Oxidative Mizoroki-Heck Reaction of Unprotected Cinnamylamines at Ambient Temperature Under Air

Olutayo N. Farinde, ${ }^{\dagger}$ Vanaparthi Satheesh, ${ }^{\dagger}$ Kendra K. Shrestha, Carmen R. Rhinehalt, Vinod G. Landge and Michael C. Young*
Department of Chemistry \& Biochemistry, School of Green Chemistry \& Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, OH 43606.
${ }^{\dagger}$ Denotes equal contribution; *Denotes corresponding author Corresponding Author Email:michael.young8@utoledo.edu

Table of Contents

Entry	Information	Page
1	General Information	2
2	Synthesis of Cinnamylamine Substrates	3
3	Optimization and Synthesis of Diarylated Cinnamylamines	7
4	Reaction Scale-up	24
5	Analytical Data of Pd Nano Particles	25
6	NMR Spectra of Compounds	27
7	References	58

1. General Information

All the materials were obtained from Sigma-Aldrich Chemical Company, St. Louis, MO, USA, Combi-Blocks, San Diego, CA, USA, Oakwood Chemical, Estill, SC, USA, Alfa Aesar, Ward Hill, MA, USA, Acros Organic, Geel, Belgium, Ambeed, Inc., Arlington Heights, IL, USA, or TCI, Tokyo, Japan, and were used as received. Deuterated NMR solvents were obtained from Cambridge Isotope Laboratories, Inc., Andover, MA, and used without further purification. NMR spectra were recorded on either a Varian Inova 400 MHz NMR, 600 MHz NMR spectrometer or a Bruker Avance III 600 MHz NMR spectrometer and were processed using MestReNova by Mestrelab Research S.L. Proton $\left({ }^{1} \mathrm{H}\right)$ chemical shifts are reported in parts per million (δ) with respect to tetramethylsilane (TMS, $\delta=0$), and referenced internally with respect to the protio solvent impurity. ${ }^{1}$ Fluorine $\left({ }^{19} \mathrm{~F}\right)$ chemical shifts are reported in parts per million (δ) and referenced internally with respect to hexafluorobenzene included in an insert tube $\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right.$, $\delta=$ -164.9). ${ }^{2}$ ESI mass spectra were recorded on an Agilent 6530 LC Q-TOF mass spectrometer using electrospray ionization with fragmentation voltage set at 115 V or lower for sensitive substrates, and processed with an Agilent MassHunter Operating System, or on a Waters SYNAPT G2-Si High Definition Mass Spectrometer. Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM) data were collected on a JEOL JSM-7500F. Dynamic Light Scattering (DLS) was performed using a Litesizer 500 (Anton Paar) by diluting filtered reactions into methanol.

2. Synthesis of Cinnamylamine Substrates

A) Synthetic Procedure for Cinnamylamines:

Method I: Amine (1 equiv.) and cinnamaldehyde (1 equiv.) were charged in an oven-dried 50 mL round bottom flask with 15 mL of chloroform and allowed to stir at $60^{\circ} \mathrm{C}$ for 4 h , followed by filtration over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation in vacuo, the evacuated filtrate was dissolved in methanol (10 mL). To the solution was added sodium borohydride (2 equiv.) portion wise, followed by stirring at room temperature overnight. After completion, reaction was quenched with aq. NaOH solution. The aqueous layer was extracted with diethyl ether $(2 \times 25 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by concentration in vacuo. The crude product was purified by acid-base workup: first, the residue was acidified using 1.2 M hydrochloric $\operatorname{acid}_{(\mathrm{aq})}$, followed by subsequent washing with diethyl ether $(2 \times 50 \mathrm{~mL})$. Then the aqueous layer was basified with ammonium hydroxide solution and extracted with dichloromethane ($2 \times 50 \mathrm{~mL}$). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic layer was concentrated in vacuo to give the secondary amine product.

Method II: Amine (1 equiv.) and cinnamaldehyde (1 equiv.) were charged in an oven dried 50 mL round bottom flask in 15 mL of methanol and allowed to stir at room temperature for 1 h , followed by addition of sodium borohydride (2 equiv.) portion wise, followed by stirring at room temperature overnight. After completion, reaction was quenched with aq. NaOH solution. The aqueous layer was extracted with diethyl ether $(2 \times 25 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by concentration in vacuo. The crude product was purified by acid-base workup: first, the residue was acidified using 1.2 M hydrochloric acid, followed by subsequent washing with diethyl ether $(2 \times 50 \mathrm{~mL})$. Then the aqueous layer was basified with ammonium hydroxide solution and extracted with dichloromethane ($2 \times 50 \mathrm{~mL}$). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic layer was concentrated in vacuo to give the secondary amine product.

Method III: A solution of amine (5 mmol .) in diethyl ether $(10 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, and allyl bromide (10 mmol .) was added dropwise to it. After stirring for 30 minutes, the reaction mixture was warmed to RT, and allowed to stir overnight. Ammonium hydroxide ${ }_{(\mathrm{aq})}$ was added to convert the milky reaction mixture into a clear solution. The aqueous layer was extracted with diethyl ether $(2 \times 25 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by concentration in vacuo to give the tertiary amine products.

B) Characterization Data

(E)- \boldsymbol{N}-(tert-Butyl)-3-phenylprop-2-en-1-amine (A): Method II: tert-Butylamine (730 mg, 10 mmol) and cinnamaldehyde ($1321 \mathrm{mg}, 10 \mathrm{mmol}$) were used. Product recovered as pale-yellow oil (79% yield, 1.49 g), which gave spectral data consistent with that in the literature. ${ }^{3}$

\boldsymbol{N}-Cinnamylpentan-3-amine (B): Method II: 3-Aminopentane ($870 \mathrm{mg}, 10 \mathrm{mmol}$) and cinnamaldehyde (1321 mg , $10 \mathrm{mmol})$ were used. Product recovered as yellow oil (88% yield, 1.78 g), which gave spectral data consistent with that in the literature. ${ }^{3}$

N-Cinnamylcyclopentanamine (C): Method I: Cyclopentylamine ($300 \mathrm{mg}, 3.5 \mathrm{mmol}$) and cinnamaldehyde (462 mg , 3.5 mmol) were used. Product recovered as yellow oil (82% yield, 577 mg), which gave spectral data consistent with that in the literature. ${ }^{3}$

(E)-N-(Cyclopropylmethyl)-3-phenylprop-2-en-1-amine (D): Method II: Cyclopropylmethylamine (710 mg, 10 mmol) and cinnamaldehyde ($1321 \mathrm{mg}, 10 \mathrm{mmol}$) were used. Product recovered as yellow oil (51% yield, 955 mg), which gave spectral data consistent with that in the literature. ${ }^{3}$

(E)-3-Phenyl- N-((tetrahydrofuran-2-yl)methyl)prop-2-en-1-amine (E): Method I: Tetrahydrofurfurylamine (300 $\mathrm{mg}, 2.97 \mathrm{mmol}$) and cinnamaldehyde ($392 \mathrm{mg}, 2.97 \mathrm{mmol}$) were used. Product recovered as colorless oil (75% yield, 483 mg), which gave spectral data consistent with that in the literature. ${ }^{3}$

N-Cinnamylhexan-1-amine (F): Method I: 1-Hexylamine ($300 \mathrm{mg}, 2.96 \mathrm{mmol}$) and cinnamaldehyde ($392 \mathrm{mg}, 2.96$ mmol) were used. Product recovered as yellow oil (85% yield, 545 mg), which gave spectral data consistent with that in the literature. ${ }^{3}$

(2R,4S)-N-Cinnamyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-amine (G): Method I: (R)-(+)-Bornylamine (500 mg, 3.26 mmol) and cinnamaldehyde ($432 \mathrm{mg}, 3.26 \mathrm{mmol}$) were used. Product recovered as yellow oil (63% yield, 552 mg), which gave spectral data consistent with that in the literature. ${ }^{3}$

Ethyl cinnamyl-L-valinate (H): Method II: Ethyl valinate ($1450 \mathrm{mg}, 10 \mathrm{mmol}$) and cinnamaldehyde ($1452 \mathrm{mg}, 10$ mmol) were used. Product recovered as colorless oil (79% yield, 2.06 g), which gave spectral data consistent with that in the literature. ${ }^{3}$

(\boldsymbol{E})-N-Benzyl-3-phenylprop-2-en-1-amine (I): Method I: Benzylamine ($500 \mathrm{mg}, 4.7 \mathrm{mmol}$) and cinnamaldehyde ($616 \mathrm{mg}, 4.7 \mathrm{mmol}$) were used. Product recovered as colorless oil (82% yield, 855 mg), which gave spectral data consistent with that in the literature. ${ }^{3}$

(E)-3-Phenyl- \boldsymbol{N}-(2-(thiophen-2-yl)ethyl)prop-2-en-1-amine (J): Method II: Thiophene-2-ethylamine ($300 \mathrm{mg}, 2.38$ mmol) and cinnamaldehyde ($315 \mathrm{mg}, 2.38 \mathrm{mmol}$) were used. Product recovered as colorless oil (56% yield, 1.28 g), which gave spectral data consistent with that in the literature. ${ }^{3}$

(E)-N-(Furan-2-ylmethyl)-3-phenylprop-2-en-1-amine (K): Method II: Furan-2-ylmethanamine ($970 \mathrm{mg}, 10$ mmol) and cinnamaldehyde ($1.32 \mathrm{~g}, 10 \mathrm{mmol}$) were used. Product recovered as yellow oil (60% yield, 1.27 g), which gave spectral data consistent with that in the literature. ${ }^{3}$

(\boldsymbol{E})-4-(3-(Isopropylamino)prop-1-en-1-yl)- \mathbf{N}, \mathbf{N}-dimethylaniline (L): Method I: Isopropylamine (591 mg, 10 mmol) and $4-N, N$-dimethyl cinnamaldehyde $(900 \mathrm{mg}, 10 \mathrm{mmol})$ were used. Product recovered as colorless oil (54% yield, 600 mg). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.13(\mathrm{dt}, J=13.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.4,131.6,127.6,126.2,124.8,112.9,50.3,48.5,41.0,23.4$. HRMS (ESI - MS): calcd. 217.1699 [M-H] ${ }^{+}$Found: 217.1783.

4-Allylmorpholine (M): Method III: Morpholine ($870 \mathrm{mg}, 5 \mathrm{mmol}$.) and allyl bromide ($1.21 \mathrm{~g}, 10 \mathrm{mmol}$.) were used. Product recovered as a yellow oil ($457 \mathrm{mg}, 72 \%$ yield). Spectral data was consistent with that in the literature. ${ }^{4}$

$\boldsymbol{N}, \mathbf{N}$-Diethylprop-2-en-1-amine (N): Method III: Diethylamine ($365 \mathrm{mg}, 5 \mathrm{mmol}$) and allyl bromide ($1.21 \mathrm{~g}, 10$ mmol .) were used. Product recovered as a yellow oil ($361 \mathrm{mg}, 64 \%$ yield). Spectral data was consistent with that in the literature. ${ }^{4}$

(5R,5aR,8aS,9R)-9-(Cinnamylamino)-5-(3,4,5-trimethoxyphenyl)-5,8,8a,9-
tetrahydrofuro[$\left.3^{\prime}, 4^{\prime}: 6,7\right]$ naphtho[2,3-d][1,3]dioxol-6(5aH)-one (O): To a solution of podophyllotoxin (1.0 g, 2.4 mmol, 1 equiv.) in dry dichloromethane (10 mL) was added $\mathrm{PBr}_{3}(457 \mathrm{mg}, 1.7 \mathrm{mmol}, 0.70$ equiv.) under nitrogen atmosphere at $0^{\circ} \mathrm{C}$, and the resulting reaction mixture was stirred at RT. After completion of the reaction (as monitored by TLC), the mixture was quenched by addition of water and extracted with dichloromethane ($3 \times 25 \mathrm{~mL}$). The combined organic phase was washed with brine, and concentrated in vacuo to furnish the corresponding crude alkyl bromide. This bromide which was directly used in the next step without further purification. Then, method III was used. Product was purified over silica gel in hexanes/EtOAc (50:50) and recovered as a light yellow oil ($383 \mathrm{mg}, 30 \%$ yield). Unexpected stereochemistry of the amine center was determined through coupling constant analysis and comparison with similar structures in the literature. ${ }^{3}$

3. Optimization and Synthesis of $\boldsymbol{\gamma}$-Arylated Cinnamylamines

A. Optimization Controls:

Table \boldsymbol{S}-1. Optimization of \boldsymbol{E}-Selective $\boldsymbol{\gamma}$-Arylation of \boldsymbol{N}-tert-butylcinnamylamine.
In triplicate: A 7.5 mL vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.10$ equiv), potassium acetate (30 mg , 0.3 mmol , 1 equiv), sodium biphosphate ($43 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), amine ($0.15 \mathrm{mmol}, 1$ equiv), and boronic acid ($0.3 \mathrm{mmol}, 2$ equiv), followed by addition of acetic acid (4 mL). The vial was then allowed to stir at 1200 rpm at RT $\left(25{ }^{\circ} \mathrm{C}\right)$ for 24 h (this was controlled by setting the plate and monitoring with a thermometer and the built-in thermocouple). After the reaction, solvent was removed in vacuo, and the ${ }^{1} \mathrm{HNMR}$ yield measured using 1,1,2,2tetrachloroethane as internal standard.

Entry	Reaction conditions	Yield(\%)	Std. Dev. (\%)
1	None	91	3
2	Without $\mathrm{Pd}(\mathrm{OAc})_{2}$	0	0
3	PdCl_{2}	25	2
4	$\mathrm{Pd}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}$	87	2
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	0	0
6	Without KOAc	69	6
7	Without $\mathrm{Na}_{2} \mathrm{HPO}_{4}$	70	4
8	LiOAc instead of KOAc	85	7
9	NaOAc instead of KOAc	75	5
10	$\mathrm{Mg}(\mathrm{OAc})_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}$	72	1
11	$\mathrm{KH}_{2} \mathrm{PO}_{4}$ instead of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$	82	6
12	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ instead of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$	81	7
13	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ instead of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$	72	2
14	$\mathrm{Na}_{3} \mathrm{PO}_{4}$ instead of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$	31	2
15	$\mathrm{KNaC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ instead of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$	30	3
16	Stir at 300rpm	66	3
17	Stir at 600rpm	75	3
18	Stir at 900rpm	85	3
19	Stir at 1200rpm	90	5
20	HFIP: AcOH (0.8mL: 0.2 mL)	81	7
21	HFIP: AcOH ($0.9 \mathrm{~mL}: 0.2 \mathrm{~mL}$)	84	3
22	HFIP: AcOH (0.5mL:0.5mL)	75	5

B. Procedure for Substrate Scope Study (Solvent AcOH-Method A, Solvent AcOH/HFIPMethod B):

A 7.5 mL vial was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(3.4 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.10$ equiv), potassium acetate ($30 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv), Sodium biphosphate ($43 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), amine ($0.15 \mathrm{mmol}, 1$ equiv), and boronic acid (0.3 mmol , 2 equiv.) in either acetic acid (Method A, 4 mL) or 1:3 acetic acid:HFIP (Method B, 1.2 mL). The vial was then allowed to stir at 1200 rpm at $\mathrm{RT}\left(25^{\circ} \mathrm{C}\right)$ for 24 h (this was controlled by setting the plate and monitoring with a thermometer and the built-in thermocouple). After completion, the reaction mixture was basified using aq. sodium hydroxide solution (6 M). The reaction mixture was stirred for 15 minutes followed by extraction with dichloromethane $(3 \times 10 \mathrm{~mL})$. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated in vacuo and then purified over silica-gel column chromatography.

C. Characterization Data:

Ethyl (E)-4-(3-(tert-butylamino)-1-phenylprop-1-en-1-yl)benzoate (1a): Method A: Reaction mixture was chromatographed using 8:2 ethyl acetate/methanol. Product recovered as a colorless oil ($123 \mathrm{mg}, 81 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as 1:20 from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

(E)-1-(4-(3-(tert-Butylamino)-1-phenylprop-1-en-1-yl)phenyl)ethan-1-one (1b): Method A: Reaction mixture was chromatographed using 8:2 ethyl acetate/methanol. Product recovered as a colorless oil ($97 \mathrm{mg}, 70 \%$ yield), which
gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H})$.

(\boldsymbol{E})-4-(3-(tert-Butylamino)-1-phenylprop-1-en-1-yl)benzaldehyde (1c): Method A: Reaction mixture was chromatographed using 8:2 ethyl acetate/methanol. Product recovered as a colorless oil ($90 \mathrm{mg}, 68 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.36(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.

(\boldsymbol{E})-3-(3-(tert-Butylamino)-1-phenylprop-1-en-1-yl)benzamide (1d): Method A: Reaction mixture was chromatographed using 1:1 ethyl acetate/methanol. Product recovered as a yellow oil ($55 \mathrm{mg}, 40 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as $1:>20$ from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{q}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.16(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

(\boldsymbol{E})-4-(3-(tert-Butylamino)-1-phenylprop-1-en-1-yl)benzonitrile (1e): Method A: Reaction mixture was chromatographed using 98:2 ethyl acetate/methanol. Product recovered as a yellow oil ($69 \mathrm{mg}, 53 \%$ yield). The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.7,141.5,138.5,132.1,132.0,129.6,128.6$, 127.9, 127.9, 119.1, 110.6, 50.7, 42.0, 29.1. HRMS (ESI - MS): calcd. $291.1856[\mathrm{M}+\mathrm{H}]^{+}$Found: 291.1877.

(\boldsymbol{E})- N-(tert-Butyl)-3-phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-amine (1f): Method A: Reaction mixture was chromatographed using 8:2 ethyl acetate/methanol. Product recovered as a colorless oil ($121 \mathrm{mg}, 81 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as $1:>20$ from the NMR. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.

(\boldsymbol{E})- \boldsymbol{N}-(tert-Butyl)-3-(4-fluorophenyl)-3-phenylprop-2-en-1-amine (1g): Method A: Reaction mixture was chromatographed using 98:2 ethyl acetate/methanol. Product recovered as a colorless oil ($85 \mathrm{mg}, 67 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as $1: 14$ from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{tt}, J=8.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=9.4,8.4,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.93(\mathrm{t}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

(E)-N-(tert-Butyl)-3-(2,4-difluorophenyl)-3-phenylprop-2-en-1-amine (1h): Method A: Reaction mixture was chromatographed using 8:2 ethyl acetate/methanol. Product recovered as a yellow oil ($62 \mathrm{mg}, 46 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as $1: 14$ from the NMR. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=8.5,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 10 \mathrm{H})$.

(E)-3-(4-Bromophenyl)- N -(tert-butyl)-3-phenylprop-2-en-1-amine (1i): Method B: Reaction mixture was chromatographed using 50:1 ethyl acetate/methanol. Product recovered as a colorless oil ($40 \mathrm{mg}, 26 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as $1:>20$ from the NMR. ${ }^{1} \mathrm{H}$

NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.

(E)-3-([1,1'-Biphenyl]-4-yl)-N-(tert-butyl)-3-phenylprop-2-en-1-amine (1j): Method B: Reaction mixture was chromatographed using 9:1 ethyl acetate/methanol. Product recovered as a colorless oil ($97 \mathrm{mg}, 63 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as $1: 16$ from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=14.6,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

(\boldsymbol{E})- N-(tert-Butyl)-3-(naphthalen-1-yl)-3-phenylprop-2-en-1-amine (1k): Method A: Reaction mixture was chromatographed using 9:1 ethyl acetate/methanol. Product recovered as a yellow oil ($61 \mathrm{mg}, 43 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$.

(\boldsymbol{E})- N-(tert-Butyl)-3-phenyl-3-(m-tolyl)prop-2-en-1-amine (11): Method B: Reaction mixture was chromatographed using 50:1 ethyl acetate/methanol. Product recovered as a colorless oil ($60 \mathrm{mg}, 48 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as $1:>20$ from the NMR. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}$, $1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H})$.

(E)- N-(tert-Butyl)-3-phenyl-3-(4-(trimethylsilyl)phenyl)prop-2-en-1-amine (1m): Method A: Reaction mixture was chromatographed using 1:1 ethyl acetate/hexanes. Product recovered as a yellow oil ($96 \mathrm{mg}, 63 \%$ yield). The Z / E ratio was determined as $1: 7$ from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{ddd}, J=7.4,3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0,142.5,139.8,139.4$, 133.3, 129.8, 128.5, 128.3, 127.3, 126.7, 50.8, 42.1, 29.1, -1.0. HRMS (ESI - MS): calcd. $338.2299[\mathrm{M}+\mathrm{H}]^{+}$Found: 338.2318.

(\boldsymbol{E})- N-(tert-Butyl)-3-(4-methoxyphenyl)-3-phenylprop-2-en-1-amine (1n): Method A: Reaction mixture was chromatographed using 2:8 ethyl acetate/hexane. Product recovered as a yellow oil ($100 \mathrm{mg}, 75 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as $1: 16$ from the NMR. ${ }^{1} \mathrm{H}$ NMR. $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 5 \mathrm{H}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

(\boldsymbol{E})- N-(tert-Butyl)-3-(3-fluoro-4-methoxyphenyl)-3-phenylprop-2-en-1-amine (10): Method A: Reaction mixture was chromatographed using 95:5 ethyl acetate/methanol. Product recovered as a yellow oil ($82 \mathrm{mg}, 58 \%$ yield). The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{dd}, J=12.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $152.15(\mathrm{~d}, J=244.9 \mathrm{~Hz}), 147.03(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 139.2,135.5,129.7,128.5,127.6,123.21(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 115.2$, $115.14(\mathrm{~d}, J=19.1 \mathrm{~Hz}), 112.9,56.4,41.8,28.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-132.7. HRMS (ESI - MS): calcd. $314.1915[\mathrm{M}-\mathrm{H}]^{+}$Found: 314.1926.

(E)- N-(tert-Butyl)-3-phenyl-3-(9-phenyl-9H-carbazol-2-yl)prop-2-en-1-amine (1p): Method A: Reaction mixture was chromatographed using 7:3 ethyl acetate/methanol. Product recovered as a pale-yellow liquid ($108 \mathrm{mg}, 56 \%$ yield). The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.30-7.18\left(\mathrm{~m}, 2 \mathrm{H}\right.$, also contains CDCl_{3} peak), $7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.9,141.6,141.2,140.8,140.2,137.7,130.1,129.8,128.3,128.3,127.6,127.3,126.0,123.3,122.7,120.6$, 120.4, 120.1, 119.8, 109.9, 108.2, 50.6, 42.1, 29.2. HRMS (ESI - MS): calcd. $431.2482[\mathrm{M}+\mathrm{H}]^{+}$Found: 431.2482.

(E)- N-(tert-Butyl)-3-(4-(morpholinomethyl)phenyl)-3-phenylprop-2-en-1-amine (1q): Method A: Reaction mixture was chromatographed using 8:2 ethyl acetate/methanol. Product recovered as a pale yellow oil ($85 \mathrm{mg}, 52 \%$ yield). The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (t, $J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 6 \mathrm{H}), 6.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H})$, 3.23 ($\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.43(\mathrm{~s}, 4 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,141.2,139.8,136.8,129.8$, 129.1, 128.3, 127.3, 127.3, 67.2, 63.7, 53.8, 50.7, 42.0, 29.2. HRMS (ESI - MS): calcd. $365.2587[\mathrm{M}+\mathrm{H}]^{+}$Found: 365.2601 .

\boldsymbol{N}-(tert-Butyl)-3,3-diphenylprop-2-en-1-amine (2a): Method A: Reaction mixture was chromatographed using 19:1 ethyl acetate/methanol. Product recovered as a colorless oil ($91 \mathrm{mg}, 76 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.21$ (m, 5H), $7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

\boldsymbol{N}-(3,3-Diphenylallyl)pentan-3-amine (2b): Method A: Reaction mixture was chromatographed using 1:9 ethyl acetate/methanol. Product recovered as a yellow oil ($89 \mathrm{mg}, 71 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{31} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 5 \mathrm{H})$, $7.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.41$ $-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$.

\boldsymbol{N}-(3,3-Diphenylallyl)cyclopentanamine (2c): Method A: Reaction mixture was chromatographed using 9:1 ethyl acetate/methanol. Product recovered as a yellow oil ($84 \mathrm{mg}, 67 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 5 \mathrm{H})$, $7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 2 \mathrm{H})$.

N-(3,3-Diphenylallyl)hexan-1-amine (2d): Method A: Reaction mixture was chromatographed using 50:1 ethyl acetate/methanol. Product recovered as a colorless oil ($55 \mathrm{mg}, 42 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{td}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-$ $7.21(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.44$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H})$.

N-(Cyclopropylmethyl)-3,3-diphenylprop-2-en-1-amine (2e): Method A: Reaction mixture was chromatographed using 9:1 ethyl acetate/methanol. Product recovered as a yellow oil ($84 \mathrm{mg}, 71 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27$
$-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.00$ $(\mathrm{s}, 1 \mathrm{H}), 0.92-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.46-0.39(\mathrm{~m}, 2 \mathrm{H}), 0.08-0.03(\mathrm{~m}, 2 \mathrm{H})$.

Ethyl (E)-4-(3-((cyclopropylmethyl)amino)-1-phenylprop-1-en-1-yl)benzoate (2f): Method A: Reaction mixture was chromatographed using 1:1 ethyl acetate/hexanes. Product recovered as a yellow oil ($110 \mathrm{mg}, 73 \%$ yield). The Z / E ratio was determined as $1:>20$ from the NMR. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.33$ $(\mathrm{m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.18$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,146.5,145.3,137.9,129.9,129.6,129.6,128.8,128.3$, 127.6, 61.1, 51.7, 45.8, 14.5, 7.8, 4.3. HRMS (ESI - MS): calcd. 336.1958 [M+H] Found: 336.1977.

(2R,4S)- N-(3,3-Diphenylallyl)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-amine (2g): Method B: Reaction mixture was chromatographed using 99:1 ethyl acetate/methanol. Product recovered as a colorless oil ($71 \mathrm{mg}, 46 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{q}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $7.33-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{dd}, J=9.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=13.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-$ $3.55(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=11.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=20.0,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H})$.

\boldsymbol{N}-Benzyl-3,3-diphenylprop-2-en-1-amine (2h): Method A: Reaction mixture was chromatographed using 8:2 ethyl acetate/methanol. Product recovered as a yellow oil ($94 \mathrm{mg}, 70 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 9 \mathrm{H}), 7.17(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.23(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$.

3,3-Diphenyl- N-(2-(thiophen-2-yl)ethyl)prop-2-en-1-amine (2i): Method A: Reaction mixture was chromatographed using 3:7 ethyl acetate/methanol. Product recovered as a yellow oil ($43 \mathrm{mg}, 30 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J$ $=8.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{dd}, J=8.3,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.92(\mathrm{dd}, J=5.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 2 H).

3,3-Diphenyl- N-((tetrahydrofuran-2-yl)methyl)prop-2-en-1-amine (2j): Method A: Reaction mixture was chromatographed using 7:3 ethyl acetate/methanol. Product recovered as a yellow oil ($88 \mathrm{mg}, 67 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{31} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28$ $(\mathrm{m}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}$, $J=15.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=14.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=12.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ $(\mathrm{dd}, J=12.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{ddd}, J=15.7,12.0,7.6 \mathrm{~Hz}, 1 \mathrm{H})$.

Ethyl (E)-4-(1-phenyl-3-(((tetrahydrofuran-2-yl)methyl)amino)prop-1-en-1-yl)benzoate (2k): Method A: Reaction mixture was chromatographed using 2:8 ethyl acetate/hexanes. Product recovered as a yellow oil (84 mg , 61% yield). The Z / E ratio was determined as $1:>20$ from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{ddd}, J=10.9,7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=14.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=$ $14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=12.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.79$ $(\mathrm{m}, 4 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,146.5,142.7,138.9$, 129.7, 129.6, 129.5, 129.1, 128.4, 127.6, 127.3, 78.0, 67.9, 60.9, 53.8, 48.6, 29.3, 25.8, 14.4. HRMS (ESI - MS): calcd. $366.2064[\mathrm{M}+\mathrm{H}]^{+}$Found: 366.2086.

Ethyl (3,3-diphenylallyl)-L-valinate (21): Method A: Reaction mixture was chromatographed using 1:19 ethyl acetate/hexanes. Product recovered as a yellow oil ($94 \mathrm{mg}, 62 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ Conversion to the Mosher amide suggested $>99 \%$ ee of the product. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{~s}, 1 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{dd}, J=6.8,3.4 \mathrm{~Hz}, 6 \mathrm{H})$.

Ethyl (S,E)-4-(3-((1-ethoxy-3-methyl-1-oxobutan-2-yl)amino)-1-phenylprop-1-en-1-yl)benzoate (2m): Method A: Reaction mixture was chromatographed using 5:95 ethyl acetate/hexanes. Product recovered as a yellow oil (100 $\mathrm{mg}, 54 \%$ yield). The Z / E ratio was determined E exclusive from the NMR. Conversion to the Mosher amide suggested $>99 \%$ ee of the product. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30$ $(\mathrm{m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16-$ $4.00(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{dd}, J=14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=$ $13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,166.6,146.6,142.9,139.0,129.9,129.8,129.5,129.2,128.4,127.6,127.3,66.9,61.0$, 60.5, 47.7, 31.8, 19.3, 18.7, 14.5, 14.4, 0.1. HRMS (ESI - MS): calcd. $410.2326[\mathrm{M}+\mathrm{H}]^{+}$Found: 410.2323.

Ethyl (E)-4-(3-((furan-2-ylmethyl)amino)-1-phenylprop-1-en-1-yl)benzoate (2n): Method A: Reaction mixture was chromatographed using 2:8 ethyl acetate/hexanes. Product recovered as a yellow oil ($94 \mathrm{mg}, 58 \%$ yield). The Z / E ratio was determined as $1:>20$ from the NMR. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.31$ $(\mathrm{m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6$, $153.6,146.6,143.0,141.9,139.0,129.8,129.5,129.3,128.4,127.6,127.4,110.2,107.1,61.0,47.8,45.8,29.8,14.4$. HRMS (ESI - MS): calcd. $362.1751[\mathrm{M}-\mathrm{H}]^{+}$Found: 362.1750.

(Z)-4-(3-(isopropylamino)-1-phenylprop-1-en-1-yl)-N,N-dimethylaniline (20): Method A: Reaction mixture was chromatographed using 1:9 ethyl acetate/methanol. Product recovered as a faint purple oil ($87 \mathrm{mg}, 66 \%$ yield). The Z / E ratio was determined as $1: 3$ from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major + minor isomer) $\delta 7.36(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{dd}, J=14.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 9 \mathrm{H}), 2.95(\mathrm{dd}, J=8.6,4.8 \mathrm{~Hz}, 12 \mathrm{H})$, $2.92(\mathrm{~s}, 6 \mathrm{H}), 1.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,147.9,142.1$, $130.7,129.7,128.5,128.5,128.2,128.0,127.9,126.1,118.6,112.1,112.0,60.6,48.3,43.5,40.5,40.5,23.5,19.6$, 19.5, 14.3. HRMS (ESI - MS): calcd. $295.2164[\mathrm{M}-\mathrm{H}]^{+}$Found: 295.2189.

(5R,5aR,8aS,9S)-9-((3,3-Diphenylallyl)amino)-5-(3,4,5-trimethoxyphenyl)-5,8,8a,9-
tetrahydrofuro[$\left.3^{\prime}, 4^{\prime}: 6,7\right]$ naphtho[2,3-d][1,3]dioxol-6(5aH)-one (2p): Method B: Reaction mixture was chromatographed using 7:3 ethyl acetate/hexanes. Product recovered as a colorless oil ($152 \mathrm{mg}, 56 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 2 \mathrm{H})$, $5.94(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.38(\mathrm{dd}, J=14.0,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80-2.69(\mathrm{~m}, 1 \mathrm{H})$.

(\boldsymbol{E})- N-(tert-Butyl)-3,5-diphenylpent-2-en-1-amine (2q): Method A: Reaction mixture was chromatographed using 99:1 ethyl acetate/methanol. Product recovered as a yellow oil ($120 \mathrm{mg}, 41 \%$ yield). The Z / E ratio was determined as $1: 20$ from the NMR. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}$,
$3 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3,141.9,128.8,128.5,128.5$, 127.2, 126.7, 126.1, 51.1, 40.5, 34.7, 32.1, 28.8. HRMS (ESI - MS): calcd. 294.2216 [M+H] Found: 294.2218.

3,3-Diphenylprop-2-en-1-amine (3a): Method A: Reaction mixture was chromatographed using 2:8 ethyl acetate/hexanes. Product recovered as a yellow oil ($64 \mathrm{mg}, 68 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{11} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{ddd}, J=7.5,4.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.22$ ($\mathrm{m}, 3 \mathrm{H}$, also contains CDCl_{3} peak), $7.17(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.26(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$.

Ethyl (E)-4-(3-amino-1-phenylprop-1-en-1-yl)benzoate (3b): Method A: Reaction mixture was chromatographed using 2:8 ethyl acetate/hexanes. Product recovered as brown oil ($95 \mathrm{mg}, 62 \%$ yield). The Z / E ratio was determined as 1:7 from the ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.0,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=14.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,145.9,144.4,138.3,129.8,129.7$, 129.6, 128.7, 128.1, 127.6, 126.9, 61.1, 40.1, 14.5. HRMS (ESI - MS): calcd. $282.1489[\mathrm{M}+\mathrm{H}]^{+}$Found: 282.1410

$\boldsymbol{N}, \mathbf{N}$-Diethyl-3,3-diphenylprop-2-en-1-amine (3c): Method A: Reaction mixture was chromatographed using 98:2 ethyl acetate/methanol. Product recovered as a yellow oil ($77 \mathrm{mg}, 64 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{ddd}, J=8.6,4.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $-7.22\left(\mathrm{~m}, 5 \mathrm{H}\right.$, also contains CHCl_{3} peak), $7.15(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.63(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.99(\mathrm{~s}, 6 \mathrm{H})$.

Ethyl (E)-4-(3-(diethylamino)-1-phenylprop-1-en-1-yl)benzoate (3d): Method A: Reaction mixture was chromatographed using 99:1 ethyl acetate/methanol. Product recovered as a brown oil ($102 \mathrm{mg}, 64 \%$ yield). The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41-4.31(\mathrm{~m}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,146.7,142.8,139.2,129.9,129.6,129.2,128.5,127.6,127.3,61.0,51.9$, 47.2, 14.5, 11.9. HRMS (ESI - MS): calcd. $338.2115[\mathrm{M}-\mathrm{H}]^{+}$Found: 338.2093.

4-(3,3-Diphenylallyl)morpholine (3e): Method A: Reaction mixture was chromatographed using 99:1 ethyl acetate/methanol. Product recovered as a yellow oil ($92 \mathrm{mg}, 73 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{5}{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38$ (ddd, $J=7.4,4.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (ddd, $J=8.6,4.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.22\left(\mathrm{~m}, 5 \mathrm{H}\right.$, also contains CDCl_{3} peak), $7.16(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J$ $=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 4 \mathrm{H})$.

Ethyl (E)-4-(3-morpholino-1-phenylprop-1-en-1-yl)benzoate (3f): Method A: Reaction mixture was chromatographed using 3:7 ethyl acetate/hexanes. Product recovered as a yellow oil ($79 \mathrm{mg}, 50 \%$ yield). The Z / E ratio was determined as $1:>20$ from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 4 \mathrm{H}), 1.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,146.4,143.9,139.0,129.9,129.6,129.4,128.6,127.9,127.7,127.3,67.1,61.1,57.8,53.9$, 14.5. HRMS (ESI - MS): calcd. 352.1907 [M+H] ${ }^{+}$Found: 352.1932.

(\boldsymbol{E})-3-Phenylprop-2-en-1-amine (4a): Method A: Reaction mixture was chromatographed using 95:5 ethyl acetate/methanol. Product recovered as a yellow oil ($28 \mathrm{mg}, 47 \%$ yield), which gave spectral data consistent with that
in the literature. ${ }^{4}$ The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dt}, J=15.8,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.48(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 2 \mathrm{H})$.

(\boldsymbol{E})- $\boldsymbol{N}, \mathbf{N}$-Diethyl-3-phenylprop-2-en-1-amine (4b): Method A: Reaction mixture was chromatographed using 8:2 ethyl acetate/hexanes. Product recovered as brown oil ($57 \mathrm{mg}, 67 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{31} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=6.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}), 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

4-Cinnamylmorpholine (4c): Method A: Reaction mixture was chromatographed using 1:1 ethyl acetate/hexanes. Product recovered as a colorless oil ($64 \mathrm{mg}, 70 \%$ yield), which gave spectral data consistent with that in the literature. ${ }^{3}$ The Z / E ratio was determined as E-exclusive from the NMR. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J$ $=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.16(\mathrm{dd}, J=6.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 4 \mathrm{H})$.

Diethyl 4,4'-(2-((isopropylamino)methyl)-3-phenylprop-1-ene-1,3-diyl)(Z)-dibenzoate (5): Method A: Reaction mixture was chromatographed using 2:8 ethyl acetate/hexanes. Product recovered as a yellow oil ($90 \mathrm{mg}, 41 \%$ yield). Alkene was observed to be Z-selective based on the NMR, consistent with previous literature. ${ }^{6}{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{dd}, J=11.2,8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{dt}, J=12.9,6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,166.6,147.7,142.0,141.4,129.8,129.7,129.6,129.6,129.0,128.9,128.8,128.8,127.0,61.1$, 61.1, 56.3, 49.0, 47.1, 29.9, 22.9, 14.5. HRMS (ESI - MS): calcd. $486.2639[\mathrm{M}+\mathrm{H}]^{+}$Found: 486.2756.
D. Inefficient Substrates:

Cinnamyl amine substrates:

Aryl substrates:

< 5%

n.r.

n.r.
E. Comparison Table of Stereoselectivity with ref 3:
This work
Previous report
(ref.)
(ref.2)
This work
(ref.2)

4. Reaction Scale-up:

A 100 mL round bottom flask was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(100.8 \mathrm{mg}, 0.45 \mathrm{mmol}, 0.10$ equiv), potassium acetate ($883 \mathrm{mg}, 9.0 \mathrm{mmol}, 2$ equiv), disodium phosphate ($1277 \mathrm{mg}, 9.0 \mathrm{mmol}, 2.0$ equiv), phenyl boronic acid (1097 $\mathrm{mg}, 4.5 \mathrm{mmol}, 2.0$ equiv), and allylamine ($840 \mathrm{mg}, 4.5 \mathrm{mmol}, 1.0$ equiv) in 30 mL of acetic acid. The reaction mixture was stirred for 24 h at room temperature. After reaction completion, mixture was basified with sodium hydroxide solution (6 M). The reaction mixture was stirred for 10 minutes followed by extraction with dichloromethane $(3 \times 20 \mathrm{~mL})$. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated in vacuo, and the reaction mixture purified over silica-gel column chromatography using 19:1 ethyl acetate/methanol to produce a colorless oil in 57%.

5. Analytical Data of Pd Nano Particles:

Figure $\boldsymbol{S} \mathbf{- 1}$: SEM images of presumed $\mathrm{Pd}-\mathrm{NPs}$ in $1 \mu \mathrm{~m}$ range

Figure \boldsymbol{S}-2: High-magnification ABF-STEM images characterizing the presumed Pd nano particles.

Figure \boldsymbol{S}-3: Dynamic Light Scattering (DLS) data of presumed Pd-NPs size distribution

Figure $\boldsymbol{S} \mathbf{- 2}$ shows STEM images of the sample prepared in situ during the oxidative MizorokiHeck reaction, followed by filteration, which was recorded in the bright-field high-resolution (ABF) mode. The above depicted images show the round shaped Pd-nano particles with consistent sizes for single particles. Dynamic Light Scattering-DLS data (Figure \boldsymbol{S}-3) of Pd nano particle size distribution also strengthened the STEM results showing similar particle size distribution.

6. NMR (${ }^{\mathbf{1}} \mathrm{H}$ and $\left.{ }^{13} \mathrm{C}\right)$ Spectra of Compounds

Figure S-4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 d}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

シั๊

Figure S-8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 e}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-9. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 e}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 f}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$


```
\varthetaั
```


Figure \boldsymbol{S}-11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 g}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-12. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 h}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-13. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 i}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure $\boldsymbol{S} \mathbf{- 1 5} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 k}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

๗ั~~

Figure \boldsymbol{S}-17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 m}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-18. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 m}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

\qquad

Figure \boldsymbol{S}-19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 n}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-21. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 o}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 p}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-23. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 p}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-24. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 q}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-25. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 q}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-27. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-28. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

							$\begin{aligned} & \text { T } \\ & \hline-1 \end{aligned}$						$\stackrel{\oplus}{\sim}$		$\begin{aligned} & \text { To' } \\ & \stackrel{\circ}{\mathrm{O}} \end{aligned}$				$\stackrel{\top}{\top}$	
†	1	1	1	1	1	1	1	1	1	,	,	1	1	,	1	,	,	1	1	1
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & (\mathrm{ppm}) \end{aligned}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Figure \boldsymbol{S}-29. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 d}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-30. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 e}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-31. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 f}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-33. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-34. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$

8

뭉

Figure S-35. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 i}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-36. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 j}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-37. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 k}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-38. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 k}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-39. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-40. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 m}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-41. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 m}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-42. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 n}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-43. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 n}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-44. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 o}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-45. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 o}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-46. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 p}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-47. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 q}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-48. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 q}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-49. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-50. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-51. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-52. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-53. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-54. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-55. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure \boldsymbol{S}-56. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-57. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-58. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ \%

Figure S-59. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-60. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-61. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-62. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-63. ${ }^{1} \mathrm{H}$ NMR spectrum of Scheme 5b $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$

Figure S-64. NOESY spectrum of $\mathbf{2 0}(\mathrm{CDCl} 3,600 \mathrm{MHz}, 298 \mathrm{~K})$

7. References

${ }^{1}$ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 2010, 29, 2176-2179.
${ }^{2}$ C. P. Rosenau, B. J. Jelier, A. D. Gossert and A. Togni, Angew. Chem. Int. Ed., 2018, 57, 9528-9533.
${ }^{3}$ V. G. Landge, J. M. Maxwell, P. Chand-Thakuri, M. Kapoor, E. T. Diemler, M. C. Young, JACS Au, 2021, 1, 13-22.
${ }^{4}$ V. G. Landge, A. L. Bonds, T. A. Mncwango, C. B. Mather, Y. Saleh, H. L. Fields, F. Lee, M. C. Young, Org. Chem. Front., 2022, 9, 1967-1974.
${ }^{5}$ S. H. Nazari, N. Timpos-Flores, K. G. Forson, J. E. Bourdeau and D. J. Michaelis, C-N Bond Formation from Allylic Alcohols via Cooperative Nickel and Titanium Catalysis. J. Org. Chem., 2018, 83, 10646-10654.
${ }^{6}$ V. G. Landge, A. J. Grant, Y. Fu, A. M. Rabon, J. L. Payton and M. C. Young, Palladium-Catalyzed γ, γ '-Diarylation of Free Alkenyl Amines. J. Am. Chem. Soc., 2021, 143, 10352-10360.

