to dryness under reduced pressure. Yield 0.482 g (85%), white solid. M.p. 150–152 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.16–8.10 (m, 2H; ArH_{Bt}), 7.99–7.94 (m, 2H; ArH_{Bt}), 7.74 (s, 2H; ArH_{Trz}), 7.59–7.47 (m, 4H; ArH_{Bt}), 7.22–7.14 (m, 6H; ArH_{Ph}), 7.13–7.05 (m, 4H; ArH_{Ph}), 7.00 (s, 4H; ArH), 6.59 (s, 4H; ArH), 5.81 (s, 4H; CH₂CO), 5.11 (s, 4H; NCH₂), 5.00 (s, 4H; OCH₂Trz), 4.79 (d, 4H, ²*J* = 13.0 H*z*; ArCH₂Ar), 3.18 (d, 4H, ²*J* = 13.0 H*z*; ArCH₂Ar), 1.24 (s, 18H; C(CH₃)₃), 0.95 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 169.31 (C=O), 153.58, 152.34, 145.63, 145.57, 145.13, 144.90, 135.40, 134.27, 132.68, 131.07 (C_{Ar}), 130.34, 125.67, 128.16, 127.71, 125.99, 125.88, 124.91, 123.61, 119.78, 114.29 (CH_{Ar}), 71.98 (<u>C</u>H₂CO), 67.94 (OCH₂Trz), 53.45 (NCH₂), 33.98, 33.71 (<u>C</u>(CH₃)₃), 31.92 (ArCH₂Ar), 31.50, 31.21 (C(<u>C</u>H₃)₃) ppm. ESI-MS *m/z*: 1309.6716 [M+H]⁺ for C₈₀H₈₅N₁₂O₆ (1309.6710).

Triazolated calixarene bis(1-acylbenzotriazole) **41** was prepared as described for compound **5** from bis(acid) **25** (2.00 g, 1.72 mmol), 1,2,3-benzotriazole (0.818 g, 6.87 mmol) and DIC (1.06 mL, 6.87 mmol) in dry dichloromethane (85 mL). Methanol was replaced with ethanol at the purification step. Yield 2.04 g (87%), white solid. M.p. 225–227 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.09–8.00 (m, 4H; ArH_{Bt}), 7.63 (s, 2H; ArH_{Trz}), 7.43–7.38 (m, 4H; ArH_{Bt}), 7.26–7.22 (m, 6H; ArH_{Ph}), 7.17–7.11 (m, 4H; ArH_{Ph}), 6.98 (s, 4H; ArH), 6.50 (s, 4H; ArH), 5.36 (s, 4H; NCH₂), 4.93 (s, 4H; OCH₂Trz), 4.33 (d, 4H, ²*J* = 12.6 Hz; ArCH₂Ar), 4.02–3.96 (m, 4H; OC<u>H</u>₂CH₂), 3.42–3.35 (m, 4H; C<u>H</u>₂CO), 2.98 (d, 4H, ²*J* = 12.6 Hz; ArCH₂Ar), 2.44–2.34 (m, 4H; CH₂C<u>H</u>₂CH₂), 1.26 (s, 18H; C(CH₃)₃), 0.87 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 172.70 (C=O), 154.01, 151.30, 146.07, 144.94, 144.79, 144.68, 135.14, 135.00, 132.72, 130.98 (C_{Ar}), 130.15, 128.85, 128.38, 127.80, 125.92, 125.29, 124.68, 123.54, 120.12, 114.01 (CH_{Ar}), 73.65 (OCH₂CH₂), 67.58 (OCH₂Trz), 53.74 (NCH₂), 33.99, 33.62 (<u>C</u>(CH₃)₃), 32.11 (ArCH₂Ar), 31.63 (C(<u>CH₃)₃</u>), 31.13 (C(<u>CH₃)₃</u>, <u>CH₂CO</u>), 24.00 (CH₂<u>C</u>H₂CH₂) ppm. ESI-MS *m/z*: 1365.7333 [M+H]⁺ for C₈₄H₉₃N₁₂O₆ (1365.7336).

Triazolated calixarene bis(1-acylbenzotriazole) **42** was prepared as described for compound **5** from bis(acid) **36** (0.488 g, 0.44 mmol), 1,2,3-benzotriazole (0.210 g, 1.76 mmol) and DIC (0.272 mL, 1.76 mmol) in dry dichloromethane (21 mL). Yield 0.268 g (46%), white solid. M.p. 292–294 °C (decomp.). ¹H NMR (400 MHz,

CDCl₃): $\delta = 8.17$ (s, 2H; ArH_{Trz}), 8.07–8.00 (m, 4H; ArH_{Bt}), 7.79–7.73 (m, 4H; ArH_{Ph}), 7.46–7.40 (m, 2H; ArH_{Bt}), 7.37–7.30 (m, 2H; ArH_{Bt}), 7.30–7.22 (m, 6H; ArH_{Ph}), 7.18 (s, 4H; ArH), 6.60 (s, 4H; ArH), 5.58 (s, 4H; CH₂CO), 5.54–5.47 (m, 4H; NCH₂), 4.81–4.74 (m, 4H; OCH₂), 4.52 (d, 4H, ²*J* = 12.8 Hz; ArCH₂Ar), 3.34 (d, 4H, ²*J* = 12.8 Hz; ArCH₂Ar), 1.34 (s, 18H; C(CH₃)₃), 0.89 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.02$ (C=O), 153.62, 151.08, 147.44, 146.35, 146.01, 145.82, 134.83, 131.71, 130.85 (C_{Ar}), 130.82 (CH_{Ar}), 130.76 (C_{Ar}), 128.68, 127.76, 126.41, 125.99, 125.51, 125.36, 120.68, 120.18, 114.09 (CH_{Ar}), 73.56, 72.18 (OCH₂), 49.32 (NCH₂), 34.18, 33.75 (<u>C</u>(CH₃)₃), 31.63 (C(<u>C</u>H₃)₃), 31.10 (ArCH₂Ar), 31.03 (C(<u>C</u>H₃)₃) ppm. ESI-MS *m/z*: 1309.6712 [M+H]⁺ for C₈₀H₈₅N₁₂O₆ (1309.6710).

Triazolated calixarene bis(1-acylbenzotriazole) **43** was prepared as described for compound **5** from bis(acid) **37** (0.355 g, 0.306 mmol), 1,2,3-benzotriazole (0.145 g, 1.22 mmol) and DIC (0.190 mL, 1.22 mmol) in dry dichloromethane (15 mL). Yield 0.358 g (86%), white solid. M.p. 120–122 °C. ¹H NMR (400 MHz, CDCl₃): δ =

8.12 (s, 2H; ArH_{Trz}), 8.12–8.09 (m, 2H; ArH_{Bt}), 7.94–7.90 (m, 2H; ArH_{Bt}), 7.65–7.61 (m, 4H; ArH_{Ph}), 7.53–7.48 (m, 2H; ArH_{Bt}), 7.40–7.34 (m, 2H; ArH_{Bt}), 7.15–7.04 (m, 6H; ArH_{Ph}), 7.10 (s, 4H; ArH), 6.57 (s, 4H; ArH), 5.24–5.17 (m, 4H; NCH₂), 4.71–4.64 (m, 4H; OC<u>H</u>₂CH₂N), 4.39 (d, 4H, ^{2}J = 12.8 Hz; ArCH₂Ar), 3.93–3.87 (m, 4H; OC<u>H</u>₂CH₂CH₂), 3.63–3.57 (m, 4H; CH₂CO), 3.26

(d, 4H, ${}^{2}J$ = 12.8 Hz; ArCH₂Ar), 2.52–2.42 (m, 4H; OCH₂CH₂CH₂), 1.30 (s, 18H; C(CH₃)₃), 0.89 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 171.69 (C=O), 152.67, 151.88, 147.67, 146.13, 145.91, 144.91, 134.89, 131.94, 130.96, 130.41 (C_{Ar}), 130.17, 128.40, 127.54, 125.87, 125.86, 125.46, 124.86, 120.35, 119.88, 114.37 (CH_{Ar}), 74.66, 71.66 (OCH₂), 49.48 (NCH₂), 34.10, 33.67 (<u>C</u>(CH₃)₃), 32.43 (ArCH₂Ar), 31.58, 31.12 (C(<u>C</u>H₃)₃), 30.89 (<u>C</u>H₂CO), 24.80 (CH₂<u>C</u>H₂CH₂) ppm. ESI-MS *m/z*: 1365.7340 [M+H]⁺ for C₈₄H₉₃N₁₂O₆ (1365.7336).

Triazolated calixarene bis(1-acylbenzotriazole) **44** was prepared as described for compound **5** from bis(acid) **38** (1.57 g, 1.38 mmol), 1,2,3-benzotriazole (0.657 g, 5.52 mmol) and DIC (0.853 mL, 5.52 mmol) in dry dichloromethane (68 mL). Yield 1.11 g (60%), white solid. M.p. >300 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.07–8.02 (m, 2H; ArH_{Bt}), 7.91 (s, 2H; ArH_{Trz}), 7.78–7.71 (m, 6H; ArH_{Bt}+ArH_{Pb}), 7.41–7.27 (m,

10H, ArH_{Bt}+ArH_{Ph}), 7.04 (s, 4H; ArH), 6.67 (s, 4H; ArH), 6.03 (s, 4H; CH₂CO), 4.85 (d, 4H, ${}^{2}J$ = 13.0 Hz; ArCH₂Ar), 4.66–4.59 (m, 4H; NCH₂), 4.04–3.96 (m, 4H; OC<u>H₂CH₂</u>), 3.35 (d, 4H, ${}^{2}J$ = 13.0 Hz; ArCH₂Ar), 2.71–2.58 (m, 4H; CH₂C<u>H₂</u>CH₂), 1.24 (s, 18H; C(CH₃)₃), 0.99 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 169.27 (C=O), 153.18, 152.93, 147.48, 145.96, 145.44, 145.34, 133.91, 132.28 (C_{Ar}), 130.92 (CH_{Ar}), 130.85, 130.73 (C_{Ar}), 128.56, 127.79, 126.37, 126.21, 125.63, 125.17, 120.12, 119.65, 113.60 (CH_{Ar}), 72.47, 72.15 (OCH₂), 47.88 (NCH₂), 34.02, 33.78 (<u>C</u>(CH₃)₃), 31.69 (ArCH₂Ar), 31.48, 31.25 (C(<u>C</u>H₃)₃), 30.84 (CH₂<u>C</u>H₂CH₂) ppm. ESI-MS *m/z*: 1337.7024 [M+H]⁺ for C₈₂H₈₉N₁₂O₆ (1337.7023).

Triazolated calixarene bis(1-acylbenzotriazole) **45** was prepared as described for compound **5** from bis(acid) **39** (0.848 g, 0.713 mmol), 1,2,3-benzotriazole (0.339 g, 2.85 mmol) and DIC (0.441 mL, 2.85 mmol) in dry dichloromethane (37 mL). Yield 0.778 g (78%), white solid. M.p. 236–238 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.10–8.06 (m, 2H; ArH_{Bt}), 8.03–7.99 (m, 2H; ArH_{Bt}), 7.91 (s, 2H;

ArH_{Trz}), 7.58–7.54 (m, 4H; ArH_{Ph}), 7.46–7.41 (m, 2H; ArH_{Bt}), 7.40–7.35 (m, 2H; ArH_{Bt}), 7.20– 7.09 (m, 6H; ArH_{Ph}), 6.91 (s, 4H; ArH), 6.69 (s, 4H; ArH), 4.60–4.52 (m, 4H; NCH₂), 4.39 (d, 4H, ${}^{2}J$ =12.5 Hz; ArCH₂Ar), 4.13–4.07 (m, 4H; CH₂CH₂CH₂CH₂N), 4.02–3.96 (m, 4H; OCH₂CH₂CH₂CO), 3.65–3.30 (m, 4H; CH₂CO), 3.19 (d, 4H, ${}^{2}J$ =12.5 Hz; ArCH₂Ar), 2.79–2.69 (m, 4H; CH₂CH₂CH₂), 2.59–2.49 (m, 4H; CH₂CH₂CH₂), 1.16 (s, 18H; C(CH₃)₃), 0.98 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 172.09 (C=O), 152.18, 152.64, 147.28, 146.00, 145.16, 144.79, 134.12, 132.87, 130.96, 130.48 (C_{Ar}), 130.26, 128.53, 127.67, 125.92, 125.38, 125.31, 125.01, 120.19, 119.92, 114.20 (CH_{Ar}), 74.35, 71.78 (OCH₂), 47.68 (NCH₂), 33.92, 33.74 ($\underline{C}(CH_3)_3$), 32.45 (ArCH₂Ar), 31.47, 31.27 ($C(\underline{C}H_3)_3$), 31.03, 31.01 (CH₂CO, CH₂CH₂CH₂), 24.63 (CH₂CH₂CH₂) ppm. ESI-MS *m*/*z*: 1393.7654 [M+H]⁺ for C₈₆H₉₇N₁₂O₆ (1393.7649).

Propargylated calixarene bis(ester) **48**. A mixture of dipropargyl ether **47** (1.20 g, 2.40 mmol), Cs_2CO_3 (3.91 g, 12.0 mmol) and dry acetone (50 mL) was stirred at room temperature for 24 h. Ethyl bromoacetate (1.60 mL, 14.4 mmol) was added and the mixture was stirred at room temperature for 48 h. The

mixture was filtered, the solid was washed with acetone and the filtrate was concentrated under reduced pressure without heating. The residue was dissolved in dichloromethane, the solution was washed with aqueous HCl (2 M) and water, dried and then concentrated under reduced pressure (10⁻² mm Hg) at 30 °C. The residue was dissolved in minimum amount of dichloromethane, methanol was added, and the solution was stored at -18 °C overnight. The crystals formed were collected, washed with cold methanol and dried to give a crude product, which was purified by column chromatography (silica, gradient from hexane to hexane/ethyl acetate 5:1). Yield 0.668 g (41%), white solid. M.p. 128–130 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.13 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 7.12 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 6.78 (t, 2H, ${}^{3}J$ = 7.5 Hz; ArH), 6.75 (t, 2H, ${}^{3}J$ = 7.5 Hz; ArH), 4.26 (d, 4H, ${}^{4}J$ = 2.4 Hz; CH₂CCH), 4.16 (q, 4H, ${}^{3}J$ = 7.2 Hz; CH₂CH₃), 3.88 (d, 4H, ${}^{2}J$ = 14.7 Hz; ArCH₂Ar), 3.80 (d, 4H, ${}^{2}J$ = 14.7 Hz; ArCH₂Ar), 3.60 (s, 4H, CH₂CO), 2.44 (t, 2H, ${}^{4}J$ = 2.4 Hz; CCH), 1.27 (t, 6H, ${}^{3}J$ = 7.2 Hz; CH₃) ppm; ${}^{13}C$ NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 169.81 \text{ (C=O)}, 155.72, 155.09, 134.77, 133.33 \text{ (C}_{Ar}), 130.59, 130.12,$ 123.24, 122.67 (CH_{Ar}), 80.15 (OCH₂C), 74.73 (CH), 68.97 (OCH₂CO), 60.43 (CH₂CH₃), 58.84 (<u>CH</u>₂CCH), 36.73 (ArCH₂Ar), 14.12 (CH₃) ppm. ESI-MS m/z: 690.3083 [M+NH₄]⁺ for C₄₂H₄₄NO₈ (690.3061).

Propargylated calixarene bis(ester) **49**. *Method A:* A mixture of dipropargyl ether **47** (1.20 g, 2.40 mmol), Cs_2CO_3 (2.40 g, 7.36 mmol) and dry acetone (50 mL) was stirred at room temperature for 24 h. Ethyl 4-bromobutyrate (2.10 mL, 14.7 mmol) was added and the mixture was stirred at 50 °C for 24 h. After cooling to room temperature, the mixture was filtered, the solid was

washed with acetone and the filtrate was concentrated under reduced pressure without heating. The residue was dissolved in dichloromethane, the solution was washed with aqueous HCl (2 M) and water, dried and then concentrated under reduced pressure. The residue was purified by column chromatography (silica, gradient from hexane to hexane/ethyl acetate 5:1). Yield 0.285 g (16%), white solid. *Method B:* A mixture of bis(ester) **11** (1.30 g, 2.00 mmol), Cs_2CO_3 (2.61 g, 8.00 mmol) and dry DMF (60 mL) was stirred at room temperature for 30 min. Propargyl

bromide (80% in toluene, 1.12 mL, 10.00 mmol) was added and the mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure at a moderate heating (< 45 °C). The residue was parted between dichloromethane and aqueous HCl (2 M), the organic phase was separated, washed with water, dried and then concentrated under reduced pressure. The residue was purified by column chromatography (silica, gradient from dichloromethane to dichloromethane/ethanol 50:1), the obtained sample was dissolved in a minimum amount of dichloromethane, methanol was added, and the solid formed was collected, washed with methanol and dried. Yield 0.680 g (47%), white solid. M.p. 133–135 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.12$ (d, 4H, ${}^{3}J = 7.5$ Hz; ArH), 7.03 (d, 4H, ${}^{3}J = 7.5$ Hz; ArH), 6.79 (t, 2H, ${}^{3}J = 7.5$ Hz; ArH), 6.77 (t, 2H, ${}^{3}J = 7.5$ Hz; ArH), 4.17 (g, 4H, ${}^{3}J = 7.1$ Hz; CH₂CH₃), 3.95 (d, 4H, ${}^{4}J = 2.3$ Hz; CH₂CCH), 3.82 (d, 4H, ${}^{2}J = 14.8$ Hz; ArCH₂Ar), 3.66 (d, 4H, ${}^{2}J = 14.8$ Hz; ArCH₂Ar), 3.57–3.51 (m, 4H; OCH₂CH₂), 2.39 (t, 2H, ${}^{4}J$ = 2.3 Hz; CCH), 2.27–2.22 (m, 4H; CH₂CO), 1.88–1.80 (m, 4H; CH₂CH₂CH₂), 1.30 (t, 6H, ${}^{3}J = 7.1$ Hz; CH₃) ppm; ${}^{13}C$ NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 173.46 \text{ (C=O)}, 155.25, 155.27, 134.49, 133.66 \text{ (C}_{Ar}), 130.26, 129.94,$ 122.57 (CH_{Ar}), 80.43 (OCH₂C), 74.43 (CH), 70.04 (OCH₂CH₂), 60.26 (CH₂CH₃), 58.59 (<u>CH</u>₂CCH), 37.21 (ArCH₂Ar), 30.47 (<u>CH</u>₂CO), 25.31 (CH₂<u>C</u>H₂CH₂), 14.27 (CH₃) ppm. ESI-MS m/z: 746.3710 [M+NH₄]⁺ for C₄₆H₅₂NO₈ (746.3687).

Propargylated calixarene bis(ester) **50** was obtained as a less polar product during the column purification of calixarene **49** (Method B). The separated product was dissolved in a minimum amount of dichloromethane, methanol was added, and the solid formed was collected, washed with methanol and dried. Yield 0.539 g (37%), white solid. M.p. 109–111 °C. ¹H NMR (400 MHz,

CDCl₃): $\delta = 7.28$ (d, 2H, ³J = 7.5 Hz; ArH), 7.08 (d, 2H, ³J = 7.5 Hz; ArH), 7.03 (dd, 2H, ³J = 7.5 Hz, ⁴J = 1.5 Hz; ArH), 6.97 (t, 1H, ³J = 7.5 Hz; ArH), 6.95–6.90 (m, 1H; ArH), 6.48 (t, 2H, ³J = 7.5 Hz; ArH), 6.29 (dd, 2H, ³J = 7.5 Hz; ArH), 6.95–6.90 (m, 1H; ArH), 6.48 (t, 2H, ³J = 7.5 Hz; ArH), 6.29 (dd, 2H, ³J = 7.5 Hz, ⁴J = 1.5 Hz; ArH), 4.50 (d, 2H, ⁴J = 2.4 Hz; CH₂CCH), 4.19 (d, 2H, ²J = 13.8 Hz; ArCH₂Ar), 4.17 (q, 4H, ³J = 7.1 Hz; CH₂CH₃), 4.00 (d, 2H, ⁴J = 2.4 Hz; CH₂CCH), 3.89–3.82 (m, 2H; OCH₂CH₂), 3.77 (d, 2H, ²J = 13.2 Hz; ArCH₂Ar), 3.69–3.61 (m, 2H; OCH₂CH₂), 3.66 (d, 2H, ²J = 13.2 Hz; ArCH₂Ar), 3.10 (d, 2H, ²J = 13.8 Hz; ArCH₂Ar), 2.66–2.48 (m, 4H; CH₂CH₂CH₂), 2.55 (t, 1H, ⁴J = 2.4 Hz; CCH), 2.25– 2.17 (m, 4H; CH₂CO), 2.18 (t, 1H, ⁴J = 2.4 Hz; CCH), 1.27 (t, 6H, ³J = 7.1 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.26$ (C=O), 156.30, 155.72, 153.78, 137.85, 134.32, 133.17, 131.54 (C_{Ar}), 130.52, 130.49, 129.22, 128.80, 128.36, 123.01, 122.09 (CH_{Ar}), 80.54, 80.53 (OCH₂C), 74.86, 74.49 (CH), 73.11 (OCH₂CH₂), 60.41, 59.61 (CH₂CCH), 57.35 (CH₂CH₃), 35.79, 31.37 (ArCH₂Ar), 31.00 (CH₂CO), 25.80 (CH₂CH₂CH₂), 14.23 (CH₃) ppm. ESI-MS *m/z*: 729.3437 [M+H]⁺ for C₄₆H₄₉O₈ (729.3422).

Triazolated calixarene bis(ester) **51**. Under argon, a freshly prepared solution of CuI (0.048 g, 0.25 mmol) and triethylamine (0.70 mL, 5.0 mmol) in toluene (6 mL) was added to a stirred solution of calixarene **48** (0.420 g, 0.625 mmol) in toluene (34 mL). Benzyl azide (0.200 g, 1.50 mmol) was added and the mixture was stirred at room temperature for 72 h. The solvent was removed

under reduced pressure, the residue was suspended in dichloromethane, aqueous HCl (2 M) was added and the heterogeneous mixture was intensively stirred for at least 2 h. The organic phase was separated, the aqueous phase was extracted with dichloromethane. The combined organic fractions were washed with water, dried and the solvent was evaporated. The residue was dissolved in a minimum amount of dichloromethane, hexane was added, and the solid formed was separated, washed with hexane and dried. Yield 0.508 g (87%), white solid. M.p. 83–85 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.43–7.33 (m, 6H; ArH_{Ph}), 7.31–7.26 (m, 4H; ArH_{Ph}), 7.05 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.78 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.68 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.43 (s, 2H; ArH_{Trz}), 6.08 (t, 2H, ³*J* = 7.5 Hz; ArH), 5.61 (s, 4H; NCH₂), 4.74 (s, 4H; OCH₂Trz), 4.03 (q, 4H, ³*J* = 7.1 Hz; CH₂CH₃), 3.91 (d, 4H, ²*J* = 15.9 Hz; ArCH₂Ar), 3.44 (d, 4H, ²*J* = 15.9 Hz; ArCH₂Ar), 3.15 (s, 4H; CH₂CO), 1.16 (t, 6H, ³*J* = 7.1 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 169.93 (C=O), 155.85, 154.78, 144.31, 135.27, 133.48 (C_{Ar}), 130.17, 130.15 (CH_{Ar}), 128.90 (C_{Ar}), 128.50, 127.73, 123.55, 123.47, 122.55 (CH_{Ar}), 68.11 (CH₂CO), 64.32 (OCH₂Trz), 60.14 (CH₂CH₃), 53.71 (NCH₂), 37.61 (ArCH₂Ar), 14.02 (CH₃) ppm. ESI-MS *m/z*: 939.4084 [M+H]⁺ for C₅₆H₅₅N₆O₈ (939.4076).

Triazolated calixarene bis(ester) **52** was prepared as described for compound **51** from calixarene **49** (0.524 g, 0.72 mmol), benzyl azide (0.230 g, 1.73 mmol), CuI (0.055 g, 0.29 mmol) and triethylamine (0.83 mL, 6.0 mmol) in toluene (50 mL). At the purification step, a dichloromethane/hexane solution was decanted from the product appeared as a viscous oil, which was then dried under reduced pressure. Yield 0.704 g (98%), yellow oil. ¹H NMR

(400 MHz, CDCl₃): $\delta = 7.41-7.32$ (m, 6H; ArH_{Ph}), 7.29–7.25 (m, 4H; ArH_{Ph}), 6.98 (d, 4H, ${}^{3}J = 7.5$ Hz; ArH), 6.83–6.78 (m, 2H; ArH), 6.64 (d, 4H, ${}^{3}J = 7.5$ Hz; ArH), 6.45 (s, 2H; ArH_{Trz}), 6.08 (t, 2H, ${}^{3}J = 7.5$ Hz; ArH), 5.58 (s, 4H; NCH₂), 4.68 (s, 4H; OCH₂Trz), 4.12 (q, 4H, ${}^{3}J = 7.1$ Hz; CH₂CH₃), 3.62 (d, 4H, ${}^{2}J = 15.8$ Hz; ArCH₂Ar), 3.43 (d, 4H, ${}^{2}J = 15.8$ Hz; ArCH₂Ar), 3.40–3.35 (m, 4H; OCH₂CH₂), 2.05–1.99 (m, 4H; CH₂CO), 1.62–1.53 (m, 4H; CH₂CH₂CH₂), 1.27 (t, 6H, ${}^{3}J = 7.1$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 173.52$ (C=O), 156.16, 155.16, 144.59, 135.33, 134.38, 133.43 (C_{Ar}), 129.47, 129.32, 128.81, 128.38, 127.65, 123.42, 122.80, 122.08 (CH_{Ar}), 68.86 (OCH₂CH₂), 63.64 (OCH₂Trz), 60.09 (CH₂CH₃), 53.57 (NCH₂), 37.70 (ArCH₂Ar), 30.28 (CH₂CO), 24.94 (CH₂CH₂CH₂), 14.24 (CH₃) ppm. ESI-MS *m/z*: 995.4704 [M+H]⁺ for C₆₀H₆₃N₆O₈ (995.4702).

Triazolated calixarene bis(acid) 53 was prepared as described for compound 13 from calixarene 51 (0.508 g, 0.54 mmol) and K₂CO₃ (0.447 g, 3.24 mmol) in the mixture of methanol (40 mL), THF (8 mL) and water (4 mL). Yield 0.420 g (88%), white solid. M.p. 233–235 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.42-7.33 (m, 6H; ArH_{Ph}), 7.28-7.22 (m, 4H; ArH_{Ph}), 6.98-6.94 (m, 4H; ArH),

6.90–6.85 (m, 2H; ArH), 6.72 (d, 4H, ${}^{3}J$ =7.5 Hz; ArH), 6.43 (s, 2H; ArH_{Trz}), 6.27 (t, 2H, ³*J* = 7.5 Hz; ArH), 5.58 (s, 4H; NCH₂), 4.71 (s, 4H; OCH₂Trz), 3.99 (s, 4H; CH₂CO), 3.63 (d, 4H, $^{2}J = 16.3$ Hz; ArCH₂Ar), 3.56 (d, 4H, $^{2}J = 16.2$ Hz; ArCH₂Ar) ppm; ^{13}C NMR (100 MHz, $CDCl_3+CD_3OD$): $\delta = 170.44$ (C=O), 154.77, 153.57, 144.06, 134.87, 134.06 (C_{Ar}), 133.11, 129.42 (CHAr), 129.23 (CAr), 128.69, 128.35, 127.43, 124.05, 123.30, 123.19 (CHAr), 66.59 (OCH₂CO), 63.27 (OCH₂Trz), 53.48 (NCH₂), 37.17 (ArCH₂Ar) ppm. ESI-MS *m/z*: 883.3453 $[M+H]^+$ for C₅₂H₄₇N₆O₈ (883.3450).

Triazolated calixarene bis(acid) 54 was prepared as described for compound 13 from calixarene 52 (0.700 g, 0.70 mmol) and K₂CO₃ (0.583 g, 4.23 mmol) in the mixture of methanol (25 mL), THF (15 mL) and water (5 mL). Yield 0.620 g (94%), white solid. M.p. 120–122 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.42-7.34 (m, 6H; ArH_{Ph}), 7.30-7.26 (m, 4H; ArH_{Ph}), 7.00-6.97 (m, 4H; `он ArH), 6.89–6.84 (m, 2H; ArH), 6.65 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 6.40 (s, 2H; ArH_{Trz}), 6.08 (t, 2H, ${}^{3}J = 7.5$ Hz; ArH), 5.60 (s, 4H; NCH₂), 4.69 (s, 4H; OCH₂Trz), 3.63 (d, 4H, ${}^{2}J = 16.0$ Hz; ArCH₂Ar), 3.45 (d, 4H, ${}^{2}J$ = 16.0 Hz; ArCH₂Ar), 3.45–3.41 (m, 4H; OCH₂CH₂), 2.02–1.95 (m, 4H; CH₂CO), 1.73-1.63 (m, 4H; CH₂CH₂CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 179.86$ (C=O), 156.19, 155.12, 144.46, 135.28, 134.43, 133.44 (C_{Ar}), 129.56, 129.36, 128.85, 128.44, 127.69, 123.57, 123.15, 122.31 (CH_{Ar}), 68.84 (OCH₂CH₂), 63.48 (OCH₂Trz), 53.63 (NCH₂), 37.85 (ArCH₂Ar), 30.79 (CH₂CO), 25.17 (CH₂CH₂CH₂) ppm. ESI-MS m/z: 939.4082 [M+H]⁺ for C₅₆H₅₅N₆O₈ (939.4076).

Triazolated calixarene bis(1-acylbenzotriazole) 55 was prepared as described for compound 40 from calixarene 53 (0.330 g, 0.374 mmol), 1,2,3-benzotriazole (0.440 g, 3.70 mmol) and SOCl₂ (0.109 mL, 1.50 mmol) in dry dichloromethane (35 mL). Yield 0.368 g (91%), white solid. M.p. 180–182 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.28$ –

8.23 (m, 2H; ArH_{Bt}), 7.71–7.67 (m, 2H; ArH_{Bt}), 7.66–7.61 (m, 2H; ArH_{Bt}), 7.47–7.31 (m, 12H; $ArH_{Ph}+ArH_{Bt}$, 7.07 (d, 4H, ${}^{3}J=7.5$ Hz; ArH), 6.75 (d, 4H, ${}^{3}J=7.5$ Hz; ArH), 6.48 (s, 2H; ArH_{Trz}), 6.27 (t, 2H, ${}^{3}J = 7.5$ Hz; ArH), 6.08 (t, 2H, ${}^{3}J = 7.5$ Hz; ArH), 5.64 (s, 4H; NCH₂), 4.82 (s, 4H; CH₂CO), 4.54 (s, 4H; OCH₂Trz), 4.09 (d, 4H, ${}^{2}J$ = 15.8 Hz; ArCH₂Ar), 3.51 (d, 4H, ${}^{2}J$ = 15.8 Hz; ArCH₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.94$ (C=O), 156.02, 155.37, 145.39, 144.30, 135.54, 135.27, 133.55, 131.11 (C_{Ar}), 130.47, 130.39, 130.17, 129.00, 128.63, 127.87, 125.92, 123.72, 123.14, 122.73, 119.87, 114.12 (CH_{Ar}), 70.92, 64.34 (OCH₂), 53.85 (NCH₂), 37.56 (ArCH₂Ar) ppm. ESI-MS *m*/*z*: 1085.4207 [M+H]⁺ for C₆₄H₅₃N₁₂O₆ (1085.4206).

Triazolated calixarene bis(*1-acylbenzotriazole*) **56** was prepared as described for compound **40** from calixarene **54** (0.523 g, 0.558 mmol), 1,2,3-benzotriazole (0.664 g, 5.58 mmol) and SOCl₂ (0.163 mL, 2.23 mmol) in dry dichloromethane (60 mL). The product was additionally purified by rapid washing the sample with cold methanol. Yield 0.449 g (71%), white solid. M.p. 221–223 °C.

¹H NMR (400 MHz, CDCl₃): δ = 8.09–8.05 (m, 2H; ArH_{Bt}), 7.97–7.94 (m, 2H; ArH_{Bt}), 7.52–7.47 (m, 42; ArH_{Bt}), 7.42–7.33 (m, 8H; ArH_{Ph}+ArH_{Bt}), 7.29–7.25 (m, 4H; ArH_{Ph}), 7.04 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 6.78 (d, 4H, ${}^{3}J$ = 7.5 Hz; ArH), 6.67 (t, 2H, ${}^{3}J$ = 7.5 Hz; ArH), 6.42 (s, 2H; ArH_{Trz}), 6.11 (t, 2H, ${}^{3}J$ = 7.5 Hz; ArH), 5.59 (s, 4H; NCH₂), 4.70 (s, 4H; OCH₂Trz), 3.68 (d, 4H, ${}^{2}J$ = 16.0 Hz; ArCH₂Ar), 3.48–3.43 (m, 4H; OC<u>H₂CH₂CH₂), 3.47 (d, 4H, ${}^{2}J$ = 16.0 Hz; ArCH₂Ar), 3.11–3.06 (m, 4H; CH₂CO), 1.83–1.74 (m, 4H, CH₂C<u>H₂CH₂) ppm</u>; ¹³C NMR (100 MHz, CDCl₃): δ = 172.25 (C=O), 156.07, 155.23, 145.92, 144.58, 135.38, 134.58, 133.57, 130.88 (C_{Ar}), 130.07, 129.53, 129.43, 128.87, 128.44, 127.72, 125.83, 123.48, 123.27, 122.38, 119.88, 114.21 (CH_{Ar}), 68.67, 63.66 (OCH₂), 53.64 (NCH₂), 37.89 (ArCH₂Ar), 31.92 (<u>C</u>H₂CO), 24.26 (CH₂<u>C</u>H₂CH₂) ppm. ESI-MS *m/z*: 1141.4829 [M+H]⁺ for C₆₈H₆₁N₁₂O₆ (1141.4832).</u>

Calixarene 1,3-diketone **57**. At stirring or sonication, to a suspension of MgBr₂·Et₂O (0.181 g, 0.70 mmol) in dry dichloromethane (4 mL) acetophenone (0.093 mL, 0.80 mmol) was added followed by DIPEA (0.122 mL, 0.70 mmol). The gel-like suspension formed was transferred to a stirred solution of calixarene **5** (0.192, 0.20 mmol) in dry dichloromethane

(2 mL), and the mixture was stirred at room temperature for 2 h. Aqueous HCl (2 M) was added, and the mixture was intensively stirred. The organic phase was separated, the aqueous phase was extracted with dichloromethane. The combined organic phase was washed with water, brine, dried, and the solvent was evaporated under reduced pressure. To the resultant oil, a small portion of methanol was added, the mixture was cooled down to -18 °C and the solid formed was rapidly separated, washed with cold methanol and dried. The product was finally purified by column chromatography (silica, hexane/chloroform 1:1). Yield 0.130 g (68%), white solid. M.p. 115–117 °C. ¹H NMR (400 MHz, CDCl₃, only signals of enol form (92%) are presented): $\delta = 16.24$ (bs, 1H; OH), 7.91–7.87 (m, 2H; ArH_{Ph}), 7.55–7.50 (m, 1H; ArH_{Ph}), 7.48–7.42 (m, 2H;

ArH_{Ph}), 6.84 (s, 2H; ArH), 6.84 (s, 2H; ArH), 6.70 (d, 2H, ${}^{4}J$ = 2.4 Hz; ArH), 6.68 (d, 2H, ${}^{4}J$ = 2.4 Hz; ArH), 6.22 (s, 1H; CH), 4.40 (d, 2H, ${}^{2}J$ = 12.4 Hz; ArCH₂Ar), 4.39 (d, 2H, ${}^{2}J$ = 12.4 Hz; ArCH₂Ar), 4.00–3.93 (m, 2H; OCH₂), 3.87–3.81 (m, 2H; OCH₂), 3.81–3.74 (m, 4H; OCH₂), 3.12 (d, 2H, ${}^{2}J$ = 12.4 Hz; ArCH₂Ar), 2.60–2.54 (m, 2H; OCH₂CH₂CH₂), 2.48–2.38 (m, 2H; CH₂CO), 2.07–1.93 (m, 6H; CH₂CH₃), 1.12 (s, 9H; C(CH₃)₃), 1.12 (s, 9H; C(CH₃)₃), 1.01 (s, 18H; C(CH₃)₃), 0.98 (t, 6H, ${}^{3}J$ = 7.5 Hz; CH₃), 0.95 (t, 3H, ${}^{3}J$ = 7.5 Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃, only signals of enol form are presented): δ = 195.91 (C=O), 183.97 (CH=C–OH), 153.86, 153.64, 153.40, 144.57, 144.24, 144.13, 135.18, 134.20, 134.15, 133.43, 133.24 (C_{Ar}), 132.23, 128.59, 126.98, 125.09, 124.97, 124.85, 124.73 (CH_{Ar}), 95.98 (CH=C–OH), 77.12, 76.86, 74.16 (OCH₂), 36.02 (CH₂CO), 33.86, 33.84, 33.74 (C(CH₃)₃), 31.52, 31.51, 31.39 (C(CH₃)₃), 31.13, 31.07 (ArCH₂Ar), 26.48 (OCH₂CH₂CH₂), 23.41, 23.24 (CH₂CH₃), 10.42, 10.20 (CH₃) ppm. ESI-MS *m/z*: 980.6778 [M+NH₄]⁺ for C₆₅H₉₀NO₆ (980.6763).

Calixarene 1,3-diketone **58** was prepared as described for compound **57** from calixarene **5** (0.075 g, 0.080 mmol), acetophenone (0.037 mL, 0.32 mmol), MgBr₂·Et₂O (0.072 g, 0.28 mmol) and DIPEA (0.049 mL, 0.28 mmol) in dichloromethane (3 mL). At the final purification step, a gradient from

dichloromethane to dichloromethane/ethanol 140:1 was used. Yield 0.044 g (59%), white solid. M.p. 77–79 °C. ¹H NMR (400 MHz, CDCl₃, only signals of enol form (90%) are presented): $\delta = 15.96$ (bs, 1H; OH), 7.94–7.89 (m, 2H; ArH_{Ph}), 7.57–7.52 (m, 1H; ArH_{Ph}), 7.50–7.44 (m, 2H; ArH_{Ph}), 6.82 (s, 4H; ArH), 6.77 (bs, 2H; ArH), 6.76 (bs, 2H; ArH), 6.52 (s, 1H; CH), 4.72 (s, 2H; OCH₂CO), 4.55 (d, 2H, ²*J* = 12.6 Hz; ArCH₂Ar), 4.41 (d, 2H, ²*J* = 12.6 Hz; ArCH₂Ar), 3.88–3.83 (m, 4H; OCH₂), 3.79–3.74 (m, 2H; OCH₂), 3.20 (d, 2H, ²*J* = 12.6 Hz; ArCH₂Ar), 3.12 (d, 2H, ²*J* = 12.6 Hz; ArCH₂Ar), 2.12–1.92 (m, 6H; CH₂CH₃), 1.11 (s, 18H; C(CH₃)₃), 1.07 (s, 18H; C(CH₃)₃), 1.02 (t, 3H, ³*J* = 7.5 Hz; CH₃), 0.88 (t, 6H, ³*J* = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of enol form are presented): $\delta = 191.44$ (C=O), 184.81 (CH=C–OH), 153.63, 153.48, 153.03, 144.77, 144.33, 144.28, 135.13, 134.06, 133.671, 133.669, 133.01 (C_{Ar}), 132.46, 128.63, 127.14, 125.29, 125.13, 124.87, 124.82 (CH_{Ar}), 95.53 (CH=C–OH), 76.97, 76.88, 76.04 (OCH₂), 33.82, 33.80, 33.79 (C(CH₃)₃), 31.47, 31.42, 31.38 (C(CH₃)₃), 31.33, 31.09 (ArCH₂Ar), 23.46, 23.20 (CH₂CH₃), 10.35, 10.19 (CH₃) ppm. ESI-MS *m/z*: 935.6182 [M+H]⁺ for C₆₃H₈₃O₆ (935.6184).

Calixarene 1,3-diketone **59** was prepared as described for compound **57** from calixarene **6** (0.048 g, 0.050 mmol), 1-indanone (0.026 g, 0.20 mmol), MgBr₂·Et₂O (0.045 g, 0.175 mmol) and DIPEA (0.030 mL, 0.175 mmol) in dichloromethane (2 mL). Repeated washing with methanol was sufficient to purify the product. Yield 0.038 g (78%), white solid. M.p. 188–190 °C. ¹H NMR (600 MHz, CDCl₃, only signals of enol form (79%) are

presented): $\delta = 13.91$ (bs, 1H; OH), 7.86–7.83 (m, 1H; ArH_{Ind}), 7.58–7.54 (m, 1H; ArH_{Ind}), 7.52–7.50 (m, 1H; ArH_{Ind}), 7.44–7.41 (m, 1H; ArH_{Ind}), 6.90 (s, 2H; ArH), 6.90 (s, 2H; ArH), 6.68 (d, 2H, ${}^{4}J = 2.3$ Hz; ArH), 6.65 (d, 2H, ${}^{4}J = 2.3$ Hz; ArH), 4.42 (d, 2H, ${}^{2}J = 12.4$ Hz; ArCH₂Ar), 4.41 (d, 2H, ${}^{2}J = 12.4$ Hz; ArCH₂Ar), 4.06–4.02 (m, 2H; OCH₂), 3.90–3.86 (m, 2H; OCH₂), 3.80–3.72 (m, 4H; OCH₂), 3.62 (s, 2H; CH₂Ind), 3.14 (d, 2H, ${}^{2}J = 12.4$ Hz; ArCH₂Ar), 3.12 (d, 2H, ${}^{2}J = 12.4$ Hz; ArCH₂Ar), 2.58–2.47 (m, 4H; OCH₂CH₂+CH₂CO), 2.08–1.91 (m, 6H; CH₂CH₃), 1.18 (s, 9H; C(CH₃)₃), 1.18 (s, 9H; C(CH₃)₃), 0.99 (s, 18H; C(CH₃)₃), 0.98 (t, 6H, ${}^{3}J = 7.5$ Hz; CH₃), 0.96 (t, 3H, ${}^{3}J = 7.5$ Hz; CH₃) ppm; 13 C NMR (150 MHz, CDCl₃, only signals of enol form are presented): $\delta = 191.97$ (C=O), 179.99 (C=C–OH), 154.01, 153.76, 153.26, 147.49, 144.63, 144.28, 144.08, 138.40, 134.43, 134.42, 133.18, 132.98 (C_{Ar}), 132.77, 127.34, 125.69, 125.15, 125.03, 124.78, 124.64, 123.19 (CH_Ar), 109.85 (C=C–OH), 77.19, 76.81, 74.18 (OCH₂), 33.90, 33.87, 33.70 (C(CH₃)₃), 31.55, 31.54 (C(CH₃)₃), 31.44 (CH₂CO), 31.34 (C(CH₃)₃), 0.14 (CH₃) ppm. ESI-MS *m/z*: 992.6772 [M+NH₄]⁺ for C₆₆H₉₀NO₆ (992.6763).

Calixarene 1,3-diketone 60 was prepared as described for compound 57 from calixarene 5 (0.033 g, 0.035 mmol), 1-indanone (0.019 g, 0.14 mmol), MgBr₂·Et₂O (0.032 g, 0.123 mmol) and DIPEA (0.021 mL, 0.123 mmol) in dichloromethane (1.3 mL). At the final purification step, a gradient from dichloromethane to dichloromethane/ethanol 100:1 was used for the column

chromatography. Yield 0.018 g (54%), white solid. M.p. 216–218 °C. ¹H NMR (400 MHz, CDCl₃, only signals of non-canonical enol form (88%) are presented): $\delta = 9.75$ (s, 1H; OH), 7.82–7.78 (m, 1H; ArH_{Ind}), 7.56–7.53 (m, 2H; ArH_{Ind}), 7.41–7.35 (m, 1H; ArH_{Ind}), 7.14 (s, 2H; ArH), 7.13 (s, 2H; ArH), 6.55 (d, 2H, ⁴J = 2.4 Hz; ArH), 6.51 (d, 2H, ⁴J = 2.4 Hz; ArH), 5.42 (bs, 2H; OCH₂CO), 4.46 (d, 2H, ²J = 12.4 Hz; ArCH₂Ar), 4.29 (d, 2H, ²J = 12.7 Hz; ArCH₂Ar), 4.15–4.09 (m, 2H; OCH₂), 3.83 (s, 2H; CH₂_{Ind}), 3.72–3.58 (m, 4H; OCH₂), 3.20 (d, 2H, ²J = 12.7 Hz; ArCH₂Ar), 3.13 (d, 2H, ²J = 12.4 Hz; ArCH₂Ar), 2.07–1.94 (m, 2H; CH₂CH₃), 1.85–1.70 (m, 4H; CH₂CH₃), 1.34 (s, 9H; C(CH₃)₃), 1.33 (s, 9H; C(CH₃)₃), 0.95 (t, 3H, ³J = 7.5 Hz; CH₃), 0.82 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of non-canonical enol form are presented): δ = 193.58 (C=O), 164.13 (C=<u>C</u>–OH), 154.49, 152.26,

151.21, 147.97, 146.57, 144.88, 144.62, 141.02, 135.48, 135.39 (C_{Ar}), 132.54 (CH_{Ar}), 132.36, 132.05 (C_{Ar}), 126.79, 125.84, 125.71, 125.31, 124.80, 124.71, 123.03 (CH_{Ar}), 108.30 (C=C-OH), 78.11, 77.70, 70.94 (OCH₂), 34.16, 34.05, 33.61 (C(CH₃)₃), 31.75, 31.65, 31.06 (C(CH₃)₃), 30.95, 29.67 (ArCH₂Ar, CH_{2 Ind}), 23.02, 22.69 (<u>C</u>H₂CH₃), 10.37, 9.95 (CH₃) ppm. ESI-MS *m/z*: 947.6184 $[M+H]^+$ for C₆₄H₈₃O₆ (947.6184).

tBu *t*Βu

Calixarene bis(1,3-diketone) 61 was prepared as described for compound 57 from calixarene 8 (0.553 g, 0.50 mmol), acetophenone (0.466 mL, 4.00 mmol), MgBr₂·Et₂O (0.903 g, 3.50 mmol) and DIPEA (0.608 mL, 3.50 mmol) in dichloromethane (40 mL). Repeated washing with cold methanol was sufficient to purify the product. Yield 0.415 g (75%), white solid. M.p. 158–160 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (86%) are presented): $\delta = 16.26$ (bs, 2H; OH), 7.88–7.84 (m, 4H; ArH_{Ph}), 7.52–7.47 (m, 2H; ArH_{Ph}), 7.44– 7.38 (m, 4H; ArH_{Ph}), 6.93 (s, 4H; ArH), 6.61 (s, 4H; ArH), 6.23 (s, 2H; CH), 4.39 (d, 4H, $^{2}J = 12.5$ Hz; ArCH₂Ar), 4.05–3.98 (m, 4H; OCH₂), 3.77–3.70 (m, 4H; OCH₂), 3.13 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 2.58–2.51 (m, 4H; CH₂CO), 2.49–2.39 (m, 4H; OCH₂CH₂CH₂), 2.04– 1.92 (m, 4H; CH₂CH₃), 1.19 (s, 18H; C(CH₃)₃), 0.96 (t, 6H, ${}^{3}J = 7.5$ Hz; CH₃), 0.94 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 195.25$ (C=O), 183.66 (CH=C-OH), 153.82, 153.06, 144.71, 144.13, 135.05, 134.64, 132.80 (C_{Ar}), 132.20, 128.56, 126.98, 125.23, 124.70 (CH_{Ar}), 96.07 (CH=C–OH), 77.32, 74.11 (OCH₂), 35.92 (<u>CH</u>₂CO), 33.93, 33.68 (<u>C</u>(CH₃)₃), 31.57, 31.30 (C(<u>C</u>H₃)₃), 31.13 (ArCH₂Ar), 26.37 $(OCH_2CH_2CH_2)$, 23.51 (CH₂CH₃), 10.53 (CH₃) ppm. ESI-MS m/z: 1131.6688 [M+Na]⁺ for C₇₄H₉₂NaO₈ (1131.6684).

Calixarene bis(1,3-diketone) 62 was prepared as described for 57 from calixarene 8 (0.553 g, 4'compound 0.50 mmol), methylacetophenone (0.536 mL, 4.00 mmol), MgBr₂·Et₂O (0.903 g, 3.50 mmol) and DIPEA (0.608 mL, 3.50 mmol) in dichloromethane (40 mL). Repeated washing with cold methanol was sufficient to purify the product. Yield 0.406 g (71%), white solid. M.p. 126-128 °C.

¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (82%) are presented): $\delta = 16.31$ (bs, 2H; OH), 7.79–7.74 (m, 4H; ArH_{Tol}), 7.23–7.18 (m, 4H; ArH_{Tol}), 6.92 (s, 4H; ArH), 6.61 (s, 4H; ArH), 6.19 (s, 2H; CH), 4.39 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 4.03–3.97 (m, 4H; OCH₂), 3.77– 3.71 (m, 4H; OCH₂), 3.12 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 2.55–2.49 (m, 4H; CH₂CO), 2.47– 2.36 (m, 4H; OCH₂CH₂CH₂), 2.38 (s, 6H; PhCH₃); 2.03–1.92 (m, 4H; CH₂CH₃), 1.18 (s, 18H; $C(CH_3)_3$, 0.97 (t, 6H, ${}^{3}J = 7.5$ Hz; CH₃), 0.94 (s, 18H; $C(CH_3)_3$) ppm; ${}^{13}C$ NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 195.45$ (C=O), 184.11 (CH=<u>C</u>-OH), 153.79, 153.04, 144.66, 144.09, 142.93, 134.61, 132.82, 132.33 (C_{Ar}), 129.28, 127.03, 125.19, 124.67 (CH_{Ar}), 95.66 (<u>C</u>H=C-OH), 77.32, 74.12 (OCH₂), 35.71 (<u>C</u>H₂CO), 33.91, 33.67 (<u>C</u>(CH₃)₃), 31.56, 31.28 (C(<u>C</u>H₃)₃), 31.09 (ArCH₂Ar), 26.43 (OCH₂CH₂CH₂), 23.50 (<u>C</u>H₂CH₃), 21.57 (PhCH₃), 10.53 (CH₃) ppm. ESI-MS *m/z*: 1154.7432 [M+NH₄]⁺ for C₇₆H₁₀₀NO₈ (1154.7443).

Calixarene bis(1,3-diketone) **63** was prepared as described for compound **57** from calixarene **8** (0.221 g, 0.20 mmol), 4'- methoxyacetophenone (0.240 mL, 1.60 mmol), MgBr₂·Et₂O (0.361 g, 1.40 mmol) and DIPEA (0.243 mL, 1.40 mmol) in dichloromethane (10 mL). Repeated washing with cold methanol was sufficient to purify the product. Yield 0.100 g (43%), white

solid. M.p. 110–112 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (73%) are presented): $\delta = 16.41$ (bs, 2H; OH), 7.87–7.82 (m, 4H; ArH_{PhOMe}), 6.92 (s, 4H; ArH), 6.91–6.87 (m, 4H; ArH_{PhOMe}), 6.60 (s, 4H; ArH), 6.16 (s, 2H; CH), 4.39 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 4.03–3.98 (m, 4H; OCH₂), 3.83 (s, 6H; OCH₃), 3.76–3.70 (m, 4H; OCH₂), 3.12 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 2.53–2.47 (m, 4H; CH₂CO), 2.47–2.37 (m, 4H; OCH₂CH₂CH₂), 2.03–1.91 (m, 4H; CH₂CH₃), 1.19 (s, 18H; C(CH₃)₃), 0.97 (t, 6H, ³*J* = 7.5 Hz; CH₃), 0.94 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 194.01$ (C=O), 184.54 (CH=C–OH), 162.98, 153.83, 153.02, 144.66, 144.07, 134.65, 132.77 (C_{Ar}), 129.08 (CH_{Ar}), 127.71 (C_{Ar}), 125.20, 124.65, 113.84 (CH_{Ar}), 95.14 (CH=C–OH), 77.32, 74.14 (OCH₂), 55.37 (OCH₃), 35.38 (CH₂CO), 33.92, 33.66 (C(CH₃)₃), 31.56, 31.27 (C(CH₃)₃), 31.08 (ArCH₂Ar), 26.55 (OCH₂CH₂CH₂), 23.50 (CH₂CH₃), 10.55 (CH₃) ppm. ESI-MS *m/z*: 1191.6901 [M+Na]⁺ for C₇₆H₉₆NaO₁₀ (1191.6896).

Calixarene bis(1,3-diketone) **64** was prepared as described for compound **57** from calixarene **8** (0.221 g, 0.20 mmol), 4'-fluoroacetophenone (0.194 mL, 1.60 mmol), MgBr₂·Et₂O (0.361 g, 1.40 mmol) and DIPEA (0.243 mL, 1.40 mmol) in dichloromethane (10 mL). Repeated washing with cold methanol was sufficient to purify the product. Yield 0.174 g (76%), white solid. M.p. 120–122 °C.

¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (85%) are presented): $\delta = 16.26$ (bs, 2H; OH), 7.90–7.84 (m, 4H; ArH_{PhF}), 7.12–7.06 (m, 4H; ArH_{PhF}), 6.94 (s, 4H; ArH), 6.59 (s, 4H; ArH), 6.16 (s, 2H; CH), 4.38 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 4.04–3.98 (m, 4H; OCH₂), 3.76–3.70 (m, 4H; OCH₂), 3.12 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 2.55–2.49 (m, 4H; CH₂CO), 2.49–2.39 (m, 4H; OCH₂CH₂CH₂), 2.02–1.90 (m, 4H; CH₂CH₃), 1.20 (s, 18H; C(CH₃)₃), 0.96 (t, 6H,

³*J* = 7.5 Hz; CH₃), 0.93 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): δ = 195.42 (C=O), 183.24 (CH=<u>C</u>-OH), 165.21 (d, ¹*J*_{C,F} = 253.6 Hz; C_{Ar}), 153.84, 152.95, 144.76, 144.14, 134.69, 132.69 (C_{Ar}), 131.36 (d, ⁴*J*_{C,F} = 3.1 Hz; C_{Ar}), 129.39 (d, ³*J*_{C,F} = 9.1 Hz; CH_{Ar}), 125.24, 124.66 (CH_{Ar}), 115.71 (d, ²*J*_{C,F} = 21.8 Hz; CH_{Ar}), 95.73 (<u>C</u>H=C-OH), 77.32, 74.08 (OCH₂), 35.62 (<u>C</u>H₂CO), 33.94, 33.66 (<u>C</u>(CH₃)₃), 31.57, 31.26 (C(<u>C</u>H₃)₃), 31.08 (ArCH₂Ar), 26.40 (OCH₂<u>C</u>H₂CH₂), 23.50 (<u>C</u>H₂CH₃), 10.55 (CH₃) ppm; ¹⁹F NMR (376 MHz, CDCl₃, only signals of bis(enol) are presented): δ = -107.74 ppm. ESI-MS *m/z*: 1162.6941 [M+NH₄]⁺ for C₇₄H₉₄F₂NO₈ (1162.6942).

Calixarene bis(1,3-diketone) **65** was prepared as described for compound **57** from calixarene **8** (0.553 g, 0.50 mmol), 4'- (trifluoromethyl)acetophenone (0.752 mL, 4.00 mmol), MgBr₂·Et₂O (0.903 g, 3.50 mmol) and DIPEA (0.608 mL, 3.50 mmol) in dichloromethane (40 mL). Repeated washing with cold methanol was sufficient to purify the product. Yield 0.323 g (52%), white

solid. M.p. 120–122 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (95%) are presented): δ = 16.10 (bs, 2H; OH), 7.95–7.91 (m, 4H; ArH_{PhCF3}), 7.68–7.63 (m, 4H; ArH_{PhCF3}), 6.95 (s, 4H; ArH), 6.59 (s, 4H; ArH), 6.23 (s, 2H; CH), 4.38 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 4.05–3.99 (m, 4H; OCH₂), 3.76–3.70 (m, 4H; OCH₂), 3.13 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 2.61–2.54 (m, 4H; CH₂CO), 2.51–2.40 (m, 4H; OCH₂CH₂CH₂), 2.02–1.90 (m, 4H; CH₂CH₃), 1.21 (s, 18H; C(CH₃)₃), 0.97 (t, 6H, ³*J* = 7.5 Hz; CH₃), 0.92 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): δ = 197.85 (C=O), 181.00 (CH=<u>C</u>–OH), 153.83, 152.88, 144.83, 144.16, 138.04, 134.70 (C_{Ar}), 133.53 (q, ²*J*_{C,F} = 32.7 Hz; C_{Ar}), 132.30 (C_{Ar}), 127.17 (CH_{Ar}), 125.53 (q, ³*J*_{C,F} = 3.7 Hz; CH_{Ar}), 125.26, 124.65 (CH_{Ar}), 123.59 (q, ¹*J*_{C,F} = 272.7 Hz; CF₃), 96.74 (<u>C</u>H=C–OH), 77.32, 74.01 (OCH₂), 36.19 (<u>C</u>H₂CO), 33.92, 33.64 (<u>C</u>(CH₃)₃) ppm; ¹⁹F NMR (376 MHz, CDCl₃, only signals of bis(enol) are presented): δ = - 63.04 ppm. ESI-MS *m/z*: 1262.6876 [M+NH4]⁺ for C₇₆H₉₄F₆NO₈ (1262.6878).

Calixarene bis(1,3-diketone) **66** was prepared as described for compound **57** from calixarene **8** (0.277 g, 0.25 mmol), 4'cyanoacetophenone (0.290 g, 2.00 mmol), MgBr₂·Et₂O (0.452 g, 1.75 mmol) and DIPEA (0.304 mL, 1.75 mmol) in dichloromethane (20 mL), due to solubility issues, dry THF (1 mL) was added at the magnesium enolate preparation step. Repeated washing with cold

methanol was sufficient to purify the product. Yield 0.143 g (49%), white solid. M.p. 111-

113 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (95%) are presented): δ = 16.02 (bs, 2H; OH), 7.96–7.91 (m, 4H; ArH_{PhCN}), 7.74–7.69 (m, 4H; ArH_{PhCN}), 6.95 (s, 4H; ArH), 6.59 (s, 4H; ArH), 6.23 (s, 2H; CH), 4.37 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 4.04–3.98 (m, 4H; OCH₂), 3.76–3.69 (m, 4H; OCH₂), 3.13 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 2.61–2.55 (m, 4H; CH₂CO), 2.49–2.40 (m, 4H; OCH₂CH₂CH₂), 2.01–1.90 (m, 4H; CH₂CH₃), 1.20 (s, 18H; C(CH₃)₃), 0.96 (t, 6H, ³*J* = 7.5 Hz; CH₃), 0.93 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): δ = 198.47 (C=O), 179.82 (CH=C–OH), 153.79, 152.87, 144.87, 144.22, 138.69, 134.64, 132.61 (C_{Ar}), 132.36, 127.30, 125.27, 124.68 (CH_{Ar}), 118.02 (CN), 115.35 (C_{Ar}), 97.06 (CH=C–OH), 77.29, 73.97 (OCH₂), 36.40 (CH₂CO), 33.94, 33.66 (C(CH₃)₃), 31.55, 31.24 (C(CH₃)₃), 31.06 (ArCH₂Ar), 26.10 (OCH₂CH₂CH₂), 23.49 (CH₂CH₃), 10.56 (CH₃) ppm. ESI-MS *m/z*: 1176.7029 [M+NH₄]⁺ for C₇₆H₉₄N₃O₈ (1176.7035).

Calixarene bis(*1*,*3-diketone*) **67** was prepared as described for compound **57** from calixarene **8** (0.111 g, 0.10 mmol), 1-indanone (0.106 g, 0.80 mmol), MgBr₂·Et₂O (0.181 g, 0.70 mmol) and DIPEA (0.122 mL, 0.70 mmol) in dichloromethane (7 mL). Repeated washing with cold methanol was sufficient to purify the product. Yield 0.080 g (70%), white solid. M.p. 239–241 °C. ¹H NMR (400 MHz, CDCl₃,

only signals of bis(enol) (67%) are presented): $\delta = 13.88$ (bs, 2H; OH), 7.77–7.74 (m, 2H; ArH_{Ind}), 7.55–7.51 (m, 2H; ArH_{Ind}), 7.49–7.46 (m, 2H; ArH_{Ind}), 7.37–7.33 (m, 2H; ArH_{Ind}), 7.02 (s, 4H; ArH), 6.58 (s, 4H; ArH), 4.42 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 4.12–4.07 (m, 4H; OCH₂), 3.75–3.71 (m, 4H; OCH₂), 3.58 (s, 4H; CH₂_{1nd}), 3.15 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 2.58–2.48 (m, 8H; OCH₂CH₂CH₂+CH₂CO), 2.01–1.92 (m, 4H; CH₂CH₃), 1.26 (s, 18H; C(CH₃)₃), 0.98 (t, 6H, ³*J* = 7.5 Hz; CH₃), 0.92 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (150 MHz, CDCl₃, only signals of enol form are presented): $\delta = 191.63$ (C=O), 180.19 (C=COH), 154.03, 152.86, 147.49, 144.79, 144.04, 138.26, 134.98, 132.71 (C_{Ar}), 132.45, 127.23, 125.68, 125.31, 124.58, 123.00 (CH_{Ar}), 109.96 (C=COH), 77.42, 74.11 (OCH₂), 33.96, 33.62 (C(CH₃)₃), 31.62, 31.23 (C(CH₃)₃), 31.13 (ArCH₂Ar, CH₂CO), 30.02 (CH₂_{1nd}), 26.18 (OCH₂CH₂CH₂CH₂), 23.51 (CH₂CH₃), 10.54 (CH₃) ppm. ESI-MS *m/z*: 1155.6678 [M+Na]⁺ for C₇₆H₉₂NaO₈ (1155.6684).

Calixarene bis(1,3-*diketone*) **68** was prepared as described for compound **57** from calixarene **7** (0.525 g, 0.50 mmol), acetophenone (0.466 mL, 4.00 mmol), MgBr₂·Et₂O (0.903 g, 3.50 mmol) and DIPEA (0.608 mL, 3.50 mmol) in dichloromethane (40 mL), another portion of DIPEA (0.174 mL, 1.00 mmol) was added to the calixarene solution before addition

of the prepared magnesium enolate of acetophenone. During the product purification, the sample

obtained after extraction step was crystallized three times from a dichloromethane/methanol mixture. The obtained sample was passed though a layer of silica using dichloromethane/ethanol (20:1) mixture as an eluent. The solid colleted after removal of the solvents was dissolved in dichloromethane, and the solution was washed continuously with aqueous HCl (2 M) and water, dried, and the solvent was evaporated. The residue was crystallized from a dichloromethane/hexane mixture. Yield 0.154 g (29%), white solid. M.p. 185–187 °C. ¹H NMR (400 MHz, CDCl₃, only signals of canonical bis(enol) (76%) are presented): $\delta = 15.97$ (bs, 2H; OH), 7.92–7.88 (m, 4H; ArH_{Ph}), 7.55–7.49 (m, 2H; ArH_{Ph}), 7.46–7.41 (m, 4H; ArH_{Ph}), 6.83 (s, 4H; ArH), 6.75 (s, 4H; ArH), 6.55 (s, 2H; CH), 4.69 (s, 4H; CH₂CO), 4.51 (d, 4H, $^{2}J = 12.7$ Hz; ArCH₂Ar), 3.91–3.85 (m, 4H; OCH₂), 3.18 (d, 4H, ${}^{2}J$ = 12.7 Hz; ArCH₂Ar), 1.97–1.86 (m, 4H; CH₂CH₃), 1.12 (s, 18H; C(CH₃)₃), 1.05 (s, 18H; C(CH₃)₃), 0.74 (t, 6H, ${}^{3}J$ = 7.4 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 190.76$ (C=O), 185.19 (CH=C-OH), 153.68, 152.90, 144.93, 144.52, 135.04, 133.85, 132.99 (C_{Ar}), 132.54, 128.65, 127.19, 125.27, 125.12 (CH_{Ar}), 95.77 (CH=C-OH), 76.79, 76.07 (OCH₂), 33.85, 33.81 (C(CH₃)₃), 31.48, 31.34 (C(CH₃)₃), 31.12 (ArCH₂Ar), 23.10 (CH₂CH₃), 10.10 (CH₃) ppm. ESI-MS m/z: 1053.6235 [M+H]⁺ for C₇₀H₈₅O₈ (1053.6239).

Calixarene bis(1,3-diketone) **70** was prepared as described for compound **57** from calixarene **10** (0.087 g, 0.105 mmol), acetophenone (0.098 mL, 0.84 mmol), MgBr₂·Et₂O (0.190 g, 0.735 mmol) and DIPEA (0.128 mL, 0.735 mmol) in dichloromethane (10 mL), another portion of DIPEA (0.037 mL, 0.21 mmol) was added to the calixarene solution before addition of

the prepared magnesium enolate of acetophenone. Repeated washing with cold methanol was sufficient to purify the product. Yield 0.067 g (77%), white solid. M.p. 213–215 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (89%) are presented): $\delta = 16.06$ (bs, 2H; OH), 7.95–7.90 (m, 4H; ArH_{Ph}), 7.50–7.39 (m, 6H; ArH_{Ph}), 7.07 (d, 4H, ³*J* = 7.5 Hz; ArH), 7.03 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.76 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.49 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.44 (s, 2H; CH), 4.31 (s, 4H; CH₂CO), 3.66 (d, 4H, ²*J* = 14.3 Hz; ArCH₂Ar), 3.61 (d, 4H, ²*J* = 14.3 Hz; ArCH₂Ar), 3.62–3.56 (m, 4H; OCH₂), 1.82–1.71 (m, 4H; OCH₂CH₂), 0.97 (t, 6H, ³*J* = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 191.74$ (C=O), 183.84 (CH=C–OH), 156.77, 155.04, 134.37, 133.67, 133.23 (C_{Ar}), 132.72, 130.81, 130.41, 128.64, 127.35, 122.24, 121.65 (CH_{Ar}), 95.02 (CH=C–OH), 73.82, 73.06 (OCH₂), 36.34 (ArCH₂Ar), 23.65 (CH₂CH₃), 10.38 (CH₃) ppm. ESI-MS *m*/*z*: 846.4000 [M+NH₄]⁺ for C₅₄H₅₆NO₈ (846.4000).

Calixarene bis(1,3-diketone) **71** was prepared as described for compound **57** from calixarene **14** (0.093 g, 0.105 mmol), acetophenone (0.098 mL, 0.84 mmol), MgBr₂·Et₂O (0.190 g, 0.735 mmol) and DIPEA (0.128 mL, 0.735 mmol) in dichloromethane (10 mL), another portion of DIPEA (0.037 mL, 0.21 mmol) was added to the calixarene solution before addition

of the prepared magnesium enolate of acetophenone. At the final purification step, a gradient from dichloromethane to dichloromethane/ethanol 200:1 was used for the column chromatography. Yield 0.036 g (39%), white solid. M.p. 59–61 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (60%) are presented): $\delta = 16.17$ (bs, 2H; OH), 7.89–7.84 (m, 4H; ArH_{Ph}), 7.52–7.40 (m, 6H; ArH_{Ph}), 7.05 (d, 4H, ³*J*=7.5 Hz; ArH), 7.00 (d, 4H, ³*J*=7.5 Hz; ArH), 6.78 (t, 2H, ³*J*=7.5 Hz; ArH), 6.74 (t, 2H, ³*J*=7.5 Hz; ArH), 6.11 (s, 2H; CH), 3.74 (d, 4H, ²*J*=15.8 Hz; ArCH₂Ar), 3.71 (d, 4H, ²*J*=15.8 Hz; ArCH₂Ar), 3.59–3.54 (m, 4H; OCH₂), 3.45–3.40 (m, 4H; OCH₂), 2.31–2.26 (m, 4H; CH₂CO), 1.83–1.73 (m, 4H; OCH₂C<u>H₂</u>), 1.43–1.30 (m, 4H; OCH₂C<u>H₂</u>), 0.77 (t, 6H, ³*J*=7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 197.08$ (C=O), 182.70 (CH=<u>C</u>-OH), 156.79, 156.40, 134.81, 133.99, 133.68 (C_{Ar}), 132.19, 129.63, 129.47, 128.58, 126.89, 121.97, 121.74 (CH_{Ar}), 96.01 (<u>C</u>H=<u>C</u>-OH), 72.56, 69.86 (OCH₂), 37.38 (ArCH₂Ar), 35.65 (<u>C</u>H₂CO), 25.80 (CH₂<u>C</u>H₂CH₂), 22.87 (<u>C</u>H₂CH₃), 10.18 (CH₃) ppm. ESI-MS *m/z*: 902.4624 [M+NH₄]⁺ for C₅₈H₆₄NO₈ (902.4626).

Calixarene bis(1,3-diketone) **72** was prepared as described for compound **57** from calixarene **16** (0.100 g, 0.111 mmol), acetophenone (0.104 mL, 0.89 mmol), MgBr₂·Et₂O (0.201 g, 0.78 mmol) and DIPEA (0.136 mL, 0.78 mmol) in dichloromethane (9 mL). The column purification using a gradient from dichloromethane to dichloromethane/ethanol 50:1 was applied

first and the sample obtained was then crystallized from methanol. Yield 0.062 g (62%), white solid. M.p. 82–84 °C. ¹H NMR (600 MHz, CDCl₃, only signals of bis(enol) (73%) are presented): $\delta = 15.97$ (bs, 2H; OH), 7.73–7.70 (m, 4H; ArH_{Ph}), 7.51–7.47 (m, 2H; ArH_{Ph}), 7.44–7.40 (m, 4H; ArH_{Ph}), 7.17 (d, 4H, ³*J* = 7.5 Hz; ArH), 7.01 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.93 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.55 (t, 2H, ³*J* = 7.5 Hz; ArH), 5.93 (s, 2H; CH), 4.07 (s, 4H; CH₂CO), 3.90 (d, 4H, ²*J* = 15.7 Hz; ArCH₂Ar), 3.82 (d, 4H, ²*J* = 15.7 Hz; ArCH₂Ar), 3.65–3.56 (m, 8H; OCH₂), 3.45–3.41 (m, 4H; OCH₂), 3.35–3.32 (m, 4H; OCH₂) ppm; ¹³C NMR (150 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 192.18$ (C=O), 183.35 (CH=<u>C</u>–OH), 156.13, 155.96, 134.33, 134.28, 134.02 (C_{Ar}), 132.55, 130.37, 130.22, 128.45, 127.42, 123.23, 123.12 (CH_{Ar}), 95.12 (<u>CH</u>=C–OH), 72.70 (<u>CH₂CO), 72.39, 70.64, 70.17, 69.15 (OCH₂), 37.89 (ArCH₂Ar) ppm. ESI-MS *m/z*: 920.4026 [M+NH₄]⁺ for C₅₆H₅₈NO₁₁ (920.4004).</u>

Calixarene bis(1,3-diketone) **73** was prepared as described for compound **57** from calixarene **18** (0.154 g, 0.161 mmol), acetophenone (0.150 mL, 1.29 mmol), MgBr₂·Et₂O (0.291 g, 1.13 mmol) and DIPEA (0.196 mL, 1.13 mmol) in dichloromethane (14 mL), another portion of DIPEA (0.056 mL, 0.32 mmol) was added to the calixarene solution before addition of the prepared magnesium enolate of acetophenone. At the final purification

step, a gradient from dichloromethane to dichloromethane/ethanol 50:1 was used for the column chromatography. Yield 0.086 g (56%), yellow oil. ¹H NMR (600 MHz, CDCl₃, only signals of bis(enol) (71%) are presented): δ = 16.15 (bs, 2H; OH), 7.87–7.84 (m, 4H; ArH_{Ph}), 7.51–7.47 (m, 2H; ArH_{Ph}), 7.45–7.41 (m, 4H; ArH_{Ph}), 7.10 (d, 4H, ³*J* = 7.5 H*z*; ArH), 7.08 (d, 4H, ³*J* = 7.5 H*z*; ArH), 6.89 (t, 2H, ³*J* = 7.5 H*z*; ArH), 6.88 (t, 2H, ³*J* = 7.5 H*z*; ArH), 6.04 (s, 2H; CH), 3.87 (d, 4H, ²*J* = 16.2 H*z*; ArCH₂Ar), 3.86 (d, 4H, ²*J* = 16.2 H*z*; ArCH₂Ar), 3.62–3.59 (m, 4H; OCH₂), 3.58–3.54 (m, 4H; OCH₂), 3.53–3.49 (m, 4H; OCH₂), 3.45–3.41 (m, 4H; OCH₂), 3.11–3.08 (m, 4H; OCH₂), 2.10–2.07 (m, 4H; CH₂CO), 1.57–1.50 (m, 4H; OCH₂C<u>H₂</u>) ppm; ¹³C NMR (150 MHz, CDCl₃, only signals of bis(enol) are presented): δ = 197.25 (C=O), 182.57 (CH=<u>C</u>–OH), 156.67, 156.19, 134.84, 134.15, 133.94 (C_{Ar}), 132.15, 129.22, 129.18, 128.57, 126.84, 122.64, 122.50 (CH_{Ar}), 95.94 (<u>CH</u>=C–OH), 72.81, 70.68, 69.68, 69.04, 67.98 (OCH₂), 38.17 (ArCH₂Ar), 35.50 (<u>CH₂CO</u>), 25.38 (CH₂<u>C</u>H₂CH₂) ppm. ESI-MS *m*/*z*: 976.4655 [M+NH₄]⁺ for C₆₀H₆₆NO₁₁ (976.4630).

Calixarene bis(*1,3-diketone*) **74** was prepared as described for compound **57** from calixarene **41** (0.561 g, 0.411 mmol), acetophenone (0.383 mL, 3.29 mmol), MgBr₂·Et₂O (0.743 g, 2.88 mmol) and DIPEA (0.500 mL, 2.88 mmol) in dichloromethane (33 mL). Due to high solubility of the product in methanol, the

crystallization step was skipped and the product was purified only by the column chromatography (gradient from dichloromethane to dichloromethane/ethanol 20:1). The obtained sample was dissolved in dichloromethane, and the solution was washed with aqueous HCl (2 M), water, dried, and the solvent was evaporated. Yield 0.264 g (47%), white solid. M.p. 102–104 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (80%) are presented): δ = 16.29 (bs, 2H; OH), 7.94–7.89 (m, 4H; ArH_{Ph}), 7.56 (s, 2H; ArH_{Trz}), 7.52–7.46 (m, 2H; ArH_{Ph}), 7.44–7.38 (m, 4H; ArH_{Ph}), 7.34–7.28 (m, 6H; ArH_{Ph}), 7.24–7.19 (m, 4H; ArH_{Ph}), 6.85 (s, 4H; ArH), 6.54 (s, 4H; ArH), 6.29 (s, 2H; CH), 5.49 (s, 4H; NCH₂), 4.97 (s, 4H; OCH₂Trz), 4.24 (d, 4H, ²*J* = 12.5 Hz; ArCH₂Ar), 3.84–3.78 (m, 4H; OCH₂CH₂), 1.17 (s, 18H; C(CH₃)₃), 0.92 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): δ = 198.03 (C=O), 182.22

(CH=<u>C</u>-OH), 153.75, 151.46, 144.79, 144.74, 144.66, 135.17, 134.66, 134.47, 133.23 (C_{Ar}), 132.18, 128.94, 128.58, 128.47, 127.93, 127.05, 125.12, 124.74, 123.73 (CH_{Ar}), 96.54 (<u>C</u>H=C-OH), 73.97 (O<u>C</u>H₂CH₂), 67.30 (OCH₂Trz), 53.81 (NCH₂), 35.97 (<u>C</u>H₂CO), 33.90, 33.67 (<u>C</u>(CH₃)₃), 31.54, 31.21 (C(<u>C</u>H₃)₃), 31.17 (ArCH₂Ar), 25.66 (OCH₂<u>C</u>H₂) ppm. ESI-MS m/z: 1367.7526 [M+H]⁺ for C₈₈H₉₉N₆O₈ (1367.7519).

Calixarene bis(1,3-diketone) **75** was prepared as described for compound **57** from calixarene **41** (0.818 g, 0.600 mmol), 4'-(trifluoromethyl)-acetophenone (0.902 g, 4.80 mmol), MgBr₂·Et₂O (1.08 g, 4.20 mmol) and DIPEA (0.730 mL,

4.20 mmol) in dichloromethane (48 mL). Due to high solubility of the product in methanol, the crystallization step was skipped and the product was purified only by the column chromatography (gradient from dichloromethane to dichloromethane/ethanol 20:1). The obtained sample was dissolved in dichloromethane, and the solution was washed with aqueous HCl (2 M), water, dried, and the solvent was evaporated. Yield 0.495 g (55%), white solid. M.p. 180-182 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (88%) are presented): $\delta = 16.08$ (bs, 2H; OH), 8.05–8.00 (m, 4H; ArH_{PhCF3}), 7.66–7.61 (m, 4H; ArH_{PhCF3}), 7.46 (s, 2H; ArH_{Trz}), 7.37-7.31 (m, 6H; ArH_{Ph}), 7.27-7.21 (m, 4H; ArH_{Ph}), 6.84 (s, 4H; ArH), 6.56 (s, 4H; ArH), 6.41 (s, 2H; CH), 5.52 (s, 4H; NCH₂), 5.02 (s, 4H; OCH₂Trz), 4.21 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 3.85– 3.78 (m, 4H; OCH₂), 2.90 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 2.45–2.39 (m, 4H; CH₂CO), 2.21–2.11 (m, 4H; OCH₂C<u>H</u>₂), 1.17 (s, 18H; C(CH₃)₃), 0.94 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 199.32$ (C=O), 179.73 (CH=C-OH), 153.67, 151.32, 144.88, 144.75, 144.71, 137.87, 135.08, 134.30 (C_{Ar}), 133.37 (q, ${}^{2}J_{CF}$ = 32.7 Hz; C_{Ar}), 133.36 (C_{Ar}), 129.00, 128.59, 127.94, 127.37 (CH_{Ar}), 125.50 (q, ${}^{3}J_{C,F} = 3.8$ Hz; CH_{Ar}), 125.12, 124.78, 123.70 (CH_{Ar}), 123.67 (q, ${}^{1}J_{CF} = 272.6$ Hz; CF₃), 97.30 (CH=C-OH), 74.01 (OCH₂CH₂), 67.12 (OCH₂Trz), 53.90 (NCH₂), 36.43 (CH₂CO), 33.90, 33.70 (C(CH₃)₃), 31.51, 31.22 (C(<u>CH</u>₃)₃), 31.19 (ArCH₂Ar), 25.58 (OCH₂CH₂) ppm; ¹⁹F NMR (376 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = -62.96$ ppm. ESI-MS m/z: 1503.7275 [M+H]⁺ for C₉₀H₉₇F₆N₆O₈ (1503.7267).

Calixarene bis(1,3-*diketone*) **76** was prepared as described for compound **57** from calixarene **41** (0.818 g, 0.600 mmol), 4'-methoxyacetophenone (0.720 g, 4.80 mmol), MgBr₂·Et₂O (1.08 g, 4.20 mmol) and DIPEA (0.730 mL, 4.20 mmol) in dichloromethane

(48 mL). Due to high solubility of the product in methanol, the crystallization step was skipped and the product was purified only by the column chromatography (gradient from dichloromethane to dichloromethane/ethanol 20:1). The obtained sample was dissolved in dichloromethane, and the solution was washed with aqueous HCl (2 M), water, dried, and the solvent was evaporated. Yield 0.143 g (17%), white solid. M.p. 97–99 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (66%) are presented): $\delta = 16.47$ (bs, 2H; OH), 7.93–7.88 (m, 4H; ArH_{PhOMe}), 7.59 (s, 2H; ArH_{Trz}), 7.34–7.27 (m, 6H; ArH_{Ph}), 7.25–7.19 (m, 4H; ArH_{Ph}), 6.93–6.88 (m, 4H; ArH_{PhOMe}), 6.86 (s, 4H; ArH), 6.54 (s, 4H; ArH), 6.21 (s, 2H; CH), 5.49 (s, 4H; NCH₂), 4.96 (s, 4H; OCH₂Trz), 4.25 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 3.84 (s, 6H; OCH₃), 3.83–3.78 (m, 4H; OCH₂), 2.93 (d, 4H, ${}^{2}J$ = 12.5 Hz; ArCH₂Ar), 2.30–2.23 (m, 4H; CH₂CO), 2.16–2.06 (m, 4H; OCH₂CH₂), 1.18 (s, 18H; C(CH₃)₃), 0.92 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 195.69$ (C=O), 183.32 (CH=C-OH), 162.99, 153.79, 151.50, 144.79, 144.71, 144.63, 135.18, 134.49, 133.18 (C_{Ar}), 129.19, 128.92, 128.45, 127.38, 125.12, 124.73, 123.75, 113.89 (CH_{Ar}), 95.55 (CH=C–OH), 74.00 (OCH₂CH₂), 67.33 (OCH₂Trz), 55.38 (OCH₃), 53.81 (NCH₂), 35.43 (<u>CH₂CO</u>), 33.89, 33.66 (<u>C</u>(CH₃)₃), 31.54, 31.20 $(C(\underline{C}H_3)_3)$, 31.12 (ArCH₂Ar), 25.90 (OCH₂CH₂) ppm. ESI-MS m/z: 1427.7734 $[M+H]^+$ for C₉₀H₁₀₃N₆O₁₀ (1427.7730).

Calixarene bis(*1,3-diketone*) **77** was prepared as described for compound **57** from calixarene **40** (0.589 g, 0.450 mmol), acetophenone (0.419 mL, 3.60 mmol), MgBr₂·Et₂O (0.813 g, 3.15 mmol) and DIPEA (0.548 mL, 3.15 mmol) in dichloromethane (32 mL). The reaction was conducted for 24 h. The crystallization step was skipped and the product

was purified by the column chromatography (gradient from dichloromethane to dichloromethane/ethanol 20:1). The obtained sample was dissolved in dichloromethane, and the solution was washed with aqueous HCl (2 M), water, dried, and the solvent was evaporated. Yield 0.116 g (23%), white solid. M.p. 132–134 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (82%) are presented): $\delta = 15.67$ (bs, 2H; CHC–O<u>H</u>), 8.40 (s, 1H; ArH_{Trz}), 7.72–7.66 (m, 4H; ArH_{Ph}), 7.48–7.41 (m, 2H; ArH_{Ph}), 7.38–7.31 (m, 4H; ArH_{Ph}), 7.24–7.19 (m, 5H; ArH_{Ph}), 7.13 (s, 2H; ArH), 7.10 (s, 2H; ArH), 6.53 (d, 2H, ⁴*J* = 2.8 Hz; ArH), 6.52 (d, 2H, ⁴*J* = 2.8 Hz; ArH), 6.44 (s, 2H; CH), 6.34 (s, 1H; OH), 5.42 (s, 2H; NCH₂), 5.27 (s, 2H; OCH₂Trz), 4.42 (d, 2H, ²*J* = 15.6 Hz; CH₂CO), 4.39 (d, 2H, ²*J* = 13.2 Hz; ArCH₂Ar), 4.25 (d, 2H, ²*J* = 12.9 Hz; ArCH₂Ar), 4.22 (d, 2H, ²*J* = 15.6 Hz; CH₂CO), 3.27 (d, 2H, ²*J* = 13.2 Hz; ArCH₂Ar), 3.17 (d, 2H, ²*J* = 12.9 Hz; ArCH₂Ar), 1.34 (s, 9H; C(CH₃)₃), 1.32 (s, 9H; C(CH₃)₃), 0.80 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 191.71$ (C=O), 183.00 (CH=<u>C</u>-OH), 152.38, 151.18, 150.62, 146.59, 146.05, 145.06, 141.51, 135.76, 134.75, 134.10 (C_{Ar}),

132.45 (CH_{Ar}), 131.79, 131.73 (C_{Ar}), 128.83, 128.69, 128.57 (CH_{Ar}), 128.53 (C_{Ar}), 128.51, 128.46, 127.02, 125.83, 125.37, 125.23, 125.17 (CH_{Ar}), 94.21 (<u>C</u>H=C–OH), 76.52 (<u>C</u>H₂CO), 67.65 (OCH₂Trz), 54.20 (NCH₂), 34.16, 33.85, 33.66 (<u>C</u>(CH₃)₃), 31.74, 31.61 (C(<u>C</u>H₃)₃), 31.36, 31.19 (ArCH₂Ar), 30.91 (C(<u>C</u>H₃)₃) ppm. ESI-MS m/z: 1140.6099 [M+H]⁺ for C₇₄H₈₂N₃O₈ (1140.6096).

Calixarene bis(*1,3-diketone*) **78** was prepared as described for compound **57** from calixarene **40** (0.392 g, 0.300 mmol), acetophenone (0.280 mL, 2.40 mmol), MgBr₂·Et₂O (0.542 g, 2.10 mmol) and DIPEA (0.365 mL, 2.10 mmol) in dichloromethane (24 mL), another portion of DIPEA (0.104 mL, 0.600 mmol) was added to the calixarene solution

before addition of the prepared magnesium enolate of acetophenone. The reaction was conducted for 30 min. Due to instability of the product, no column separation was applied, and the sample obtained after the extraction step was washed with cold ethanol and then crystallized twice from a hexane/diethyl ether mixture. Yield 0.119 g (30%), white solid. M.p. 147–149 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 15.73$ (bs, 2H; OH), 7.88–7.83 (m, 4H; ArH_{Ph}), 7.59 (s, 2H; ArH_{Trz}), 7.47–7.41 (m, 2H; ArH_{Ph}), 7.36–7.30 (m, 4H; ArH_{Ph}), 7.30–7.23 (m, 6H; ArH_{Ph}), 7.19–7.14 (m, 4H; ArH_{Ph}), 6.74 (s, 4H; ArH), 6.67 (s, 4H; ArH), 6.32 (s, 2H; CH), 5.36 (s, 4H; NCH₂), 5.17 (s, 4H; OCH₂Trz), 4.64 (s, 4H; OCH₂CO), 4.40 (d, 4H, ²*J* = 12.8 Hz; ArCH₂Ar), 3.01 (d, 4H, ²*J* = 12.8 Hz; ArCH₂Ar), 1.08 (s, 18H; C(CH₃)₃), 1.02 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta =$ 192.68 (C=O), 183.01 (CH=<u>C</u>-OH), 153.16, 152.15, 145.11, 145.04, 144.81, 135.10, 134.58, 134.19, 132.85 (C_{Ar}), 132.35, 128.89, 128.57, 128.41, 127.87, 127.83, 127.16, 125.15, 123.93 (CH_{Ar}), 95.38 (<u>C</u>H=C-OH), 75.92 (CH₂CO), 66.46 (OCH₂Trz), 53.75 (NCH₂), 33.82, 33.75 (<u>C</u>(CH₃)₃), 31.76 (ArCH₂Ar), 31.39, 31.29 (C(CH₃)₃) ppm. ESI-MS *m/z*: 1311.6895 [M+H]⁺ for C₈₄H₉₁N₆O₈ (1311.6893).

Calixarene bis(1,3-diketone) **79** was prepared as described for compound **57** from calixarene **42** (0.392 g, 0.300 mmol), acetophenone (0.280 mL, 2.40 mmol), MgBr₂·Et₂O (0.542 g, 2.10 mmol) and DIPEA (0.365 mL, 2.10 mmol) in dichloromethane (24 mL), another portion of DIPEA (0.104 mL, 0.600 mmol) was added to the calixarene solution

before addition of the prepared magnesium enolate of acetophenone. Washing with cold methanol followed by crystallization from a diethyl ether/hexane mixture was sufficient to purify the product. Yield 0.225 g (57%), white solid. M.p. 149–151 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (71%) are presented): $\delta = 15.62$ (bs, 2H; OH), 7.87 (s, 2H; ArH_{Trz}),

7.77–7.70 (m, 8H; ArH_{Ph}), 7.43–7.36 (m, 2H; ArH_{Ph}), 7.33–7.22 (m, 10H; ArH_{Ph}), 7.12 (s, 4H; ArH), 6.54 (s, 4H; ArH), 6.26 (s, 2H; CH), 5.36–5.30 (m, 4H; NCH₂), 4.66–4.59 (m, 4H; $OC\underline{H}_2CH_2$), 4.57 (s, 4H; CH₂CO), 4.43 (d, 4H, 2J =12.8 Hz; ArCH₂Ar), 3.23 (d, 4H, 2J =12.8 Hz; ArCH₂Ar), 1.32 (s, 18H; C(CH₃)₃), 0.86 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): δ = 190.51 (C=O), 183.50 (CH=<u>C</u>–OH), 153.48, 151.61, 147.69, 146.16, 145.39, 134.94, 133.99, 132.60, 131.84, 130.66 (C_{Ar}), 128.58, 128.55, 127.03, 125.79, 125.68, 125.63, 125.07, 120.29 (CH_{Ar}), 95.40 (<u>C</u>H=C–OH), 77.21, 71.94 (OCH₂), 49.40 (NCH₂), 34.13, 33.67 (<u>C</u>(CH₃)₃), 31.61, 31.03 (C(CH₃)₃), 30.70 (ArCH₂Ar) ppm. ESI-MS *m/z*: 1311.6897 [M+H]⁺ for C₈₄H₉₁N₆O₈ (1311.6893).

Calixarene bis(1,3-diketone) **80** was prepared as described for compound **57** from calixarene **43** (0.352 g, 0.258 mmol), acetophenone (0.240 mL, 2.06 mmol), MgBr₂·Et₂O (0.467 g, 1.81 mmol) and DIPEA (0.315 mL, 1.81 mmol) in dichloromethane (20 mL), another portion of DIPEA (0.090 mL, 0.516 mmol) was

added to the calixarene solution before addition of the prepared magnesium enolate of acetophenone. Repeated washing with cold methanol was sufficient to purify the product. Yield 0.152 g (43%), white solid. M.p. 102–104 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (73%) are presented): $\delta = 16.10$ (bs, 2H; OH), 8.67 (s, 2H; ArH_{Trz}), 7.86–7.77 (m, 8H; ArH_{Ph}), 7.48–7.42 (m, 2H; ArH_{Ph}), 7.39–7.25 (m, 10H; ArH_{Ph}), 7.03 (s, 4H; ArH), 6.58 (s, 4H; ArH), 6.10 (s, 2H; CH), 5.22–5.16 (m, 4H; NCH₂), 4.64–4.57 (m, 4H; OC<u>H</u>₂CH₂N), 4.32 (d, 4H, ²*J* = 12.8 Hz; ArCH₂Ar), 3.84–3.78 (m, 4H; OC<u>H</u>₂CH₂CH₂O), 1.25 (s, 18H; C(CH₃)₃), 0.91 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 197.07$ (C=O), 182.08 (CH=<u>C</u>–OH), 152.91, 152.25, 147.95, 146.05, 144.84, 134.59, 134.40 (C_{Ar}), 132.19 (CH_{Ar}), 132.17, 130.54 (C_{Ar}), 128.76, 128.52, 127.98, 126.97, 125.72, 125.69, 124.92, 120.38 (CH_{Ar}), 96.25 (<u>C</u>H=C–OH), 74.95, 71.71 (OCH₂), 49.62 (NCH₂), 36.00 (<u>C</u>H₂CO), 34.08, 33.70 (<u>C</u>(CH₃)₃), 31.55, 31.17 (C(CH₃)₃), 31.08 (ArCH₂Ar), 26.06 (OCH₂<u>C</u>H₂CH₂CH₂) ppm. ESI-MS *m/z*: 1367.7521 [M+H]⁺ for C₈₈H₉₉N₆O₈ (1367.7519).

Calixarene bis(1,3-diketone) **81** was prepared as described for compound **57** from calixarene **44** (0.324 g, 0.243 mmol), acetophenone (0.226 mL, 1.94 mmol), MgBr₂·Et₂O (0.439 g, 1.70 mmol) and DIPEA (0.296 mL, 1.70 mmol) in dichloromethane (20 mL), another portion of DIPEA (0.084 mL, 0.486 mmol) was added to the calixarene solution before addition of the prepared magnesium enolate of acetophenone.

Washing with cold methanol followed by crystallization from a diethyl ether/hexane mixture was sufficient to purify the product. Yield 0.214 g (66%), white solid. M.p. 117–119 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) are presented): δ = 15.85 (bs, 2H; OH), 7.80–7.77 (m, 4H; ArH_{Ph}), 7.66 (s, 2H; ArH_{Trz}), 7.66–7.62 (m, 4H; ArH_{Ph}), 7.49–7.43 (m, 2H; ArH_{Ph}), 7.37–7.31 (m, 4H; ArH_{Ph}), 7.25–7.20 (m, 6H; ArH_{Ph}), 7.07 (s, 4H; ArH), 6.55 (s, 4H; ArH), 6.21 (s, 2H; CH), 4.56 (s, 4H; CH₂CO), 4.49 (d, 4H, ²*J* = 12.7 Hz; ArCH₂Ar), 4.43–4.37 (m, 4H; NCH₂), 4.15–4.08 (m, 8H; OCH₂), 3.19 (d, 4H, ²*J* = 12.7 Hz; ArCH₂Ar), 2.71–2.62 (m, 4H; OCH₂C<u>H₂), 1.28 (s, 18H; C(CH₃)₃), 0.87 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): δ = 190.60 (C=O), 183.82 (CH=<u>C</u>–OH), 153.80, 151.87, 147.33, 145.38, 145.08, 135.01, 134.22 (C_{Ar}), 132.61 (CH_{Ar}), 132.05, 130.60 (C_{Ar}), 128.64, 127.75, 127.10, 125.63, 125.51, 125.47, 125.00, 120.13 (CH_{Ar}), 95.33 (<u>C</u>H=C–OH), 76.85, 71.54 (OCH₂), 47.93 (NCH₂), 34.04, 33.66 (<u>C</u>(CH₃)₃), 31.62, 31.09 (C(CH₃)₃), 31.06 (ArCH₂Ar), 30.84 (OCH₂<u>CH₂) ppm. ESI-MS *m/z*: 1339.7211 [M+H]⁺ for C₈₆H₉₅N₆O₈ (1339.7206).</u></u>

Calixarene bis(1,3-diketone) **82** was prepared as described for compound **57** from calixarene **45** (0.336 g, 0.241 mmol), acetophenone (0.225 mL, 1.93 mmol), MgBr₂·Et₂O (0.436 g, 1.69 mmol) and DIPEA (0.294 mL, 1.69 mmol) in dichloromethane (16 mL), another portion of DIPEA (0.084 mL, 0.482 mmol) was added to the calixarene solution before addition of the prepared

magnesium enolate of acetophenone. Repeated washing with cold methanol was sufficient to purify the product. Yield 0.219 g (65%), white solid. M.p. 185–187 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (74%) are presented): $\delta = 16.21$ (bs, 2H; OH), 7.84 (s, 2H; ArH_{Trz}), 7.83–7.79 (m, 4H; ArH_{Ph}), 7.77–7.73 (m, 4H; ArH_{Ph}), 7.48–7.43 (m, 2H; ArH_{Ph}), 7.38–7.22 (m, 10H; ArH_{Ph}), 6.89 (s, 4H; ArH), 6.65 (s, 4H; ArH), 6.21 (s, 2H; CH), 4.55–4.50 (m, 4H; NCH₂), 4.35 (d, 4H, ²*J* = 12.7 Hz; ArCH₂Ar), 4.04–3.99 (m, 4H; OCH₂), 3.90–3.85 (m, 4H; OCH₂), 3.16 (d, 4H, ²*J* = 12.7 Hz; ArCH₂Ar), 2.70–2.62 (m, 4H; OCH₂C<u>H₂</u>), 2.60–2.54 (m, 4H; CH₂CO), 2.37–2.27 (m, 4H; OCH₂C<u>H₂</u>), 1.16 (s, 18H; C(CH₃)₃), 0.97 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃, only signals of bis(enol) are presented): $\delta = 197.26$ (C=O), 182.35 (CH=<u>C</u>-OH), 153.24, 152.67, 147.60, 145.19, 144.68, 134.47, 134.20, 132.89 (C_{Ar}), 132.26 (CH_{Ar}), 130.62 (C_{Ar}), 128.80, 128.57, 127.97, 127.00, 125.56, 125.38, 124.97, 120.14 (CH_{Ar}), 96.35 (<u>C</u>H=C-OH), 74.61, 71.60 (OCH₂), 47.81 (NCH₂), 35.98 (<u>C</u>H₂CO), 33.94, 33.75 (<u>C</u>(CH₃)₃), 31.50, 31.29 (C(CH₃)₃, ArCH₂Ar), 31.07, 26.10 (OCH₂<u>C</u>H₂) ppm. ESI-MS *m*/z: 1396.7865 [M+H]⁺ for C₉₀H₁₀₃N₆O₈ (1396.7865).

Calixarene bis(1,3-*diketone*) **83** was prepared as described for compound **57** from calixarene **55** (0.467 g, 0.431 mmol), acetophenone (0.402 mL, 3.45 mmol), MgBr₂·Et₂O (0.778 g, 3.02 mmol) and DIPEA (0.525 mL, 3.02 mmol) in dichloromethane (16 mL). Repeated washing with cold methanol was sufficient to purify the product. Yield 0.280 g (60%), white

solid. M.p. 97–99 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (69%) are presented): $\delta = 15.98$ (bs, 2H; OH), 7.80–7.73 (m, 4H; ArH_{Ph}), 7.51–7.27 (m, 16H; ArH_{Ph}), 6.94 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.72 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.68 (s, 2H; ArH_{Trz}), 6.51 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.08 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.05 (s, 2H; CH), 5.57 (s, 4H; NCH₂), 4.82 (s, 4H; OCH₂Trz), 4.02 (s, 4H; CH₂CO), 3.64 (d, 4H, ²*J* = 15.2 Hz; ArCH₂Ar), 3.44 (d, 4H, ²*J* = 15.2 Hz; ArCH₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.80$ (C=O), 183.50 (CH=C–OH), 155.30, 155.27, 144.66, 135.10, 134.41, 134.19, 133.31 (C_{Ar}), 132.65, 130.53, 130.23, 129.04, 128.68, 128.51, 127.92, 127.35, 123.44, 123.17, 122.39 (CH_{Ar}), 94.96 (CH=C–OH), 72.65, 64.33 (OCH₂), 53.91 (NCH₂), 37.14 (ArCH₂Ar) ppm. ESI-MS *m/z*: 1087.4382 [M+H]⁺ for C₆₈H₅₉N₆O₈ (1087.4389).

Calixarene bis(1,3-*diketone*) **84** was prepared as described for compound **57** from calixarene **56** (0.365 g, 0.320 mmol), acetophenone (0.298 mL, 2.56 mmol), MgBr₂·Et₂O (0.578 g, 2.24 mmol) and DIPEA (0.389 mL, 2.24 mmol) in dichloromethane (25 mL), another portion of DIPEA (0.111 mL, 0.640 mmol) was added to the calixarene solution before addition of the prepared magnesium enolate of acetophenone. Due to instability of the

product, no column separation was applied, and the sample obtained after the extraction step was washed with cold hexane, cold methanol and then with cold diethyl ether. Yield 0.231 g (71%), white solid. M.p. 67–69 °C. ¹H NMR (400 MHz, CDCl₃, only signals of bis(enol) (68%) are presented): $\delta = 16.17$ (bs, 2H; OH), 7.87–7.83 (m, 4H; ArH_{Ph}), 7.53–7.26 (m, 16H; ArH_{Ph}), 7.00 (d, 4H, ³*J* = 7.5 Hz; ArH), 6.87–6.82 (m, 4H; ArH), 6.65 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.42 (s, 2H; ArH_{Trz}), 6.10 (t, 2H, ³*J* = 7.5 Hz; ArH), 6.04 (s, 2H; CH), 5.59 (s, 4H; NCH₂), 4.67 (s, 4H; OCH₂Trz), 3.64 (d, 4H, ²*J* = 16.0 Hz; ArCH₂Ar), 3.45–3.40 (m, 4H; OCH₂CH₂), 3.44 (d, 4H, ²*J* = 16.0 Hz; ArCH₂Ar), 2.13–2.08 (m, 4H; CH₂CO), 1.66–1.56 (m, 4H, OCH₂CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 197.22$ (C=O), 182.50 (CH=<u>C</u>–OH), 156.13, 155.23, 144.55, 135.34, 134.71, 134.50, 133.42 (C_{Ar}), 132.21, 129.42, 129.26, 128.83, 128.58, 128.40, 127.65, 126.82, 123.43, 122.84, 122.24 (CH_{Ar}), 95.94 (<u>C</u>H=C–OH), 68.88, 63.57 (OCH₂), 53.59 (NCH₂), 37.80 (ArCH₂Ar), 35.39 (<u>C</u>H₂CO), 25.51 (OCH₂<u>C</u>H₂) ppm. ESI-MS *m/z*: 1143.5015 [M+H]⁺ for C₇₂H₆₇N₆O₈ (1143.5015).

Figure S1. ¹H NMR spectrum of 1-acylbenzotriazole **5** (400 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum (APT) of 1-acylbenzotriazole 5 (100 MHz, CDCl₃).

Figure S3. ¹H NMR spectrum of 1-acylbenzotriazole 6 (400 MHz, CDCl₃).

Figure S4. ¹³C NMR spectrum (APT) of 1-acylbenzotriazole 6 (100 MHz, CDCl₃).

Figure S5. ¹H NMR spectrum of bis(1-acylbenzotriazole) 7 (400 MHz, CDCl₃).

Figure S6. ¹³C NMR spectrum (APT) of bis(1-acylbenzotriazole) 7 (100 MHz, CDCl₃).

Figure S7. ¹H NMR spectrum of bis(1-acylbenzotriazole) **8** (400 MHz, CDCl₃).

Figure S8. ¹³C NMR spectrum (APT) of bis(1-acylbenzotriazole) 8 (100 MHz, CDCl₃).

Figure S9. ¹H NMR spectrum of bis(1-acylbenzotriazole) **10** (400 MHz, CDCl₃).

Figure S10. ¹³C NMR spectrum (APT) of bis(1-acylbenzotriazole) 10 (100 MHz, CDCl₃).

Figure S11. ¹H NMR spectrum of bis(ester) 12 (400 MHz, CDCl₃).

Figure S12. ¹³C NMR spectrum (APT) of bis(ester) 12 (100 MHz, CDCl₃).

Figure S13. ¹H NMR spectrum of bis(acid) 13 (400 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum (APT) of bis(acid) 13 (100 MHz, CDCl₃).

Figure S15. ¹H NMR spectrum of bis(1-acylbenzotriazole) 14 (400 MHz, CDCl₃).

Figure S16. ¹³C NMR spectrum (APT) of bis(1-acylbenzotriazole) 14 (100 MHz, CDCl₃).

Figure S17. ¹H NMR spectrum of bis(1-acylbenzotriazole) 16 (400 MHz, CDCl₃).

Figure S18. ¹³C NMR spectrum (APT) of bis(1-acylbenzotriazole) 16 (100 MHz, CDCl₃).

Figure S19. ¹H NMR spectrum of bis(acid) 17 (400 MHz, DMSO-*d*₆).

Figure S20. ¹³C NMR spectrum of bis(acid) 17 (100 MHz, DMSO-*d*₆).

Figure S21. ¹H NMR spectrum of bis(1-acylbenzotriazole) 18 (400 MHz, CDCl₃).

Figure S22. ¹³C NMR spectrum of bis(1-acylbenzotriazole) 18 (100 MHz, CDCl₃).

Figure S23. ¹H NMR spectrum of propargylated bis(ester) 21 (400 MHz, CDCl₃).

Figure S24. ¹³C NMR spectrum (APT) of propargylated bis(ester) 21 (100 MHz, CDCl₃).

Figure S25. ¹H NMR spectrum of triazolated bis(ester) 22 (400 MHz, CDCl₃).

Figure S26. ¹³C NMR spectrum (APT) of triazolated bis(ester) 22 (100 MHz, CDCl₃).

Figure S27. ¹H NMR spectrum of triazolated bis(ester) 23 (400 MHz, CDCl₃).

Figure S28. ¹³C NMR spectrum (APT) of triazolated bis(ester) 23 (100 MHz, CDCl₃).

Figure S29. ¹H NMR spectrum of triazolated bis(acid) 24 (400 MHz, CDCl₃).

Figure S30. ¹³C NMR spectrum (APT) of triazolated bis(acid) 24 (100 MHz, CDCl₃).

Figure S31. ¹H NMR spectrum of triazolated bis(acid) 25 (400 MHz, CDCl₃).

Figure S32. ¹³C NMR spectrum (APT) of triazolated bis(acid) 25 (100 MHz, CDCl₃).

Figure S33. ¹H NMR spectrum of 2-azidoethylated bis(ester) 28 (400 MHz, CDCl₃).

Figure S34. ¹³C NMR spectrum (APT) of 2-azidoethylated bis(ester) 28 (100 MHz, CDCl₃).

Figure S35. ¹H NMR spectrum of 2-azidoethylated bis(ester) **29** (400 MHz, CDCl₃).

Figure S36. ¹³C NMR spectrum (APT) of 2-azidoethylated bis(ester) 29 (100 MHz, CDCl₃).

Figure S37. ¹H NMR spectrum of 3-azidopropylated bis(ester) **30** (400 MHz, CDCl₃).

Figure S38. ¹³C NMR spectrum (APT) of 3-azidopropylated bis(ester) **30** (100 MHz, CDCl₃).

Figure S39. ¹H NMR spectrum of 3-azidopropylated bis(ester) **31** (400 MHz, CDCl₃).

Figure S40. ¹³C NMR spectrum (APT) of 3-azidopropylated bis(ester) **31** (100 MHz, CDCl₃).

Figure S41. ¹H NMR spectrum of triazolated bis(ester) 32 (400 MHz, CDCl₃).

Figure S42. ¹³C NMR spectrum (APT) of triazolated bis(ester) 32 (100 MHz, CDCl₃).

Figure S43. ¹H NMR spectrum of triazolated bis(ester) 33 (400 MHz, CDCl₃).

Figure S44. ¹³C NMR spectrum (APT) of triazolated bis(ester) 33 (100 MHz, CDCl₃).

Figure S45. ¹H NMR spectrum of triazolated bis(ester) 34 (400 MHz, CDCl₃).

Figure S46. ¹³C NMR spectrum (APT) of triazolated bis(ester) 34 (100 MHz, CDCl₃).

Figure S47. ¹H NMR spectrum of triazolated bis(ester) 35 (400 MHz, CDCl₃).

Figure S48. ¹³C NMR spectrum (APT) of triazolated bis(ester) 35 (100 MHz, CDCl₃).

Figure S49. ¹H NMR spectrum of triazolated bis(acid) 36 (400 MHz, DMSO-*d*₆).

Figure S50. ¹³C NMR spectrum (APT) of triazolated bis(acid) 36 (100 MHz, DMSO-*d*₆).

Figure S51. ¹H NMR spectrum of triazolated bis(acid) 37 (400 MHz, DMSO-*d*₆).

Figure S52. ¹³C NMR spectrum (APT) of triazolated bis(acid) 37 (100 MHz, DMSO-*d*₆).

Figure S53. ¹H NMR spectrum of triazolated bis(acid) 38 (400 MHz, DMSO-*d*₆).

Figure S54. ¹³C NMR spectrum (APT) of triazolated bis(acid) 38 (100 MHz, DMSO-*d*₆).

Figure S55. ¹H NMR spectrum of triazolated bis(acid) **39** (400 MHz, DMSO-*d*₆).

Figure S56. ¹³C NMR spectrum (APT) of triazolated bis(acid) **39** (100 MHz, DMSO-*d*₆).

Figure S57. ¹H NMR spectrum of triazolated bis(1-acylbenzotriazole) **40** (400 MHz, CDCl₃).

Figure S58. ¹³C NMR spectrum (APT) of triazolated bis(1-acylbenzotriazole) 40 (100 MHz, CDCl₃).

Figure S59. ¹H NMR spectrum of triazolated bis(1-acylbenzotriazole) **41** (400 MHz, CDCl₃).

Figure S60. ¹³C NMR spectrum (APT) of triazolated bis(1-acylbenzotriazole) 41 (100 MHz, CDCl₃).

Figure S61. ¹H NMR spectrum of triazolated bis(1-acylbenzotriazole) 42 (400 MHz, CDCl₃).

Figure S62. ¹³C NMR spectrum (APT) of triazolated bis(1-acylbenzotriazole) 42 (100 MHz, CDCl₃).

Figure S63. ¹H NMR spectrum of triazolated bis(1-acylbenzotriazole) 43 (400 MHz, CDCl₃).

Figure S64. ¹³C NMR spectrum (APT) of triazolated bis(1-acylbenzotriazole) 43 (100 MHz, CDCl₃).

Figure S65. ¹H NMR spectrum of triazolated bis(1-acylbenzotriazole) 44 (400 MHz, CDCl₃).

Figure S66. ¹³C NMR spectrum (APT) of triazolated bis(1-acylbenzotriazole) 44 (100 MHz, CDCl₃).

Figure S67. ¹H NMR spectrum of triazolated bis(1-acylbenzotriazole) 45 (400 MHz, CDCl₃).

Figure S68. ¹³C NMR spectrum (APT) of triazolated bis(1-acylbenzotriazole) 45 (100 MHz, CDCl₃).

Figure S69. ¹H NMR spectrum of propargylated bis(ester) 48 (400 MHz, CDCl₃).

Figure S70. ¹³C NMR spectrum of propargylated bis(ester) 48 (100 MHz, CDCl₃).

Figure S71. ¹H NMR spectrum of propargylated bis(ester) 49 (400 MHz, CDCl₃).

Figure S72. ¹³C NMR spectrum of propargylated bis(ester) **49** (100 MHz, CDCl₃).

Figure S73. ¹H NMR spectrum of propargylated bis(ester) 50 (400 MHz, CDCl₃).

Figure S74. ¹³C NMR spectrum (APT) of propargylated bis(ester) 50 (100 MHz, CDCl₃).

Figure S75. ¹H NMR spectrum of triazolated bis(ester) 51 (400 MHz, CDCl₃).

Figure S76. ¹³C NMR spectrum of triazolated bis(ester) 51 (100 MHz, CDCl₃).

Figure S77. ¹H NMR spectrum of triazolated bis(ester) 52 (400 MHz, CDCl₃).

Figure S78. ¹³C NMR spectrum (APT) of triazolated bis(ester) 52 (100 MHz, CDCl₃).

Figure S79. ¹H NMR spectrum of triazolated bis(acid) 53 (400 MHz, CDCl₃).

Figure S80. ¹³C NMR spectrum of triazolated bis(acid) 53 (100 MHz, CDCl₃+CD₃OD).

Figure S81. ¹H NMR spectrum of triazolated bis(acid) 54 (400 MHz, CDCl₃).

Figure S82. ¹³C NMR spectrum (APT) of triazolated bis(acid) 54 (100 MHz, CDCl₃).

Figure S83. ¹H NMR spectrum of triazolated bis(1-acylbenzotriazole) 55 (400 MHz, CDCl₃).

Figure S84. ¹³C NMR spectrum (APT) of triazolated bis(1-acylbenzotriazole) 55 (100 MHz, CDCl₃).

Figure S85. ¹H NMR spectrum of triazolated bis(1-acylbenzotriazole) 56 (400 MHz, CDCl₃).

Figure S86. ¹³C NMR spectrum (APT) of triazolated bis(1-acylbenzotriazole) 56 (100 MHz, CDCl₃).

Figure S87. ¹H NMR spectrum of calixarene 1,3-diketone **57** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S88. ¹³C NMR spectrum (APT) of calixarene 1,3-diketone 57 (100 MHz, CDCl₃).

Figure S89. ¹H NMR spectrum of calixarene 1,3-diketone **58** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S90. ¹³C NMR spectrum (APT) of calixarene 1,3-diketone 58 (100 MHz, CDCl₃).

Figure S91. ¹H NMR spectrum of calixarene 1,3-diketone **59** (600 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S92. ¹³C NMR spectrum of calixarene 1,3-diketone 59 (150 MHz, CDCl₃).

Figure S93. ¹H NMR spectrum of calixarene 1,3-diketone 60 (400 MHz, CDCl₃).

Figure S94. ¹³C NMR spectrum (APT) of calixarene 1,3-diketone 60 (100 MHz, CDCl₃).

Figure S95. ¹H NMR spectrum of calixarene bis(1,3-diketone) **61** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S96. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 61 (100 MHz, CDCl₃).

Figure S97. ¹H NMR spectrum of calixarene bis(1,3-diketone) **62** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S98. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 62 (100 MHz, CDCl₃).

Figure S99. ¹H NMR spectrum of calixarene bis(1,3-diketone) **63** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S100. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 63 (100 MHz, CDCl₃).

Figure S101. ¹H NMR spectrum of calixarene bis(1,3-diketone) **64** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S102. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 64 (100 MHz, CDCl₃).

Figure S103. ¹H NMR spectrum of calixarene bis(1,3-diketone) **65** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S104. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 65 (100 MHz, CDCl₃).

Figure S105. ¹H NMR spectrum of calixarene bis(1,3-diketone) **66** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S106. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 66 (100 MHz, CDCl₃).

Figure S107. ¹H NMR spectrum of calixarene bis(1,3-diketone) **67** (600 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S108. ¹³C NMR spectrum of calixarene bis(1,3-diketone) 67 (150 MHz, CDCl₃).

Figure S109. ¹H NMR spectrum of calixarene bis(1,3-diketone) **68** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S110. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 68 (100 MHz, CDCl₃).

Figure S111. ¹H NMR spectrum of calixarene bis(1,3-diketone) **70** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S112. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 70 (100 MHz, CDCl₃).

Figure S113. ¹H NMR spectrum of calixarene bis(1,3-diketone) **71** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S114. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 71 (100 MHz, CDCl₃).

Figure S115. ¹H NMR spectrum of calixarene bis(1,3-diketone) **72** (600 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S116. ¹³C NMR spectrum of calixarene bis(1,3-diketone) 72 (150 MHz, CDCl₃).

Figure S117. ¹H NMR spectrum of calixarene bis(1,3-diketone) **73** (600 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S118. ¹³C NMR spectrum of calixarene bis(1,3-diketone) 73 (150 MHz, CDCl₃).

Figure S119. ¹H NMR spectrum of calixarene bis(1,3-diketone) **74** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S120. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 74 (100 MHz, CDCl₃).

Figure S121. ¹H NMR spectrum of calixarene bis(1,3-diketone) **75** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S122. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 75 (100 MHz, CDCl₃).

Figure S123. ¹H NMR spectrum of calixarene bis(1,3-diketone) **76** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S124. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 76 (100 MHz, CDCl₃).

Figure S125. ¹H NMR spectrum of calixarene bis(1,3-diketone) **77** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S126. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 77 (100 MHz, CDCl₃).

Figure S127. ¹H NMR spectrum of calixarene bis(1,3-diketone) **78** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S128. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 78 (100 MHz, CDCl₃).

Figure S129. ¹H NMR spectrum of calixarene bis(1,3-diketone) **79** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S130. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 79 (100 MHz, CDCl₃).

Figure S131. ¹H NMR spectrum of calixarene bis(1,3-diketone) **80** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S132. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 80 (100 MHz, CDCl₃).

Figure S133. ¹H NMR spectrum of calixarene bis(1,3-diketone) **81** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S134. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 81 (100 MHz, CDCl₃).

Figure S135. ¹H NMR spectrum of calixarene bis(1,3-diketone) **82** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S136. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 82 (100 MHz, CDCl₃).

Figure S137. ¹H NMR spectrum of calixarene bis(1,3-diketone) **83** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S138. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 83 (100 MHz, CDCl₃).

Figure S139. ¹H NMR spectrum of calixarene bis(1,3-diketone) **84** (400 MHz, CDCl₃, the downfield-shifted resonance from the enol OH is not shown).

Figure S140. ¹³C NMR spectrum (APT) of calixarene bis(1,3-diketone) 84 (100 MHz, CDCl₃).

Details of X-ray diffraction measurements

Crystallographic data were collected on a Bruker D8 Venture diffractometer using graphite monochromatized Mo–K α radiation ($\lambda = 0.71073$ Å) using a ω -scan mode. Absorption correction based on measurements of equivalent reflections was applied.^[S13] The structures were solved by direct methods and refined by full matrix least-squares on F² with anisotropic thermal parameters for all non-hydrogen atoms using Olex2 package.^[S14] Hydrogen atoms were placed in calculated positions and refined using a riding model. In the structure **70**, the enol H004 atom was found from the difference Fourier map and refined freely. In the structure **61**, the enol H005 and H007 atoms were found from the difference Fourier map and refined freely. In the structure of the copper(II) complex of deprotonated bis(1,3-diketone) **61**, several highly disordered solvent methanol molecules were not located and their contribution was suppressed by the SQUEEZE procedure.^[S15] Crystallographic details are presented in Table S1–S3.
Compound	21	23	36	41
Formula	$C_{62}H_{80}O_8$	$C_{76}H_{94}N_6O_8$	C ₆₈ H ₇₈ N ₆ O ₈ ·2.8CH ₃ OH	$C_{84}H_{92}N_{12}O_6$
M_{w}	953.26	1219.57	1197.72	1365.69
Temperature (K)	100(2)	150(2)	230(2)	150(2)
Size (mm)	$0.05\times0.08\times0.14$	$0.02\times0.08\times0.10$	$0.12\times0.20\times0.30$	$0.03\times 0.09\times 0.11$
Cryst. system	triclinic	orthorhombic	triclinic	monoclinic
Space group	P-1	Pbca	P-1	C2/c
a (Å)	11.7935(11)	23.9383(15)	13.6183(7)	69.434(4)
b (Å)	13.6631(12)	16.3679(10)	17.5853(10)	9.8951(7)
c (Å)	18.6769(18)	35.5184(18)	18.1084(10)	23.4704(15)
α (°)	87.204(3)	90	116.217(2)	90
β (°)	73.312(3)	90	98.958(2)	109.282(2)
γ (°)	79.156(3)	90	99.748(2)	90
V (Å ³)	2831.2(5)	13916.8(14)	3701.7(4)	15221.0(17)
Ζ	2	8	2	8
θ range (deg)	$1.83 < \theta < 25.05$	$1.90 < \theta < 25.03$	$1.76 < \theta < 25.05$	$1.86 < \theta < 25.05$
collected/ /unique rflns	68758 / 10033	52572 / 12298	51521 / 13063	73255 / 13436
Completeness to θ (%)	100.0	99.9	99.6	99.7
data/ /restraints/ /params	10033/64/741	12298/21/825	13063/45/793	13436/30/912
Goodness of fit on F^2	1.030	1.011	1.034	1.038
Final <i>R</i> indices	R1 = 0.0698	R1 = 0.0794	R1 = 0.0852	R1 = 0.0764
$(I > 2\sigma(I))$	wR2 = 0.1727	wR2 = 0.1778	wR2 = 0.2495	wR2 = 0.1902
Largest diff peak/hole (e/Å ³)	0.72 / -0.94	1.52 / -0.48	1.68 / -0.60	0.74 / -0.47

Table S1. Details of the X-ray crystal data collection and structure refinement for compounds 21, 23, 36 and 41.

Compound	48	49	50	60
Formula	$C_{43}H_{44}O_9$	$C_{46}H_{48}O_8$	$C_{46}H_{48}O_8$	$C_{64}H_{82}O_{6}$
$M_{\rm w}$	704.78	728.84	728.84	947.29
Temperature (K)	150(2)	150(2)	150(2)	100(2)
Size (mm)	$0.03 \times 0.08 \times 0.40$	$0.03 \times 0.10 \times 0.13$	$0.11 \times 0.12 \times 0.16$	$0.15 \times 0.18 \times 0.35$
Cryst. system	monoclinic	triclinic	monoclinic	orthorhombic
Space group	C2/c	P-1	$P2_1/n$	$P2_{1}2_{1}2_{1}$
<i>a</i> (Å)	31.322(4)	7.6834(4)	9.0719(3)	14.1107(5)
<i>b</i> (Å)	7.5748(9)	15.2752(7)	38.9659(14)	15.5336(5)
<i>c</i> (Å)	19.293(2)	16.8833(8)	12.0650(5)	25.4103(8)
α (°)	90	99.401(2)	90	90
β (°)	126.657(2)	101.168(2)	111.9300(10)	90
γ (°)	90	93.4820(10)	90	90
V (Å ³)	3672.0(8)	1909.13(16)	3956.3(3)	5569.7(3)
Ζ	4	2	4	4
θ range (deg)	$2.11 < \theta < 26.00$	$2.00 < \theta < 26.41$	$2.09 < \theta < 27.00$	$1.95 < \theta < 28.05$
collected/ /unique rflns	9958 / 3541	31397 / 7802	56379 / 8600	228083 / 13527
Completeness to θ (%)	97.9	99.4	99.4	100.0
data/ /restraints/ /params	3541/1/244	7802/4/484	8600/3/505	13527/17/647
Goodness of fit on F^2	1.092	1.051	1.043	1.118
Final R indices	R1 = 0.0519	R1 = 0.0575	R1 = 0.0407	R1 = 0.0592
$(I > 2\sigma(I))$	wR2 = 0.1274	wR2 = 0.1427	wR2 = 0.0930	wR2 = 0.1488
Largest diff peak/hole (e/Å ³)	0.65 / -0.43	0.40 / -0.61	0.22 / -0.21	0.63 / -0.44

Table S2. Details of the X-ray crystal data collection and structure refinement for compounds 48, 49, 50 and 60.

Compound	61	70	81	Copper(II) complex
Formula	$C_{74}H_{92}O_8$	$C_{54}H_{52}O_8$	$C_{86}H_{94}N_6O_8$	C ₇₄ H ₉₀ O ₈ Cu
$M_{ m w}$	1109.47	828.96	1339.67	2342.03
Temperature (K)	100(2)	230(2)	150(2)	100(2)
Size (mm)	$0.19 \times 0.22 \times 0.24$	$0.01 \times 0.04 \times 0.13$	$0.05\times0.05\times0.24$	$0.02\times0.08\times0.10$
Cryst. system	monoclinic	orthorhombic	trigonal	triclinic
Space group	$P2_1/c$	Pbcn	R-3	P-1
<i>a</i> (Å)	23.3701(19)	18.8623(12)	61.4200(19)	12.242(2)
<i>b</i> (Å)	13.8905(11)	7.7799(5)	61.4200(19)	14.810(2)
c (Å)	21.460(2)	29.4405(18)	10.6481(3)	22.121(4)
α (°)	90	90	90	97.483(5)
β (°)	112.992(3)	90	90	98.817(5)
γ (°)	90	90	120	109.567(5)
V (Å ³)	6413.1(10)	4320.3(5)	34787(2)	3662.7(11)
Z	4	4	18	2
θ range (deg)	$1.79 < \theta < 26.40$	$2.16 < \theta < 25.05$	$1.95 < \theta < 25.05$	$1.88 < \theta < 25.10$
collected/ /unique rflns	103894 / 13122	37920 / 3830	179997 / 13683	36892 / 12964
Completeness to θ (%)	99.9	99.9	99.8	99.2
data/ /restraints/ /params	13122/27/774	3830/13/257	13683/31/892	12964/64/756
Goodness of fit on F^2	1.037	1.085	1.034	0.930
Final R indices	R1 = 0.0720	R1 = 0.1243	R1 = 0.0901	R1 = 0.0876
$(I > 2\sigma(I))$	wR2 = 0.1827	wR2 = 0.2381	wR2 = 0.2369	wR2 = 0.1847
Largest diff peak/hole (e/Å ³)	0.78 / -0.46	0.27 / -0.45	0.68 / -0.56	0.49 / -0.44

Table S3. Details of the X-ray crystal data collection and structure refinement for compounds **61**, **70**, **81** and for the copper(II) complex of deprotonated bis(1,3-diketone) **61**.

References

- A. Mattiuzzi, I. Jabin, C. Mangeney, C. Roux, O. Reinaud, L. Santos, J.-F. Bergamini, P. Hapiot and C. Lagrost, Electrografting of calix[4]arenediazonium salts to form versatile robust platforms for spatially controlled surface functionalization, *Nature Commun.*, 2012, 3, 1130.
- R. Lalor, A. P. Gunning, V. J. Morris and S. E. Matthews, Taking multicalixarenes into the nanoworld: first third-generation calixarene dendrimer, *Chem. Commun.*, 2010, 46, 8665– 8667.
- S3. H. Murakami and S. Shinkai, "Metal-switched" molecular receptor site designed on a calix[4]arene platform, *Tetrahedron Lett.*, 1993, **34**, 4237–4240.
- S4. A. V. Yakovenko, V. I. Boyko, V. I. Kalchenko, L. Baldini, A. Casnati, F. Sansone and R. Ungaro, *N*-Linked peptidocalix[4]arene bisureas as enantioselective receptors for amino acid derivatives, *J. Org. Chem.*, 2007, **72**, 3223–3231.
- S5. S. K. Kim, S. H. Lee, J. Y. Lee, J. Y. Lee, R. A. Bartsch and J. S. Kim, An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor, J. Am. Chem. Soc., 2004, 126, 16499–16506.
- B. Bolshchikov, S. Volkov, D. Sokolova, A. Gorbunov, A. Serebryannikova, I. Gloriozov, D. Cheshkov, S. Bezzubov, W.-S. Chung, V. Kovalev and I. Vatsouro, Constructing bridged multifunctional calixarenes by intramolecular indole coupling, *Org. Chem. Front.*, 2019, 6, 3327–3341.
- S7. Z. Asfari, A. Bilyk, C. Bond, J. M. Harrowfield, G. A. Koutsantonis, N. Lengkeek, M. Mocerino, B. W. Skelton, A. N. Sobolev, S. Strano, J. Vicens and A. H. White, Factors influencing solvent adduct formation by calixarenes in the solid state, *Org. Biomol. Chem.*, 2004, 2, 387–396.
- S8. Z.-G. Luo, Y. Zhao, F. Xu, C. Ma, X.-M. Xu and X.-M. Zhang, Synthesis and thermal properties of novel calix[4]arene derivatives containing 1,2,3-triazole moiety *via* K₂CO₃catalyzed 1,3-dipolar cycloaddition reaction, *Chinese Chem. Lett.*, 2014, 25, 1346–1348.
- S9. R. Hosseinzadeh, E. Domehri, M. Tajbakhsh and A. Bekhradnia, New fluorescent sensor based on a calix[4]arene bearing two triazole-coumarin units for copper ions: application for Cu²⁺ detection in human blood serum, *J. Incl. Phenom. Macrocyclic Chem.*, 2019, 93, 245–252.
- S10. (a) P. Faidherbe, C, Wieser, D. Matt, A. Harriman, A. De Cian and J. Fischer, Complexation studies with a calix[4]arene-derived phosphinite devergent arrays of cavities linked by MCl₂ fragments (M = Pd, Pt), *Eur. J. Inorg. Chem.*, 1998, 451–457; (b) D. M. Rudkevich, W. Verboom and D. N. Reinhoudt, Calix[4]arene salenes: a bifunctional receptor for NaH₂PO₄, *J. Org. Chem.*, 1994, **59**, 3683–3686.
- S11. W. Xu, J. J. Vittal and R. J. Puddephatt, Propargyl calix[4]arenes and their complexes with silver(I) and gold(I), *Can. J. Chem.*, 1996, **74**, 766–774.
- S12. N. Feng, H. Zhao, J. Zhan, D. Tian and H. Li, Switchable wettability sensor for ion pairs based on calix[4]azacrown clicking, Org. Lett., 2012, 14, 1958–1961.
- S13. G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., 2008, A64, 112-122.
- S14. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, 2009, 42, 339–341.
- S15. A. L. Spek, Single-crystal structure validation with the program *PLATON*, *J. Appl. Crystallogr.*, 2003, **36**, 7–13.