Supporting information

Supramolecular Protection with a Recyclable Molecular Container: an Efficient Strategy for the One-pot Selective Functionalization of Polyfunctional Substrates

Simon Lambert, ^{&, £} Kristin Bartik, ^{&, *} and Ivan Jabin^{£, *}

[&] Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
^f Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.

Kristin.Bartik@ulb.be, Ivan.Jabin@ulb.be

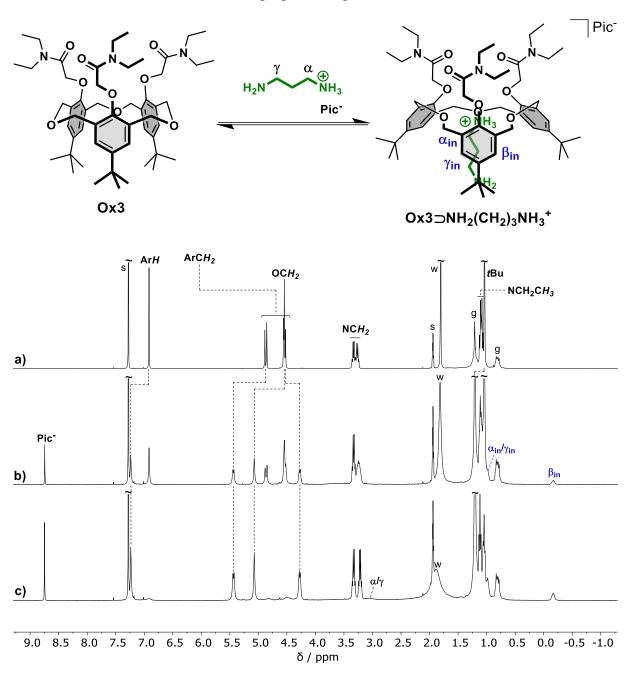
Table of contents

NMR study of the binding properties of Ox36
NMR studies of Ox3 with 1,3-diaminopropane and picric acid
Figure S1 : ¹ H NMR titration of Ox3 with monoprotonated 1,3-diaminopropane in CDCl ₃ /CD ₃ CN (9:1)
Figure S2: COSY spectrum of Ox3 with monoprotonated 1,3-diaminopropane in CDCl ₃ /CD ₃ CN (9:1)
Figure S3 : ¹ H NMR titration of Ox3 with monoprotonated 1,3-diaminopropane in CDCl ₃ /CD ₃ OD (4:1)
NMR studies of Ox3 with putrescine (1,4-diaminobutane) and picric acid
Figure S4 : ¹ H NMR titration of Ox3 with monoprotonated putrescine in CDCl ₃ /CD ₃ CN (9:1)
Figure S5 : COSY spectrum of Ox3 with monoprotonated putrescine in CDCl ₃ /CD ₃ CN (9:1)
Figure S6 : ¹ H NMR titration of Ox3 with monoprotonated putrescine in CDCl ₃ /CD ₃ OD (4:1)

NMR studies of Ox3 with cadaverine (1,5-diaminopentane) and picric acid10
Figure S7 : ¹ H NMR titration of Ox3 with monoprotonated cadaverine in CDCl ₃ /CD ₃ CN (9:1)
Figure S8 : COSY spectrum of Ox3 with monoprotonated cadaverine in CDCl ₃ /CD ₃ CN (9:1)
Figure S9 : ¹ H NMR titration of Ox3 with monoprotonated cadaverine in CDCl ₃ /CD ₃ OD (4:1)
Figure S10 : ¹ H NMR titration of Ox3 with diprotonated cadaverine in CDCl ₃ /CD ₃ CN (9:1)
Figure S11 : COSY spectrum of Ox3 with diprotonated cadaverine in CDCl ₃ /CD ₃ CN (9:1)
NMR studies of Ox3 with 1,6-diaminohexane and picric acid14
Figure S12 : ¹ H NMR titration of Ox3 with monoprotonated 1,6-diaminohexane in CDCl ₃ /CD ₃ CN (9:1)
Figure S13: COSY spectrum of Ox3 with monoprotonated 1,6-diaminohexane in CDCl ₃ /CD ₃ CN (9:1)
Figure S14 : ¹ H NMR titration of Ox3 with monoprotonated 1,6-diaminohexane in CDCl ₃ /CD ₃ OD (4:1)
Figure S15 : ¹ H NMR titration of Ox3 with diprotonated 1,6-diaminohexane in CDCl ₃ /CD ₃ CN (9:1)
Figure S16 : COSY spectrum of Ox3 with diprotonated 1,6-diaminohexane (0.2 equiv) in CDCl ₃ /CD ₃ CN (9:1)
Figure S17 : COSY spectrum of Ox3 with diprotonated 1,6-diaminohexane (0.5 equiv) in CDCl ₃ /CD ₃ CN (9:1)
NMR studies of Ox3 with 1,7-diaminoheptane and picric acid18
Figure S18 : ¹ H NMR titration of Ox3 with monoprotonated 1,7-diaminoheptane in CDCl ₃ /CD ₃ CN (9:1)
Figure S19 : COSY spectrum of Ox3 with monoprotonated 1,7-diaminoheptane in CDCl ₃ /CD ₃ CN (9:1)
Figure S20 : ¹ H NMR titration of Ox3 with diprotonated 1,7-diaminoheptane in CDCl ₃ /CD ₃ CN (9:1)
Figure S21 : COSY spectrum of Ox3 with diprotonated 1,7-diaminoheptane (0.2 equiv) in CDCl ₃ /CD ₃ CN (9:1)
Figure S22 : COSY spectrum of Ox3 with diprotonated 1,7-diaminoheptane (1.5 equiv) in CDCl ₃ /CD ₃ CN (9:1)
NMR studies of Ox3 with 1,8-diaminooctane and picric acid22

Figure S23: ¹ H NMR titration of Ox3 with monoprotonated 1,8-diaminooctane in CDCl ₃ /CD ₃ CN (9:1)
Figure S24: COSY spectrum of Ox3 with monoprotonated 1,8-diaminooctane in CDCl ₃ /CD ₃ CN (9:1)
Figure S25 : ¹ H NMR titration of Ox3 with diprotonated 1,8-diaminooctane in CDCl ₃ /CD ₃ CN (9:1)
Figure S26 : COSY spectrum of Ox3 with diprotonated 1,8-diaminooctane (0.2 equiv) in CDCl ₃ /CD ₃ CN (9:1)
Figure S27 : COSY spectrum of Ox3 with diprotonated 1,8-diaminooctane (0.8 equiv) in CDCl ₃ /CD ₃ CN (9:1)
NMR studies of Ox3 with 1,4-phenylene diamine and picric acid
Figure S28 : ¹ H NMR spectra of Ox3 with monoprotonated 1,4-phenylene diamine in CDCl ₃ /CD ₃ CN (9:1) at 298 K and 323 K
Monofunctionalization reactions of diamines27
Monofunctionalization of cadaverine in the absence of Ox3 27
Figure S29 : ¹ H NMR spectra of the monofunctionalization of cadaverine in the absence of Ox3 and PicH
Figure S30 : ¹ H NMR spectra of the monofunctionalization of cadaverine with 1 equiv. Of PicH in the absence of Ox3
Monofunctionalization of putrescine (1,4-diaminobutane) in the presence of Ox3 28
Figure S31 : ¹ H NMR spectra of the monofunctionalization of putrescine with 3,5- bis(trifluoromethyl)phenyl isothiocyanate
Figure S32 : ¹ H NMR spectra of the monofunctionalization of putrescine with di- <i>tert</i> - butyl dicarbonate
Figure S33 : ¹ H NMR spectra of the monofunctionalization of putrescine with acetic anhydride
Monofunctionalization of cadaverine (1,5-diaminopentane) in the presence of Ox3
Figure S34 : ¹ H NMR spectra of the monofunctionalization of cadaverine with di- <i>tert</i> - butyl dicarbonate
Figure S35 : ¹ H NMR spectra of the monofunctionalization of cadaverine with acetic anhydride
Monofunctionalization of 1,6-diaminohexane in the presence of Ox3
Figure S36 : ¹ H NMR spectra of the monofunctionalization of 1,6-diaminohexane with 3,5-bis(trifluoromethyl)phenyl isothiocyanate

Figure S37 : ¹ H NMR spectra of the monofunctionalization of 1,6-diaminohexane with di- <i>tert</i> -butyl dicarbonate
Figure S38 : ¹ H NMR spectra of the monofunctionalization of 1,6-diaminohexane with acetic anhydride
Monofunctionalization of 1,8-diaminooctane in the presence of Ox3
Figure S39 : ¹ H NMR spectra of the monofunctionalization of 1,8-diaminooctane with 3,5-bis(trifluoromethyl)phenyl isothiocyanate
Figure S40 : ¹ H NMR spectra of the monofunctionalization of 1,8-diaminooctane with di- <i>tert</i> -butyl dicarbonate
Figure S41 : ¹ H NMR spectra of the monofunctionalization of 1,8-diaminooctane with acetic anhydride
Monofunctionalization of 1,4-phenylene diamine in the presence of Ox3
Figure S42 : ¹ H NMR spectra of the monofunctionalization of 1,4-phenylene diamine with 3,5-bis(trifluoromethyl)phenyl isothiocyanate


36
36
36
37
37
38
38
39
39
40
40

Reactions between different monoprotected substrates4	1
Stability study of the amino-isocyanate intermediate4	1
Figure S51 : ¹ H NMR spectra of the protected amino-isocyanate intermediate before an after 20h4	

Characterization of compound 442
Figure S52: ¹ H NMR and TOCSY spectra of the protected compound 4.2H ⁺ 42
Figure S53: COSY spectrum of the protected compound 4.2H ⁺ 42
Figure S54: ¹ H NMR spectrum of compound 4 in D ₂ O43
Figure S55: COSY spectrum of compound 4 in D ₂ O43
Synthesis and characterization of compound 5
Figure S56: ¹ H NMR spectra of the synthesis of the protected compound 5.2H ⁺ 44
Figure S57: ¹ H NMR and TOCSY spectra of the protected compound 5.2H ⁺ 45
Figure S58: COSY spectrum of the protected compound 5.2H ⁺ 45
Figure S59 : ¹ H NMR spectrum of compound 5 in D ₂ O46
Figure S60: COSY spectrum of compound 5 in D ₂ O46
Selective functionalization of polyamines47
Monofunctionalization of a lysine in the presence of Ox3 47
Figure S61 : ¹ H NMR spectra of the monofunctionalization of a lysine with 3,5- bis(trifluoromethyl)phenyl isothiocyanate
Figure S62 : ¹ H NMR spectra of the monofunctionalization of a lysine with di- <i>tert</i> -butyl dicarbonate
Difunctionalization of a triamine (tris(3-aminopropyl)amine) in the presence of Ox3 49
Figure S63 : ¹ H NMR spectra of the difunctionalization of a triamine with 3,5- bis(trifluoromethyl)phenyl isothiocyanate

NMR study of the binding properties of Ox3

NMR studies of Ox3 with 1,3-diaminopropane and picric acid

Figure S1. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); **Ox3** + 0.5 equiv. of 1,3-diaminopropane + 0.5 equiv. PicH (b) and **Ox3** + 1 equiv. of 1,3-diaminopropane + 1 equiv. PicH (c). S: residual solvents; w: residual water; g: grease.

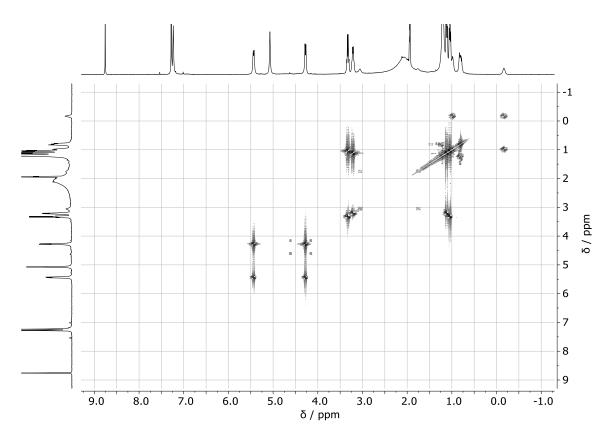
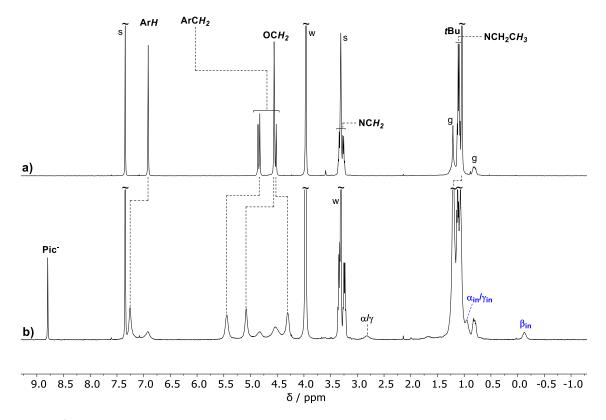
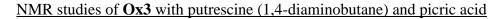
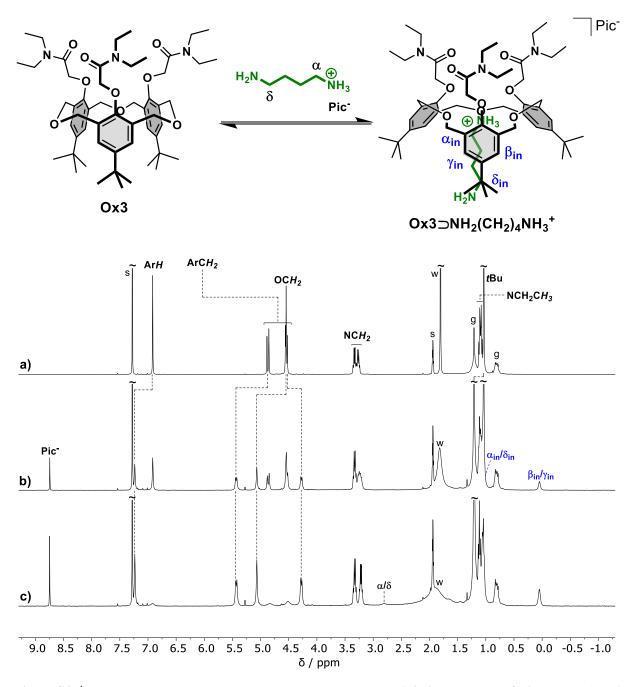





Figure S2. COSY spectrum (298 K, 400MHz, $CDCl_3/CD_3CN$ 9:1) of Ox3 (3 mM) + 1.5 equiv. of 1,3-diaminopropane + 1.5 equiv. PicH.

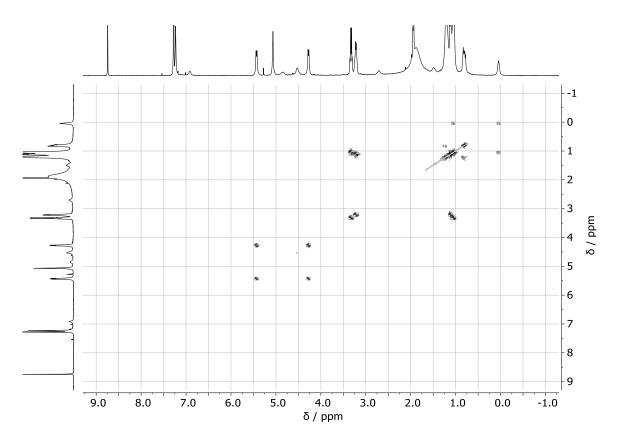
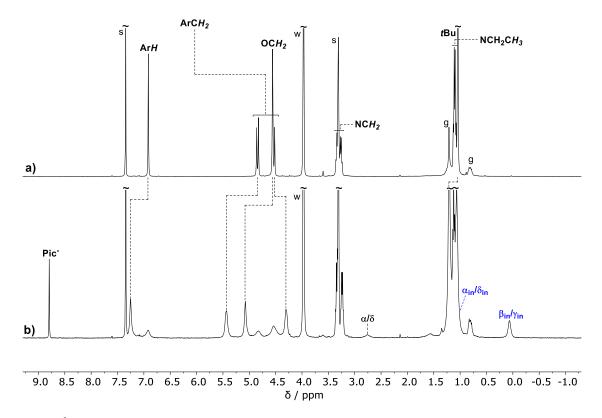
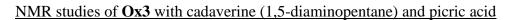


Figure S3. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3OD$ 4:1) of **Ox3** (3 mM) (a) and **Ox3** + 1 equiv. of 1,3diaminopropane + 1 equiv. PicH (b). S: residual solvents; w: residual water; g: grease. Attribution of the signals of the complexed guest was done by comparison with the signals of the complexed guest in the NMR binding study performed in $CDCl_3/CD_3CN$ (9:1).




Figure S4. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3CN$ 9:1) of **Ox3** (3 mM) (a); **Ox3** + 0.5 equiv. of putrescine + 0.5 equiv. PicH (b) and **Ox3** + 1 equiv. of putrescine + 1 equiv. PicH (c). S: residual solvents; w: residual water; g: grease.

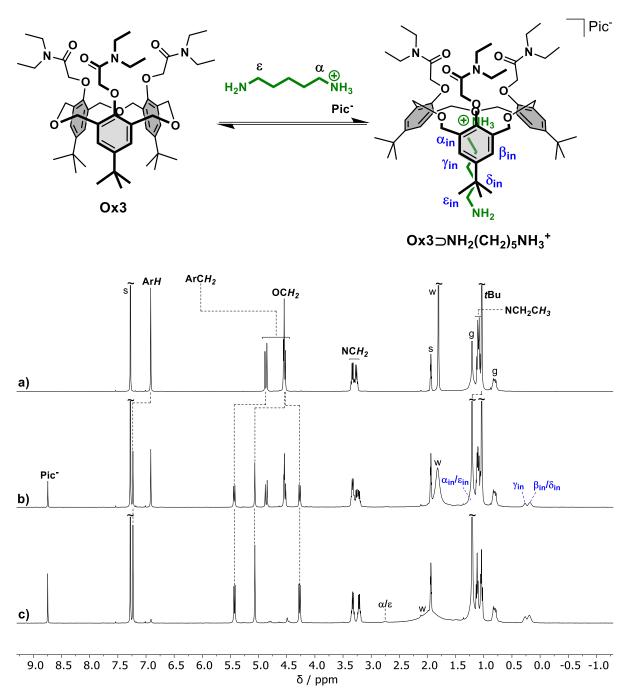
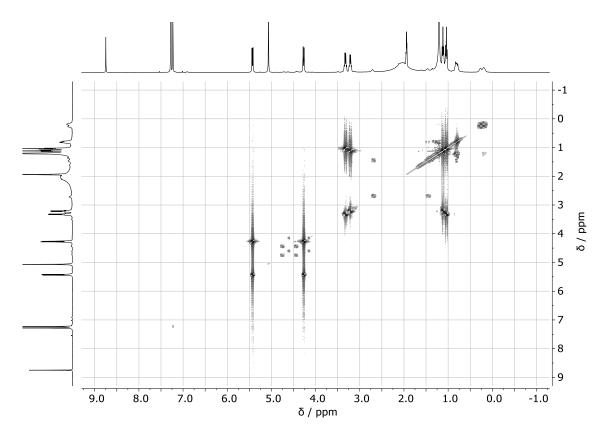
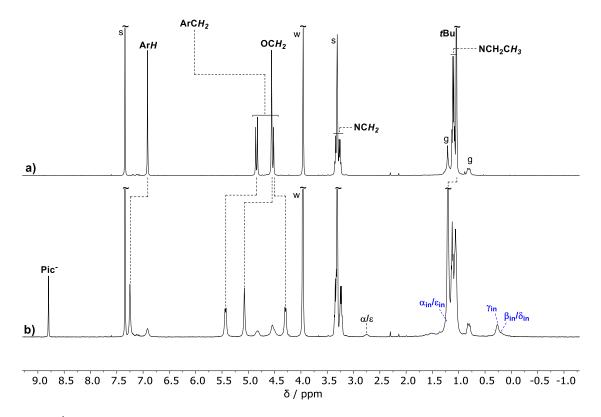
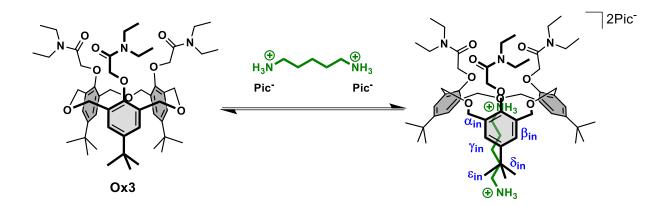
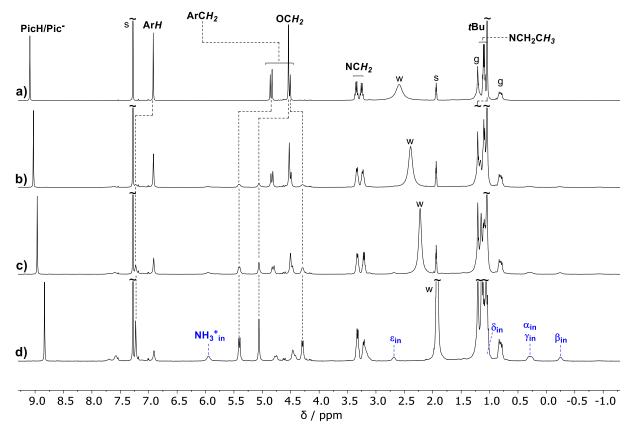


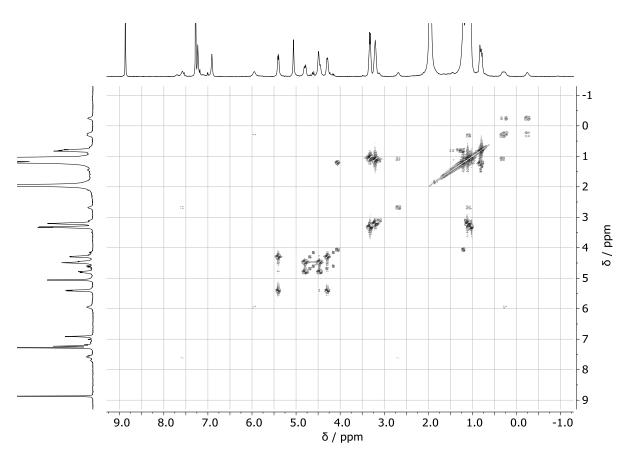
Figure S5. COSY spectrum (298 K, 400MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) + 1.5 equiv. of putrescine + 1 equiv. PicH.

Figure S6. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃OD 4:1) of **Ox3** (3 mM) (a) and **Ox3** + 1 equiv. of putrescine + 1 equiv. PicH (b). S: residual solvents; w: residual water; g: grease. Attribution of the signals of the complexed guest was done by comparison with the signals of the complexed guest in the NMR binding study performed in CDCl₃/CD₃CN (9:1).

Figure S7. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3CN$ 9:1) of **Ox3** (3 mM) (a); **Ox3** + 0.5 equiv. of cadaverine + 0.5 equiv. PicH (b) and **Ox3** + 1 equiv. of cadaverine + 1 equiv. PicH (c). S: residual solvents; w: residual water; g: grease.


Figure S8. COSY spectrum (298 K, 400MHz, $CDCl_3/CD_3CN$ 9:1) of Ox3 (3 mM) + 1.5 equiv. of cadaverine + 1.1 equiv. PicH.


Figure S9. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3OD$ 4:1) of **Ox3** (3 mM) (a) and **Ox3** + 0.9 equiv. of cadaverine + 0.9 equiv. PicH (b). S: residual solvents; w: residual water; g: grease. Attribution of the signals of the complexed guest was done by comparison with the signals of the complexed guest in the NMR binding study performed in $CDCl_3/CD_3CN$ (9:1).

Ox3⊃NH3⁺(CH₂)₅NH3⁺

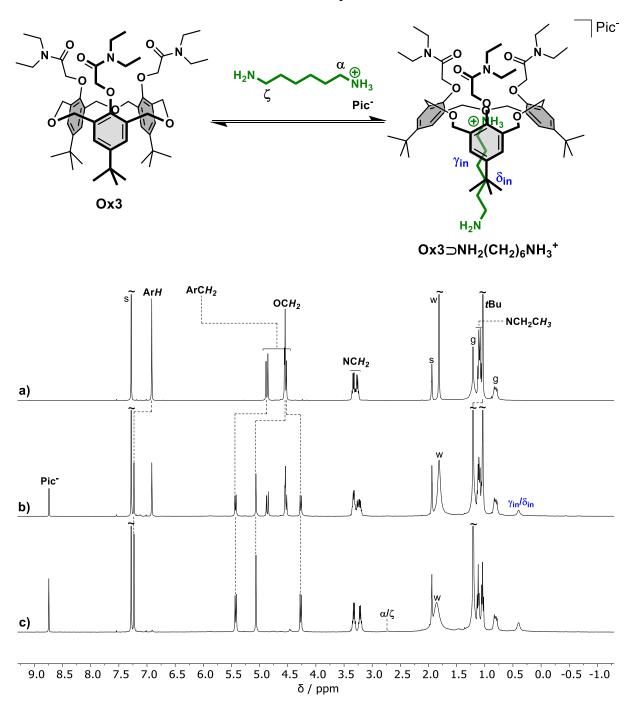


Figure S10. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) + 2.3 equiv. PicH (a); **Ox3** + 0.2 equiv. of cadaverine + 2.3 equiv. PicH (b); **Ox3** + 0.5 equiv. of cadaverine + 2.3 equiv. PicH (c) and **Ox3** + 0.8 equiv. of cadaverine + 2.3 equiv. PicH (d). S: residual solvents; w: residual water; g: grease.

Figure S11. COSY spectrum (298 K, 400MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) + 0.5 equiv. of cadaverine + 2.3 equiv. PicH.

NMR studies of Ox3 with 1,6-diaminohexane and picric acid

Figure S12. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3CN$ 9:1) of **Ox3** (3 mM) (a); **Ox3** + 0.5 equiv. of 1,6-diaminohexane + 0.5 equiv. PicH (b) and **Ox3** + 1 equiv. of 1,6-diaminohexane + 1 equiv. PicH (c). S: residual solvents; w: residual water; g: grease.

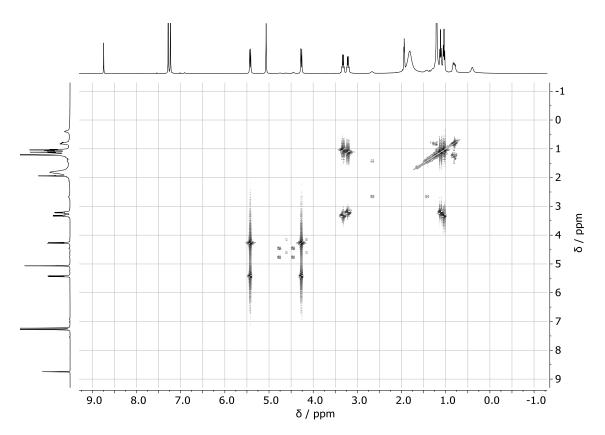
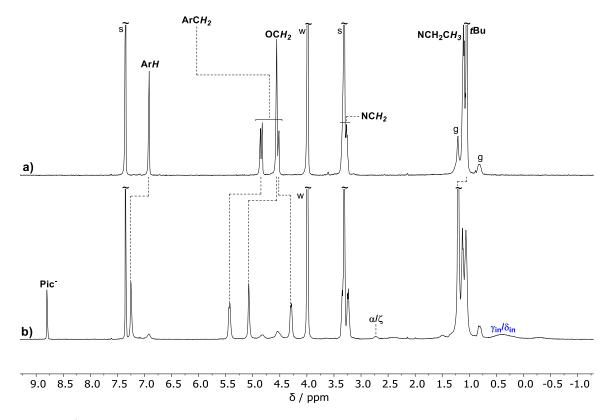
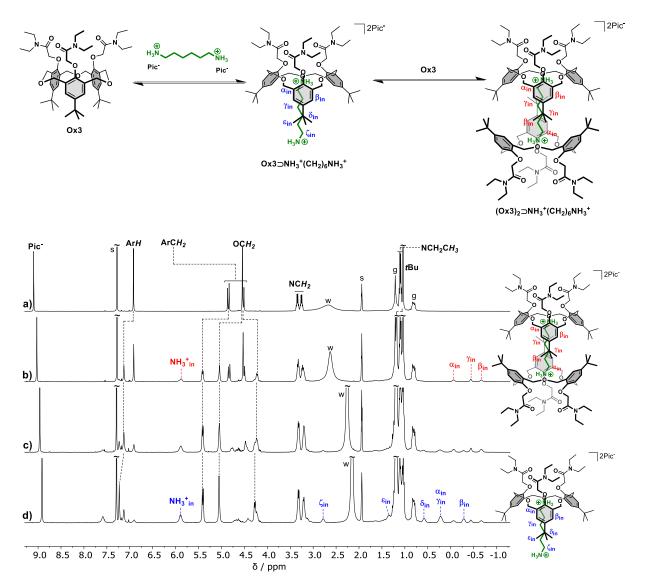




Figure S13. COSY spectrum (298 K, 400MHz, CDCl₃/CD₃CN 9:1) of Ox3 (3 mM) + 1.4 equiv. of 1,6-diaminohexane + 1 equiv. PicH.

Figure S14. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3OD$ 4:1) of **Ox3** (3 mM) (a) and **Ox3** + 1 equiv. of 1,6-diaminohexane + 1 equiv. PicH (b). S: residual solvents; w: residual water; g: grease. Attribution of the signals of the complexed guest was done by comparison with the signals of the complexed guest in the NMR binding study performed in $CDCl_3/CD_3CN$ (9:1).

Figure S15. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) + 2.4 equiv. PicH (a); **Ox3** + 0.2 equiv. of 1,6-diaminohexane + 2.4 equiv. PicH (b); **Ox3** + 0.5 equiv. of 1,6-diaminohexane + 2.4 equiv. PicH (c) and **Ox3** + 0.9 equiv. of 1,6-diaminohexane + 2.4 equiv. PicH (d). S: residual solvents; w: residual water; g: grease. The ¹H NMR signals in red on spectrum (b) were attributed to the 2:1 complex between **Ox3** and the diammonium guest on the basis of the number of signals as well as of their chemical shift and integration.

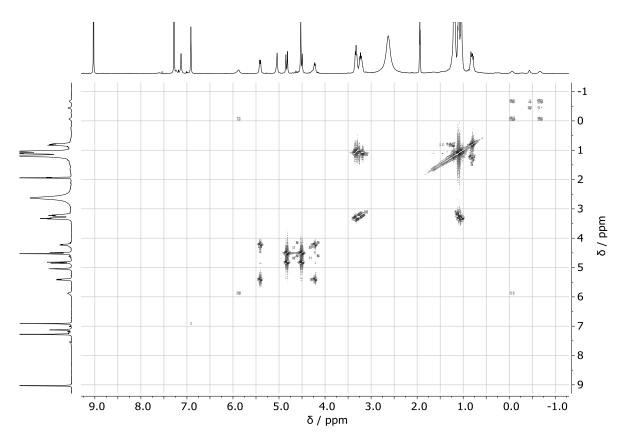


Figure S16. COSY spectrum (298 K, 400MHz, $CDCl_3/CD_3CN$ 9:1) of Ox3 (3 mM) + 0.2 equiv. of 1,6-diaminohexane + 2.4 equiv. PicH.

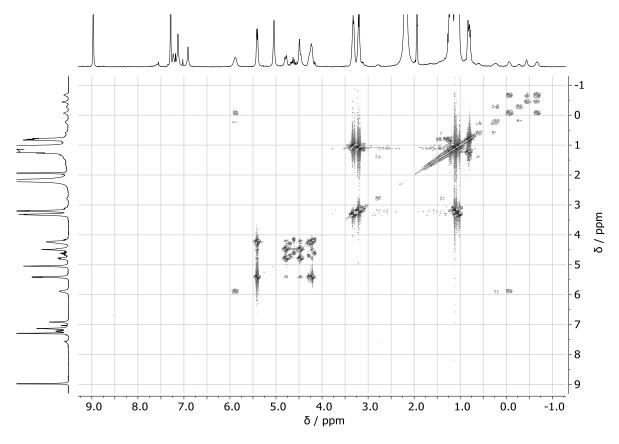
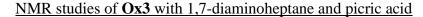
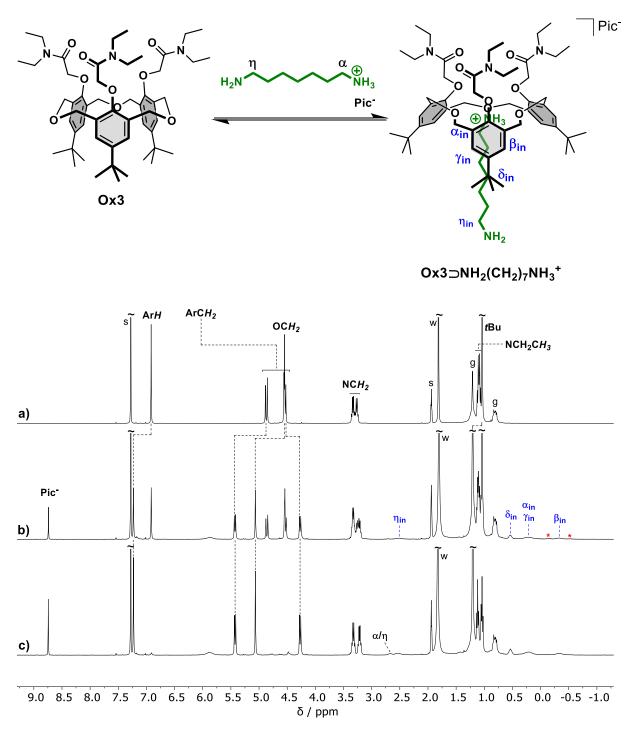




Figure S17. COSY spectrum (298 K, 400MHz, CDCl₃/CD₃CN 9:1) of Ox3 (3 mM) + 0.5 equiv. of 1,6-diaminohexane + 2.4 equiv. PicH.

Figure S18. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3CN$ 9:1) of **Ox3** (3 mM) (a); **Ox3** + 0.5 equiv. of 1,7-diaminoheptane + 0.5 equiv. PicH (b) and **Ox3** + 1 equiv. of 1,7-diaminoheptane + 1 equiv. PicH (c). S: residual solvents; w: residual water; g: grease; *: traces of 2:1 complex. The attribution of the signals for the 2:1 complex was performed by comparison with the signals of the 2:1 complex evidenced in the titration with the diammonium form of the guest (see Figure S20). Attribution of the complexed guest (1:1 complex) were done by comparison with the signals of the 1:1 complex in the titration with the diammonium form of the guest (see Figure S20) as not all the signals could be attributed with the COSY spectrum (Figure S19) due to the broadness of some signals.

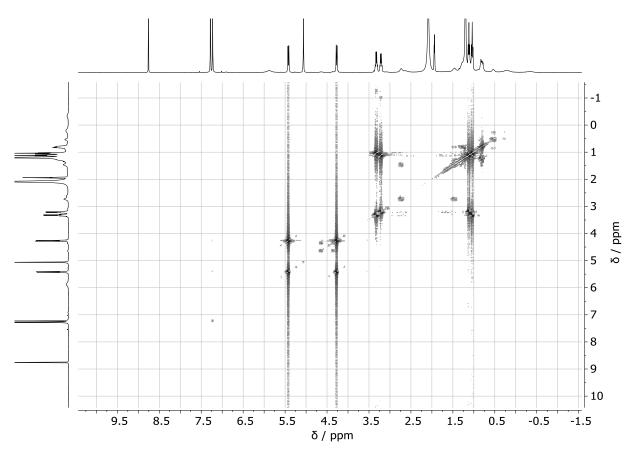
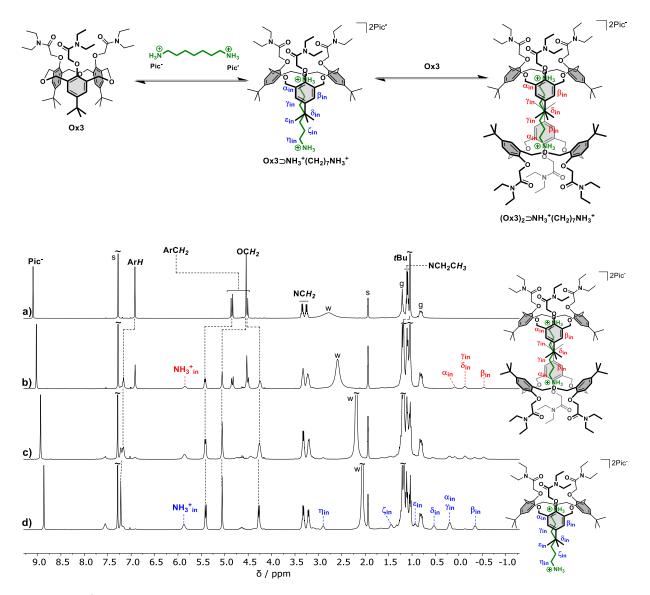



Figure S19. COSY spectrum (298 K, 400MHz, $CDCl_3/CD_3CN$ 9:1) of Ox3 (3 mM) + 1.6 equiv. of 1,7-diaminoheptane + 1.6 equiv. PicH.

Figure S20. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) + 2.5 equiv. PicH (a); **Ox3** + 0.2 equiv. of 1,7-diaminoheptane + 2.5 equiv. PicH (b); **Ox3** + 0.5 equiv. of 1,7-diaminoheptane + 2.5 equiv. PicH (c) and **Ox3** + 1 equiv. of 1,7-diaminoheptane + 2.5 equiv. PicH (d). S: residual solvents; w: residual water; g: grease. The ¹H NMR signals in red on spectrum (b) were attributed to the 2:1 complex between **Ox3** and the diammonium guest on the basis of the number of signals as well as of their chemical shift and integration.

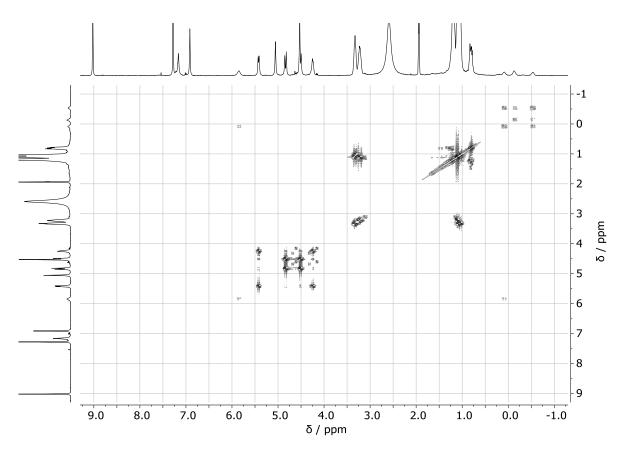


Figure S 21. COSY spectrum (298 K, 400MHz, $CDCl_3/CD_3CN$ 9:1) of Ox3 (3 mM) + 0.2 equiv. of 1,7-diaminoheptane + 2.5 equiv. PicH.

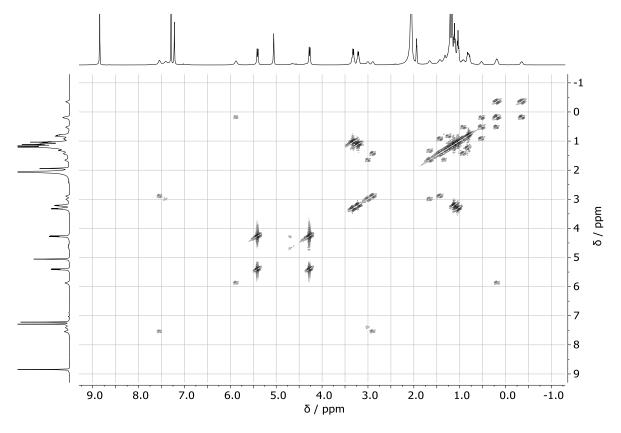
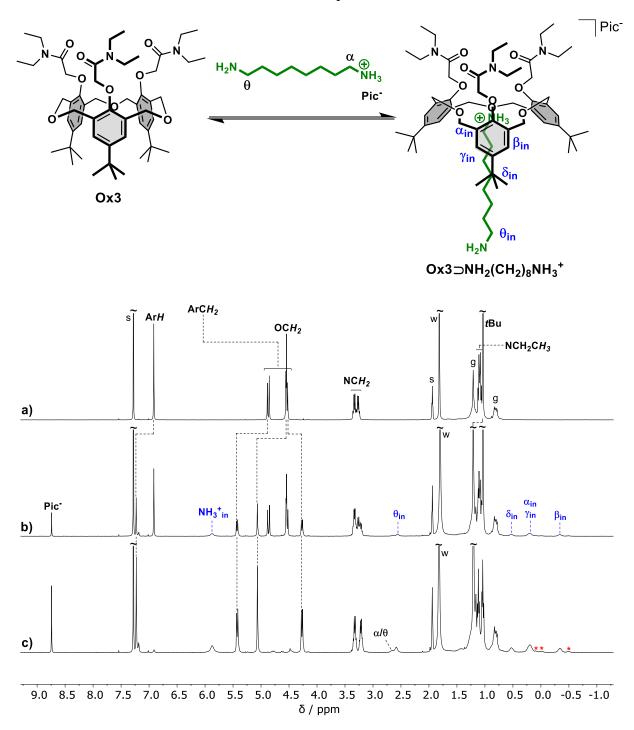



Figure S22. COSY spectrum (298 K, 400MHz, CDCl₃/CD₃CN 9:1) of Ox3 (3 mM) + 1.5 equiv. of 1,7-diaminoheptane + 4 equiv. PicH.

NMR studies of Ox3 with 1,8-diaminooctane and picric acid

Figure S23. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); **Ox3** + 0.4 equiv. of 1,8-diaminooctane + 0.4 equiv. PicH (b) and **Ox3** + 1 equiv. of 1,8-diaminooctane + 1 equiv. PicH (c). S: residual solvents; w: residual water; g: grease; *: traces of 2:1 complex. The attribution of the signals for the 2:1 complex was performed by comparison with the signals of the 2:1 complex evidenced in the titration with the diammonium form of the guest (see Figure S25).

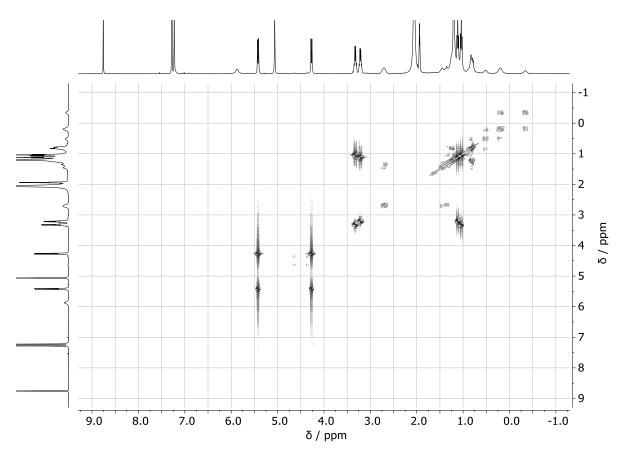
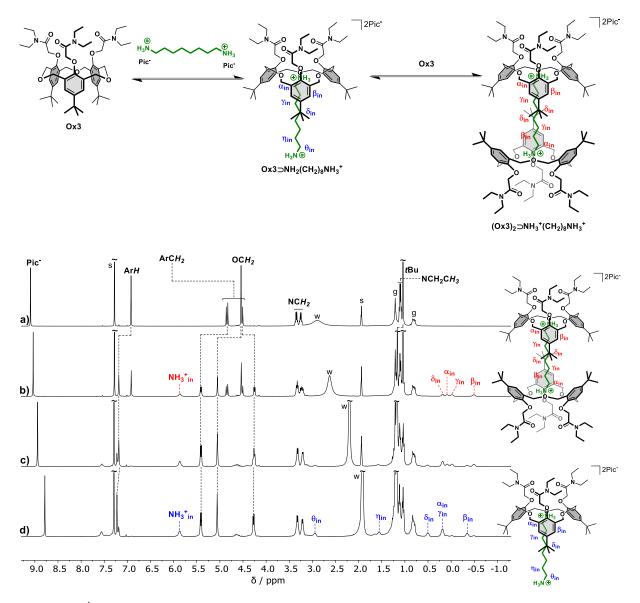



Figure S24. COSY spectrum (298 K, 400MHz, $CDCl_3/CD_3CN$ 9:1) of Ox3 (3 mM) + 1.5 equiv. of 1,8-diaminooctane + 1.5 equiv. PicH.

Figure S25. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) + 2.7 equiv. PicH (a); **Ox3** + 0.2 equiv. of 1,8-diaminooctane + 2.7 equiv. PicH (b); **Ox3** + 0.5 equiv. of 1,8-diaminooctane + 2.7 equiv. PicH (c) and **Ox3** + 1 equiv. of 1,8-diaminooctane + 2.7 equiv. PicH (d). S: residual solvents; w: residual water; g: grease. The ¹H NMR signals in red on spectrum (b) were attributed to the 2:1 complex between **Ox3** and the diammonium guest on the basis of the number of signals as well as of their chemical shift and integration.

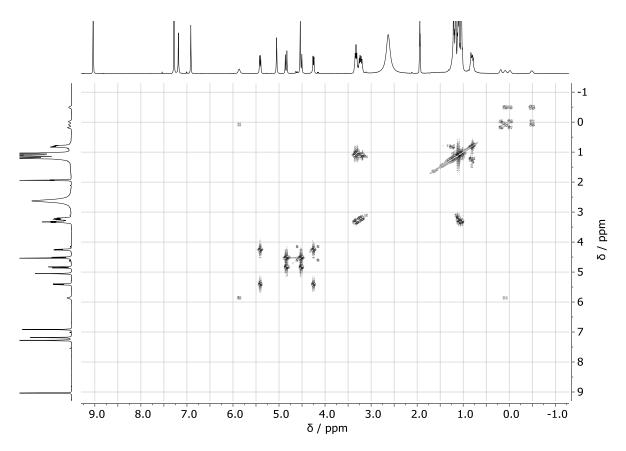


Figure S26. COSY spectrum (298 K, 400MHz, $CDCl_3/CD_3CN$ 9:1) of Ox3 (3 mM) + 0.2 equiv. of 1,8-diaminooctane + 2.7 equiv. PicH.

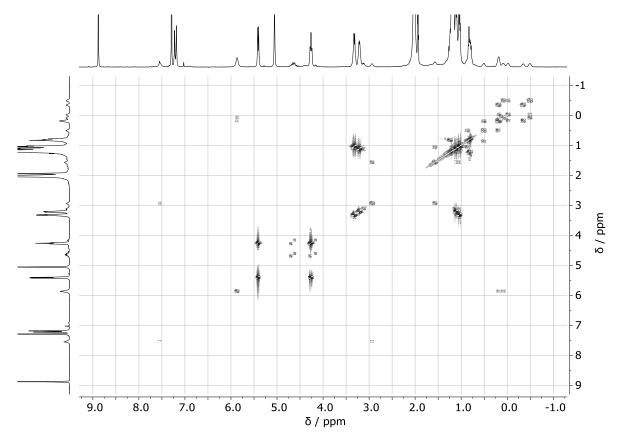
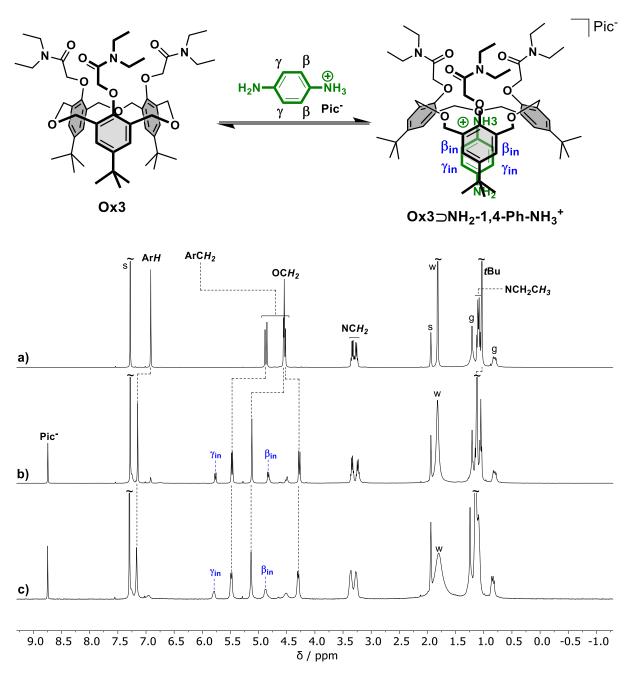
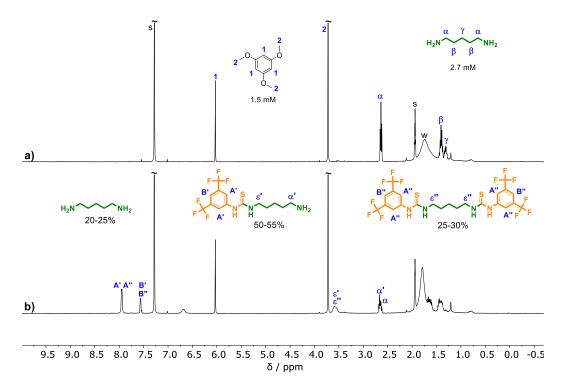
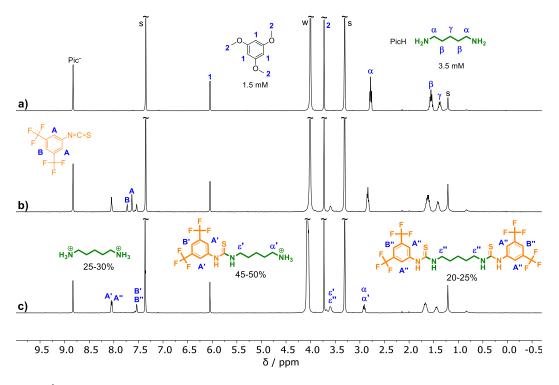



Figure S27. COSY spectrum (298 K, 400MHz, $CDCl_3/CD_3CN$ 9:1) of Ox3 (3 mM) + 0.8 equiv. of 1,8-diaminooctane + 2.5 equiv. PicH.




Figure S28. ¹H NMR spectra (400 MHz, $CDCl_3/CD_3CN$ 9:1) of **Ox3** (3 mM) at 298 K (a); Ox3 + 0.9 equiv. of 1,4-phenylene diamine + 0.9 equiv. PicH at 298 K (b) and at 323 K (c). S: residual solvents; w: residual water; g: grease.

Monofunctionalization reactions of diamines

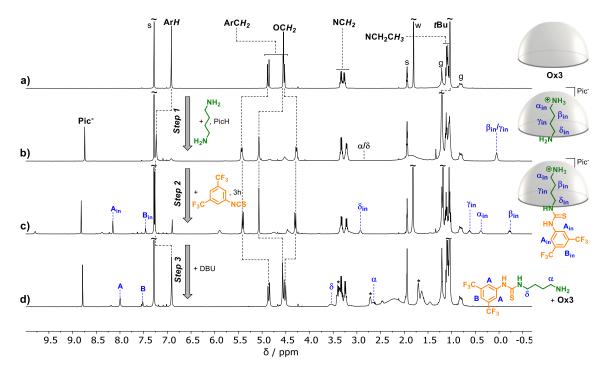

Monofunctionalization of cadaverine in the absence of Ox3

Figure S29. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3CN$ 9:1) of 1,3,5-trimethoxybenzene (internal standard, 1.5 mM) + cadaverine (2.7 mM) (a), after the addition 1 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 1 hour) (b). S: residual solvents; w: residual water.

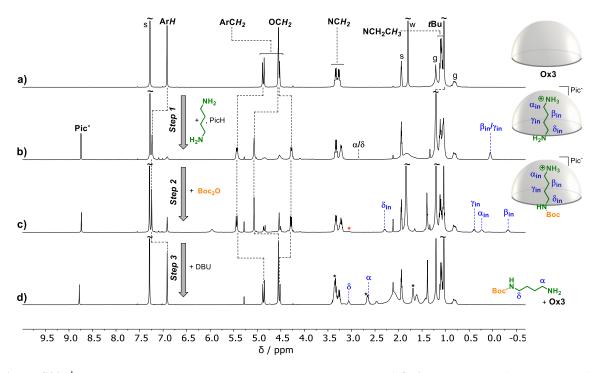
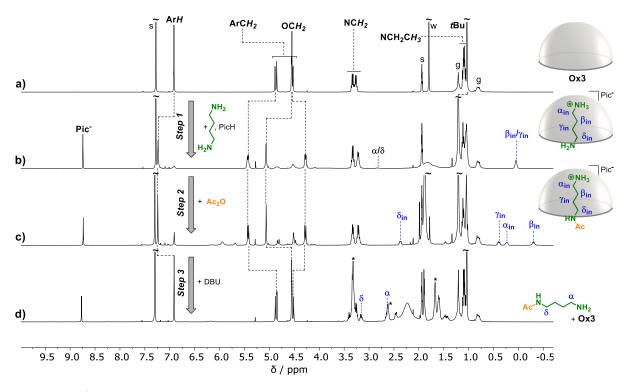


Figure S30. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3OD$ 4:1) of 1,3,5-trimethoxybenzene (internal standard, 1.5 mM) + cadaverine (3.5 mM) + 1 equiv. PicH (a); after the addition 1 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (b) and after 3 hours (c). S: residual solvents; w: residual water.



Monofunctionalization of putrescine (1,4-diaminobutane) in the presence of Ox3

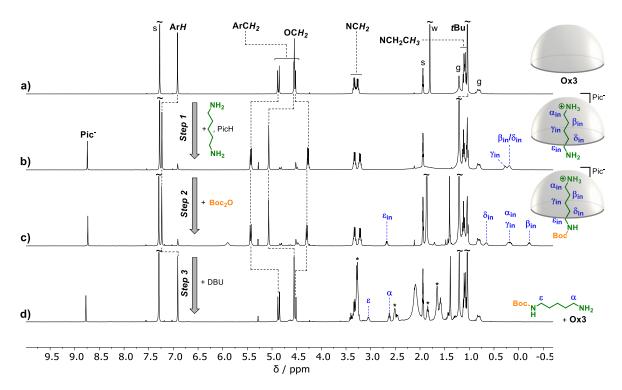

Figure S31. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of putrescine and 0.9 equiv. of PicH (b); 0.9 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 3 hours) (c) and 1.3 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺.

Figure S32. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of putrescine and 0.9 equiv. of PicH (b); 0.9 equiv. of di-*tert*-butyl dicarbonate (c) and 1.3 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺; *: traces of difunctionalized by-product. The very small ¹H signal was attributed to the difunctionalized product on the basis of its chemical shift.

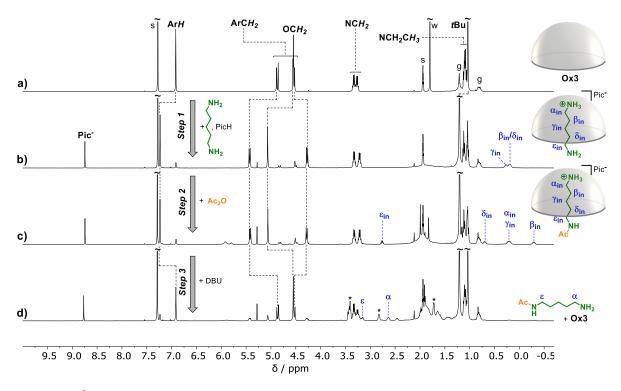
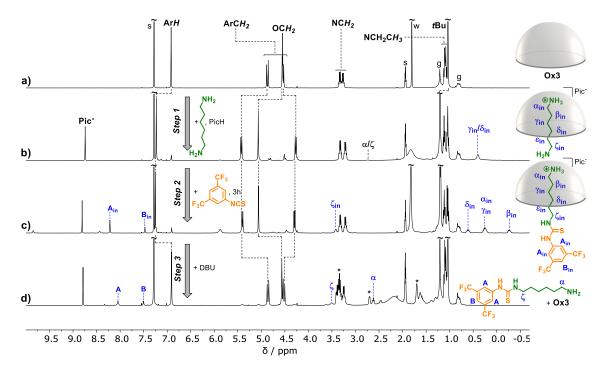
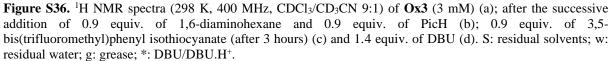


Figure S33. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of putrescine and 0.9 equiv. of PicH (b); 0.9 equiv. of acetic anhydride (c) and 1.8 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺.



Monofunctionalization of cadaverine (1,5-diaminopentane) in the presence of Ox3


Figure S34. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of cadaverine and 0.9 equiv. of PicH (b); 0.9 equiv. of di-*tert*-butyl dicarbonate (c) and 2.0 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺.

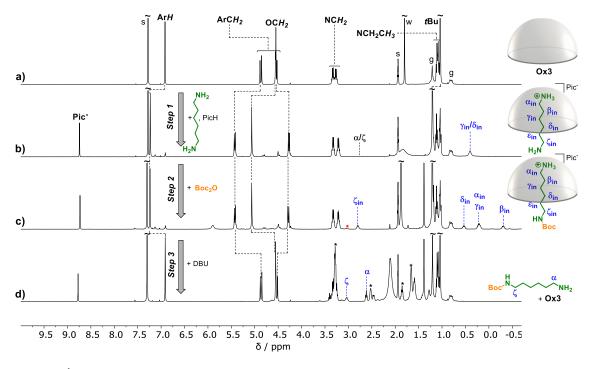
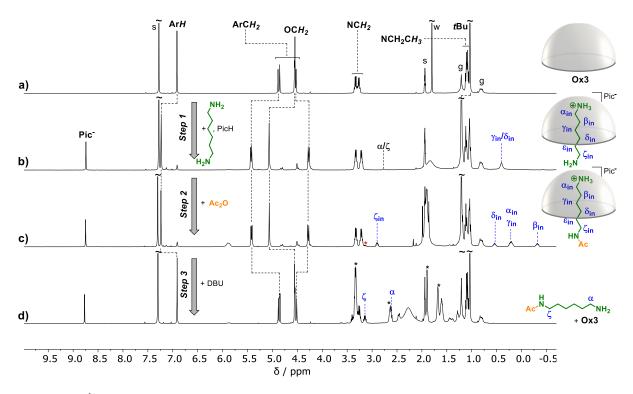


Figure S35. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of cadaverine and 0.9 equiv. of PicH (b); 0.9 equiv. of acetic anhydride (c) and 2.0 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺.



Monofunctionalization of 1,6-diaminohexane in the presence of Ox3

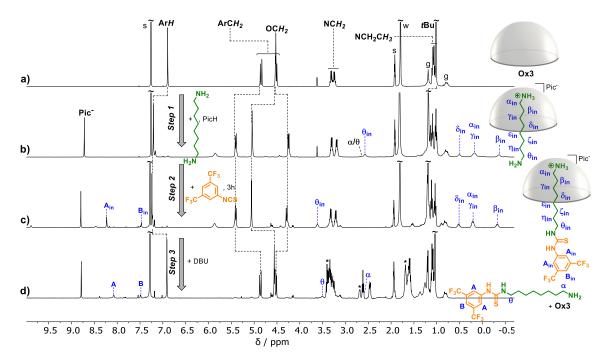


Figure S37. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of 1,6-diaminohexane and 0.9 equiv. of PicH (b); 0.9 equiv. of di-*tert*-butyl dicarbonate (c) and 2.5 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺; *: traces of difunctionalized by-product. The very small ¹H signal was attributed to the difunctionalized product on the basis of its chemical shift.

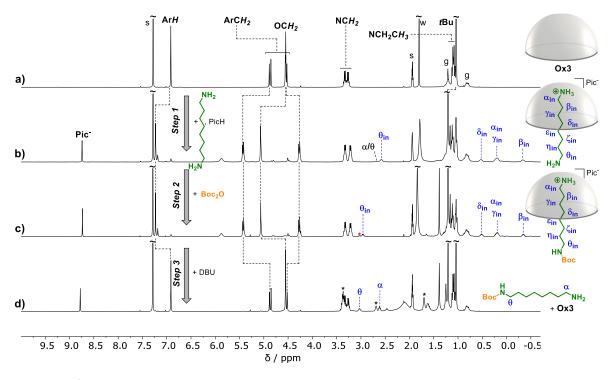
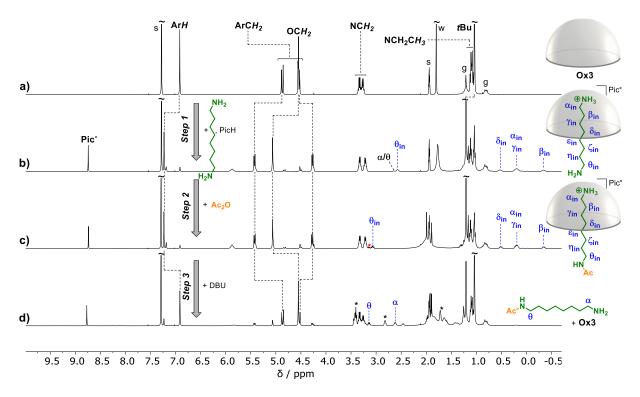


Figure S38. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of 1,6-diaminohexane and 0.9 equiv. of PicH (b); 0.9 equiv. of acetic anhydride (c) and 2.0 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺; *: traces of difunctionalized by-product. The very small ¹H signal was attributed to the difunctionalized product on the basis of its chemical shift.



Monofunctionalization of 1,8-diaminooctane in the presence of Ox3

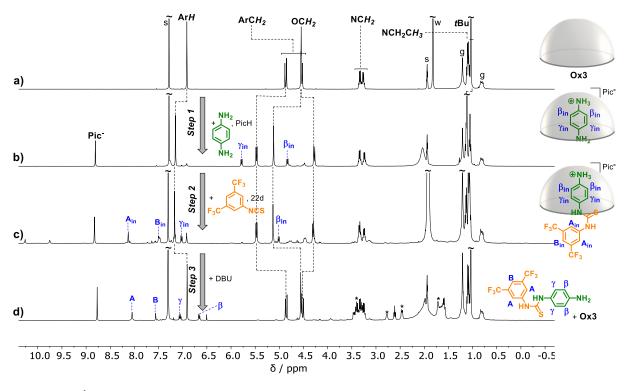
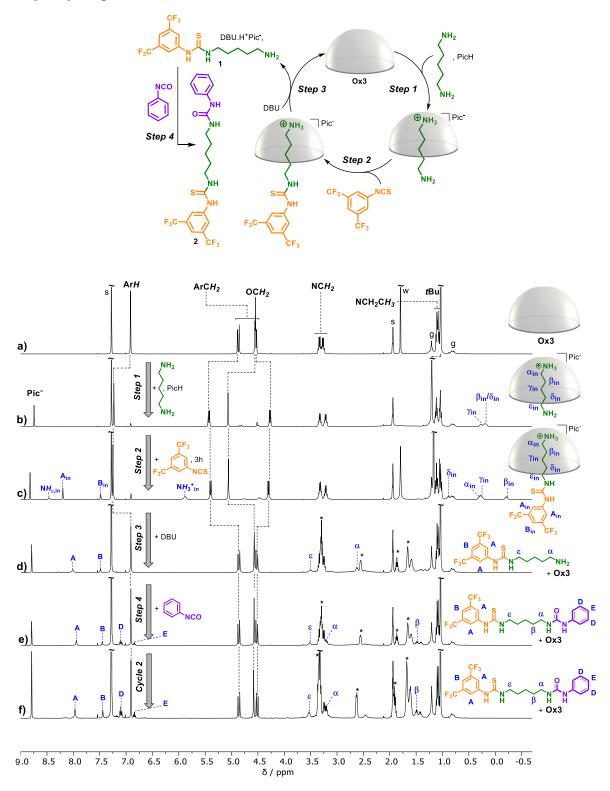
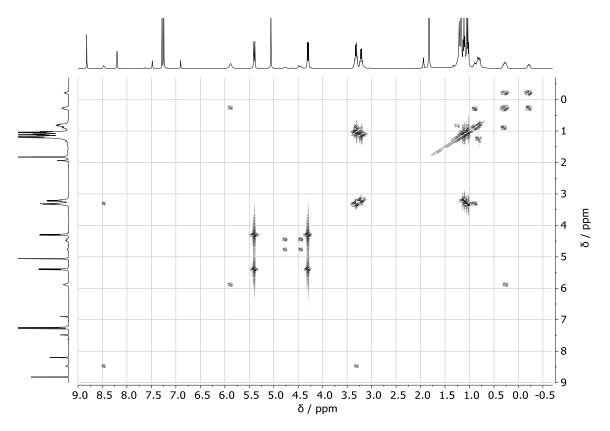

Figure S39. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of 1,8-diaminooctane and 0.9 equiv. of PicH (b); 0.9 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 3 hours) (c) and 1.4 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺.

Figure S40. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of 1,8-diaminooctane and 0.9 equiv. of PicH (b); 0.9 equiv. of di-*tert*-butyl dicarbonate (c) and 1.4 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺; *: traces of difunctionalized by-product. The very small ¹H signal was attributed to the difunctionalized product on the basis of its chemical shift.

Figure S41. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of 1,8-diaminooctane and 0.9 equiv. of PicH (b); 0.9 equiv. of acetic anhydride (c) and 1.8 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺; *: traces of difunctionalized by-product. The very small ¹H signal was attributed to the difunctionalized product on the basis of its chemical shift.



Monofunctionalization of 1,4-phenylene diamine in the presence of Ox3


Figure S42. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of 1,4-phenylenediamine and 0.9 equiv. of PicH (b); 0.9 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 22 days) (c) and 1.2 equiv. of DBU (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺.

One-pot cyclic processes

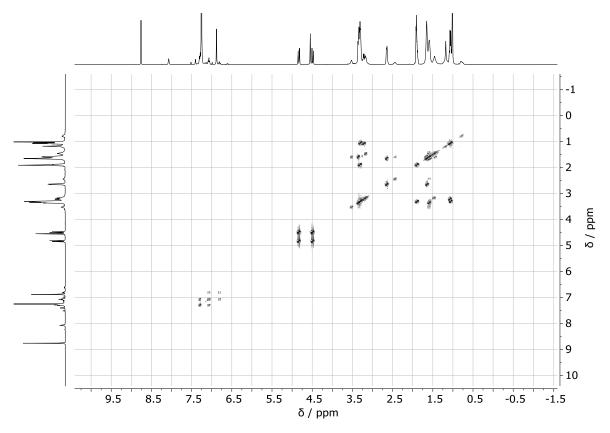

One-pot cyclic process for the accumulation of 2

Figure S43. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of cadaverine and 0.9 equiv. of PicH (b); 0.9 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 3 hours) (c); 1.3 equiv. of DBU (d); 0.9 equiv. of phenyl isocyanate (e) and after a second cycle (with the successive additions of 0.9 equiv. of cadaverine, 1.3 equiv. of PicH, 0.9 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate, 2 equiv. of DBU and 0.9 equiv. of phenyl isocyanate) (f). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺.

Figure S44. COSY spectrum (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) + 0.9 equiv. of cadaverine + 0.9 equiv. of PicH + 0.9 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 3 hours) (step 2).

Figure S45. COSY spectrum (298 K, 400 MHz, $CDCl_3/CD_3CN$ 9:1) of **Ox3** (3 mM) + 0.9 equiv. of cadaverine + 0.9 equiv. of PicH + 0.9 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 3 hours) + 1.3 equiv. DBU + 0.9 equiv. of phenyl isocyanate (step 4).

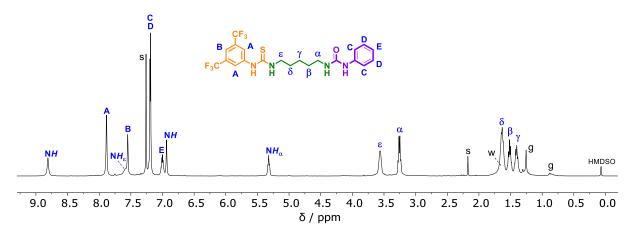


Figure S46. ¹H NMR spectrum (298 K, 400 MHz, CDCl₃) of isolated compound 2.

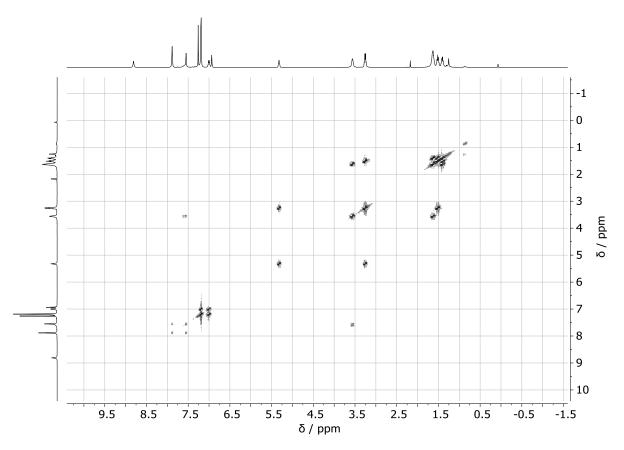
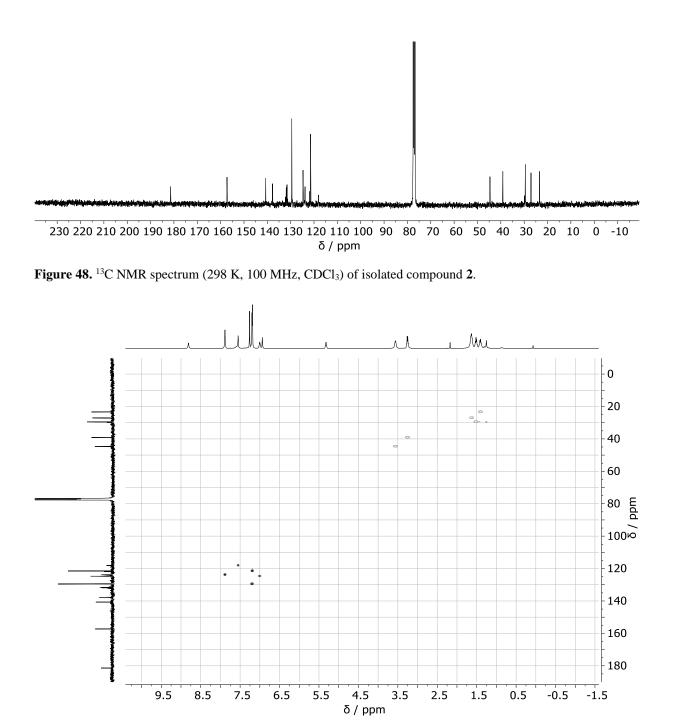
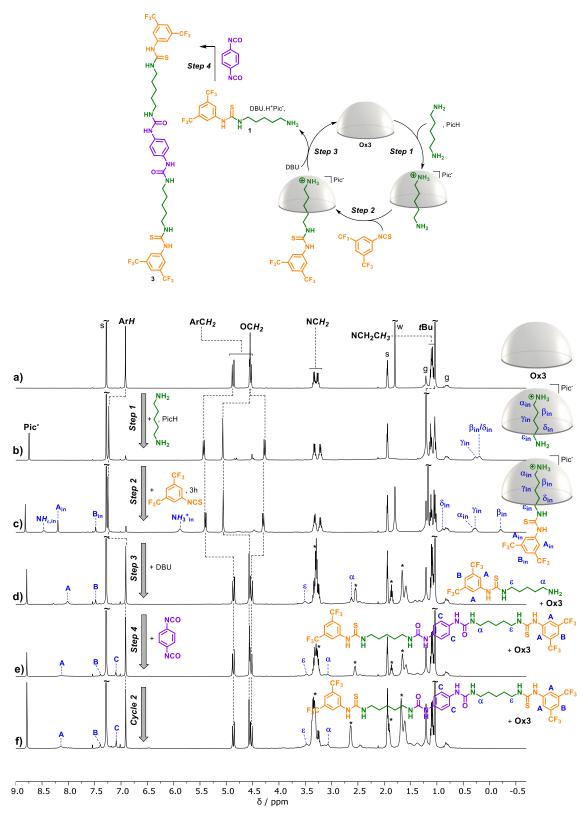
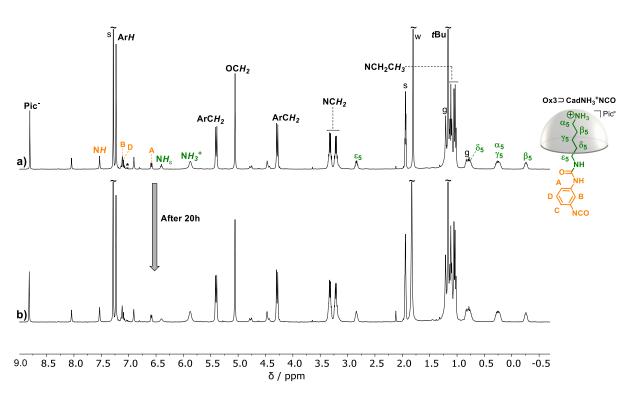


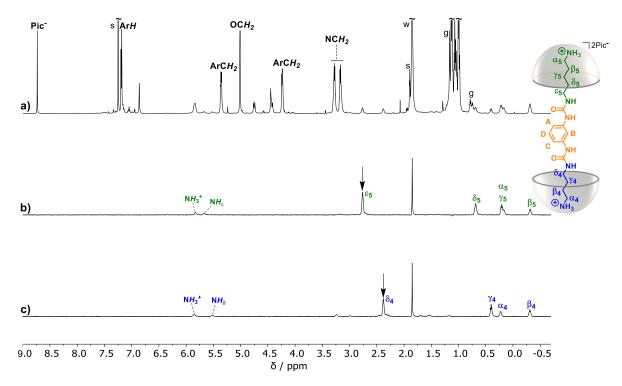
Figure S47. COSY spectrum (298 K, 400 MHz, CDCl₃) of isolated compound 2.


Figure S49. HSQC spectrum (298 K, 400 MHz, CDCl₃) of isolated compound 2.

One-pot cyclic process for the accumulation of 3

Figure S50. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3CN$ 9:1, cycle 1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of cadaverine and 0.9 equiv. of PicH (b); 0.9 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 3 hours) (c); 1.3 equiv. of DBU (d); 0.45 equiv. of 1,4-phenylene diisocyanate (e) and after a second cycle (with the successive additions of 0.9 equiv. of cadaverine, 1.3 equiv. of PicH, 0.9 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate, 2 equiv. of DBU and 0.45 equiv. of 1,4-phenylene diisocyanate) (f). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺.


Reactions between different monoprotected substrates

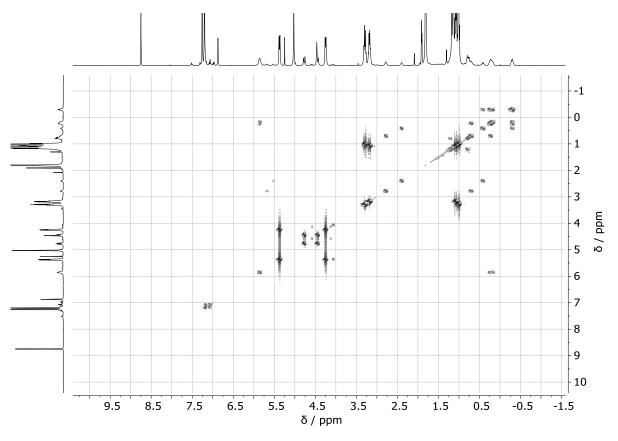

Stability study of the amino-isocyanate intermediate

Figure S51. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3CN$ 9:1) of **Ox3** (3 mM) + 0.9 equiv. cadaverine + 0.9 equiv. PicH + 0.9 equiv. 1,3-phenylene diisocyanate (a) and after 20h (b). S: residual solvents; w: residual water; g: grease; *: traces of symmetrical diurea-diammonium by-product.

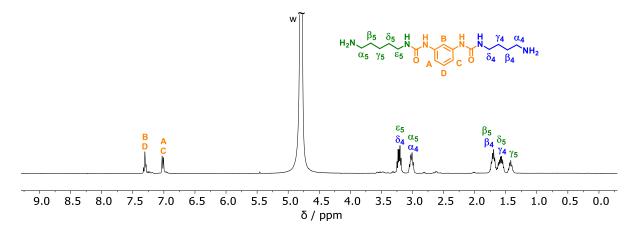

Characterization of compound 4

Figure S52. ¹H NMR spectrum (298 K, 600 MHz, CDCl₃/CD₃CN 9:1) of protected diamino-diurea derivative **4.2H**⁺ (a); 1D TOCSY spectra (298 K, $\tau = 120$ ms) of protected diamino-diurea derivative **4.2H**⁺ upon irradiation at 2.81 ppm (b) and at 2.43 ppm. S: residual solvents; w: residual water; g: grease.

Figure S53. COSY NMR spectrum (298 K, 600 MHz, CDCl₃/CD₃CN 9:1) of protected diamino-diurea derivative **4.2H**⁺.

Figure S54. ¹H NMR spectrum (298 K, 400 MHz, D₂O) of the isolated diamino-diurea derivative **4**. w: residual water.

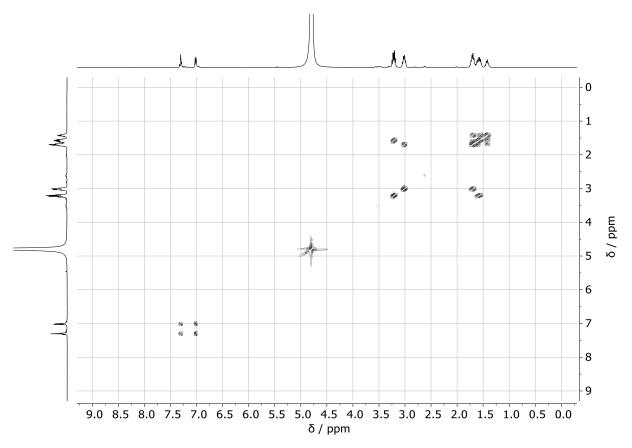
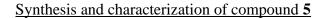
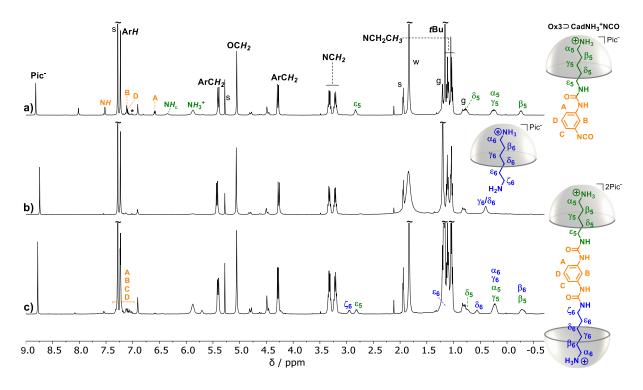
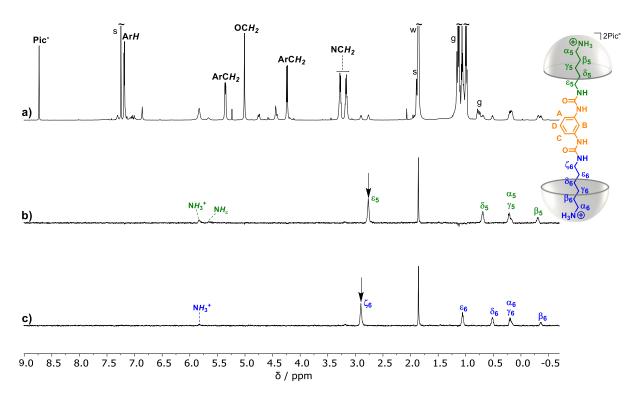
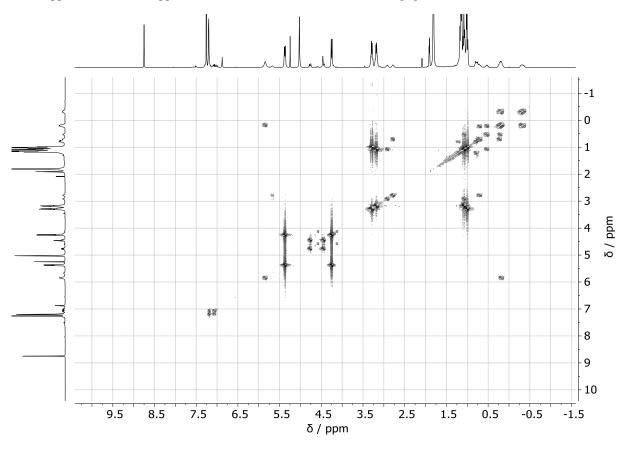





Figure S55. COSY NMR spectrum (298 K, 400 MHz, D₂O) of the isolated diamino-diurea derivative 4.



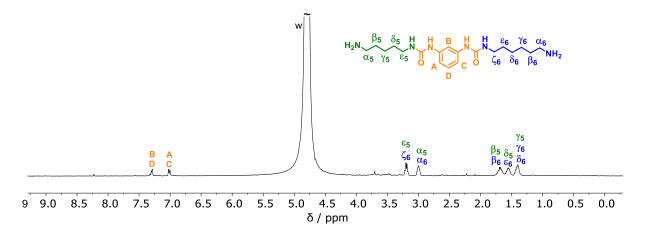
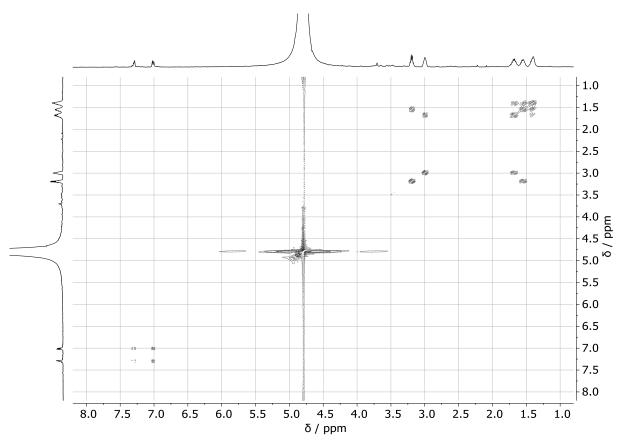
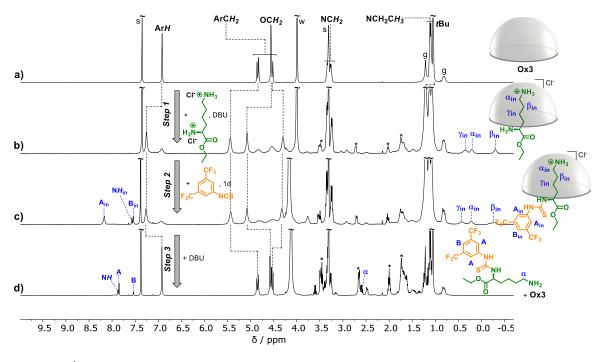
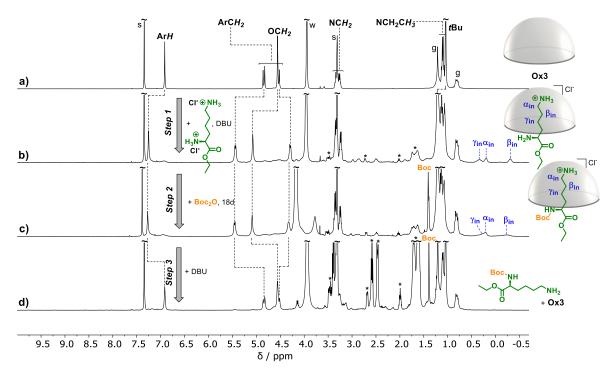

Figure S56. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃CN 9:1) of **Ox3** (3 mM) + 0.9 equiv. cadaverine + 0.9 equiv. PicH + 0.9 equiv. 1,3-phenylene diisocyanate (a); **Ox3** (3 mM) + 0.9 equiv. 1,6-diaminohexane + 0.9 equiv. PicH (b) and protected diamino-diurea derivative **5.2H**⁺ (c). S: residual solvents; w: residual water; g: grease; *: traces of symmetrical diurea-diammonium by-product.

Figure S57. ¹H NMR spectrum (298 K, 600 MHz, CDCl₃/CD₃CN 9:1) of protected diamino-diurea derivative **5.2H**⁺ (a); 1D TOCSY spectra (298 K, $\tau = 120$ ms) of protected diamino-diurea derivative **5.2H**⁺ upon irradiation at 2.81 ppm (b) and at 2.94 ppm. S: residual solvents; w: residual water; g: grease.

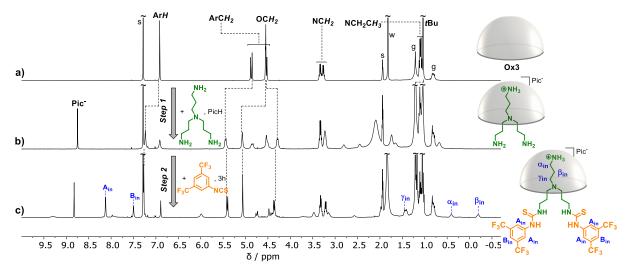
Figure S58. COSY NMR spectrum (298 K, 600 MHz, CDCl₃/CD₃CN 9:1) of protected diamino-diurea derivative **5.2H**⁺.

Figure S59. ¹H NMR spectrum (298 K, 400 MHz, D₂O) of the isolated diamino-diurea derivative **5**. w: residual water.


Figure S60. COSY NMR spectrum (298 K, 400 MHz, D₂O) of the isolated diamino-diurea derivative 5.

Selective functionalization of polyamines



Monofunctionalization of a lysine derivative in the presence of Ox3

Figure S61. ¹H NMR spectra (298 K, 400 MHz, CDCl₃/CD₃OD 4:1) of **Ox3** (3 mM) (a); after the successive addition of 0.8 equiv. of L-lysine ethyl ester dihydrochloride and 0.8 equiv. of DBU (b); 0.8 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 1 day) (c) and 2 equiv. of DBU (2.8 equiv. total) (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺.

Figure S62. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3OD$ 4:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of L-lysine ethyl ester dihydrochloride and 0.9 equiv. of DBU (b); 0.9 equiv. of di-*tert*-butyl dicarbonate (after 18 days) (c) and 10 equiv. of DBU (10.9 equiv. total) (d). S: residual solvents; w: residual water; g: grease; *: DBU/DBU.H⁺. In spectrum (d), deprotection of the monofunctionalized product is confirmed by the absence of signals in the high field region (around 0 ppm) and the recovery of the signals of the free **Ox3** receptor. Note that, except for the Boc signal, the signals of the free lysine-based product could not be attributed precisely as they are superimposed to other signals.

Difunctionalization of a triamine (tris(3-aminopropyl)amine) in the presence of Ox3

Figure S63. ¹H NMR spectra (298 K, 400 MHz, $CDCl_3/CD_3CN$ 9:1) of **Ox3** (3 mM) (a); after the successive addition of 0.9 equiv. of tris(3-aminopropyl)amine and 0.9 equiv. of PicH (b) and 1.8 equiv. of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (after 3 hours) (c). S: residual solvents; w: residual water; g: grease. The deprotection (decomplexation) of the difunctionalized product was confirmed upon the addition of DBU by the absence of signals in the high field region (around 0 ppm) and the recovery of the signals of the free **Ox3** receptor. However, the free amino-dithiourea product was not observed probably because of the poor solubility of this highly polar compound in CDCl₃/CD₃CN 9:1.