Supporting Information

Assembly of Iodinated Indolo[1,2-*c*]quinazoline Amines *via* I₂/CHP-Promoted Cascade Annulation of Isocyanides and Diarylalkynes

Min Zhang,^a Meng Li,^a Huanfeng Jiang,^a Biao Nie^{*,b} and Wanqing Wu^{*,a}

^{a.} Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
 E-mail: cewuwq@scut.edu.cn. Fax and Tel.: (+86) 20-87112906

Table of Contents

A. General Information	S2
B. Optimization of Reaction Conditions	S2
C. General Procedure for Synthesis of Starting Materials	S5
D. General Procedure for the Synthesis of Indolo[1,2-c]quir	nazoline
Derivatives	S5
E. Mechanistic Studies	S6
F. Synthetic Applications	S8
G. Characterization Data for materials	S10
H. Characterization Data for All Products	S12
I. X-ray Crystallographic Analysis	S19
J. References	S20
K. Copies of ¹ H and ¹³ C NMR Spectra	S21

A. General Information

All purchased reagents and solvents were used without further purification unless otherwise noted. Analytical thin layer chromatography was performed by using commercially prepared 100-400 mesh silica gel plates (GF₂₅₄) and visualization was effected at 254 nm. All the 2,2'-(ethyne-1,2diyl)dianilines were prepared according to known procedures. ¹H and ¹³C NMR spectra were recorded using a Bruker DRX-400 spectrometer using CDCl₃ as solvent. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively. Mass spectra were recorded on a Thermo Scientific ISQ gas chromatograph-mass spectrometer. The data of HRMS was carried out on a highresolution mass spectrometer (LCMS-IT-TOF). IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker TENSOR 27 spectrometer. Melting points were determined with a Büchi Melting Point B-545 instrument.

B. Optimization of Reaction Conditions

.....

(a) Optimization for Reaction Temperature^a

H ₂ N + NH ₂ 1a	t-BuNC	I₂ (1.0 equiv) CHP (2.0 equiv) TBME, T °C, 2 h	HN 3a
Entry		T (°C)	Yield of $3a^b$ (%)
1		95	17
2		85	18
3		75	10
4		70	37
5		65	36
6		45	30
7		40	44
8		25	33
9		-5	29

^{*a*}Reaction Conditions: Unless otherwise noted, all reactions were performed with **1a** (0.1 mmol, 1 equiv), **2a** (0.15mmol, 1.5 equiv), CHP (0.2 mmol, 2.0 equiv), I₂ (1.0 mmol, 1.0 equiv) in TBME under air at T °C for 2 h. ^{*b*}Determined by ¹H NMR using CH₂Br₂ as the internal standard. CHP = Cumene hydroperoxide. TBME = *tert*-Butyl hydroperoxide.

(b) Screening of Iodine Amounts^a

H ₂ N NH ₂ 1a	+ <i>t-</i> BuNC 2a	I ₂ (x equiv) CHP (2.0 equiv) TBME, 40 °C, 2 h	HN 3a
Entry		I ₂ (x equiv)	Yield of $3a^b$ (%)
1		I ₂ (0.5)	38
2		I ₂ (0.75)	46
3		I ₂ (1.0)	38
4		I ₂ (1.5)	25
5		I ₂ (2.0)	trace

^{*a*}Reaction condition: **1a** (0.1 mmol), **2a** (0.15 mmol), I₂ (x equiv), solvent (1 mL), oxidant (0.2 mmol, 2 equiv), 40 °C, 2 h. ^{*b*}Determined by ¹H NMR using CH₂Br₂ as an internal standard. CHP = Cumene hydroperoxide. TBME = *tert*-Butyl hydroperoxide.

(c) Screening of Solvent^a

H ₂ N + NH ₂ 1a	<i>t</i> -BuNC <i>I</i> ₂ (0.75 equiv) CHP (2.0 equiv) solvent (1 mL), 40 °C, 2 h 2a	HN 3a
Entry	Solvent	Yield of 3a ^{<i>b</i>} (%)
1	THF	n.d.
2	1,4-Dioxane	45
3	DECS	40
4	Toluene	28
5	DMSO	24
6	CPME	48
7	TBME	52

8	CH_2Cl_2	5
---	------------	---

^{*a*}Reaction condition: **1a** (0.1 mmol), **2a** (0.15 mmol), oxidant (0.2 mmol, 2.0 equiv), I₂ (0.075 mmol, 0.75 equiv) in solvent (1 mL) under air at 40 °C for 2 h. ^{*b*}Determined by ¹H NMR using CH₂Br₂ as an internal standard. CHP = Cumene hydroperoxide. DECS = 2-(2-Ethoxyethoxy)ethanol. CPME = Cyclopentyl methyl ether. TBME = *tert*-Butyl hydroperoxide. n.d. = not detected.

(d) Screening of Additive^a

H ₂ N + NH ₂ 1a	t-BuNC 2a	l ₂ (0.75 equiv) CHP (2.0 equiv), additive (1.5 e TBME (1 mL), 40 °C, 2 h	equiv) HN HN 3a
Entry		Additive	Yield of $3a^{b}$ (%)
1		Ca(OH) ₂	16
2		NaNO ₂	49
3		KHCO ₃	53
4		Na ₂ HPO ₄	38
5		Na ₂ SO ₃	48
6		NaHSO ₃	54
7		NaOOCPh	55
8		Malonic acid	2
9		NH ₄ Cl	32
10		CaCO ₃	40
11		NaH	13
12		KBF ₄	62
13		KBr	39
14		Zn(OAc) ₂	76 (70)

^{*a*}Reaction Conditions: Unless otherwise noted, all reactions were performed with **1a** (0.1 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), additive (0.15 mmol, 1.5 equiv), CHP (0.2 mmol, 2.0 equiv), I₂ (0.075 mmol, 0.75 equiv) in TBME under air at 40 °C for 2 h. ^{*b*}Determined by ¹H NMR using CH₂Br₂ as the internal standard. TBME = *tert*-Butyl hydroperoxide. CHP = Cumene hydroperoxide. Data in the parentheses was referred to isolated yield.

C. General Procedure for the Synthesis of Starting Materials

Unless otherwise specified, functionalized alkynes were synthesized via the following steps:

Step 1: To an oven-dried round bottom flask containing a magnetic stir bar was added aryl halide (1.0 equiv), Pd(PPh₃)₂Cl₂ (0.5 mol %), and CuI (1 mol %). The vessel was then sealed with a rubber septum, evacuated, and backfilled with argon three times. Et₃N (solvent, c = 0.5 M) and trimethylsilylacetylene (1.5 equiv) were added in sequence. After the reaction was completed at room temperature (monitored by TLC), solvent was removed under reduced pressure and the resulting residue was directly purified by flash column chromatography (eluent: hexanes/EtOAc) on silica gel. To the crude product (1.0 equiv) in MeOH (solvent, c = 0.2 M) was added K₂CO₃ (2.0 equiv) in one portion. After the reaction was completed at room temperature (monitored by TLC), the resulting mixture was filtered through a short pad of silica gel and washed with petroleum ether. The filtrate was concentrated under reduced pressure to afford product **S1** which was directly used for next step without further purification.

Step 2: To an oven-dried round bottom flask containing a magnetic stir bar was added the aryl halide (1.0 equiv), Pd(PPh₃)₂Cl₂ (0.5 mol %), and CuI (1 mol %). The vessel was then sealed with a rubber septum, evacuated, and backfilled with argon three times. Et₃N (solvent, c = 0.5 M) and S1 (1.2 equiv) were added in sequence. After the reaction was completed at 90 °C overnight, solvent was removed under reduced pressure and the resulting residue was directly purified by flash column chromatography (eluent: hexanes/EtOAc = 5:1-10:1) on silica gel to give the final product 1 (yields: 25-80%)

D. General Procedure for the Synthesis of 3a

A mixture of diarylalkynes (1a, 0.10 mmol, 20.8 mg), *tert*-butyl isocyanide (2a, 0.15 mmol, 12.5 mg), I₂ (0.75 equiv, 19.0 mg), CHP (5.5 equiv, 104.6 mg), Zn(OAc)₂ (1.5 equiv, 27.5 mg) and 1.0 mL of TBME was added to a test tube equipped with a magnetic stirring bar. The mixture was then stirred at 40 °C under air for 11 h. Then the reaction was quenched by H₂O and extracted with ethyl acetate, dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by column chromatography on neutral alumina with light petroleum ether/ethyl acetate as eluent to afford the desired product **3a** (33.8 mg, 81%).

E. Mechanistic Studies

(a) A mixture of 2,2'-(ethyne-1,2-diyl)dianiline (1a, 0.10 mmol, 20.8 mg), I₂ (0.75 equiv, 19.0 mg), Zn(OAc)₂ (1.5 equiv, 27.5 mg) and 1.0 mL of TBME was added to a test tube equipped with a magnetic stirring bar. The mixture was then stirred at 40 °C under air for 11 h. Then the reaction was quenched by H₂O and extracted with ethyl acetate, dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by column chromatography on neutral alumina with light petroleum ether/ethyl acetate as eluent to afford product 11 (2.0 mg, 10%) and product 12 (20.7 mg, 62%).

(b) 2-(3-iodo-1*H*-indol-2-yl)aniline (**12**, 0.1 mmol, 33.4 mg), *tert*-butyl isocyanide (**2a**, 0.15 mmol, 12.5 mg), I₂ (0.75 equiv, 19.0 mg), CHP (5.5 equiv, 104.6 mg), Zn(OAc)₂ (1.5 equiv, 27.5 mg), and 1.0 mL of TBME were added to a tube equipped with a stir bar and stirred at 40 °C for 11 h. Then the reaction was quenched by H₂O and extracted with ethyl acetate, dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by column chromatography on silica gel with light petroleum ether as eluent to afford the desired product **3a** (29.9 mg, 72%).

(c) 2-(1*H*-indol-2-yl)aniline (**11**, 0.1 mmol, 20.8 mg), *tert*-butyl isocyanide (**2a**, 0.15 mmol, 12.5 mg), I₂ (0.75 equiv, 19.0 mg), CHP (5.5 equiv, 104.6 mg), Zn(OAc)₂ (1.5 equiv, 27.5 mg), and 1.0 mL of TBME were added to a tube equipped with a stir bar and stirred at 40 °C for 11 h. Then the reaction was quenched by H₂O and extracted with ethyl acetate, dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by column chromatography on silica gel with light petroleum ether as eluent to afford the desired product **3a** (26.1 mg, 63%).

(d) A mixture of 2,2'-(ethyne-1,2-diyl)dianiline (1a, 0.10 mmol, 20.8 mg), *tert*-butyl isocyanide (2a, 0.15 mmol, 12.5 mg), I_2 (0.75 equiv, 19.0 mg), CHP (5.5 equiv, 104.6 mg), Radical scavenger (1.0 equiv), $Zn(OAc)_2$ (1.5 equiv, 27.5 mg) and 1.0 mL of TBME was added to a test tube equipped with a magnetic stirring bar. The mixture was then stirred at 40 °C under air for 11 h. Then the reaction was quenched by H_2O and extracted with ethyl acetate, dried over anhydrous Na_2SO_4 , filtered, and evaporated under vacuum. The crude product was purified by column chromatography on neutral alumina with light petroleum ether/ethyl acetate as eluent. Through adding different radical scavengers to the standard condition, product **3ab** was provided with the following yield.

H ₂ N NH ₂	+ ⊖ _C [™] N + C [™] _P N + O [™] _C [™] N + O [™] _P N + O [™]	
1a, 0.1 mm	ol 2b , 1.5 equiv	3ab
Entry ^a	Radical scavenger (1.0 equiv)	Yield of 3ab $(\%)^b$
1	TEMPO	n.d.
2	BHT	n.d.
3	1,1-diphenylethylene	70%

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2b** (0.15 mmol, 1.5 equiv), I₂ (0.075 mmol, 0.75 equiv), CHP (0.55 mmol, 5.5 equiv), Zn(OAc)₂ (0.15 mmol, 1.5 equiv) and TBME were added to a test tube at 40 °C under air for 11 h. TEMPO = 2,2,6,6-Tetramethylpiperidine 1-oxyl, BHT = Butylated hydroxytoluene. CHP = Cumene hydroperoxide. TBME = *tert*-Butyl hydroperoxide. ^{*b*}Isolated yield. n.d. = not detected

F. General Procedures for the Synthetic Applications

(i) 2.0 mmol Experiment

A mixture of 2,2'-(ethyne-1,2-diyl)dianiline (**1a**, 2.00 mmol, 0.416 g), *tert*-butyl isocyanide (**2a**, 3.00 mmol, 0.249 g), I₂ (0.75 equiv, 380 mg), CHP (5.5 equiv, 2.093 g), Zn(OAc)₂ (1.5 equiv, 0.550 g), and 10.0 mL of TBME were added to a tube equipped with a stir bar and stirred at 40 °C for 15 h. Then the reaction was quenched by H₂O and extracted with ethyl acetate, dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by column chromatography on neutral alumina with light petroleum ether as eluent to afford the desired product **3a** (0.4777 g, 58%).

(ii) Synthetic Procedure for 4

N-(*tert*-butyl)-12-iodoindolo[1,2-*c*]quinazolin-6-amine (**3a**, 0.1 mmol, 41.5 mg), ethynyltrimethylsilane (0.2 mmol, 19.6 mg), $PdCl_2(PPh_3)_2$ (10 mol %, 7.0 mg), CuI (10 mol %, 2.0 mg), CH₃CN (1.0 mL) and Et₃N (1.0 mL) were added to a test tube under nitrogen atmosphere. Then the mixture was stirred at 50 °C for 12 h. After the reaction was completed (monitored by TLC), the resulting mixture was extracted with ethyl acetate. The combined organic layers were evaporated under vacuum, and then washed with brine and dried over anhydrous Na₂SO₄. Filtration, evaporation, and chromatography on silica gel with light petroleum as eluent afforded the desired product **4** (35.4 mg, 92%).

(iii) Deprotection of 4

To a side-necked sealable tube equipped with stir bar was added 4 (38.5 mg, 0.1 mmol), K_2CO_3 (2.0 equiv, 27.6 mg) and CH₃OH (1.0 mL). The reaction was sealed and stirred at room temperature for 15 min. The product was then extracted with dichloromethane. The combined organics were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel with light petroleum ether/ethyl acetate as eluent to afford the desired product **5** (30.6 mg, 98%).

(iv) Deprotection of 3a

To a side-necked sealable tube equipped with stir bar was added **3a** (41.5 mg, 0.1 mmol) and TFA (1.0 mL). The reaction was sealed and heated at reflux for 3 h. The reaction tube was allowed to cool to room temperature. The mixture was dropped slowly into saturated aqueous NaHCO₃. The product was then extracted with diethyl ether. The combined organics were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel with light petroleum ether/ethyl acetate as eluent to afford the desired product **6** (26.5 mg, 41%).

(v) Synthetic Procedure for 7

N-(*tert*-butyl)-12-iodoindolo[1,2-*c*]quinazolin-6-amine (**3a**, 0.1 mmol, 41.5 mg), (*E*)-styrylboronic acid (0.2 mmol, 29.6 mg), Pd(PPh₃)₄ (5 mol %, 5.8 mg), K₂CO₃ (3.0 equiv, 41.5 mg) and DMF (1.0 mL) were added to a test tube under nitrogen atmosphere. Then the mixture was stirred at 100 °C for 8 h. After the reaction was completed (monitored by TLC), the resulting mixture was extracted with ethyl acetate. The combined organic layers were evaporated under vacuum and then washed

with brine and dried over anhydrous Na₂SO₄. Filtration, evaporation, and chromatography on silica gel with light petroleum as eluent afforded the desired product 7 (34.3 mg, 88%).

(vi) Synthetic Procedure for 8

N-(*tert*-butyl)-12-iodoindolo[1,2-*c*]quinazolin-6-amine (**3a**, 0.1 mmol, 41.5 mg), PdCl₂(PPh₃)₂ (5 mol %, 3.5 mg), NEt₃ (3.0 equiv, 42 uL), HCOOH (2.0 equiv, 9.2 mg) and DMF (1.0 mL) were added to a test tube under nitrogen atmosphere. After the reaction was completed (monitored by TLC), the resulting mixture was extracted with ethyl acetate. The combined organic layers were evaporated under vacuum and then washed with brine and dried over anhydrous Na₂SO₄. Filtration, evaporation, and chromatography on silica gel with light petroleum as eluent afforded the desired product **8** (25.1 mg, 87%).

(vii) Synthetic Procedure for 9 or 10

N-(*tert*-butyl)-12-iodoindolo[1,2-*c*]quinazolin-6-amine (**3a**, 0.1 mmol, 41.5 mg), phenylboronic acid (0.2 mmol, 24.4 mg) or (4-methoxyphenyl)boronic acid (0.2 mmol, 30.4 mg), Pd(PPh₃)₄ (5 mol %, 5.8 mg), K₂CO₃ (3.0 equiv, 41.5 mg) and DMF (1.0 mL) were added to a test tube under nitrogen atmosphere. Then the mixture was stirred at 100 °C for 8 h. After the reaction was completed (monitored by TLC), the resulting mixture was extracted with ethyl acetate. The combined organic layers were evaporated under vacuum and then washed with brine and dried over anhydrous Na₂SO₄. Filtration, evaporation, and chromatography on silica gel with light petroleum as eluent afforded the desired product **9** (21.9 mg, 60 %) or **10** (35.4 mg, 90%).

G. Characterization Data for Starting Materials

6,6'-(Ethyne-1,2-diyl)bis(3-chloroaniline) (1k)

Yellow solid (25%, 138.0 mg); mp: 157.2-157.5 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.3 Hz, 1H), 6.91 – 6.56 (m, 2H), 4.33 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 131.2, 129.9, 122.3, 115.5, 108.8, 90.7. IR: v_{max} (KBr) = 3459, 3365, 3217, 2360, 1613, 1613, 1551, 1490, 1422,

1248, 1092, 914, 852, 802, 741 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₄H₁₀Cl₂N₂ [M-H]⁻: 275.0150 (100%), 277.0119 (63.9%), found 275.0148 (100%), 277.0119 (63.9%).

2,2'-(Ethyne-1,2-diyl)bis(4-chloroaniline) (1c)

Yellow solid (60%, 331.2 mg); mp: 168.9-169.9 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.10 (dd, *J* = 8.6, 2.4 Hz, 2H), 6.66 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 131.2, 129.9, 122.3, 115.5, 108.8, 90.7, 77.3, 77.0, 76.6; IR: ν_{max}(KBr) = 3447, 3358, 3053, 2922, 2854,

2356, 1710, 1613, 1486, 1414, 1306, 1243, 1147, 1088, 884, 812, 755, 650 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₄H₁₀Cl₂N₂ [M+H]⁺: 277.0290 (100 %), 279.0260 (63.9 %), found 277.0294 (100 %), 279.0264 (63.9 %).

2,2'-(Ethyne-1,2-diyl)bis(4-methoxyaniline) (1g)

Yellow solid (30%, 160.8 mg); mp: 180.3-181.3 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 6/1); ¹H NMR (400 MHz, CDCl₃) δ 6.91 (d, J = 2.9 Hz, 1H), 6.79 (dd, J = 8.8, 2.9 Hz, 1H), 6.69 (d, J = 8.8 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 141.8, 117.4, 116.0, 115.7, 108.6, 91.1, 77.3, 77.0, 76.6, 55.8. IR:

 v_{max} (KBr) = 3424, 3346, 3202, 2966, 2928, 2358, 1714, 1606, 1495, 1456, 1316, 1277, 1244, 1208, 1172, 1139, 1032, 959, 849, 809, 755, 666 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₆H₁₆N₂O₂ [M+H]⁺: 269.1285, found 269.1279.

6,6'-(Ethyne-1,2-diyl)bis(3-fluoroaniline) (1i)

Yellow solid (40%, 195.2 mg); mp: 133.5-134.5 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, J = 9.2, 6.3 Hz, 1H), 6.50 – 6.32 (m, 2H), 4.42 (d, J = 22.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7 (d, J = 245.8 Hz), 149.4 (d, J = 11.7 Hz), 133.6 (d, J = 10.4 Hz), 105.3 (d, J = 22.5 Hz), 103.9 (d, J = 2.4

Hz), 101.1 (d, J = 25.3 Hz), 89.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.6; IR: v_{max} (KBr) = 3449, 3361, 2358, 1615, 1503, 1436, 1253, 1169, 970, 845, 805, 677, 509, 463 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₄H₁₀F₂N₂ [M+H]⁺: 245.0885, found 245.0881.

6,6'-(Ethyne-1,2-diyl)bis(2-chloro-4-fluoroaniline) (10)

Yellow solid (60%, 374.4 mg); mp: 154.5-155.5 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.10 (m, 1H), 7.03 (dd, *J* = 10.5, 2.3 Hz, 1H), 4.29 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7 (d, *J* = 241.4 Hz), 135.4 (d, *J* = 13.6 Hz), 126.8 (d, *J* = 3.3 Hz), 121.5 (d, *J* = 10.6 Hz), 116.7 (d, *J* = 21.8 Hz), 109.7 (d, *J* = 6.0 Hz), 90.4 (d, *J* = 5.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -131.4; IR:

 $v_{\text{max}}(\text{KBr}) = 2360, 1701, 1622, 1567, 1524, 1483, 1430, 1300, 1218, 1171, 1085, 987, 906, 852, 739, 674$ cm⁻¹; HRMS (ESI) m/z: calcd for C₁₄H₈Cl₂F₂N₂ [M+H]⁺: 313.0101 (100%), 315.0070 (63.9%), found 313.0105 (100%), 315.0076 (63.9%).

6,6'-(Ethyne-1,2-diyl)bis(3-(trifluoromethyl)aniline) (1j)

Yellow solid (30%, 206.4 mg); mp: 85.5-86.5 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 8/1); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (t, *J* = 7.4 Hz, 1H), 7.07 – 6.84 (m, 2H), 4.49 (d, *J* = 19.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 133.6, 132.5, 131.9 (q, *J* = 32.3 Hz), 123.8 (q, *J* = 270.7 Hz), ;114.4 (q, *J* = 3.5 Hz), 110.9 (q, *J* =

3.9 Hz), 91.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1; IR: v_{max} (KBr) = 1616, 1504, 1437, 1336, 1244, 1165, 1119, 925, 865, 811, 751 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₆H₁₀F₆N₂ [M-H]⁻: 343.0675, found 343.0675.

2,2'-(Ethyne-1,2-diyl)bis(4-(tert-Butyl)aniline) (1h)

Yellow solid (44%, 281.8 mg); mp: 150.4-151.4 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 2.1 Hz, 1H), 7.20 (dd, J = 8.4, 2.2 Hz, 1H), 6.70 (d, J = 8.5 Hz, 1H), 4.19 (s, 2H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 140.91, 128.6, 126.9, 114.3, 107.7, 91.0, 33.8, 31.3; IR

 v_{max} (KBr) = 3489, 3401, 3316, 3265, 3185, 2956, 2860, 2361, 1715, 1623, 1504, 1464, 1416, 1361, 1322, 1258, 1207, 1161, 1104, 1023, 884, 821, 744, 693, 627 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₂H₂₈N₂ [M+H]⁺: 321.2325, found 321.2318.

3,3'-(Ethyne-1,2-diyl)bis(pyridin-2-amine) (1p)

Yellow solid (40%, 168.1 mg); mp: 244.5-245.5 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 6/1); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 5.0, 1.8 Hz, 1H), 7.60 (dt, J = 7.5, 1.8 Hz, 1H), 6.65 (ddd, J = 12.8, 7.6, 5.0 Hz, 1H), 5.17 (d, J = 18.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 148.2, 140.1, 113.6, 102.6, 90.4; IR: v_{max} (KBr) = 3455, 3379,

3303, 2924, 2854, 2358, 2216, 1718, 1615, 1563, 1494, 1452, 1319, 1272, 1163, 1027, 819, 755, 693 cm⁻¹; HRMS (ESI) m/z: calcd for $C_{12}H_{10}N_4$ [M+H]⁺: 211.0978, found 211.0975.

2-(1H-Indol-2-yl)aniline (11)^[1]

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.47 – 7.35 (m, 2H), 7.25 – 7.10 (m, 3H), 6.94 – 6.78 (m, 2H), 6.73 (d, *J* = 2.1 Hz, 1H), 4.10 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 136.1, 135.8, 129.2, 129.0, 128.8, 122.1, 120.3, 120.1, 119.0, 118.7, 116.5, 110.8, 101.5.

2-(3-iodo-1*H*-indol-2-yl)aniline (12)^[2]

Brown solid. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.28 (d, J = 5.5 Hz, 1H), 7.23 (d, J = 7.0 Hz, 1H), 6.88 (t, J = 7.8 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 3.84 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 136.9, 136.2, 131.5, 131.1, 130.4, 123.4, 121.2, 120.9, 118.5, 117.7, 116.1,

111.1, 60.5.

H. Characterization Data for All Products

N-(tert-Butyl)-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3a)

Yellow solid (81%, 33.6 mg); mp: 173.1-174.1 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.29 (d, J = 9.0 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.49 (q, J = 7.8, 7.3 Hz, 2H), 7.44 – 7.38 (m, 1H), 7.31 (t, J = 6.9 Hz, 1H), 5.26 (s, 1H), 1.70 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 141.9, 133.3,

133.2, 130.0, 129.6, 125.4, 123.6, 123.3, 122.9, 122.3, 117.3, 112.8, 52.9, 29.2. IR: $v_{max}(KBr) = 1611$, 1528, 1448, 1347, 1267, 1204, 753 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₁₈IN₃ [M+H]⁺: 416.0618, found 416.0616.

N-(tert-Butyl)-2,10-difluoro-12-iodoindolo[1,2-c]quinazolin-6-amine (3b)

White solid (72%, 32.5 mg); mp: 209.8-210.7 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 10.4 Hz, 1H), 7.89 (dd, J = 9.0, 3.9 Hz, 1H), 7.52 (dd, J = 8.8, 5.5 Hz, 1H), 7.34 (d, J = 8.9 Hz, 1H), 7.27 – 7.17 (m, 1H), 7.12 (t, J = 8.8 Hz, 1H), 5.00 (s, 1H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7 (d, J = 240.7 Hz), 158.0 (d, J

= 238.9 Hz), 142.9, 138.3, 134.5 (d, J = 10.4 Hz), 133.9 (d, J = 4.1 Hz), 127.1 (d, J = 8.4 Hz), 126.5, 117.7 (d, J = 23.4 Hz), 114.2 (d, J = 9.6 Hz), 111.5 (d, J = 26 Hz), 108.7 (d, J = 25.9 Hz), 107.5 (d, J = 24.5 Hz), 53.1, 29.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.7, -117.8; IR: v_{max} (KBr) = 2831, 1619, 1540, 1470, 1364, 1319, 1267, 1197, 1091, 1025, 967, 847, 809, 757 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₁₆F₂IN₃ [M+H]⁺: 452.0430, found 452.0421.

N-(tert-Butyl)-2,10-dichloro-12-iodoindolo[1,2-c]quinazolin-6-amine (3c)

White solid (63%, 30.4 mg); mp: 256.4-257.4 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 7.84 (d, J = 8.9 Hz, 1H), 7.69 (s, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.42 (dd, J = 8.6, 2.3 Hz, 1H), 7.35 (dd, J = 8.9, 2.1 Hz, 1H), 5.09 (s, 1H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 140.4, 134.4, 130.1, 128.4, 127.6, 126.9,

125.5, 123.5, 122.6, 121.9, 113.9, 53.2, 29.2; IR: v_{max} (KBr) = 1615, 1441, 1342, 1267, 816, 755 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₁₆Cl₂IN₃ [M-H]⁻: 481.9691 (100%), 483.9660 (63.9%), found 481.9693 (100%), 483.9664 (63.9%).

2,10-Dibromo-N-(tert-Butyl)-12-iodoindolo[1,2-c]quinazolin-6-amine (3d)

White solid (61%, 34.8 mg); mp: 198.4-199.4 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.84 (s, 1H), 7.78 (d, J = 8.8 Hz, 1H), 7.55 (d, J = 9.8 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.41 (d, J = 8.6 Hz, 1H), 5.09 (s, 1H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 140.8, 134.8, 132.9, 128.7, 127.2, 126.1, 125.6, 125.0,

118.4, 117.4, 115.2, 114.2, 53.3, 29.2; IR: $\nu_{max}(KBr) = 2962$, 2855, 2813, 1621, 1547, 1387, 1346, 1267, 1204, 1033, 856, 803, 758 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₁₆Br₂IN₃ [M-H]⁻: 569.8682 (51.4%), 571.8661 (100%), found 569.8683 (51.4%), 571.8662 (100%).

N-(tert-Butyl)-12-iodo-2,10-bis(trifluoromethyl)indolo[1,2-*c*]quinazolin-6-amine (3e)

White solid (48%, 26.4 mg); mp: 225.5-226.4 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.56 (d, J = 2.0 Hz, 1H), 8.06 – 7.99 (m, 2H), 7.69 (ddd, J = 14.5, 8.6, 1.9 Hz, 2H), 7.63 (d, J = 8.5 Hz, 1H), 5.34 (s, 1H), 1.71 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 144.3 (d, J = 0.7 Hz), 134.0, 133.0, 131.3, 126.6 (q, J = 3.7 Hz), 126.1, 124.6 (q, J = 270 Hz), 124.3 (q, J = 270.5 Hz), 124.1 (q, J

= 32.4 Hz), 120.9 (q, J = 4.1 Hz), 120.3 (q, J = 4.0 Hz), 120.1 (q, J = 3.4 Hz), 116.7, 113.3, 54.4, 53.6, 29.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.1, -61.7; IR: v_{max} (KBr) = 2853, 1661, 1555, 1331, 1111, 878, 832, 797, 754 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₁H₁₆F₆IN₃ [M+H]⁺: 552.0290, found 552.0295.

N-(tert-Butyl)-12-iodo-2,10-dimethylindolo[1,2-c]quinazolin-6-amine (3f)

White solid (54%, 23.9 mg); mp: 167.1-168.1 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.12 (d, J = 8.2 Hz, 1H), 7.71 (s, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.38 (s, 1H), 7.30 – 7.23 (m, 1H), 7.11 (d, J = 8.2 Hz, 1H), 5.23 (s, 1H), 2.59 (s, 3H), 2.46 (s, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 141.8, 139.6, 133.0, 132.6, 131.2, 130.2, 125.4, 125.0, 123.6, 123.0, 121.7, 114.9, 113.0, 52.8,

52.2, 29.2, 22.3, 21.5; IR: $v_{max}(KBr) = 3308$, 2963, 1707, 1635, 1542, 1372, 1326, 1212, 794, 752 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₂IN₃ [M+H]⁺: 444.0931, found 444.0929.

N-(tert-Butyl)-12-iodo-2,10-dimethoxyindolo[1,2-c]quinazolin-6-amine (3g)

White solid (35%, 16.6 mg); mp: 147.2-148.2 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 2.7 Hz, 1H), 7.87 (d, J = 9.1 Hz, 1H), 7.53 (d, J = 8.9 Hz, 1H), 7.17 – 7.08 (m, 2H), 7.01 (dd, J = 9.1, 2.5 Hz, 1H), 4.99 (s, 1H), 3.97 (s, 6H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 154.9, 142.6, 136.1, 134.2, 133.6, 126.7, 124.9, 118.2, 117.5,

114.1, 112.9, 105.5, 103.2, 55.7, 55.7, 52.8, 52.3, 29.3; IR: v_{max} (KBr) = 3315, 2829, 1717, 1624, 1547, 1366, 1323, 1205, 774 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₁H₂₀IN₃ [M+H]⁺: 476.0829, found 476.0822.

N,2,10-Tri-*tert*-Butyl-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3h)

White solid (81%, 42.7 mg); mp: 143.9-144.6 °C, Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.72 (s, 1H), 7.60 – 7.45 (m, 3H), 5.21 (s, 1H), 1.68 (s, 9H), 1.48 (d, J = 5.4 Hz, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 145.3, 143.6, 139.6, 133.7, 132.9, 128.1, 127.3, 124.9, 121.1, 119.8, 118.2,

116.6, 112.6, 52.8, 35.0, 34.8, 31.7, 31.6, 29.2; IR: $v_{max}(KBr) = 2848$, 2385, 2343, 1710, 1663, 1588, 1526, 1480, 1378, 780 cm⁻¹; HRMS (ESI) Calcd for $C_{27}H_{34}IN_3$ [M+H]⁺: 528.1870, found 528.1871.

N-(tert-Butyl)-3,9-difluoro-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3i)

White solid (33%, 14.9 mg); mp: 200.4-201.4 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.17 (dd, *J* = 8.9, 6.1 Hz, 1H), 7.71 – 7.57 (m, 2H), 7.25 – 7.18 (m, 2H), 7.05 – 6.98 (m, 1H), 5.05 (s, 1H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5 (d, *J* =

246.7 Hz), 159.5 (d, J = 239.4 Hz), 143.9, 143.7 (d, J = 12.4 Hz), 133.4 (d, J = 4.2 Hz), 129.5, 129.0 (d, J = 11.5 Hz), 124.7 (d, J = 9.6 Hz), 123.1 (d, J = 9.7 Hz), 113.9, 112.3 (d, J = 24Hz), 111.0 (d, J = 21.6 Hz), 110.4 (d, J = 22.6 Hz), 105.1 (d, J = 28.9 Hz), 53.2, 52.0, 29.1; ¹⁹F NMR (376 MHz, CDCl₃) δ - 110.9, -117.0; IR: v_{max} (KBr) = 3314, 2960, 1706, 1639, 1598, 1535, 1471, 1365, 1323, 1274, 1208, 1148, 1104, 978, 929, 844, 805, 739, 695 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₁₆F₂IN₃ [M+H]⁺: 452.0430, found, 452.0420.

N-(tert-Butyl)-12-iodo-3,9-bis(trifluoromethyl)indolo[1,2-c]quinazolin-6-amine (3j)

White solid (55%, 30.3 mg); mp: 238.5-239.5 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.32 (d, J = 8.4 Hz, 1H), 8.26 (s, 1H), 7.86 – 7.77 (m, 2H), 7.71 (d, J = 8.5 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 5.16 (s, 1H), 1.72 (s, 9H); ¹³C NMR (100 MHz,

CDCl₃) δ 143.9, 141.9, 135.3, 134.5, 131.8 (q, *J* = 30.9 Hz), 124.5 (q, *J* = 270.4 Hz), 129.0, 125.3 (q, *J* = 32.5 Hz), 123.9 (q, *J* = 271.0 Hz), 124.0, 123.1, 122.7 (q, *J* = 4 Hz), 120.6 (q, *J* = 3 Hz), 119.3, 118.7 (q, *J* = 3.6 Hz), 110.4 (q, *J* = 4.8 Hz), 54.4, 53.6, 29.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.8, -62.7; IR: $v_{\text{max}}(\text{KBr}) = 2830$, 1625, 1537, 1366, 1329, 1267, 1203, 1162, 1111, 893, 809, 757, 701 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₁H₁₆F₆IN₃ [M+H]⁺: 552.0290, found 552.0295.

N-(*tert*-Butyl)-3,9-dichloro-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3k)

White solid (47%, 22.7 mg); mp: 201.2-202.2 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.11 (d, *J* = 8.7 Hz, 1H), 7.91 (s, 1H), 7.60 (d, *J* = 8.6 Hz, 1H), 7.55 (s, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.23 (d, *J* = 6.9 Hz, 1H), 5.07 (s, 1H), 1.69 (s, 9H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 143.9, 142.8, 135.3, 133.2, 131.6, 129.9, 128.8, 124.9, 124.4, 124.1, 123.0, 122.7, 115.6, 113.0, 53.4, 53.0, 29.1; IR: $v_{\text{max}}(\text{KBr}) = 2963$, 2357, 1623, 1593, 1541, 1452, 1330, 1266, 1198, 1085, 1028, 943, 870, 802, 754, 677; HRMS (ESI) m/z: calcd for C₁₉H₁₆Cl₂IN₃ [M-H]⁻: 481.9694 (100%), 483.9662 (63.9%), found 481.9693 (100%), 483.9664 (63.9%).

*N-(tert-*Butyl)-12-iodo-3,9-dimethylindolo[1,2-*c*]quinazolin-6-amine (31)

White solid (50%, 22.2 mg); mp: 170.0-170.6 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.12 (d, J = 8.2 Hz, 1H), 7.71 (s, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.38 (s, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.12 (d, J = 8.2 Hz, 1H), 5.23 (s, 1H), 2.58 (s, 3H), 2.46 (s, 3H), 1.70 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 141.8,

139.6, 133.0, 132.6, 131.2, 130.3, 125.4, 125.1, 123.7, 123.0, 121.7, 115.0, 113.0, 52.9, 52.0, 29.3, 22.3, 21.5; IR: v_{max} (KBr) = 3300, 2961, 1714, 1600, 1539, 1458, 1369, 1322, 1212, 1166, 1030, 873, 796, 754, 703 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₂IN₃ [M+H]⁺: 444.0931, found 444.0928.

N-(tert-Butyl)-4,8-dichloro-12-iodoindolo[1,2-c]quinazolin-6-amine (3m)

Yellow solid (60%,), mp: 183.5-184.4 °C, Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, *J* = 8.1 Hz, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.47 – 7.36 (m, 2H), 7.10 (t, *J* = 7.9 Hz, 1H), 5.71 (s, 1H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 140.1, 137.1, 136.6, 130.4, 128.9, 127.8, 126.2, 125.3, 122.1, 121.4, 121.1, 118.7, 118.4,

55.9, 53.7, 28.6; IR: v_{max} (KBr) = 3447, 2968, 2923, 2308, 1837, 1744, 1688, 1620, 1524, 1462, 1402, 1327, 1272, 1200, 1124, 925, 752 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₁₆Cl₂IN₃ [M-H]⁻: 481.9692 (100%), 483.9661 (63.9%) found 481.9693 (100%), 483.9664 (63.9%).

N-(tert-Butyl)-2,3,9,10-tetrafluoro-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3n)

Brown solid (36%, 17.5 mg); mp: 216.5-217.5 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz,CDCl₃) δ 9.06 – 8.92 (m, 1H), 7.81 (dd, *J* = 11.0, 6.4 Hz, 1H), 7.46 (dd, *J* = 10.1, 7.9 Hz, 1H), 7.32 (dd, *J* = 11.4, 7.8 Hz, 1H), 4.86 (s, 1H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4 (dd, *J* = 14.3, 250.6 Hz), 148.7 (dd, *J* = 223.5, 14.2 Hz), 147.7 (dd, *J* = 242.5, 14.5 Hz), 146.3 (dd, *J* = 13.5, 221.6 Hz), 143.4, 139.1

(dd, J = 1.5, 10.2 Hz), 133.5 (dd, J = 2.5, 5.2 Hz), 130.8, 129.5 (d, J = 8.1 Hz), 128.8, 124.3 (d, J = 9.3 Hz), 113.3 (d, J = 17.4 Hz), 110.6 (d, J = 21.5 Hz), 109.2 (d, J = 0.3 Hz), 102.2 (d, J = 24.5 Hz), 53.4, 52.0, 29.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -133.7, -139.2, -139.8, -141.4; IR: v_{max} (KBr) = 1711, 1533, 1477, 1376, 1328, 863, 751 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₁₄F₄IN₃ [M+H]⁺: 488.0241, found 488.0235.

N-(tert-Butyl)-2,10-dichloro-4,8-difluoro-12-iodoindolo[1,2-c]quinazolin-6-amine (30)

White solid (31%, 16.1 mg); mp: 240.6-240.8 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.51 (s, 1H), 7.24 – 7.17 (m, 2H), 6.63 (d, *J* = 29.4 Hz, 1H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.8 (d, *J* = 252.2 Hz), 147.8 (d, *J* = 242.4 Hz), 141.9, 137.1 (d, *J* = 4.2 Hz), 134.5 (d, *J* = 3.2 Hz), 130.7 (d, *J* = 11.9 Hz), 129.7 (d, *J* = 11.8 Hz), 125.9 (d, *J* = 9.9 Hz), 118.8 (d, *J* = 3.2 Hz),

118.7 (d, J = 4.1 Hz), 118.1 (d, J = 3.6 Hz), 116.7 (d, J = 22.1 Hz), 116.0 (d, J = 7.5 Hz), 111.5 (d, J = 30.8 Hz), 55.1, 53.4, 28.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.4, -124.6; IR: v_{max} (KBr) = 3341, 2961, 1616, 1536, 1473, 1386, 1349, 1265, 1207, 912, 837, 756 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₁₄Cl₂F₂IN₃ [M-H]⁻: 517.9500 (100%), 519.9470 (63.9%), found, 517.9505 (100%), 519.9475 (63.9%).

12-Iodo-*N*-(2,4,4-trimethylpentan-2-yl)indolo[1,2-*c*]quinazolin-6-amine (3aa)

White solid (76%, 35.8 mg); mp: 153.4-154.4 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.30 (d, *J* = 9.2 Hz, 1H), 7.96 (d, *J* = 8.3 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.58 (d, *J* = 9.0 Hz, 1H), 7.50 (q, *J* = 7.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.31 (d, *J* = 15.2 Hz, 1H), 5.33 (s, 1H), 2.24 (s, 2H), 1.74 (s, 6H), 1.04 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 141.9, 133.4, 133.2, 129.9, 129.6, 125.4, 123.6, 123.3, 123.0, 122.4, 122.2,

117.2, 112.6, 56.8, 53.0, 50.4, 31.8, 31.6, 30.2; IR: $v_{max}(KBr) = 3389$, 3320, 3257, 3049, 2954, 2832, 1715, 1629, 1563, 1368, 1317, 1211, 757 cm⁻¹; HRMS (ESI) Calcd for $C_{23}H_{26}IN_3$ [M+H]⁺: 472.1244, found 472.1239.

12-Iodo-*N*-isopropylindolo[1,2-*c*]quinazolin-6-amine (3ab)

White solid (85%, 34.1 mg); mp: 166.6-167.6 °C, Isolation by column chromatography (petroleum ether/ethyl acetate: 30/1); ¹H NMR (400 MHz, CDCl₃) δ 9.27 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.44 – 7.38 (m, 1H), 7.31 (t, J = 7.0 Hz, 1H), 5.17 (d, J = 6.2 Hz, 1H), 4.56 (dq, J = 13.0, 6.5 Hz, 1H), 1.46 (d, J = 6.5 Hz,

6H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 142.2, 133.2, 133.1, 129.9, 129.7, 125.2, 123.7, 123.4, 123.0, 122.4, 122.3, 117.4, 112.9, 53.2, 43.8, 23.0; IR: $v_{\text{max}}(\text{KBr}) = 1676$, 1535, 1376, 1324, 1217, 742 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₁₆IN₃ [M+H]⁺: 402.0462, found 402.0461.

N-Butyl-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3ac)

White solid (67%, 27.8 mg); mp: 160.1-160.7 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 30/1); ¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.47 (dt, *J* = 15.4, 7.5 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 5.23 (s, 1H), 3.70 (s, 2H), 1.91 – 1.71 (m, 2H),

1.56 (q, J = 7.4 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 142.0, 133.2, 132.9, 129.9, 129.7, 125.1, 123.7, 123.4, 123.1, 122.5, 122.3, 117.4, 112.8, 53.4, 42.0, 31.5, 20.4, 13.9; IR: $v_{\text{max}}(\text{KBr}) = 1628$, 1533, 1373, 1323, 743 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₁₈IN₃ [M+H]⁺: 416.0618, found 416.0615.

N-Benzyl-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3ad)

White solid (50%, 22.5 mg); mp: 162.5-163.2 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 30/1); ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, *J* = 9.0 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 7.9 Hz, 3H), 7.47 – 7.39 (m, 3H), 7.38 – 7.30 (m, 3H), 5.56 (s, 1H), 4.93 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ

145.3, 141.7, 138.2, 133.2, 132.9, 129.9, 129.8, 128.8, 128.1, 127.7, 125.2, 123.8, 123.4, 123.3, 122.8, 122.3, 117.7, 112.9, 46.5; IR: v_{max} (KBr) = 1667, 1537, 1324, 746 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₁H₂₀IN₃, [M+H]⁺: 450.0462, found 450.0454.

N-((3s,5s,7s)-Adamantan-1-yl)-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3ae)

White solid (81%, 39.9 mg); mp: 228.5-229.5 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.47 (dt, *J* = 14.6, 7.5 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.28 (dd, *J* = 13.6, 6.3 Hz, 1H), 5.19 (s, 1H), 2.40 (s, 6H), 2.22 (s, 3H), 1.81 (s, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 141.9, 133.3, 133.2, 130.0, 129.6, 125.3, 123.5, 123.3, 122.8, 122.3,

122.2, 117.3, 112.9, 53.6, 52.9, 42.2, 36.6, 29.7; IR: v_{max} (KBr) = 2901, 2834, 1710, 1621, 1537, 1364, 1313, 1210, 727 cm⁻¹; HRMS (ESI) Calcd for $C_{25}H_{24}IN_3$ [M+H]⁺: 494.1088, found 494.1083.

N-Cyclopentyl-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3af)

White solid (69%, 29.5 mg); mp: 149.7-150.7 °C; Isolation by column chromatography (petroleum ether/ethyl acetate: 30/1); ¹H NMR (400 MHz, CDCl₃) δ 9.27 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.49 (q, J = 8.0, 7.5 Hz, 2H), 7.41 (t, J = 8.3 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 5.31 (s, 1H), 4.64 (s, 1H), 2.29 (dd, J = 11.7, 5.8 Hz, 2H), 1.92 – 1.59 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 133.3, 133.0, 130.0, 129.7, 125.2, 123.7,

123.4, 123.1, 122.5, 122.3, 117.4, 112.8, 53.8, 33.5, 23.9; IR: v_{max} (KBr) = 2856, 2809, 1652, 1525, 1389, 1340, 801, 756 cm⁻¹; HRMS (ESI) Calcd for C₂₀H₁₈IN₃ [M+H]⁺: 428.0618, found 428.0617.

N-Cyclohexyl-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3ag)

White solid (74%, 32.6 mg); mp: 177.6-178.6 °C, Isolation by column chromatography (petroleum ether/ethyl acetate: 30/1); ¹H NMR (400 MHz, CDCl₃) δ 9.27 (d, *J* = 8.1 Hz, 1H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.48 (q, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 5.28 (s, 1H), 4.30 (s, 1H), 2.27 (d, *J* = 7.6 Hz, 2H), 1.84 (d, *J* = 13.4 Hz, 2H), 1.73 (d, *J* = 9.0 Hz, 1H), 1.57 (q, *J* = 11.3 Hz, 2H), 1.44 (q, *J* = 9.7 Hz,

2H), 1.34 (d, J = 9.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 133.3, 130.0, 129.7, 125.1, 123.7, 123.4, 123.1, 122.3, 117.4, 112.9, 50.2, 33.2, 25.8, 24.8; IR: v_{max} (KBr) = 2924, 2853, 1605, 1525, 1451, 1341, 1214, 1083, 746 cm⁻¹; HRMS (ESI) Calcd for C₂₁H₂₀IN₃ [M+H]⁺: 442.0775, found 442.0775.

N-(tert-Butyl)-12-((trimethylsilyl)ethynyl)indolo[1,2-c]quinazolin-6-amine (4)

Brown solid (92%, 35.4 mg); mp: 221.2-222.2 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, J = 7.5 Hz, 1H), 7.94 (dd, J = 16.8, 8.1 Hz, 2H), 7.58 (d, J = 7.8 Hz, 1H), 7.49 (dt, J = 14.4, 7.8 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.29 (dd, J = 15.4, 8.4 Hz, 1H), 5.28 (s, 1H), 1.71 (s, 9H), 0.41 (s, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 141.7, 138.1, 131.6, 129.8, 129.1, 125.1, 124.0, 123.5, 122.8, 122.7, 120.4, 117.9, 112.8, 101.7, 99.5,

92.0, 52.9, 29.2, 1.0; IR: $v_{max}(KBr) = 2961$, 2139, 1609, 1554, 1452, 1391, 1335, 1261, 1207, 848, 753 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₄H₂₈N₃Si [M+H]⁺: 386.2044, found 386.2039.

N-(*tert*-Butyl)-12-ethynylindolo[1,2-*c*]quinazolin-6-amine (5)

Yellow solid (98%, 30.6 mg); mp: 163.7-164.2 °C; Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, *J* = 9.1 Hz, 1H), 7.95 (t, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.39 (t, *J* = 8.4 Hz, 1H), 7.28 (d, *J* = 6.9 Hz, 1H), 5.29 (s, 1H), 3.75 (s, 1H), 1.71 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 141.7, 138.3, 131.8, 129.9,

129.1, 125.2, 123.9, 123.5, 123.0, 122.8, 120.1, 117.6, 112.8, 90.6, 84.3, 78.2, 77.3, 77.0, 76.6, 53.0, 29.2; IR: $v_{max}(KBr) = 3930$, 3814, 3771, 3713, 3442, 3360, 3255, 3182, 2957, 2921, 2850, 2781, 2712, 2666, 2604, 2432, 2089, 1654, 1608, 1556, 1461, 1391, 1323, 1248, 1200, 1122, 1078, 1025, 965, 804, 735, 606 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₁H₁₉N₃ [M+H]⁺: 314.1652, found 314.1643.

12-Iodoindolo[1,2-c]quinazolin-6-amine (6)

White solid (40%, 14.3 mg); mp: 234.8-235.8 °C, Isolation by column chromatography (petroleum ether/ethyl acetate: 5/1); ¹H NMR (400 MHz, DMSO- d_6) δ 8.37 (d, J = 8.1 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.46 – 7.31 (m, 5H), 7.23 (t, J = 7.4 Hz, 1H), 7.12 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 146.5, 135.1, 129.4, 128.6, 122.5, 122.5, 122.2, 121.0, 119.5, 114.4,

94.8; IR: $v_{max}(KBr) = 2830$, 1628, 1548, 1367, 1319, 755 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₅H₁₁IN₃ [M+H]⁺: 359.9992, found 359.9992.

(E)-N-(tert-Butyl)-12-styrylindolo[1,2-c]quinazolin-6-amine (7)

Brown solid (88%, 34.4 mg); mp : 151.5-152.5 °C, Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 7.8 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.80 – 7.68 (m, 3H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.49 (dt, *J* = 19.5, 7.2 Hz, 5H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.34 – 7.25 (m, 2H), 5.36 (s, 1H), 1.79 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 142.1, 138.0, 132.8, 131.9, 129.9, 129.5, 128.8, 128.7, 127.3, 126.1, 125.3, 124.6, 123.1, 123.0, 122.2, 121.4, 120.2, 118.6, 112.9, 109.3, 52.8, 29.2; IR: v_{max} (KBr) = 2829, 1697, 1625, 1547, 1368, 1324, 1268, 755 cm⁻¹; HRMS (ESI)

m/z: calcd for $C_{27}H_{25}N_3 [M+H]^+$: 392.2043, found 392.2042.

*N-(tert-*Butyl)indolo[1,2-*c*]quinazolin-6-amine (8)

White solid (87%, 25.1 mg); mp: 126.9-127.3 °C, Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 13.2, 8.0 Hz, 2H), 7.83 (d, J = 7.4 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.47 – 7.31 (m, 3H), 7.28 – 7.20 (m, 1H), 7.15 (s, 1H), 5.32 (s, 1H), 1.72 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 141.0, 136.8, 130.8, 130.2, 128.9, 125.3, 122.9,

122.8, 122.6, 121.3, 120.9, 117.4, 112.8, 94.6, 52.7, 29.3; IR: v_{max} (KBr) = 3428, 3057, 2960, 2922, 2364, 1619, 1556, 1513, 1473, 1447, 1390, 1361, 1331, 1272, 1240, 1198, 1118, 1023, 941, 914, 837, 786, 731, 646 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₂₀N₃ [M+H]⁺: 290.1652, found 290.1648.

N-(*tert*-Butyl)-12-phenylindolo[1,2-*c*]quinazolin-6-amine (9)

Brown solid (60%, 21.9 mg); mp : 208.1-208.9 °C, Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.0 Hz, 1H), 7.62 – 7.46 (m, 8H), 7.42 – 7.31 (m, 3H), 6.92 (t, *J* = 7.6 Hz, 1H), 5.34 (s, 1H), 1.73 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 141.7, 135.0, 131.5, 130.9, 129.2, 128.9, 128.7, 127.5, 125.3, 123.5, 122.8, 122.4, 122.0, 119.7, 117.9, 112.7, 112.2, 52.8, 29.3; IR: v_{max} (KBr) = 2831, 1609, 1360, 1268, 756 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₅H₂₄N₃ [M+H]⁺: 366.1965, found 366.1960.

N-(tert-Butyl)-12-(4-methoxyphenyl)indolo[1,2-c]quinazolin-6-amine (10)

Brown solid (90%, 35.6 mg); mp: 159.8-160.7 °C, Isolation by column chromatography (petroleum ether); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.5 Hz, 1H), 7.63 (dd, *J* = 14.1, 8.5 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.6 Hz, 2H), 7.38 (q, *J* = 9.1, 7.9 Hz, 3H), 7.13 (d, *J* = 8.6 Hz, 2H), 6.97 (t, *J* = 7.6 Hz, 1H), 5.36 (s, 1H), 3.96 (s, 3H), 1.76 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 144.2, 141.6, 131.9, 131.7, 131.5, 129.1, 128.5, 127.6, 126.9, 125.2, 123.4, 122.7, 122.4, 121.9, 119.6, 118.1, 114.4, 114.1, 112.7, 111.9, 55.3, 52.8, 29.3; IR: ν_{max} (KBr) = 3299, 2960, 2830, 1566, 1509, 1455, 1362, 1241, 1110, 1032, 932,

830, 752, 607 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₆H₂₆N₃ [M+H]⁺: 396.2070, found 396.2062.

I. X-ray Crystallographic Analysis for Product 3a

HN t-Bu	$\equiv \qquad \qquad$			
3a Empirical formula	CtoHtoINa			
Formula weight	415.26			
Temperature	150.0 K			
Crystal system, space group	Monoclinic, C2/c			
	$a = 21.6151 (11) \hat{A}$ alpha = 90 deg.			
Unit cell dimensions	b = 10.3343 (4) Å beta = 125.115 (3)			
	deg			
	c = 18.5855 (9) Å gamma = 90 deg.			
Volume	3396.0 (3) \hat{A}^3			
Z, Calculated density	8, 1.624 g/cm ³			
F(000)	1648.0			
Crystal size	$0.15 \times 0.08 \times 0.07 \text{ mm}^3$			
Theta range for data collection	4.566 to 52.86 deg			
Limiting indices	$-26 \leq h \leq 26, -12 \leq k \leq 12, -23 \leq$			
	$1 \leq 23$			
Paflactions collected / unique	19018 / 3460 [R(int) = 0.0366, R(sigma) =			
Kenections conected / unique	0.0267]			
Completeness to theta $= 26.430$	99.3%			
Data / restraints / parameters	3460/2/219			
Goodness-of-fit on F ²	1.022			

Final R indices [I>2sigma(I)]	R1 = 0.0316, wR2 = 0.0644
R indices (all data)	R1 = 0.0397, wR2 = 0.0700

J. References

[1] Kumar, K. S.; Ramulu, M. S.; Rajesham, B.; Kumar, N. P.; Voorab, V.; Kanchab, R. K. *Org. Biomol. Chem.* **2017**, *15*, 4468.

[2] Reddy, B. V.; Swain, M.; Reddy, S. M.; Yadav, J. S.; Sridhar, B. Eur. J. Org. Chem., 2014, 3313-3318.

K. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra *N*-(*tert*-Butyl)-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3a)

 ^1H NMR (400MHz, CDCl₃) of compound 3a

N-(*tert*-**B**utyl)-2,10-difluoro-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3b)

 1 H NMR (400 MHz, CDCl₃) of compound of **3b**

 $^{19}\mathrm{F}$ NMR (376 Mz, CDCl_3) of compound $\mathbf{3b}$

--117.759 --117.884

¹³C NMR (100 Mz, CDCl₃) of compound **3c**

¹³C NMR (100 Mz, CDCl₃) of compound **3d**

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm) -100 -110 -120 -130 -140 -150 -160 -170 -180

 1 H NMR (400 MHz, CDCl₃) of compound of **3f**

 1 H NMR (400 MHz, CDCl₃) of compound of **3g**

N,2,10-Tri-*tert*-butyl-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3h)

 1 H NMR (400 MHz, CDCl₃) of compound of **3h**

S31

¹⁹F NMR (376 Mz, CDCl₃) of compound 3i

-100 -110 -120 -130

-140

-150

-160

-170

-180

0

-10

-20

-30

-40

-50

-90 f1 (ppm) *N-(tert*-Butyl)-12-iodo-3,9-bis(trifluoromethyl)indolo[1,2-*c*]quinazolin-6-amine (3j) ^1H NMR (400 MHz, CDCl_3) of compound of 3j

-80

-60

-70

0 -10

-20

-30

-40

-50

-60 -70

-100

-110

-120

-130

-140

-150

-160

-170

-180

-80 -90 f1 (ppm)

N-(tert-Butyl)-4,8-dichloro-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3m)

 ^1H NMR (400 MHz, CDCl₃) of compound of 3m

N-(tert-Butyl)-2,3,9,10-tetrafluoro-12-iodoindolo[1,2-c]quinazolin-6-amine (3n)

 1 H NMR (400 MHz, CDCl₃) of compound of **3n**

¹³C NMR (100 Mz, CDCl₃) of compound **3n**

, 152 710	150.207	- 149.858 - 148.795 - 147.470	- 147.415 - 146.518	146.371 145.194	143.360 139.192 139.169	$\int_{f} \frac{139.062}{133.428}$	$\begin{cases} 129.494 \\ 129.409 \\ 129.409 \\ 124.221 \\ 12$	124.233	L 113.145	110.511	102.281	/ 77.317	76.682	∠ 53.424 ∖ 52.090	- 29.151	
	¹³ C F∼ F	NMR (C	DCI ₃ , 10	D MHz)												
			ĩ-Βι	1											1	
														1		
						<u> </u>	ldd		Lii			****	ļ	1	unun an Antoleo	
200	190	180	170	160	150	140	130	120	110	100 f1 (pp	90 n)	80	70	60 50	40 30	20 10

^{19}F NMR (376 Mz, CDCl_3) of compound 3n

--133.704 --139.189 ~-139.889 ~-141.418

N-(*tert*-Butyl)-2,10-dichloro-4,8-difluoro-12-iodoindolo[1,2-*c*]quinazolin-6-amine (30) ¹H NMR (400 MHz, CDCl₃) of compound of **30**:

¹³C NMR (100 Mz, CDCl₃) of compound **30**:

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

12-Iodo-N-(2,4,4-trimethylpentan-2-yl)indolo[1,2-c]quinazolin-6-amine (3aa)

¹H NMR (400 MHz, CDCl₃) of compound of **3aa**

N-Benzyl-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3ad)

¹H NMR (400 MHz, CDCl₃) of compound of **3ad**

9.287 9.265 7.887 7.887 7.866	7.702 7.586 7.586 7.530 7.451 7.451 7.451 7.451 7.451 7.451 7.451 7.452 7.442 7.442 7.442				
	¹ H NMR (CDCb, 400 MHz)				
H1260 9.5 9.0	5.9 0.2 5.2 2.35		4.5 4.0 3.5 a)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0 0.5 0.0
¹³ C NMR (1	00 Mz, CDCl ₃) of comj 138.304 128.866 128.866 128.886 128.866 128.8	bonnq 3aq 123.302 123.3458 117.727 117.727 112.338 117.727	$ \underbrace{77.318}{77.000} $	- 46.506	
10	³ C NMR (CDCl ₃ , 100 MHz)		i		
WARANGA MANAGANANA MANA					

N-Cyclopentyl-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3af)

 ^1H NMR (400 MHz, CDCl₃) of compound of 3af

N-Cyclohexyl-12-iodoindolo[1,2-*c*]quinazolin-6-amine (3ag)

¹H NMR (400 MHz, CDCl₃) of compound of **3ag**

N-(tert-Butyl)-12-ethynylindolo[1,2-*c*]quinazolin-6-amine (5)

¹H NMR (400 MHz, CDCl₃) of compound of **5**

12-Iodoindolo[1,2-c]quinazolin-6-amine (6)

 $\mathsf{H}_2\mathsf{N}$

140 130

190 180

170 160

110 100 f1 (ppm)

(E)-N-(tert-Butyl)-12-styrylindolo[1,2-c]quinazolin-6-amine (7)

¹H NMR (400 MHz, CDCl₃) of compound of 7

N-(*tert*-Butyl)-12-phenylindolo[1,2-*c*]quinazolin-6-amine (8)

¹H NMR (400 MHz, CDCl₃) of compound of 8

¹³C NMR (100 Mz, CDCl₃) of compound 8

144.245 141.710 133.996 131.549 131.549 123.928 123.922 128.707 125.507 125.537 125.557 125.537 125.5577 125.5577 125.5577 125.5577 10	77.318 77.000 76.683	52.858	29.357
	\checkmark		1

*N-(tert-*Butyl)indolo[1,2-*c*]quinazolin-6-amine (10)

