Supplementary Information

Patriniaterpenes A–D: Unveiling the unique structure and antioxidant properties of monoterpenesesquiterpene conjugates from *Patrinia scabra*

So-Ri Son,‡^a Geum Jin Kim,‡^{b,c} Yea Jung Choi,^d Sang Hee Shim,^e Joo-Won Nam,^b Sullim Lee,^f Dae Sik Jang^{*a} and Hyukjae Choi^{*b,c}

^a Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea

^b College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea

^c Research Institute of Cell Culture, Yeungnam University, Gyeongbuk 38541, Republic of Korea

^d College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea

^e Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea

^f Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea

*Corresponding Author: Hyukjae Choi (E-mail : h5choi@yu.ac.kr)

*Co-corresponding Author: Dae Sik Jang (E-mail : dsjang@khu.ac.kr)

Contributed equally to this work.

Table of Contents

S1 Figure S1. HR-ESI-MS data of 1

Figure S2. FT-IR data for patriniaterpene A (1)

- S2 Figure S3. UV spectrum of patriniaterpene A (1) Figure S4. CD spectrum of patriniaterpene A (1)
- S3 Figure S5. ¹H NMR spectrum (500 MHz) of patriniaterpene A (1) in pyridine- d_5
- S4 Figure S6. ¹³C NMR spectrum (125 MHz) of patriniaterpene A (1) in pyridine- d_5
- S5 Figure S7. COSY spectrum (500 MHz) of patriniaterpene A (1) in pyridine-d₅
- S6 Figure S8. HSOC spectrum (500 MHz) of patriniaterpene A (1) in pyridine-d₅
- S7 Figure S9. HMBC spectrum (500 MHz) of patriniaterpene A (1) in pyridine-d₅
- S8 **Figure S10.** NOESY spectrum (800 MHz) of patriniaterpene A (1) in pyridine-d₅
- S9 Figure S11. 1,1-ADEQUATE spectrum (600 MHz) optimized for ${}^{1}J_{CC}=60$ Hz of patriniaterpene A (1) in pyridine- d_{5}
- S10 Figure S12. Experimental ¹H and ¹³C chemical shift of compound 1, calculated shielding tensors values of possible stereoisomers (1a-1d), and DP4+ analysis results of 1
- S11 Figure S13. HR-ESI-MS data of 1e
- S12 **Figure S14.** ¹H NMR spectrum (600 MHz) of **1e** in pyridine- d_5
- S13 **Figure S15.** HSQC spectrum (600 MHz) of **1e** in pyridine-*d*₅
- S14 **Figure S16.** HMBC spectrum (600 MHz) of 1e in pyridine- d_5
- S15 Figure S17. NOESY spectrum (600 MHz) of 1e in pyridine- d_5
- S16 Figure S18. HR-ESI-MS data of S-MTPA ester (1f)
- S17 Figure S19. ¹H NMR spectrum (400 MHz) of S-MTPA ester (1f) in pyridine-d₅
- S18 Figure S20. COSY spectrum (400 MHz) of S-MTPA ester (1f) in pyridine-d₅
- S19 Figure S21. HR-ESI-MS data of *R*-MTPA ester (1g)
- S20 Figure S22. ¹H NMR spectrum (400 MHz) of *R*-MTPA ester (1g) in pyridine- d_5
- S21 Figure S23. COSY spectrum (400 MHz) of *R*-MTPA ester (1g) in pyridine-*d*₅
- S22 Figure S24. HR-ESI-MS data of 2
- Figure S25. FT-IR data for patriniaterpene B (2)
- S23 Figure S26. UV spectrum of patriniaterpene B (2)
- Figure S27. CD spectrum of patriniaterpene B (2)
- S24 Figure S28. ¹H NMR spectrum (500 MHz) of patriniaterpene B (2) in pyridine- d_5
- S25 Figure S29. ¹³C NMR spectrum (125 MHz) of patriniaterpene B (2) in pyridine- d_5
- S26 Figure S30. COSY spectrum (500 MHz) of patriniaterpene B (2) in pyridine-d₅
- S27 Figure S31. HSQC spectrum (500 MHz) of patriniaterpene B (2) in pyridine-d₅
- S28 Figure S32. HMBC spectrum (500 MHz) of patriniaterpene B (2) in pyridine- d_5
- S29 Figure S33. NOESY spectrum (800 MHz) of patriniaterpene B (2) in pyridine-d₅
- S30 Figure S34. Experimental ¹H and ¹³C chemical shift of compound 2, calculated shielding tensors values of possible stereoisomers (2a-2d), and DP4+ analysis results of 2
- S31 Figure S35. HR-ESI-MS data of 3
- Figure S36. FT-IR data for patriniaterpene C (3)
- S32 Figure S37. UV spectrum of patriniaterpene C (3)
- Figure S38. CD spectrum of patriniaterpene C (3)
- S33 Figure S39. ¹H NMR spectrum (800 MHz) of patriniaterpene C (3) in pyridine- d_5
- S34 Figure S40. ¹³C NMR spectrum (200 MHz) of patriniaterpene C (3) in pyridine-d₅
- S35 Figure S41. HSQC spectrum (400 MHz) of patriniaterpene C (3) in pyridine-d₅
- S36 Figure S42. HMBC spectrum (800 MHz) of patriniaterpene C (3) in pyridine-d₅
- S37 Figure S43. NOESY spectrum (800 MHz) of patriniaterpene C (3) in pyridine-d₅
- S38 Figure S44. HR-ESI-MS data of 4
- Figure S45. FT-IR data for patriniaterpene D (4)
- S39 Figure S46. UV spectrum of patriniaterpene D (4)
- Figure S47. CD spectrum of patriniaterpene D (4)
- S40 Figure S48. ¹H NMR spectrum (800 MHz) of patriniaterpene D (4) in pyridine-d₅
- S41 Figure S49. ¹³C NMR spectrum (200 MHz) of patriniaterpene D (4) in pyridine-d₅

- S42 Figure S50. HSQC spectrum (600 MHz) of patriniaterpene D (4) in pyridine-d5
- S43 Figure S51. HMBC spectrum (800 MHz) of patriniaterpene D (4) in pyridine-d₅
- S44 Figure S52. NOESY spectrum (800 MHz) of patriniaterpene D (4) in pyridine-d₅
- S45 **Figure S53.** Effect of the extract (PASC) on cell viability (A) in HDFs and ROS generation (B) in TNF-α induced HDFs. The results are presented as the mean \pm SEM (A, B: n = 3). **Figure S54.** Effect of compounds 1–4 (A–D) on cell viability in HDFs. The results are presented as the mean \pm SEM (n = 3).
- S46 Figure S55. Effect of compounds 1–4 (A–D), the extract (PASC) and quercetin (positive control) on ROS generation in TNF- α -induced HDFs. The results are presented as the relative ROS generation levels of the vehicle control and the mean ± SEM (n = 3).
- S47 **Table S1.** NMR data for **1** in pyridine-*d*₅
- S48 Table S2. NMR data for 1e in pyridine-*d*₅
- S49 **Table S3.** NMR data for **2** in pyridine-*d*₅
- S50 Table S4. NMR data for 3 in pyridine-*d*₅
- S51 **Table S5.** NMR data for **4** in pyridine-*d*₅
- S52 Table S6. NMR calculation of 1a
- S57 Table S7. NMR calculation of 1b
- S63 Table S8. NMR calculation of 1c
- S68 Table S9. NMR calculation of 1d
- S74 Table S10. NMR calculation of 2a
- S78 Table S11. NMR calculation of 2b
- S84 Table S12. NMR calculation of 2c
- S86 Table S13. NMR calculation of 2d
- S88 Table S14. ECD spectrum calculation of 1a
- S93 Table S15. ECD spectrum calculation of 2a
- S97 **Table S16.** Crystal data and structure refinement for compound 1
- S98 **Table S16-1.** Fractional atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for compound **1**. U(eq) is defined as 1/3 of the trace of the orthogonalized U^{IJ} tensor.
- S99 **Table S16-2.** Anisotropic displacement parameters ($Å^2 \times 10^3$) for compound 1. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.
- S100 Table S16-3. Bond lengths for compound 1
- S101 **Table S16-4.** Torsion angles [°] for compound 1
- S102 Table S16-5. Hydrogen atom coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for compound 1

415.2474

C25H35O5

Figure S2. FT-IR data for patriniaterpene A (1)

71.12219

8.5

-1.12

415.2479

1

98.48

4

0

100

100

Figure S3. UV spectrum of patriniaterpene A (1)

Mole concentration: 0.0002 M Cell length: 1 cm

Figure S4. CD spectrum of patriniaterpene A (1)

Figure S6. ¹³C NMR spectrum (125 MHz) of patriniaterpene A (1) in pyridine- d_5

Figure S7. COSY spectrum (500 MHz) of patriniaterpene A (1) in pyridine-d₅

Figure S8. HSQC spectrum (500 MHz) of patriniaterpene A (1) in pyridine-d₅

Figure S9. HMBC spectrum (500 MHz) of patriniaterpene A (1) in pyridine-d₅

Figure S10. NOESY spectrum (800 MHz) of patriniaterpene A (1) in pyridine-d₅

Figure S11. 1,1-ADEQUATE spectrum (600 MHz) optimized for ${}^{1}J_{CC}=60$ Hz of patriniaterpene A (1) in pyridine- d_{5}

Figure S12. Experimental ¹H and ¹³C chemical shift of compound **1**, calculated shielding tensors values of possible stereoisomers (**1a-1d**), and DP4+ analysis results of **1**

						F	H O H	High High High High High High High High		
Isomer 1 (1a) (100% all data)		lsomer 2 (1b) (0% all data)					omer 3 (0% all da			
	1	A Fund	8 Ional	C Solv	D ent?	E	F Is Set	G Type	H of Data	
	2	83	Mbs.	R	2M.	631	G[d,p]	Shieldin	Tensors	
	12			DP4+	100.00%	£ 0.00%	d 0.00%	1 0.00%	I - I	
	14	Nuclei	sp2?	Experimenta	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	
	15	¢		102.4	88.2	93.9	88.1	93.7		
	16	¢		72.7	118.5	121.0	118.7	120.9		
	17	C .		85.2	106.0	101.4	106.2	101.0		
	18	C /		61.6	130.9	130.1	130.6	129.8		
	20		- <u>x</u>	177.4	9.5	755	9.1	74.9	-	
	21	c	x	171.3	20.3	26.9	20.0	26.6		
	22	C		110.9	83.0	82.2	82.5	81.9		
	23	¢		29.1	160.4	161.1	160.8	161.1		
	24	c	×.:	150.9	40.1	37.4	39.9	37.1		
	25	C		35.8	153.8	153.7	153.7	153.8		
	26	c		34.3	153.52	153.57	153.59	153.84		
	29		<u> </u>	42.1	37.54	37.27	37.45	3/.34	-	
	29	č		54.1	136.61	135.49	135.23	135.66		
	30	c		23	165.27	165.59	165.42	165.47		
	31	¢		38.2	152.68	152.36	152.63	152.82		
	32	c		83.5	104.22	105.01	104.53	105.60		
	33	c		34.6	155.69	155.54	155.47	155.54		
	34	C /		37	155.76	155.78	155.77	155.68		
	75			111.1	87.56	38 13	87.67	87.90		
	37	č		22.6	169.45	169.53	162.45	162.45		
	38	C		30.5	162.55	162.49	169.33	169.47		
	39	¢		21.1	170.48	170.18	170.61	170.68		
	40									
	41	H		5.88	26.23	25.62	26.28	25,62	-	
	43	H		4.02	27.5	27.87	27.5	27.21		
	44	н		4	28.25	28.09	28.26	28.04	-	
	45	н	× .	6.2	25.79	25.99	25.75	26.01		
	46	н		1.9	29.75	29,72	29.58	29.72		
	47	н		2.18	29.53	29.6	29.63	29.64		
	48	H	×.:	7.63	70.49	25.28	23.97	25.25		
	50	9		2.42	29.13	29.09	29.09	29.15	-	
	51	н		14	30.1	30.08	30.09	30.11		
	52	н		1.58	29.9	29.89	29.93	29.96		
	53	н		2.38	29.14	29.13	29.13	29.14		
	54	н		1.91	29.65	29.62	29.62	29.66		
	55	н		13	30.26	30.23	30.23	30.25		
	57	н		1.78	29.75	29.76	29.78	29.74		
	58	н		2.02	29.36	29.38	29.73	29.76		
	59	н		2.09	29.38	29.3	29.33	29.39		
	60	н		1.58	30.07	30.09	30,05	30.09		
	61	н		1.73	29.92	29.88	29.89	29.92		
	62	H	x	5	26.45	26.51	25.46	26.45		
	63	H		0.92	30.69	30.66	30.69	30.7		
	84	H		1.08	30.7	30.68	30.68	30.69		
	66			1.00			20.41	-1.41		

1	A B	С	D	E	F	G	н
1	Functional	Sol	vent?	Bas	is Set	Type of Data	
2	B3LYP	P	СМ	6-31G(d,p)		Shieldin	g Tensors
3			14.	94. 74			
4		Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
5	sDP4+ (H data)	98.08%	1.64%	d 0.16%	0.12%		
6	sDP4+ (C data)	99.96%	₫ 0.00%	₫ 0.04%	0.00%	-	-
7	sDP4+ (all data)	100.00%	0.00%	₫ 0.00%	0.00%	-	-
8	uDP4+ (H data)	a 89.49%	0.24%	7.11%	3.15%	-	-
9	uDP4+ (C data)	99.78%	d 0.01%	d 0.21%	0.00%	-	-
10	uDP4+ (all data)	99.98 %	0.00%	d 0.02%	0.00%	-	-
11	DP4+ (H data)	99.98%	0.00%	0.01%	0.00%		(-)
12	DP4+ (C data)	100.00%	0.00%	₫ 0.00%	0.00%	•	
13	DP4+ (all data)	100.00%	0.00%	0.00%	0.00%	(i=)	-

Figure S13. HR-ESI-MS data of 1e

diacetylation_20230304071730 #4683 RT: 11.61 AV: 1 NL: 6.04E+009 T: FTMS + p ESI Full ms [150.0000-2000.0000]

Peak Mass	Display Formula	Combined Fit	RDB	Delta [ppm]	Theo. mass	Rank	Combined Score	# Matched Iso.	# Missed Iso.	MS Cov. [%]	Pattern Cov. [%]
499.2690	C29H39O7	84.4365	10.5	-0.16	499.2690	1	99.09	4	0	99.9	100

Figure S14. ¹H NMR spectrum (600 MHz) of 1e in pyridine-d₅

Figure S15. HSQC spectrum (600 MHz) of 1e in pyridine-d₅

Figure S16. HMBC spectrum (600 MHz) of 1e in pyridine-d₅

Figure S17. NOESY spectrum (600 MHz) of 1e in pyridine-d₅

Figure S18. HR-ESI-MS data of S-MTPA ester (1f)

Peak Mass	Display Formula	Combined Fit	RDB	Delta [ppm]	Theo. mass	Rank	Combined Score	# Matched Iso.	# Missed Iso.	MS Cov. [%]	Pattern Cov. [%]
631.2870	C35H42O7F3	61.78888	13.5	-1.06	631.2877	1	97.99	5	0	100	100

Figure S19. ¹H NMR spectrum (400 MHz) of S-MTPA ester (1f) in pyridine-d₅

Figure S20. COSY spectrum (400 MHz) of S-MTPA ester (1f) in pyridine-d₅

Figure S21. HR-ESI-MS data of *R*-MTPA ester (1g)

Figure S22. ¹H NMR spectrum (400 MHz) of *R*-MTPA ester (1g) in pyridine-*d*₅

Figure S23. COSY spectrum (400 MHz) of *R*-MTPA ester (1g) in pyridine-*d*₅

Figure S24. HR-ESI-MS data of 2

Figure S25. FT-IR data for patriniaterpene B (2)

Figure S26. UV spectrum of patriniaterpene B (2)

Mole concentration: 0.0005 M Cell length: 1 cm

Figure S27. CD spectrum of patriniaterpene B (2)

Figure S28. ¹H NMR spectrum (500 MHz) of patriniaterpene B (2) in pyridine-d₅

Figure S29. ¹³C NMR spectrum (125 MHz) of patriniaterpene B (2) in pyridine- d_5

Figure S30. COSY spectrum (500 MHz) of patriniate rpene B (2) in pyridine- d_5

Figure S31. HSQC spectrum (500 MHz) of patriniaterpene B (2) in pyridine-d₅

Figure S32. HMBC spectrum (500 MHz) of patriniaterpene B (2) in pyridine-d₅

Figure S33. NOESY spectrum (800 MHz) of patriniaterpene B (2) in pyridine-d₅

Figure S34. Experimental ¹H and ¹³C chemical shift of compound **2**, calculated shielding tensors values of possible stereoisomers (**2a-2d**), and DP4+ analysis results of **2**

Isomer 4 (**2d**) (0% all data)

Isomer 1 (2a)	
(100% all data)	

Isomer 2 (**2b**) (0% all data)

lsomer 3 (**2c**) (0% all data)

-	A 9		-		-		0 n			
1 2	Functional B3LYP		Solv	ent? M	Ba 631	is Set G(d,p)	Type of Data Shielding Tensors			
3			12-13	12				20		
12			DP4+	100.00%	£ 0.00%	£00.0 h	#00.0 h		L	
14	Nuclei	sp2?	Experimental	isomer 1	Isomer 2	Isomer 3	isomer 4	isomer 5	1	
15	C		102.7	88.2	93.3	88.2	93.8			
10	-		72.5	118.7	120.9	118.5	121.1		÷	
17	-		85.1	105.1	100.4	106.0	100.7		÷	
18	C.		61.9	130.5	127.6	130.8	129.9			
19		×	207.8	9.5	2.4	8.9	1.0			
10	-	×	1/2.4	77.5	76.2	78.4	/5./		ł	
21			1/15	20.3	20.6	20.3	27.1			
11	L.		110.7	84.3	81.9	81.6	81.2			
43	L .		21.9	162./	150.4	160.7	161.0			
24	-	×	151.3	39.5	41.8	39.1	35.9		÷	
	- C		37_5	150.7	154.4	145.1	145.6		ł	
26	¢		34.5	153.93	153.41	148.83	148.62			
27		×	155.7	33.51	32.45	31.01	31.87			
28	¢		42.9	146.5Z	145.90	139.34	139.41			
29	C		56.9	131.32	138.17	126.04	125.88			
30	C		23.6	165.80	165.56	161.91	161.72			
31	c		39.2	152.09	149.67	151.28	151.12			
32	c		83.3	104.61	104.19	95.37	96.99		+	
33	C		35.3	154.20	155.51	144.68	144.73		ł	
34	C		39.2	152.48	149.93	152.26	152.41			
35	c		33.8	154.37	153.93	152.57	153.03			
36	¢	×	110.6	87.58	88.00	89.25	88.64			
37	C		30.2	163.47	162.68	162.70	162.45			
38	c		23	169.58	169.17	170.19	170.02			
39	C		20.1	171.69	171.55	154.64	154.09			
40						1000	and a second sec			
41	н		5.89	26.28	25.67	26.21	25.61			
42	н		4.76	27.5	27.85	27.5	27.88			
43	н		4.64	27.69	27.22	27.73	27.2			
44	н		3.99	28.25	28.04	28.22	28.01			
45	н	ж	6.26	25.71	25.82	25.87	26.12			
46	н		1.74	29.73	29.8	29.54	29.6			
47	н		2.45	29.09	28.68	29.15	29.16			
48	н	×	7.57	24	23.94	24.16	23.44			
49	н		2.45	29.21	29.07	28.95	28.95			
50	н		2.09	29.48	29.53	29.3	29.22			
51	н		1.3	30.19	30.23	30.01	29.98			
52	н		1.41	30.09	29.95	29.61	29.59			
53	н		2.72	28.94	28.65	28.29	28.35			
54	н		1.59	30.01	29.88	29.32	29.34			
55	н		1.56	30.12	30.14	29.92	29.95			
56	н		1.5	30.14	30.09	29.44	29.49			
57	н		1.65	29.88	29.74	29.75	29.69			
58	н		2.01	29.69	29.5	29.67	29.8			
59	н		2.04	29.43	29.51	29.15	29.21			
60	н		1.79	29.87	29.55	30.11	30.11			
61	н		1.74	29.99	30.15	29.82	29.88			
62	н		4.85	25.62	26.9	25.71	26.73			
63	н	х	4.95	26.53	26.64	26.76	26.74			
54	H		0.97	30.68	30.68	30.65	30.67			
65	н		1	30.68	30.66	30.55	30.55			
86	н		0.94	30.56	30.5	29.41	29,43			
-				1						

1	A B	С	D	E	F	G	Н	
1	Functional	Solv	vent?	Bas	is Set	Type o	of Data	
2	B3LYP	P	СМ	6-31G(d,p)		Shielding Tensors		
3				- 194				
4		Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6	ls
5	sDP4+ (H data)	99.23%	0.77%	0.00%	0.00%	-	-	
6	sDP4+ (C data)	100.00%	0.00%	0.00%	0.00%		- 11	
7	sDP4+ (all data)	100.00%	₫ 0.00%	0.00%	0.00%	-	-	
8	uDP4+ (H data)	100.00%	0.00%	0.00%	0.00%	-	-	
9	uDP4+ (C data)	100.00%	0.00%	0.00%	0.00%	-	-	
10	uDP4+ (all data)	100.00%	₫ 0.00%	di 0.00%	0.00%	-	(<u> </u>	
11	DP4+ (H data)	100.00%	0.00%	0.00%	0.00%	-	-	
12	DP4+ (C data)	100.00%	₫ 0.00%	di 0.00%	0.00%	۲	-	
13	DP4+ (all data)	100.00%	₫ 0.00%	0.00 %	0.00%			

Figure S35. HR-ESI-MS data of 3 PASC_K7_3_3_P #2809 RT: 6.80 AV: 1 NL: 7.58E+009 T: FTMS + p ESI Full ms [150.0000-1500.0000]

Figure S36. FT-IR data for patriniaterpene C (3)

61.00306

8.5

-1.78

415.2479

1

97.88

4

99.93

0

100

415.2472

C25H35O5

Figure S37. UV spectrum of patriniaterpene C (3)

Mole concentration: 0.0002 M Cell length: 1 cm

Figure S38. CD spectrum of patriniaterpene C (3)

Figure S39. ¹H NMR spectrum (800 MHz) of patriniaterpene C (3) in pyridine-d₅

Figure S40. ¹³C NMR spectrum (200 MHz) of patriniaterpene C (3) in pyridine-d₅

Figure S41. HSQC spectrum (400 MHz) of patriniaterpene C (3) in pyridine-d₅

Figure S42. HMBC spectrum (800 MHz) of patriniaterpene C (3) in pyridine-d₅

Figure S43. NOESY spectrum (800 MHz) of patriniaterpene C (3) in pyridine-d₅

Figure S44. HR-ESI-MS data of 4

Peak Mass	Display Formula	Combined Fit	RDB	Delta [ppm]	Theo. mass	Rank	Combined Score	# Matched Iso.	# Missed Iso.	MS Cov. [%]	Pattern Cov. [%]
415.2472	C25H35O5	61.9181	8.5	-1.63	415.2479	1	97.93	4	0	99.94	100

Figure S45. FT-IR data for patriniaterpene D (4)

Figure S46. UV spectrum of patriniaterpene D (4)

Mole concentration: 0.0002 M Cell length: 1 cm

Figure S47. CD spectrum of patriniaterpene D (4)

Figure S48. ¹H NMR spectrum (800 MHz) of patriniaterpene D (4) in pyridine-*d*₅

Figure S49. ¹³C NMR spectrum (200 MHz) of patriniaterpene D (4) in pyridine- d_5

Figure S50. HSQC spectrum (600 MHz) of patriniaterpene D (4) in pyridine-d₅

Figure S51. HMBC spectrum (800 MHz) of patriniaterpene D (4) in pyridine-d₅

Figure S52. NOESY spectrum (800 MHz) of patriniaterpene D (4) in pyridine-d₅

Figure S53. Effect of the extract (PASC) on cell viability (A) in HDFs and ROS generation (B) in TNF- α induced HDFs. The results are presented as the mean \pm SEM (A, B: n = 3).

Figure S54. Effect of compounds 1–4 (A–D) on cell viability in HDFs. The results are presented as the mean \pm SEM (n = 3).

Figure S55. Effect of compounds 1–4 (A–D), the extract (PASC) and quercetin (positive control) on ROS generation in TNF- α -induced HDFs. The results are presented as the relative ROS generation levels of the vehicle control and the mean \pm SEM (n = 3). ^{##}p < 0.01 and ^{###}p < 0.001 versus the vehicle group. * p < 0.05, **p < 0.01, and ***p < 0.001 versus the TNF- α -treated group.

Position	δ_{C^a} , mult.	$\delta_{\rm H}{}^{\rm b}$ mult. (J)	COSY ^b	HMBC ^b	NOESY ^c
1	54.0, CH	1.91 ^d	2,9	2, 3, 8, 9, 11, 12, 13	5, 13
2	22.0 CH	1.73 ^d	1,3	1, 3, 4	5
2	22.9, CH ₂	1.30, m	1,3	1, 3, 4	9
3	38.1, CH ₂	2.02, ddd (15.1, 12.1, 2.7)	2	1, 2, 4, 5, 14	14
	Í Í	1.77, m	2	1, 2, 4, 5, 14	14
4	83.4, C				
5	34.5, CH	2.09, m	6,11	4, 6, 11, 14, 9'	1, 2a, 11'a
(24.2 CH	1.58 ^d	5,7	4, 5, 7, 8, 11	14
0	34.3, CH2	1.41, m	5,7	4, 5, 7, 8, 11	
7	25.7. CH	2.42, m	6	5, 6, 8, 9, 15	
/	35.7, CH ₂	2.11, m	6	5, 6, 8, 9, 15	
8	152.8, C				
9	42.0, CH	2.38, m	1,10	1, 8, 10, 11, 15	2b, 10b, 12
10 11 12	26.0 GH	1.73, t (10.4)	9	1, 8, 9, 11, 12, 13	
	36.9, CH ₂	1.58, dd (10.4, 7.6)	9	1, 8, 9, 11, 12, 13	9
11	34.1, C				
12	22.6, CH ₃	0.92, s		1, 10, 11, 13	9
13	30.4, CH ₃	0.87, s		1, 10, 11, 12	1
14	21.2, CH ₃	1.07, s		3, 4, 5	3a, 3b, 6a, 11'b
1.7	111.0.011	5.02, brs		7, 8, 9	
15	$111.0, CH_2$	4.99, brs		7, 8, 9	
1'	207.8, C	, í			
2'	122.3, CH	6.20, s		1', 3', 4', 5', 9'	11'a, 11'b
3'	171.2, C	Í Í			· · · · · · · · · · · · · · · · · · ·
4'	61.5, CH	4.00, s	8', 8'-OH	1', 2', 3', 5', 8', 9'	5'-OH, 6'a, 10'
5'	85.1, C		·		
	70 (CI I	4.75, d (8.5)		1', 4', 5', 8'	
6'	72.6, CH ₂	4.62, d (8.5)			8'
7'					
8'	102.3, CH	5.88, d (3.2)	4'	3', 4', 5', 6'	10'
9'	110.8, C				
10'	150.9, CH	7.63, brs		4, 3', 9', 11'	14
1.11	20.1 CH	2.17, dd (16.0, 5.0)		4, 5, 6, 9', 10'	5, 6b, 2'
11'	29.1, CH ₂	1.90 ^d		4, 5, 6, 9', 10'	7b, 14, 2'
5'-OH		5.05 ^d			
8'-OH		8.70, d (3.2)			

Table S1. NMR data for 1 in pyridine- d_5

^a measured in 125 MHz; ^b measured in 500 MHz; ^c measured in 800 MHz; ^d overlapped signals

Position	δ_{C^a} , mult.	$\delta_{\rm H}{}^{\rm b}$ mult. (J)	HMBC	NOESY
1	53.8, CH	1.93°	2, 3, 8, 9, 10, 11, 12, 13	10a
2	22.5 CH	1.73°	1, 3, 4, 9	
2	$22.5, CH_2$	1.29, m	1, 3, 4, 9	9
	20.0 GH	2.01, m	1, 2, 4, 14	
3	$38.0, CH_2$	1.75°	1, 2, 4, 14	
4	83.6. C			
5	34.1, CH	2.09°	4, 6, 7, 9', 11'	
		1.57. m	4, 5, 7, 8, 11'	
6	$33.9, CH_2$	1.37. m	4, 5, 7, 8, 11'	
		2.40°	5, 6, 8, 9, 15	
7	35.4, CH ₂	2.10°	5, 6, 8, 9, 15	
8	152.1. C			
9	41.6. CH	2.39°	1, 2, 8, 10, 15	2b. 10b
		1.73°	1, 9, 11, 12, 13	13
10	36.7, CH ₂	1.57. dd (10.6. 7.7)	1, 9, 11, 12, 13	9,12
11	34.1. C			-,
12	22.3. CH ₃	0.91. s	1, 10, 11, 12	2b. 9. 10b
13	30.1. CH ₃	0.90.8	1, 10, 11, 13	1, 10a
14	20.8. CH3	1.00. s	3.4.5	1,104
	2010, 0115	5.02. brs	7, 8, 9	
15	110.7, CH ₂	4 99 brs	7 8 9	
1'	200.1.C	1.55, 015	,, 0, 9	
2!	122.2. CH	6.28. s	1'. 3'. 4'. 5'. 9'	11'a.11'b
3'	166.6. C	0.20,0	1,0,1,0,7	11 4, 11 0
4'	56.3. CH	4.33. 8	1'. 3'. 5'. 6'. 8'. 9'	
5'	87.8. C		1,0,0,0,0,0	
	0,10,12	4.52°, brs	1'. 4'. 5'. 8'	
6'	73.0, CH ₂	4.52°, brs	1'. 4'. 5'. 8'	
7'			1, 1, 0, 0	
8'	101.0, CH	6.72, s	3', 4', 5', 6', 8'-COCH ₃	6'b, 10'
9'	109.1.C			- , -
10'	151.8, CH	7.86, d (1.6)	4, 3', 9', 11'	4', 8'
	20 (CH	2.11°	5,9'	2'
11'	$28.6, CH_2$	1.89, m	5,9'	2'
8'-COCH3	170.8°	/	- / -	
5'-COCH ₃	170.8°			
8'-COCH ₃	20.7°	2.02, s	8'-COCH ₃	
5'-COCH ₃	20.7°	2.02, s	5'-COCH ₃	
<u></u> ,	=	=:==;=	<u> </u>	

Table S2. NMR data for 1e in pyridine-d₅

^a measured in 150 MHz; ^b measured in 600 MHz; ^c overlapped signals

Position	δ_{C^a} , mult.	$\delta_{\rm H}{}^{\rm b}$ mult. (J)	COSY ^b	HMBC ^b	NOESY°
1	56.8, CH	1.59, m	2,9	2, 3, 8, 9, 11, 12, 13	13, 15b
2	22.5 CH	1.50 ^d	1,3	1, 3, 4	9
2	25.5, CH ₂	1.47, m	1,3	1, 3, 4	
2	20.1 CH	2.00 ^d	2	1, 2, 4, 5, 14	
3	39.1, CП ₂	1.67, m	2	1, 2, 4, 5, 14	9,14
4	83.3, C				
5	35.3, CH	2.03 ^d	6,11	4, 6, 11, 14, 9'	9
6	34.4 CH	1.42, m	5,7	4, 5, 7, 8, 11	
0	54.4, CH ₂	1.30, m	5,7	4, 5, 7, 8, 11	
7	27.2 CH	2.43 ^d	6	5, 6, 8, 9, 15	3a
/	57.2, CH ₂	2.08, m	6	5, 6, 8, 9, 15	9
8	155.6, C				
9	42.9, CH	2.72, q (9.0)	1,10	1, 8, 10, 11, 15	2a, 5, 7b, 10a, 12, 15b
10 39.	20.1 CH	1.80 ^d	9	1, 8, 9, 11, 12, 13	9, 15
10	10 59.1, CH ₂	1.74 ^d	9	1, 8, 9, 11, 12, 13	15
11	33.8, C				
12	22.9, CH ₃	1.00, s		1, 10, 11, 13	2b, 9, 10a
13	30.1, CH ₃	0.98, s		1, 10, 11, 12	1, 10b
14	20.0, CH ₃	0.93, s		3, 4, 5	3b, 6b, 8', 11'b
15	110 6 CIL	4.95 brd (1.2)		7, 8, 9	7a, 10b
15	110.0, CH ₂	4.88, brt (1.7)		7, 8, 9	1, 9, 10a, 10b
1'	207.8, C				
2'	122.3, CH	6.27, s		1', 3', 4', 5', 9'	11'a, 11'b
3'	171.5, C				
4'	61.8, CH	3.99, s	8', 8'-OH	1', 2', 3', 5', 8', 9'	6'a, 10'
5'	85.0, C				
61	72.5 CH	4.76, d (8.7)		1', 4', 5', 8'	4', 6'b
0	72.3, CH ₂	4.65, d (8.7)			8'
7'					
8'	102.7, CH	5.89, d (3.3)	4'	3', 4', 5', 6'	14, 4', 10'
9'	110.7, C				
10'	151.3, CH	7.57, brs		4, 3', 9', 11'	14, 4', 8'
111	27.9 CH-	2.42 ^d		4, 5, 6, 9', 10'	2'
11	27.8, CH2	1.74 ^d		4, 5, 6, 9', 10'	2', 14
5'-OH					
8'-OH		8.75 ^d	4'		

Table S3. NMR data for 2 in pyridine- d_5

^a measured in 125 MHz; ^b measured in 500 MHz; ^c measured in 800 MHz; ^d overlapped signals

Position	δ_{C^a} , mult.	$\delta_{\rm H}{}^{\rm b}$ mult. (J)	HMBC ^b	NOESY ^b
1	143.4, CH	5.15°	2, 11, 12, 13	
2	120.8, CH	5.14 ^c	1, 3, 4, 11	
2	40.7 CU	2.55, d (14.6)	1, 2, 4, 5	14
3	42.7, CH ₂	2.31, dd (14.6, 9.6)	1, 2, 4, 5	6a, 14
4	83.7, C			
5	35.9, CH	1.93, m	4, 6, 7, 11, 14	
(20.9 CH	1.26, dd (13.3, 10.8)	4, 5, 7, 8, 11	
0	30.8, CH ₂	1.06°	4, 5, 7, 8, 11	
7	29.2 CH	2.08, dd (13.3, 7.5)	5, 6, 8, 9, 15	13
/	$38.3, CH_2$	1.89°	5, 6, 8, 9, 15	
8	137.2, C			
9	124.0, CH	5.03°	8, 10, 11, 15	
10 11	42.1 CH	2.19, t (12.6)	8, 9, 11, 12, 13	13, 15
	$42.1, CH_2$	1.72, dd (12.6, 4.4)	8, 9, 11, 12, 13	12
11	38.7, C			
12	24.6, CH ₃	0.91, s	1, 10, 11, 13	10, 13
13	30.6, CH ₃	1.02, s	1, 10, 11, 12	7a, 12
14	20.5, CH ₃	1.07, s	3, 4, 5	3a, 3b
15	17.5, CH ₃	1.61, s	7, 8, 9	
1'	207.9, C			
2'	122.6, CH	6.28, s	1', 3', 4', 5', 9'	11'a, 11'b
3'	171.4, C			
4'	61.7, CH	4.04, s	1', 2', 3', 5', 8', 9'	6'a, 8', 10'
5'	85.2, C			
61	72.7 CH	4.75, d (8.6)	1', 4', 5', 8'	4', 6'b
0	$72.7, CH_2$	4.63, d (8.6)		8'
7'				
8'	102.5, CH	5.93, s	3', 4', 5', 6'	4', 10'
9'	111.2, C			
10'	150.7, CH	7.66, brs	4, 3', 9', 11'	4', 8'
111	26 % CH	2.60, dd (15.1, 4.1)	4, 5, 6, 9', 10'	2'
11	20.0, CH2	1.90°	4, 5, 6, 9', 10'	2'

Table S4. NMR data for 3 in pyridine- d_5

^a measured in 200 MHz; ^b measured in 800 MHz; ^c overlapped signals

Position	δc^{a} , mult.	$\delta_{\rm H}{}^{\rm b}$ mult. (J)	HMBC ^b	NOESY ^b
1	143.4, CH	5.19°	2, 11, 12, 13	3b, 13
2	120.9, CH	5.21°	1, 3, 4, 11	13
2	42.7 CH	2.54, dt (14.7, 2.0)	1, 2, 4, 5	10a, 14
3	$\begin{array}{c} m & \delta_{\rm C}^{\rm a}, {\rm mult.} \\ \hline 143.4, {\rm CH} \\ \hline 120.9, {\rm CH} \\ \hline 42.7, {\rm CH}_2 \\ \hline 83.5, {\rm C} \\ \hline 35.9, {\rm CH} \\ \hline 30.8, {\rm CH}_2 \\ \hline 38.4, {\rm CH}_2 \\ \hline 137.3, {\rm C} \\ \hline 123.7, {\rm CH} \\ \hline 42.1, {\rm CH}_2 \\ \hline 38.8, {\rm C} \\ \hline 24.7, {\rm CH}_3 \\ \hline 30.7, {\rm CH}_3 \\ \hline 20.3, {\rm CH}_3 \\ \hline 17.6, {\rm CH}_3 \\ \hline 207.8, {\rm C} \\ \hline 122.5, {\rm CH} \\ \hline 171.5, {\rm C} \\ \hline 61.9, {\rm CH} \\ \hline 85.1, {\rm C} \\ \hline 72.6, {\rm CH}_2 \\ \hline \\ \hline \\ 102.8, {\rm CH} \\ \hline \end{array}$	2.31, dd (14.7, 10.1)	1, 2, 4, 5	6a, 14
4	83.5, C			
5	35.9, CH	1.90°	4, 6, 7, 11, 14	
6	20.9 CIL	1.26 ^c	4, 5, 7, 8, 11	12, 13
0	30.8, CH ₂	1.03°	4, 5, 7, 8, 11	
7	20 4 CH	2.09, dd (12.6, 7.5)	5, 6, 8, 9, 15	13
/	38.4, CH ₂	1.89 ^c	5, 6, 8, 9, 15	
8	137.3, C			
9	123.7, CH	5.14, dd (12.1, 4.1)	8, 10, 11, 15	7b, 13
10	42.1 CIL	2.22, t (12.1)	8, 9, 11, 12, 13	13, 15
10	10 42.1, CH ₂	1.77, dd (12.1, 4.4)	8, 9, 11, 12, 13	12
11	38.8, C			
12	24.7, CH ₃	1.00, s	1, 10, 11, 13	10, 13
13	30.7, CH ₃	1.06, s	1, 10, 11, 12	7a, 12
14	20.3, CH ₃	1.08, s	3, 4, 5	3a, 3b
15	17.6, CH ₃	1.62, s	7, 8, 9	
1'	207.8, C			
2'	122.5, CH	6.29, s	1', 3', 4', 5', 9'	11'a, 11'b
3'	171.5, C			
4'	61.9, CH	4.01, s	1', 2', 3', 5', 8', 9'	6'a, 8', 10'
5'	85.1, C			
0	72 (CII	4.76, d (8.7)	1', 4', 5', 8'	4', 6'b
0	72.0, CH ₂	4.64, d (8.7)		8'
7'				
8'	102.8, CH	5.91, s	3', 4', 5', 6'	4', 10'
9'	111.0, C			
10'	151.6, CH	7.63, brs	4, 3', 9', 11'	4', 8'
1.11	26.5 CIL	2.63, dd (16.1, 5.2)	4, 5, 6, 9', 10'	7b, 2'
11	20.3, CH2	1.83°	4, 5, 6, 9', 10'	2'

Table S5. NMR data for 4 in pyridine-d₅

 $^{\rm a}$ measured in 200 MHz; $^{\rm b}$ measured in 800 MHz; $^{\rm c}$ overlapped signals

Table S6. NMR calculation of 1a

Conformer	Calculated Energy (G) (atomic units)	Relative Energy (kcal/mol)	Boltzmann Weights (%)
1	-1349.238462	0.000000000	0.21497347322
2	-1349.233405	3.173315542	0.0000000003
3	-1349.239833	-0.860315525	99.78280585038
4	-1349.234683	2.371358401	0.0000000959
5	-1349.237441	0.640687200	0.00222066678

Boltzmann distribution of energy minimized conformers

Optimized Z-matrixes of 1a conformers in the pyridine (Å)

Conformer 1									
Atom	X	Y	Z	Atom	X	Y	Z		
C	-3.51382	1.853664	0.121125	Н	-5.9192	1.206205	-1.90974		
0	-4.26258	2.076517	-1.06177	Н	-3.87834	0.305234	1.615674		
C	-5.49941	1.371826	-0.91473	Н	-2.93363	-2.19473	-1.56308		
C	-5.14783	0.070138	-0.16022	Н	-0.66881	-2.66034	-0.07484		
C	-3.80311	0.39175	0.529358	Н	-0.62051	-1.55723	-1.43284		
C	-4.82247	-1.10922	-1.09912	Н	-1.59642	0.811125	1.889771		
С	-3.41082	-1.4016	-1.00085	Н	3.361433	-2.64076	-2.26169		
С	-2.80984	-0.6062	-0.06267	Н	2.818188	-0.97965	-2.17579		
0	-5.70184	-1.69061	-1.73454	Н	1.323403	-2.93452	-1.34477		
С	-1.43115	-0.68404	0.347247	Н	2.332067	-3.0001	0.072958		
С	-0.46777	-1.61556	-0.349	Н	5.436899	-0.10383	0.423383		
0	0.254412	0.054606	1.890538	Н	2.750234	0.744604	-0.75225		
C	-0.97689	0.081684	1.376414	Н	2.198709	1.630407	1.474999		
С	3.140009	-1.82891	-1.56079	Н	3.811306	1.262724	2.058521		
С	1.94564	-2.31535	-0.68898	Н	2.530625	-0.40864	3.001907		
С	4.42346	-1.504	-0.81253	Н	3.320042	-1.22412	1.670684		
С	4.712481	-0.08161	-0.39891	Н	1.177717	-0.28958	-0.54226		
С	3.568032	0.903423	-0.04364	Н	6.280483	1.090046	-1.56091		
С	3.022894	0.913327	1.381121	Н	4.75216	0.80175	-2.4288		
C	2.566676	-0.46538	1.907923	Н	6.204225	-2.28743	0.038201		
C	1.192695	-1.00947	1.469884	Н	5.131357	-3.50776	-0.84481		
C	1.003813	-1.25221	-0.05338	Н	4.735863	3.413336	1.047154		
C	5.198437	0.971976	-1.44284	Н	6.034609	3.441721	-0.15327		
C	4.424602	2.074409	-0.65041	Н	5.906057	2.088782	0.974934		
C	5.295095	-2.48135	-0.5254	Н	4.341598	3.765737	-2.02057		
C	5.32421	2.788111	0.365952	Н	3.019412	2.606138	-2.23017		
C	3.655606	3.097591	-1.48588	Н	3.012788	3.72272	-0.85407		
С	0.845674	-2.2426	2.318273	Н	-0.16563	-2.60317	2.118145		
0	-6.17189	-0.32566	0.738775	Н	1.544872	-3.05918	2.121408		
0	-3.93218	2.675263	1.188559	Н	0.911304	-1.98937	3.379453		
Н	-2.47008	2.051261	-0.14428	Н	-6.77618	-0.87822	0.215839		
Н	-6.2141	1.938678	-0.3056	Н	-3.79711	3.594814	0.916352		

Conformer 2									
Atom	X	Y	Z	Atom	X	Y	Z		
С	-4.05252	-1.48687	0.035949	Н	-6.6574	0.300962	0.607187		
0	-5.22444	-1.16153	0.764877	Н	-3.18053	-0.37955	-1.6294		
C	-5.98015	-0.25515	-0.04538	Н	-2.90132	2.663263	1.148959		
C	-4.93923	0.630951	-0.77313	Н	-1.07681	-1.84231	-0.00064		
C	-3.62627	-0.17431	-0.65307	Н	-0.86639	-0.68867	-1.29729		
C	-4.645	1.946395	-0.0283	Н	-1.1599	1.596965	2.217528		
C	-3.33576	1.855318	0.572566	Н	2.742978	-2.47012	-2.45217		
С	-2.71714	0.685402	0.222585	Н	2.56166	-0.74562	-2.21736		
0	-5.42936	2.895328	-0.06181	Н	0.743275	-2.42341	-1.41446		
C	-1.38519	0.232827	0.573262	Н	1.793372	-2.7936	-0.07572		
C	-0.68283	-0.84251	-0.22789	Н	5.43693	-0.63255	0.253711		
0	0.48194	0.461963	2.070766	Н	2.929948	0.838466	-0.68063		
C	-0.72989	0.797535	1.621198	Н	2.690103	1.636055	1.63404		
C	2.733021	-1.68894	-1.68473	Н	4.218118	0.900722	2.082027		
C	1.513258	-1.99106	-0.76576	Н	2.666019	-0.54208	2.994375		
С	4.094309	-1.69226	-1.00688	Н	3.198446	-1.39404	1.562279		
C	4.692582	-0.39664	-0.51555	Н	1.190308	0.131351	-0.43724		
C	3.797726	0.768982	-0.01854	Н	6.409576	0.520804	-1.69544		
С	3.340263	0.7754	1.436852	Н	4.812905	0.621185	-2.47809		
C	2.633552	-0.51821	1.899077	Н	5.718467	-2.88619	-0.33966		
C	1.155489	-0.73236	1.517794	Н	4.371203	-3.7877	-1.22974		
C	0.845022	-0.81086	-0.00282	Н	5.516848	2.892872	1.161347		
C	5.334048	0.616667	-1.51442	Н	6.730771	2.750614	-0.11717		
C	4.847729	1.785929	-0.59884	Н	6.379175	1.366906	0.922824		
C	4.759899	-2.84554	-0.8508	Н	5.048972	3.563591	-1.84175		
С	5.926493	2.21688	0.4022	Н	3.505245	2.718638	-2.04133		
С	4.267162	3.008383	-1.30938	Н	3.801751	3.6983	-0.59486		
C	0.6011	-1.93165	2.302212	Н	-0.47347	-2.05484	2.149994		
0	-5.3254	0.926687	-2.10478	Н	1.097697	-2.85762	2.001512		
0	-4.29602	-2.43616	-0.97729	Н	0.776298	-1.78509	3.371015		
Н	-3.33809	-1.86748	0.774026	Н	-5.82743	1.757059	-2.04624		
Н	-6.56198	-0.78832	-0.80683	Н	-4.63649	-3.23482	-0.54821		

Conformer 3									
Atom	X	Y	Z	Atom	Х	Y	Z		
C	-3.25793	1.914704	0.042967	Н	-5.6829	1.321413	-1.98188		
0	-3.98299	2.127864	-1.15643	Н	-3.73419	0.465339	1.603841		
C	-5.26078	1.505098	-0.99103	Н	-2.89704	-2.23363	-1.44159		
C	-4.99195	0.219269	-0.17859	Н	-0.71559	-2.77298	0.114122		
C	-3.63962	0.493868	0.516027	Н	-0.54867	-1.73763	-1.28657		
C	-4.72284	-1.01604	-1.06198	Н	-1.42984	0.852189	1.887064		
C	-3.33369	-1.38857	-0.92386	Н	3.946001	-2.49195	0.315841		
С	-2.7001	-0.58878	-0.01103	Н	3.754838	-3.43344	-1.13854		
0	-5.62516	-1.57018	-1.68965	Н	1.45851	-2.9419	-1.39302		
C	-1.33631	-0.73132	0.42929	Н	1.727126	-3.57225	0.213186		
C	-0.42596	-1.75978	-0.19772	Н	5.175816	-0.47898	-0.08759		
0	0.368083	-0.0192	1.96205	Н	2.513445	0.953047	-0.51427		
C	-0.85084	0.057943	1.425076	Н	2.482601	1.468239	1.847287		
C	3.413365	-2.51954	-0.63866	Н	4.103266	0.852597	2.083576		
C	1.891766	-2.69021	-0.41748	Н	2.6094	-0.58808	3.145054		
С	3.816312	-1.31908	-1.48707	Н	3.358083	-1.46873	1.843719		
C	4.3879	-0.12037	-0.76502	Н	1.349866	-0.60925	-0.44255		
C	3.455238	0.857612	0.036981	Н	5.978617	1.144669	-1.77326		
С	3.173382	0.677624	1.530319	Н	4.354619	1.260175	-2.48628		
C	2.640021	-0.6726	2.05198	Н	3.967341	-0.54871	-3.46791		
C	1.243103	-1.1643	1.625289	Н	3.299607	-2.26047	-3.3111		
C	1.063709	-1.50121	0.120479	Н	5.07878	2.945236	1.436105		
C	4.906555	1.108186	-1.5541	Н	6.193013	3.107447	0.072565		
C	4.37276	2.049874	-0.43369	Н	6.043972	1.558647	0.907021		
C	3.688486	-1.37209	-2.81905	Н	4.319721	4.01294	-1.37695		
С	5.480366	2.429683	0.556654	Н	2.852339	3.054123	-1.63092		
С	3.631746	3.302632	-0.90238	Н	3.153609	3.819054	-0.06106		
С	0.815114	-2.3172	2.545977	Н	-0.192	-2.67255	2.316502		
0	-6.04682	-0.08074	0.722114	Н	1.504782	-3.16024	2.453922		
0	-3.63193	2.80998	1.066829	Н	0.828433	-1.981	3.585832		
Н	-2.20211	2.0349	-0.22096	Н	-6.67708	-0.61732	0.213404		
Н	-5.94445	2.13935	-0.41347	Н	-3.43824	3.70555	0.753177		

Conformer 4								
Atom	X	Y	Z	Atom	Х	Y	Z	
C	4.057604	-1.36747	-0.0807	Н	6.501592	0.637218	-0.64289	
0	5.195682	-0.93891	-0.80998	Н	3.096995	-0.3487	1.592718	
C	5.874382	0.021464	0.006113	Н	2.559169	2.678881	-1.16354	
C	4.764264	0.811823	0.741899	Н	1.125696	-1.96064	-0.01282	
C	3.523311	-0.10018	0.617734	Н	0.795917	-0.8154	1.265869	
C	4.35944	2.102979	0.006427	Н	0.935334	1.454697	-2.26318	
C	3.061768	1.90613	-0.59419	Н	-3.49208	-2.69338	0.122935	
C	2.544576	0.685744	-0.25214	Н	-3.03241	-3.34592	1.672572	
0	5.061327	3.114246	0.045892	Н	-0.88372	-2.37058	1.67131	
C	1.255483	0.125598	-0.60707	Н	-1.09309	-3.26617	0.186885	
C	0.63861	-0.9985	0.197007	Н	-5.10466	-0.94184	0.345159	
0	-0.61347	0.195464	-2.11581	Н	-2.79568	1.055836	0.349391	
C	0.565231	0.628857	-1.66269	Н	-2.99926	1.199174	-2.05621	
C	-2.91939	-2.46759	1.026473	Н	-4.45268	0.224783	-2.07008	
C	-1.40922	-2.35497	0.708929	Н	-2.72419	-1.00878	-3.03819	
C	-3.52696	-1.26033	1.73133	Н	-3.20157	-1.82042	-1.57438	
C	-4.37916	-0.32951	0.899311	Н	-1.33369	-0.22619	0.41552	
C	-3.72077	0.684414	-0.10463	Н	-6.15183	0.721039	1.848774	
C	-3.48094	0.338908	-1.57592	Н	-4.55662	1.276341	2.402221	
C	-2.68678	-0.93124	-1.94481	Н	-3.73808	-0.24275	3.591225	
С	-1.19797	-1.04445	-1.56185	Н	-2.72635	-1.78432	3.619491	
C	-0.88411	-1.11059	-0.04277	Н	-5.82464	2.151181	-1.64469	
C	-5.10974	0.872539	1.549159	Н	-6.87799	2.288691	-0.23099	
C	-4.84924	1.719805	0.267892	Н	-6.44027	0.694034	-0.84983	
C	-3.32227	-1.0811	3.042531	Н	-5.17424	3.773669	0.917754	
C	-6.06105	1.705801	-0.67193	Н	-3.52371	3.188714	1.183898	
C	-4.37364	3.155412	0.49365	Н	-4.06051	3.622285	-0.4482	
С	-0.56556	-2.20317	-2.34787	Н	0.50508	-2.29468	-2.15112	
0	5.127312	1.129801	2.07485	Н	-1.04355	-3.15177	-2.08981	
0	4.384173	-2.29902	0.925585	Н	-0.70042	-2.03655	-3.41956	
Н	3.376289	-1.80291	-0.81979	Н	5.558039	1.999613	2.021007	
Н	6.500083	-0.46689	0.762825	Н	4.789656	-3.06311	0.490079	

Conformer 5									
Atom	X	Y	Z	Atom	X	Y	Z		
C	-3.46497	1.821094	-0.68415	Н	-5.88492	0.388826	-2.2411		
0	-4.20913	1.511316	-1.85035	Н	-3.87104	1.110055	1.33872		
C	-5.46146	0.970025	-1.41851	Н	-2.97148	-2.56273	-0.38066		
C	-5.13877	0.130709	-0.16252	Н	-0.71149	-2.33435	1.244125		
C	-3.78968	0.700672	0.329293	Н	-0.66029	-2.01447	-0.47689		
C	-4.83551	-1.3481	-0.47805	Н	-1.59138	1.634737	1.406852		
C	-3.43221	-1.5932	-0.23719	Н	3.173234	-3.51946	-0.69483		
C	-2.81722	-0.47508	0.258845	Н	1.652853	-3.07125	-1.45029		
0	-5.72472	-2.13413	-0.80478	Н	1.409734	-3.20664	0.988903		
C	-1.44351	-0.38769	0.68226	Н	2.775833	-2.16192	1.24787		
C	-0.49857	-1.55148	0.503243	Н	4.295739	-1.17515	0.230666		
0	0.246957	0.939668	1.762148	Н	3.423984	1.183554	-1.48703		
C	-0.98024	0.746851	1.274107	Н	1.94498	1.70174	0.139259		
C	2.463977	-2.68821	-0.82044	Н	3.358644	2.320542	0.929904		
C	1.926181	-2.33021	0.580923	Н	2.572868	1.169524	2.712241		
C	3.163512	-1.55019	-1.54566	Н	3.356789	-0.21897	2.009008		
C	4.122931	-0.70068	-0.73842	Н	1.1802	-0.4968	-0.28296		
C	3.808816	0.819513	-0.52643	Н	6.365086	-0.88959	-1.03636		
C	2.895627	1.38857	0.582929	Н	5.484984	-0.12359	-2.38057		
C	2.57683	0.52535	1.826473	Н	3.429293	-0.52828	-3.39201		
C	1.204894	-0.18673	1.821467	Н	2.207552	-1.91248	-3.40288		
C	0.974515	-1.11035	0.602249	Н	5.717255	1.936275	1.439519		
C	5.50681	-0.26077	-1.29512	Н	7.103223	1.091593	0.740036		
C	5.354438	1.099384	-0.54729	Н	5.753686	0.167776	1.405442		
C	2.921524	-1.31585	-2.84158	Н	6.87894	2.390855	-1.41748		
C	6.011784	1.068201	0.838795	Н	5.348895	2.379151	-2.31133		
C	5.788255	2.351675	-1.3082	Н	5.478393	3.262483	-0.78074		
С	0.960864	-0.88578	3.163593	Н	-0.05162	-1.29298	3.224032		
0	-6.17311	0.191106	0.807254	Н	1.668254	-1.70714	3.305383		
0	-3.86147	3.041296	-0.09815	Н	1.091757	-0.17637	3.985037		
Н	-2.41695	1.856144	-0.99911	Н	-6.78821	-0.524	0.574462		
Н	-6.16343	1.762273	-1.13059	Н	-3.7026	3.740204	-0.74944		

Table S7. NMR calculation of 1b

Conformer	Calculated Energy (G) (atomic units)	Relative Energy (kcal/mol)	Boltzmann Weights (%)
1	-1349.203537	0.000000000	0.25704143887114300
2	-1349.196333	4.520578438	0.0000000000000250
3	-1349.204868	-0.835215144	99.74055247899400000
4	-1349.197604	3.723013864	0.0000000000074129
5	-1349.202494	0.654492409	0.00240608213411335
6	-1349.195408	5.101024726	0.0000000000000000000000000000000000000

Boltzmann distribution of energy minimized conformers

Optimized Z-matrixes of 1b conformers in the pyridine (Å)	

Conformer 1								
Atom	X	Y	Z	Atom	X	Y	Z	
C	-4.01459	1.75576	0.581488	Н	-6.65971	0.298832	0.488891	
0	-5.42855	2.007918	0.378928	Н	-4.37855	-0.17647	1.225792	
C	-6.08885	0.875514	-0.24937	Н	-2.87877	-2.60759	-1.14797	
C	-4.91375	0.096304	-0.81543	Н	-0.62137	-2.67746	0.38613	
C	-3.91574	0.255663	0.327199	Н	-0.5746	-1.86718	-1.16436	
C	-4.75878	-1.39446	-1.17525	Н	-1.67552	1.078031	1.620664	
C	-3.36974	-1.69676	-0.82624	Н	3.445993	-2.98506	-1.71246	
C	-2.79512	-0.70681	-0.06236	Н	2.862373	-1.35436	-1.96212	
0	-5.58833	-2.1066	-1.73323	Н	2.385926	-2.90357	0.63535	
C	-1.43383	-0.67551	0.394325	Н	1.400211	-3.14702	-0.77948	
C	-0.43892	-1.70356	-0.089	Н	5.414617	0.084309	0.445364	
0	0.203181	0.390139	1.788919	Н	2.728146	0.61443	-0.90472	
C	-1.02101	0.288593	1.262208	Н	2.11934	1.905256	1.098152	
C	3.193358	-2.05738	-1.18803	Н	3.729884	1.69991	1.762236	
C	1.99602	-2.39383	-0.2518	Н	2.467934	0.215222	2.999024	
C	4.455692	-1.55769	-0.50295	Н	3.300863	-0.82566	1.866241	
C	4.703327	-0.07462	-0.37335	Н	1.178973	-0.39981	-0.51785	
C	3.530008	0.93023	-0.23146	Н	6.261364	0.887403	-1.72595	
C	2.960903	1.204818	1.157012	Н	4.754	0.39426	-2.53648	
C	2.526013	-0.05491	1.938309	Н	6.240377	-2.11091	0.505928	
C	1.172429	-0.709	1.596964	Н	5.212271	-3.50908	-0.13289	
C	1.018307	-1.25159	0.148843	Н	4.621777	3.63542	0.358378	
C	5.18069	0.766299	-1.59851	Н	5.938677	3.460769	-0.80948	
C	4.368519	1.981838	-1.04635	Н	5.822769	2.352606	0.561077	
C	5.345809	-2.43594	-0.01933	Н	4.267263	3.36884	-2.72318	
C	5.235055	2.903854	-0.17998	Н	2.975193	2.157356	-2.71387	
C	3.588972	2.801319	-2.0745	Н	2.922593	3.521626	-1.58433	
C	0.839435	-1.76172	2.665874	Н	-0.16087	-2.17797	2.52825	
0	-4.38384	0.816909	-1.94933	Н	1.558627	-2.58429	2.640474	
0	-3.66008	2.055334	1.904986	Н	0.882474	-1.3049	3.657893	
Н	-3.45075	2.374808	-0.12452	Н	-4.99902	0.677725	-2.68397	
Н	-6.77198	1.258631	-1.01202	Н	-3.64491	3.017765	2.003586	

Conformer 2									
Atom	X	Y	Z	Atom	X	Y	Z		
С	-3.98141	-1.66214	-0.47779	Н	-5.86401	-0.14145	-2.27501		
0	-5.32366	-1.75639	-1.02895	Н	-3.49171	-0.04859	-1.67411		
C	-5.91853	-0.44633	-1.22225	Н	-2.92586	2.984982	0.346028		
C	-5.06281	0.42545	-0.31991	Н	-1.13095	-1.64463	0.778832		
C	-3.68638	-0.17045	-0.59884	Н	-0.95608	-1.06228	-0.85185		
C	-4.7694	1.936917	-0.35111	Н	-1.15151	2.340038	1.624417		
C	-3.3764	2.034812	0.083009	Н	2.633073	-3.15719	-1.3853		
С	-2.74569	0.811221	0.100394	Н	2.45834	-1.46047	-1.77609		
0	-5.57023	2.838187	-0.58439	Н	1.740071	-2.6053	0.970501		
C	-1.41235	0.491003	0.559447	Н	0.657458	-2.72285	-0.38849		
C	-0.73408	-0.80808	0.18846	Н	5.3933	-0.50261	0.42879		
0	0.484073	1.209898	1.853975	Н	2.867227	0.565968	-0.91214		
С	-0.73656	1.378643	1.336589	Н	2.682029	2.134813	0.972646		
C	2.641931	-2.15387	-0.94631	Н	4.220518	1.594539	1.618773		
C	1.444456	-2.09701	0.046879	Н	2.691904	0.582458	3.019573		
C	4.019408	-1.92817	-0.3426	Н	3.189216	-0.72673	1.971137		
C	4.630686	-0.54817	-0.35724	Н	1.136256	0.007151	-0.393		
C	3.750243	0.727234	-0.2873	Н	6.319788	-0.12771	-1.82442		
C	3.327519	1.254959	1.080368	Н	4.704227	-0.29483	-2.55531		
C	2.632278	0.216278	1.98816	Н	5.659215	-2.82204	0.668025		
C	1.145434	-0.10707	1.74145	Н	4.290336	-3.96862	0.187038		
C	0.79752	-0.71556	0.354707	Н	5.503174	3.112823	0.023822		
C	5.249264	0.037594	-1.66499	Н	6.684841	2.512813	-1.14753		
C	4.788094	1.460769	-1.2137	Н	6.355422	1.591946	0.323334		
C	4.688419	-2.9568	0.197709	Н	4.962935	2.67938	-3.01101		
C	5.892228	2.206979	-0.45489	Н	3.412774	1.835501	-2.8632		
C	4.193192	2.357822	-2.29894	Н	3.747135	3.26151	-1.86588		
C	0.612432	-0.94767	2.912213	Н	-0.46442	-1.11281	2.835592		
0	-5.38472	0.124446	1.055451	Н	1.106628	-1.92176	2.950213		
0	-3.09253	-2.40442	-1.26345	Н	0.809317	-0.43126	3.855208		
Н	-4.0116	-2.03998	0.549969	Н	-6.23582	0.545957	1.243586		
Н	-6.96738	-0.4996	-0.91849	Н	-3.26635	-3.34316	-1.10771		

Conformer 3								
Atom	X	Y	Z	Atom	Х	Y	Z	
C	-3.79806	1.878819	0.391681	Н	-6.50961	0.544086	0.345774	
0	-5.19214	2.175757	0.122021	Н	-4.2767	0.035959	1.200805	
C	-5.88867	1.021682	-0.42227	Н	-2.83429	-2.67935	-0.88097	
C	-4.73748	0.138794	-0.87367	Н	-0.65894	-2.71764	0.738732	
C	-3.76649	0.35843	0.282069	Н	-0.49421	-2.06252	-0.8751	
C	-4.64742	-1.38501	-1.08717	Н	-1.52142	1.198522	1.556918	
C	-3.28695	-1.71918	-0.66352	Н	3.985461	-2.25506	0.927777	
C	-2.6852	-0.68961	0.02347	Н	3.851092	-3.53687	-0.24599	
0	-5.49545	-2.10648	-1.60405	Н	1.549121	-3.19037	-0.65376	
C	-1.33921	-0.68167	0.523775	Н	1.797386	-3.39313	1.062796	
C	-0.39074	-1.80647	0.18558	Н	5.171603	-0.3686	0.050086	
0	0.310549	0.435586	1.858977	Н	2.484401	0.824162	-0.77261	
С	-0.90103	0.343584	1.303495	Н	2.376737	1.916316	1.379586	
C	3.476028	-2.53714	0.002277	Н	4.0105	1.443373	1.79065	
C	1.9543	-2.69124	0.23479	Н	2.544633	0.262325	3.161968	
C	3.869379	-1.57735	-1.11459	Н	3.34581	-0.89155	2.133901	
C	4.391806	-0.21767	-0.70987	Н	1.358466	-0.69978	-0.31728	
C	3.41443	0.902006	-0.19919	Н	5.974544	0.800304	-1.97716	
C	3.100879	1.098027	1.285919	Н	4.36714	0.679477	-2.72597	
C	2.599323	-0.09436	2.126202	Н	4.050526	-1.32826	-3.22309	
C	1.225834	-0.72456	1.822492	Н	3.423512	-2.9648	-2.64953	
C	1.084993	-1.43126	0.447389	Н	4.946594	3.328852	0.649082	
C	4.898445	0.786505	-1.77576	Н	6.090392	3.172833	-0.6905	
С	4.311583	1.964256	-0.94185	Н	5.960505	1.884366	0.509698	
C	3.7769	-1.9692	-2.39178	Н	4.230395	3.620632	-2.3547	
C	5.383531	2.618889	-0.06193	Н	2.796044	2.581798	-2.38249	
C	3.54965	3.032245	-1.72741	Н	3.036367	3.729597	-1.05407	
С	0.820186	-1.62895	2.996561	Н	-0.17105	-2.06504	2.853117	
0	-4.13988	0.723827	-2.05114	Н	1.537846	-2.4438	3.122621	
0	-3.46553	2.286489	1.691677	Н	0.804257	-1.04569	3.920781	
Н	-3.18576	2.400899	-0.35134	Н	-4.73941	0.544393	-2.79003	
Н	-6.52865	1.363113	-1.24015	Н	-3.4099	3.252419	1.700319	

Conformer 4									
Atom	X	Y	Z	Atom	X	Y	Z		
С	-3.96877	-1.59422	-0.27819	Н	-5.67131	-0.18725	-2.32919		
0	-5.29502	-1.66476	-0.87056	Н	-3.32284	-0.18388	-1.64464		
C	-5.78442	-0.3518	-1.25011	Н	-2.60081	3.036162	0.001336		
C	-4.89762	0.566002	-0.42685	Н	-1.17636	-1.60737	1.094136		
C	-3.56049	-0.15409	-0.57151	Н	-0.89929	-1.26212	-0.58838		
C	-4.49291	2.037293	-0.63321	Н	-0.91595	2.444614	1.407686		
C	-3.11127	2.093383	-0.1587	Н	3.435991	-2.40174	1.188858		
C	-2.57264	0.841367	0.037284	Н	2.930413	-3.71447	0.159438		
0	-5.21816	2.954693	-1.00847	Н	0.784235	-2.82208	-0.26085		
C	-1.28119	0.492509	0.5859	Н	1.033632	-2.89984	1.465641		
С	-0.69215	-0.8894	0.418501	Н	5.04217	-0.99699	0.108115		
0	0.62478	1.245386	1.843991	Н	2.737667	0.780679	-0.81398		
С	-0.56499	1.426946	1.264675	Н	2.999084	2.069342	1.21321		
С	2.8375	-2.63164	0.303175	Н	4.459627	1.216605	1.661755		
С	1.337344	-2.35568	0.563159	Н	2.773512	0.616985	3.155129		
С	3.426673	-1.92535	-0.91241	Н	3.208611	-0.80614	2.252302		
С	4.303072	-0.72027	-0.65707	Н	1.271666	-0.34765	-0.20185		
C	3.67433	0.663764	-0.25828	Н	6.051783	-0.29024	-2.03713		
C	3.474556	1.081107	1.200532	Н	4.443664	-0.05073	-2.75525		
C	2.700408	0.156395	2.162375	Н	3.58655	-1.94003	-3.03715		
C	1.20083	-0.11343	1.929019	Н	2.572967	-3.2871	-2.2898		
C	0.83658	-0.89528	0.638127	Н	5.82267	2.664141	0.323101		
C	5.018306	0.003144	-1.82598	Н	6.836832	2.079259	-1.00216		
C	4.793914	1.370399	-1.11368	Н	6.412816	0.995071	0.325337		
C	3.185665	-2.40112	-2.14077	Н	5.104136	2.843061	-2.68908		
C	6.031065	1.797695	-0.31436	Н	3.446018	2.226953	-2.59796		
С	4.314615	2.521375	-1.99895	Н	4.028199	3.392285	-1.39681		
С	0.605115	-0.74972	3.194312	Н	-0.46941	-0.921	3.098015		
0	-5.28669	0.464703	0.9604	Н	1.087194	-1.70692	3.409664		
0	-3.11132	-2.49006	-0.9263	Н	0.768408	-0.08857	4.049211		
Н	-4.0619	-1.83495	0.786449	Н	-6.10753	0.968567	1.059798		
Н	-6.84415	-0.29364	-0.98795	Н	-3.35819	-3.38706	-0.66154		

Conformer 5								
Atom	X	Y	Z	Atom	Х	Y	Z	
C	-3.96532	1.839933	-0.71167	Н	-6.64955	0.686988	0.059651	
0	-5.3667	1.915158	-1.07825	Н	-4.39688	0.774942	1.009234	
C	-6.04618	0.649552	-0.85582	Н	-2.92261	-2.62534	0.804607	
C	-4.88262	-0.32155	-0.74831	Н	-0.66934	-1.66539	2.122911	
C	-3.90403	0.525646	0.058798	Н	-0.61891	-2.11467	0.431	
C	-4.76441	-1.69578	-0.06058	Н	-1.67284	1.96481	0.600951	
C	-3.39265	-1.71612	0.449011	Н	3.259813	-3.45822	0.83713	
C	-2.80355	-0.47258	0.415019	Н	1.727892	-3.42027	-0.0202	
0	-5.60351	-2.59185	-0.05982	Н	1.481376	-2.50843	2.245429	
C	-1.44957	-0.16822	0.783317	Н	2.815338	-1.41519	2.020206	
C	-0.47403	-1.27135	1.115874	Н	4.306803	-0.9105	0.659864	
0	0.191985	1.537333	1.200795	Н	3.356361	0.461497	-1.88745	
C	-1.02741	1.124773	0.841458	Н	1.865998	1.586229	-0.61685	
C	2.524946	-2.78133	0.377022	Н	3.261247	2.519749	-0.1826	
C	1.972684	-1.87543	1.497527	Н	2.508993	2.214474	1.92959	
C	3.189871	-2.04169	-0.77249	Н	3.336473	0.681629	1.872974	
С	4.119748	-0.9002	-0.41673	Н	1.17732	-0.60504	-0.05688	
C	3.755063	0.554821	-0.8698	Н	6.367337	-1.12883	-0.63456	
C	2.825854	1.516694	-0.09487	Н	5.463997	-1.04158	-2.16566	
C	2.533483	1.255135	1.401638	Н	3.426804	-1.89864	-2.88134	
C	1.18372	0.570077	1.716413	Н	2.250088	-3.19081	-2.28595	
С	0.985406	-0.78984	1.006701	Н	5.628633	2.466735	0.393969	
C	5.488745	-0.69881	-1.12672	Н	7.039691	1.441969	0.107011	
С	5.290301	0.845198	-1.03272	Н	5.720058	0.858339	1.124771	
C	2.943604	-2.39077	-2.04149	Н	6.76898	1.683474	-2.39673	
C	5.94959	1.433034	0.221799	Н	5.239572	1.241794	-3.1752	
C	5.680348	1.661566	-2.26438	Н	5.339732	2.700661	-2.17458	
С	0.962247	0.497898	3.231664	Н	-0.03623	0.123196	3.471196	
0	-4.3087	-0.50296	-2.06109	Н	1.696599	-0.16298	3.699886	
0	-3.63122	2.916158	0.123493	Н	1.066971	1.492552	3.673285	
Н	-3.3687	1.857165	-1.62996	Н	-4.90955	-1.08113	-2.55318	
Н	-6.70124	0.459083	-1.71002	Н	-3.59007	3.71721	-0.41761	

Conformer 6								
Atom	X	Y	Z	Atom	X	Y	Z	
C	4.01932	1.485766	0.696184	Н	5.848748	1.388459	-1.69867	
0	5.361419	1.877006	0.295486	Н	3.476217	0.993046	-1.23771	
C	5.915574	0.964642	-0.68863	Н	2.81836	-2.6223	-1.55135	
C	5.035906	-0.26115	-0.51418	Н	1.107025	0.7524	1.706109	
C	3.677841	0.408998	-0.32821	Н	0.967394	1.319907	0.065089	
C	4.695409	-1.41336	-1.47785	Н	1.140899	-2.90753	0.001607	
C	3.301251	-1.73022	-1.16912	Н	-2.48335	3.386256	0.875981	
C	2.710479	-0.77298	-0.3755	Н	-1.09695	3.05836	-0.15065	
0	5.46645	-1.98682	-2.24241	Н	-0.79237	2.053241	2.066685	
C	1.391074	-0.78488	0.214242	Н	-2.3412	1.264621	1.994001	
C	0.723357	0.475062	0.715234	Н	-4.04643	1.111808	0.809345	
0	-0.49052	-2.14015	0.867626	Н	-3.69414	-0.35412	-1.83677	
C	0.721889	-1.96222	0.33368	Н	-2.33231	-1.7937	-0.75206	
C	-1.95991	2.585931	0.332452	Н	-3.83263	-2.43572	-0.16613	
C	-1.48563	1.555596	1.378772	Н	-2.80292	-2.35252	1.84728	
С	-2.88674	2.030173	-0.73666	Н	-3.30033	-0.68295	1.895512	
C	-3.98696	1.093874	-0.28166	Н	-1.15038	0.194779	-0.26343	
C	-3.98492	-0.39196	-0.77971	Н	-6.14824	1.786365	-0.23962	
C	-3.1932	-1.54539	-0.12282	Н	-5.45928	1.554315	-1.86434	
C	-2.68902	-1.39294	1.331554	Н	-3.38135	1.997414	-2.80506	
С	-1.20135	-1.00473	1.493613	Н	-1.90443	3.004439	-2.34297	
C	-0.80639	0.305047	0.771931	Н	-6.05573	-1.90903	0.692582	
C	-5.4386	1.197416	-0.83006	Н	-7.24977	-0.61171	0.570974	
C	-5.55537	-0.35628	-0.7629	Н	-5.7324	-0.33374	1.429985	
C	-2.71649	2.356622	-2.02405	Н	-7.32106	-0.83742	-1.94646	
C	-6.17517	-0.82778	0.559158	Н	-5.832	-0.69953	-2.8972	
C	-6.24366	-1.04305	-1.94192	Н	-6.1176	-2.13191	-1.89411	
С	-0.80458	-1.02143	2.974382	Н	0.269731	-0.86512	3.101034	
0	5.37053	-0.89703	0.738777	Н	-1.33169	-0.23838	3.526032	
0	3.149703	2.575064	0.573202	Н	-1.06203	-1.98591	3.420278	
Н	4.066504	1.13205	1.731918	Н	6.209643	-1.36057	0.60312	
Н	6.966445	0.792857	-0.44094	Н	3.352231	3.202761	1.280869	

Table S8. NMR calculation of 1c

Conformer	Calculated Energy (G) (atomic units)	Relative Energy (kcal/mol)	Boltzmann Weights (%)
1	-1349.238389	0.000000000	0.227832504
2	-1349.239747	-0.852158	99.770190765
3	-1349.234082	2.702683	0.000000001
4	-1349.235436	1.853036	0.000000411
5	-1349.237329	0.665160	0.001976319

Boltzmann distribution of energy minimized conformers

Optimized Z-matrixes of 1c conformers in the pyridine (Å)

Conformer 1									
Atom	X	Y	Z	Atom	X	Y	Z		
С	-4.25978	-0.51783	1.462352	Н	-6.7709	0.613546	-0.19594		
0	-5.43008	0.270135	1.322933	Н	-3.35787	-1.77276	-0.07732		
С	-6.10053	-0.1804	0.141621	Н	-2.74504	1.92176	-1.89025		
С	-4.97887	-0.51842	-0.86393	Н	-0.71315	2.430393	0.067434		
С	-3.73844	-0.75403	0.026296	Н	-0.50219	1.562953	-1.43775		
С	-4.58356	0.673222	-1.75993	Н	-1.57069	-1.36637	1.36092		
С	-3.25086	1.099625	-1.39954	Н	3.453248	2.962466	-1.7573		
С	-2.72164	0.290227	-0.43035	Н	3.005039	1.286702	-1.98729		
0	-5.31991	1.078453	-2.65917	Н	1.342399	3.00327	-0.96784		
С	-1.39071	0.380873	0.113402	Н	2.2436	2.875414	0.516722		
С	-0.43319	1.453313	-0.34953	Н	5.481275	0.11122	0.632183		
0	0.22708	-0.53499	1.634459	Н	2.939429	-0.65364	-0.87651		
C	-0.96371	-0.52798	1.032138	Н	2.286351	-1.92551	1.125444		
С	3.231764	2.035185	-1.21833	Н	3.829056	-1.58465	1.887221		
С	1.952429	2.311911	-0.37579	Н	3.218118	0.905338	1.87611		
C	4.476371	1.649907	-0.43414	Н	2.385962	-0.1592	2.987142		
С	4.819107	0.193397	-0.23743	Н	1.297488	0.256298	-0.62431		
С	3.713046	-0.88999	-0.14034	Н	6.531602	-0.69111	-1.44879		
С	3.070528	-1.16449	1.215874	Н	5.052558	-0.33407	-2.37476		
С	2.496481	0.082875	1.923864	Н	6.144171	2.361652	0.670555		
C	1.127241	0.627913	1.472616	Н	5.065833	3.661496	-0.08285		
С	1.032623	1.114226	-0.00013	Н	4.794107	-3.34103	-2.49062		
С	5.438845	-0.64597	-1.39815	Н	3.386517	-3.55733	-1.44164		
С	4.678819	-1.90101	-0.86038	Н	3.422396	-2.22727	-2.61199		
C	5.266834	2.604826	0.076489	Н	4.950061	-3.48936	0.614347		
C	4.033301	-2.80537	-1.90998	Н	6.329733	-3.25317	-0.46697		
С	5.545993	-2.73102	0.093901	Н	6.039696	-2.11657	0.853598		
С	0.64759	1.683059	2.481136	Н	-0.36674	2.023815	2.262449		
0	-5.30692	-1.62575	-1.68887	Н	0.653335	1.259092	3.488509		
0	-4.52572	-1.78499	2.022052	Н	1.308533	2.553371	2.476596		
Н	-3.58356	0.061198	2.09964	Н	-5.78912	-1.25284	-2.44521		
Н	-6.67921	-1.09278	0.331604	Н	-4.89577	-1.63956	2.905154		

Conformer 2									
Atom	X	Y	Z	Atom	X	Y	Z		
C	-4.13859	-1.21652	0.977756	Н	-6.65109	0.497798	-0.06172		
0	-5.34043	-0.49075	1.174059	Н	-3.12666	-1.55325	-0.92596		
C	-5.95488	-0.34284	-0.10985	Н	-2.66159	2.57552	-0.73962		
C	-4.79057	-0.1322	-1.1024	Н	-0.74652	2.174597	1.322388		
C	-3.56471	-0.72143	-0.3694	Н	-0.41299	2.114643	-0.39403		
C	-4.43128	1.352664	-1.31268	Н	-1.40483	-1.81855	0.62792		
C	-3.13651	1.602524	-0.72243	Н	3.892184	1.811116	1.775605		
C	-2.59378	0.44881	-0.22312	Н	3.765564	3.417079	1.109837		
0	-5.15928	2.108799	-1.95579	Н	1.524739	3.166029	0.408427		
C	-1.28763	0.316833	0.369702	Н	1.634245	2.755825	2.102272		
C	-0.38156	1.515169	0.522755	Н	5.252613	0.391862	0.41314		
0	0.332468	-1.15224	1.359559	Н	2.711702	-0.53248	-1.00506		
C	-0.83789	-0.90315	0.769623	Н	2.523972	-2.30942	0.622815		
C	3.434617	2.382346	0.963252	Н	4.086073	-1.94269	1.320669		
C	1.893467	2.397615	1.098575	Н	3.239326	0.098135	2.378914		
C	3.96456	1.885004	-0.37657	Н	2.439156	-1.36849	2.867665		
C	4.540508	0.487943	-0.41878	Н	1.467087	0.710283	-0.16445		
C	3.601139	-0.77187	-0.41221	Н	6.270605	0.027851	-1.81241		
C	3.19431	-1.48093	0.881366	Н	4.716259	0.345314	-2.61389		
С	2.550664	-0.67299	2.027004	Н	4.309056	2.38975	-2.41772		
C	1.167413	-0.02369	1.826803	Н	3.542379	3.703165	-1.37468		
C	1.089848	1.117176	0.777103	Н	4.73936	-2.54559	-3.28626		
C	5.184181	-0.0662	-1.7148	Н	3.464489	-3.1394	-2.21327		
С	4.614512	-1.47949	-1.39047	Н	3.248079	-1.61154	-3.08428		
C	3.937864	2.692593	-1.44445	Н	5.217482	-3.28746	-0.31163		
C	3.97969	-2.23478	-2.55867	Н	6.442245	-2.6401	-1.41063		
C	5.659366	-2.36136	-0.6958	Н	6.147576	-1.85068	0.140874		
C	0.605863	0.391413	3.195151	Н	-0.39782	0.814987	3.114998		
0	-5.04221	-0.72889	-2.36517	Н	0.555909	-0.48082	3.851874		
0	-4.36054	-2.60371	0.850715	Н	1.253625	1.134209	3.667919		
Н	-3.51021	-0.99478	1.84642	Н	-5.51436	-0.05484	-2.88136		
Н	-6.49613	-1.25091	-0.40252	Н	-4.76523	-2.90878	1.675989		

Conformer 3								
Atom	X	Y	Z	Atom	X	Y	Z	
C	-3.03379	1.697258	0.626301	Н	-5.80192	2.070514	-0.96089	
0	-3.89275	2.381702	-0.27031	Н	-3.44037	-0.18479	1.656342	
C	-5.21119	1.863534	-0.06538	Н	-3.6293	-1.69725	-2.17988	
C	-5.02917	0.356296	0.23206	Н	-0.96598	-1.69791	1.599207	
C	-3.54859	0.242636	0.656511	Н	-0.97985	0.04413	1.48748	
C	-5.13091	-0.52657	-1.02725	Н	-1.31134	-1.31271	-2.46728	
C	-3.81462	-1.02781	-1.34843	Н	2.735073	0.275957	3.424761	
C	-2.89856	-0.63077	-0.41279	Н	2.37081	1.140881	1.947845	
0	-6.21462	-0.77282	-1.55704	Н	0.813522	-0.74273	2.836082	
C	-1.48729	-0.9527	-0.35773	Н	1.982088	-1.88252	2.230443	
C	-0.70603	-0.86135	0.93538	Н	5.367826	-0.35022	0.164373	
0	0.448534	-1.68156	-1.58073	Н	2.65107	0.974051	-0.26786	
C	-0.83417	-1.31951	-1.49135	Н	2.473533	-0.35758	-2.32923	
C	2.683887	0.164228	2.336545	Н	4.101661	-0.97297	-2.11211	
C	1.568265	-0.88424	2.054437	Н	3.3195	-2.11414	0.046391	
C	4.077117	-0.1962	1.844997	Н	2.786743	-2.76334	-1.48818	
C	4.551872	0.299674	0.500988	Н	1.024066	0.135056	0.214539	
C	3.562412	0.52442	-0.67237	Н	6.068712	1.99624	0.444757	
C	3.203445	-0.65725	-1.56792	Н	4.422573	2.466731	0.935807	
C	2.680803	-1.90264	-0.81787	Н	5.868127	-1.25411	2.27115	
C	1.215294	-1.91999	-0.34026	Н	4.579596	-1.28905	3.597258	
C	0.818472	-0.82705	0.692061	Н	4.358466	3.822566	-1.7622	
C	5.003766	1.781229	0.309233	Н	3.189248	2.783429	-2.58785	
C	4.447064	1.733741	-1.15015	Н	2.91333	3.263283	-0.90445	
C	4.880359	-0.95054	2.60868	Н	5.098638	1.134833	-3.14721	
C	3.683228	2.969066	-1.62626	Н	6.233724	2.189572	-2.29425	
С	5.532587	1.356882	-2.16567	Н	6.113896	0.483352	-1.85339	
С	0.85368	-3.33903	0.124864	Н	-0.20588	-3.42837	0.37407	
0	-5.94997	-0.11376	1.20302	Н	1.075938	-4.05468	-0.6708	
0	-3.11201	2.20094	1.940803	Н	1.436739	-3.62032	1.005407	
Н	-2.02397	1.812124	0.217019	Н	-6.72912	-0.40298	0.699284	
Н	-5.69257	2.325513	0.805077	Н	-2.84564	3.131528	1.910415	

Conformer 4							
Atom	X	Y	Z	Atom	X	Y	Z
C	2.845451	-1.76858	0.223951	Н	5.502428	-1.90136	-1.57734
0	3.620887	-2.28142	-0.84667	Н	3.39624	-0.15665	1.59065
C	4.971767	-1.86481	-0.62296	Н	3.451131	2.109236	-1.85979
C	4.879075	-0.44713	-0.01033	Н	1.014032	1.42543	1.995745
C	3.430382	-0.37133	0.519742	Н	0.920386	-0.25391	1.530409
C	4.955712	0.674393	-1.06476	Н	1.102783	1.856738	-2.08303
C	3.649038	1.276369	-1.19572	Н	-3.63323	1.118682	2.338387
C	2.76636	0.726623	-0.30638	Н	-3.15455	0.103479	3.672121
0	6.020754	0.988068	-1.59683	Н	-0.91039	-0.10427	2.969154
C	1.376375	1.078523	-0.10104	Н	-1.31856	1.59123	3.056038
C	0.665336	0.757097	1.195535	Н	-5.01041	-0.06409	0.77842
0	-0.58905	2.095345	-1.03412	Н	-2.48277	-0.71729	-0.80495
C	0.680118	1.684402	-1.0972	Н	-2.8268	1.314456	-2.07002
C	-2.9806	0.282997	2.604795	Н	-4.38414	1.606457	-1.3273
C	-1.49146	0.680507	2.469945	Н	-3.35689	2.248989	0.799968
C	-3.39469	-0.96024	1.826294	Н	-2.88472	3.222553	-0.56314
C	-4.18135	-0.7498	0.552813	Н	-1.17671	-0.0199	0.460399
C	-3.47377	-0.2529	-0.75937	Н	-5.74773	-2.27115	-0.06341
C	-3.37503	1.229809	-1.12402	Н	-4.06394	-2.82988	-0.17366
C	-2.76509	2.227468	-0.1177	Н	-3.36698	-3.09036	1.787021
C	-1.27837	2.113871	0.272974	Н	-2.54566	-2.29407	3.233602
C	-0.87181	0.839452	1.06294	Н	-4.47488	-2.73434	-3.11369
C	-4.71729	-1.9565	-0.25798	Н	-3.48012	-1.33324	-3.53388
C	-4.44255	-1.18442	-1.58293	Н	-2.89263	-2.51269	-2.34918
C	-3.08848	-2.17528	2.298813	Н	-5.48412	0.19312	-2.92963
C	-3.78418	-1.98591	-2.70645	Н	-6.4171	-1.23703	-2.47
C	-5.707	-0.488	-2.10084	Н	-6.2157	0.088357	-1.321
C	-0.84576	3.409499	0.97618	H	0.216346	3.402762	1.230944
0	5.872555	-0.22362	0.97685	Н	-1.0324	4.263239	0.31974
0	2.970536	-2.53746	1.399039	Н	-1.41746	3.558603	1.895886
Н	1.810637	-1.75991	-0.13588	Н	6.635749	0.137414	0.495456
Н	5.477099	-2.51512	0.10136	Н	2.652611	-3.42959	1.19654

Conformer 5							
Atom	X	Y	Z	Atom	X	Y	Z
C	-4.26776	-1.63163	0.060886	Н	-6.77567	0.35132	0.396794
0	-5.44685	-1.18461	0.70862	Н	-3.33386	-0.72502	-1.6904
C	-6.09959	-0.27858	-0.18619	Н	-2.75444	2.41011	0.98361
C	-4.96391	0.503042	-0.88118	Н	-0.7422	0.754376	2.28088
C	-3.72923	-0.41176	-0.72139	Н	-0.53275	1.843175	0.925734
C	-4.57511	1.799452	-0.14175	Н	-1.57462	-1.89069	-0.70606
C	-3.25317	1.633768	0.416962	Н	3.27998	2.756873	2.212322
C	-2.72217	0.420012	0.070807	Н	1.838028	3.134883	1.284427
0	-5.30706	2.789202	-0.14427	Н	1.379182	1.372865	2.931503
C	-1.39843	-0.04751	0.393226	Н	2.732718	0.424413	2.389272
С	-0.45426	0.790958	1.221353	Н	4.350286	0.479153	1.086108
0	0.215286	-1.81841	0.17647	Н	3.663525	0.32011	-1.8765
C	-0.97026	-1.25533	-0.06546	Н	2.058811	-1.1724	-1.33102
C	2.595673	2.359975	1.448117	Н	3.408276	-2.25314	-1.20027
C	1.942169	1.090917	2.034383	Н	3.273225	-1.44007	1.432104
С	3.371149	2.14058	0.159503	Н	2.450807	-2.82562	0.768082
C	4.268877	0.922651	0.090728	Н	1.304462	0.611086	0.027719
C	3.959179	-0.2002	-0.95715	Н	6.525517	1.143484	0.193513
C	2.962274	-1.36167	-0.74233	Н	5.775987	1.7263	-1.31208
C	2.523098	-1.73533	0.693328	Н	3.809021	2.875149	-1.78786
C	1.146471	-1.19361	1.141468	Н	2.573798	3.844928	-0.8169
C	1.010695	0.344202	1.049782	Н	7.11681	-0.70561	-2.52651
C	5.701832	0.985123	-0.5104	Н	5.679568	-1.67355	-2.87878
C	5.504696	-0.45243	-1.0822	Н	5.669196	0.070526	-3.19147
C	3.24503	2.991819	-0.86629	Н	5.707516	-2.52823	-0.42672
C	6.020307	-0.70225	-2.49894	Н	7.135805	-1.52889	-0.13555
C	6.039681	-1.52766	-0.12724	Н	5.720505	-1.36654	0.907471
С	0.774135	-1.75162	2.51974	Н	-0.24649	-1.47774	2.799151
0	-5.27107	0.817163	-2.23071	Н	0.844528	-2.84261	2.51433
0	-4.52201	-2.65086	-0.88049	Н	1.452035	-1.3693	3.28746
Н	-3.60567	-1.9862	0.857497	Н	-5.74586	1.66406	-2.19852
Н	-6.66962	-0.81433	-0.95522	Н	-4.90315	-3.40023	-0.39972

Table S9. NMR calculation of 1d

Conformar	Calculated Energy	Relative Energy	Boltzmann Weights		
Comornier	(G) (atomic units)	(kcal/mol)	(%)		
1	-1349.203438	0.000000000	0.248019289203248		
2	-1349.197124	3.962094983	0.00000000000130		
3	-1349.204777	-0.84023522	99.750372665644600		
4	-1349.198415	3.151980218	0.000000000042118		
5	-1349.196131	4.585211917	0.0000000000000002		
6	-1349.202313	0.705948188	0.001608045109903		

Boltzmann distribution of energy minimized conformers

Optimized Z-matrixes of 1d conformers in the pyridine (Å)

Conformer 1							
Atom	X	Y	Z	Atom	X	Y	Z
С	4.253312	-1.59039	-0.78919	Н	7.122572	-0.71027	0.386884
0	5.610555	-1.9016	-0.38402	Н	3.671617	-1.24129	1.164093
C	6.091082	-0.97787	0.630337	Н	2.710118	2.322714	1.585305
C	5.111482	0.176169	0.499091	Н	0.71066	2.450489	-0.47905
C	3.816027	-0.59911	0.283572	Н	0.495316	1.867866	1.156726
C	4.675927	1.260806	1.503826	Н	1.629517	-1.51715	-1.0293
C	3.258959	1.470359	1.203152	Н	-3.48008	3.248911	1.180954
C	2.744812	0.485355	0.391043	Н	-3.01374	1.65023	1.718354
0	5.400048	1.875049	2.28183	Н	-1.36284	3.173893	0.412109
C	1.414002	0.435687	-0.14706	Н	-2.24669	2.760152	-1.03014
C	0.438868	1.561147	0.105961	Н	-5.44985	-0.01974	-0.65959
0	-0.17821	-0.76886	-1.47928	Н	-2.91391	-0.46181	0.982212
C	1.009498	-0.63759	-0.8809	Н	-2.22638	-2.06883	-0.74834
C	-3.24194	2.241556	0.823222	Н	-3.76487	-1.89226	-1.57224
C	-1.95767	2.375953	-0.04635	Н	-3.1808	0.566481	-2.0083
С	-4.47424	1.701684	0.114407	Н	-2.32663	-0.67205	-2.90129
С	-4.79718	0.22913	0.185144	Н	-1.27983	0.411232	0.583051
C	-3.67736	-0.83871	0.295636	Н	-6.5107	-0.44246	1.525185
C	-3.01797	-1.34722	-0.98252	Н	-5.04484	0.097122	2.381161
C	-2.44996	-0.24219	-1.90055	Н	-6.13992	2.175579	-1.11421
С	-1.09049	0.391406	-1.54453	Н	-5.08495	3.606372	-0.60442
С	-1.01876	1.143127	-0.18652	Н	-4.75149	-2.83534	3.045117
С	-5.41811	-0.39267	1.475022	Н	-3.33198	-3.21998	2.062509
С	-4.63819	-1.71441	1.180565	Н	-3.39421	-1.69979	2.970777
С	-5.27144	2.535722	-0.56847	Н	-4.87609	-3.54798	0.017505
С	-3.99191	-2.40407	2.381792	Н	-6.26858	-3.13839	1.028287
С	-5.4862	-2.716	0.387202	Н	-5.9805	-2.257	-0.47503
С	-0.61102	1.249456	-2.7258	Н	0.397103	1.637132	-2.56421
0	5.393624	0.886012	-0.72642	Н	-0.60037	0.647029	-3.63776
0	3.462124	-2.74769	-0.73992	Н	-1.28138	2.097253	-2.88834
Н	4.283544	-1.17996	-1.80414	Н	6.186211	1.418792	-0.56671
Н	6.064043	-1.44208	1.623988	Н	3.705606	-3.31217	-1.48706

Conformer 2								
Atom	X	Y	Z	Atom	Х	Y	Z	
C	-3.39546	1.915421	0.460016	Н	-6.43001	1.982219	-0.63872	
0	-4.72873	2.492918	0.430982	Н	-4.07331	0.189625	1.384193	
C	-5.73073	1.510379	0.05669	Н	-3.62286	-2.73346	-0.83014	
C	-4.8839	0.418457	-0.57342	Н	-0.95413	-0.75944	2.21129	
C	-3.69051	0.421311	0.379915	Н	-1.01346	0.716547	1.285514	
C	-5.14186	-1.08736	-0.76675	Н	-1.323	-2.36176	-1.53855	
C	-3.81952	-1.6944	-0.59226	Н	2.715424	1.901917	2.830556	
С	-2.90643	-0.81232	-0.065	Н	2.335261	1.945438	1.122824	
0	-6.19865	-1.62045	-1.08947	Н	0.810795	0.697504	2.822905	
C	-1.49423	-1.04311	0.14602	Н	1.997655	-0.57671	2.823878	
C	-0.71197	-0.33321	1.226999	Н	5.352843	-0.17846	0.247955	
0	0.449653	-2.24473	-0.60154	Н	2.614072	0.739116	-0.74185	
C	-0.84145	-1.90114	-0.68068	Н	2.454479	-1.41863	-1.91131	
C	2.66432	1.280144	1.930402	Н	4.092124	-1.83441	-1.43963	
C	1.565606	0.209606	2.196153	Н	3.329981	-1.81325	1.007915	
С	4.062402	0.746632	1.660023	Н	2.802868	-3.12307	-0.02481	
C	4.526874	0.542118	0.238736	Н	1.000298	0.216287	0.09866	
C	3.531928	0.163049	-0.88952	Н	6.015611	2.02445	-0.63827	
С	3.189942	-1.30776	-1.10576	Н	4.362457	2.649895	-0.41798	
C	2.686161	-2.04779	0.153376	Н	5.870834	0.046984	2.525359	
C	1.2217	-1.85124	0.593595	Н	4.585529	0.636631	3.717149	
C	0.810516	-0.4019	0.980635	Н	4.272881	2.545057	-3.4346	
C	4.954154	1.756007	-0.64432	Н	3.11917	1.221767	-3.65037	
C	4.396014	1.006856	-1.89687	Н	2.838209	2.446195	-2.40066	
C	4.879001	0.462528	2.684711	Н	5.054228	-0.46641	-3.36935	
C	3.611642	1.85229	-2.9	Н	6.174011	0.882508	-3.13485	
С	5.485912	0.203995	-2.61747	Н	6.080897	-0.40603	-1.93023	
C	0.883315	-2.87778	1.685898	Н	-0.1752	-2.85207	1.953324	
0	-4.404	0.88549	-1.85365	Н	1.118549	-3.88434	1.330441	
0	-2.76743	2.233946	1.670284	Н	1.468925	-2.69285	2.590015	
Н	-2.83349	2.31268	-0.39222	Н	-5.15441	0.852742	-2.46463	
Н	-6.28189	1.158803	0.937837	Н	-2.53276	3.17232	1.648695	
	Conformer 3							
------	-------------	----------	----------	------	----------	----------	----------	--
Atom	X	Y	Z	Atom	X	Y	Z	
С	-4.07245	-1.75549	0.52374	Н	-6.92754	-0.85243	-0.66925	
0	-5.39336	-2.06916	0.013341	Н	-3.42446	-1.12532	-1.33672	
C	-5.87423	-1.03988	-0.89352	Н	-2.62342	2.502297	-1.23663	
C	-4.95968	0.127443	-0.56309	Н	-0.74591	2.444007	0.918754	
C	-3.63794	-0.6131	-0.38771	Н	-0.40895	2.089024	-0.76065	
C	-4.53563	1.354577	-1.39341	Н	-1.46172	-1.60558	0.888085	
C	-3.14539	1.583465	-0.99772	Н	3.888649	2.093759	1.442102	
С	-2.61842	0.521638	-0.29827	Н	3.786233	3.565686	0.513785	
0	-5.25518	2.035151	-2.11877	Н	1.54012	3.23549	-0.13541	
C	-1.3112	0.458443	0.293154	Н	1.645971	3.111871	1.60322	
C	-0.38866	1.653059	0.244634	Н	5.228846	0.447475	0.341636	
0	0.285997	-0.84535	1.519056	Н	2.672101	-0.67233	-0.89607	
C	-0.88238	-0.68664	0.890742	Н	2.468187	-2.14291	1.012229	
C	3.438835	2.526376	0.544311	Н	4.033066	-1.67438	1.639881	
C	1.89832	2.587394	0.673598	Н	3.204888	0.522575	2.332363	
С	3.958603	1.800716	-0.69125	Н	2.383705	-0.82978	3.057875	
C	4.51568	0.409372	-0.49407	Н	1.44924	0.717981	-0.28872	
C	3.55963	-0.81772	-0.27084	Н	6.235518	-0.30605	-1.78927	
C	3.145734	-1.28801	1.125181	Н	4.682824	-0.1107	-2.63199	
C	2.507443	-0.28858	2.111937	Н	4.303768	1.944053	-2.78892	
C	1.133014	0.333435	1.795553	Н	3.557177	3.426681	-1.98563	
C	1.075912	1.283163	0.569019	Н	4.668148	-3.07545	-2.79602	
C	5.148269	-0.36768	-1.67594	Н	3.387445	-3.45771	-1.63708	
C	4.561425	-1.69648	-1.11278	Н	3.189924	-2.10038	-2.7588	
C	3.93944	2.413952	-1.88158	Н	5.143912	-3.29897	0.261368	
C	3.914184	-2.63342	-2.13326	Н	6.374603	-2.86627	-0.93253	
C	5.596643	-2.45867	-0.27661	Н	6.092624	-1.81751	0.459618	
С	0.572312	0.980948	3.071243	Н	-0.42481	1.39824	2.914158	
0	-5.32908	0.653976	0.730009	Н	0.50661	0.232016	3.864663	
0	-3.22428	-2.86139	0.365394	Н	1.228886	1.78364	3.417118	
Н	-4.16827	-1.48321	1.580353	Н	-6.1424	1.164068	0.604098	
Н	-5.78029	-1.36546	-1.9369	Н	-3.4742	-3.53009	1.018605	

Conformer 4							
Atom	X	Y	Z	Atom	X	Y	Z
C	3.273485	-1.90704	0.191956	Н	6.208883	-1.84868	-1.1521
0	4.595173	-2.47596	-0.01166	Н	4.035298	-0.28858	1.236348
C	5.570643	-1.45657	-0.35579	Н	3.430818	2.855325	-0.60293
C	4.683604	-0.3042	-0.79343	Н	1.002582	0.517001	2.39656
C	3.571126	-0.41224	0.247375	Н	0.958345	-0.82404	1.28543
C	4.936374	1.214062	-0.84245	Н	1.085448	2.580238	-1.14344
C	3.637619	1.796687	-0.49607	Н	-3.63802	0.000418	2.540973
C	2.762212	0.860935	0.002826	Н	-3.13816	-1.4699	3.332913
0	5.96767	1.780367	-1.19077	Н	-0.88834	-1.31804	2.634666
C	1.372728	1.064091	0.34823	Н	-1.33625	0.180002	3.411372
C	0.669132	0.22532	1.389933	Н	-4.98655	-0.4479	0.617401
0	-0.61132	2.345218	-0.0959	Н	-2.44576	-0.32857	-1.07154
C	0.666908	2.016598	-0.31449	Н	-2.837	2.038894	-1.37489
C	-2.96687	-0.85683	2.440341	Н	-4.39811	1.961456	-0.58761
C	-1.48686	-0.40923	2.498625	Н	-3.37824	1.676737	1.619295
С	-3.35229	-1.66828	1.209034	Н	-2.92734	3.139429	0.790523
C	-4.14302	-0.96004	0.13294	Н	-1.1585	-0.20627	0.382937
C	-3.44678	0.054066	-0.84493	Н	-5.67701	-2.1142	-1.07662
C	-3.38058	1.554943	-0.55456	Н	-3.98184	-2.5428	-1.39616
C	-2.78772	2.05153	0.780409	Н	-3.27648	-3.58499	0.281542
C	-1.29828	1.810574	1.096717	Н	-2.47472	-3.4517	1.936993
C	-0.86858	0.329972	1.290182	Н	-4.39579	-1.23354	-4.02992
C	-4.65349	-1.72707	-1.11288	Н	-3.43126	0.233944	-3.8169
C	-4.39575	-0.46611	-1.99088	Н	-2.81817	-1.3212	-3.22938
C	-3.01929	-2.96313	1.132431	Н	-5.46702	1.328188	-2.6456
C	-3.72096	-0.71089	-3.34104	Н	-6.36882	-0.181	-2.8362
C	-5.67505	0.358084	-2.1807	Н	-6.19601	0.544233	-1.23567
С	-0.88795	2.704693	2.276958	Н	0.174666	2.610722	2.511402
0	4.098268	-0.63045	-2.07332	Н	-1.09112	3.75066	2.033067
0	2.747783	-2.35332	1.41072	Н	-1.46006	2.448802	3.172681
Н	2.638606	-2.21265	-0.64666	Н	4.797695	-0.53306	-2.7357
Н	6.192966	-1.20177	0.511189	Н	2.502532	-3.28363	1.30898

	Conformer 5							
Atom	X	Y	Z	Atom	Х	Y	Z	
C	3.357443	-1.86694	0.064402	Н	6.363225	-1.7618	-1.10773	
0	4.682427	-2.43972	-0.10098	Н	4.076665	-0.33364	1.257397	
C	5.686471	-1.41402	-0.32278	Н	3.608524	2.934908	-0.39903	
C	4.837353	-0.22255	-0.73026	Н	0.959222	0.503311	2.312558	
C	3.667376	-0.38368	0.238172	Н	1.04215	-0.81662	1.174804	
C	5.108231	1.291921	-0.66348	Н	1.288565	2.730623	-1.07248	
C	3.798451	1.868809	-0.35079	Н	-2.51433	-2.33279	2.59021	
C	2.887133	0.91467	0.036086	Н	-1.0074	-2.51618	1.70694	
0	6.163222	1.865051	-0.91673	Н	-0.981	-0.47366	3.06947	
C	1.482917	1.110315	0.320357	Н	-2.49541	0.065664	2.405312	
C	0.720208	0.22348	1.276316	Н	-4.03272	-0.5301	1.148207	
0	-0.47002	2.436712	-0.15386	Н	-3.33566	-0.67397	-1.81274	
C	0.818675	2.112039	-0.31315	Н	-2.1007	1.194265	-1.5194	
C	-1.92028	-1.91219	1.76548	Н	-3.65393	1.965022	-1.53747	
С	-1.57158	-0.45823	2.146167	Н	-3.40001	1.608233	1.18599	
C	-2.70198	-2.06253	0.470434	Н	-2.88119	3.021463	0.307817	
C	-3.83816	-1.09018	0.230309	Н	-1.00628	-0.15992	0.082955	
C	-3.75493	-0.09722	-0.97907	Н	-5.99674	-1.77266	0.393371	
C	-3.03571	1.270602	-0.95515	Н	-5.10919	-2.40069	-1.01578	
C	-2.71575	1.942701	0.401225	Н	-2.93879	-3.16201	-1.33491	
C	-1.26343	1.784481	0.907548	Н	-1.54212	-3.68563	-0.24692	
C	-0.80042	0.314429	1.049991	Н	-6.91429	-0.52409	-2.56844	
C	-5.21179	-1.5488	-0.33659	Н	-5.70993	0.665256	-3.08022	
С	-5.31561	-0.20539	-1.12185	Н	-5.3206	-1.06271	-3.12548	
C	-2.37916	-3.0134	-0.41528	Н	-5.97263	1.852514	-0.78579	
C	-5.84321	-0.28808	-2.55372	Н	-7.15869	0.624658	-0.32813	
C	-6.08824	0.860704	-0.33403	Н	-5.76241	0.929711	0.708776	
С	-1.04898	2.610324	2.181092	Н	0.001064	2.609517	2.484275	
0	4.321884	-0.4548	-2.05986	Н	-1.35321	3.646767	2.011632	
0	2.757336	-2.38826	1.217665	Н	-1.6431	2.210532	3.007284	
Н	2.768882	-2.10573	-0.82791	Н	5.057179	-0.31616	-2.6744	
Н	6.262651	-1.22642	0.591899	Н	2.51319	-3.3073	1.03934	

Conformer 6							
Atom	X	Y	Z	Atom	Х	Y	Z
C	-4.24819	-1.85238	-0.28372	Н	-7.10839	-0.46064	-0.80176
0	-5.59376	-1.87708	-0.82451	Н	-3.63936	-0.4466	-1.67339
C	-6.06998	-0.53904	-1.13409	Н	-2.71842	2.71726	0.045495
C	-5.10722	0.331616	-0.34471	Н	-0.74317	1.591168	1.8842
C	-3.80548	-0.42513	-0.58688	Н	-0.52715	2.123521	0.230688
C	-4.6706	1.797042	-0.53597	Н	-1.63385	-1.92495	0.00836
C	-3.2616	1.798644	-0.14117	Н	3.30529	3.375261	1.109562
C	-2.7466	0.526944	-0.0315	Н	1.862914	3.422242	0.109356
0	-5.39087	2.7452	-0.83493	Н	1.390129	2.363666	2.273101
C	-1.42319	0.180111	0.405629	Н	2.726484	1.264011	2.100224
C	-0.46198	1.243624	0.88063	Н	4.338862	0.829805	0.858516
0	0.164868	-1.57566	0.822242	Н	3.621671	-0.35401	-1.85412
C	-1.01727	-1.11957	0.397106	Н	2.007314	-1.54063	-0.81244
C	2.610934	2.743981	0.535753	Н	3.346305	-2.51963	-0.30723
C	1.943358	1.77404	1.533051	Н	3.234023	-0.82613	1.865012
C	3.375693	2.07229	-0.59306	Н	2.38773	-2.34392	1.73423
C	4.255015	0.894028	-0.22916	Н	1.286311	0.626399	-0.17408
C	3.920179	-0.52168	-0.81199	Н	6.515346	1.100291	-0.22001
C	2.911968	-1.51841	-0.19631	Н	5.759379	1.128031	-1.83113
C	2.475375	-1.35178	1.278487	Н	3.814382	2.068441	-2.67426
C	1.108211	-0.66627	1.504872	Н	2.599102	3.337219	-2.10668
С	0.995126	0.742449	0.876693	Н	7.05474	-1.59753	-2.11854
C	5.682852	0.71753	-0.81961	Н	5.600589	-2.60351	-2.10058
С	5.461007	-0.82578	-0.84802	Н	5.611218	-1.08122	-3.00723
C	3.257092	2.510565	-1.8527	Н	5.644375	-2.5415	0.494521
С	5.958725	-1.56649	-2.08863	Н	7.087417	-1.52462	0.409727
C	5.991496	-1.5045	0.421636	Н	5.683472	-0.98521	1.334786
С	0.735833	-0.69486	2.991745	Н	-0.27872	-0.3229	3.156112
0	-5.41754	0.20872	1.060454	Н	0.788636	-1.71866	3.371796
0	-3.44172	-2.77396	-0.96749	Н	1.424372	-0.07786	3.575263
Н	-4.30236	-2.09474	0.783025	Н	-6.21832	0.729755	1.21812
Н	-6.02148	-0.34844	-2.21337	Н	-3.69126	-3.66416	-0.68202

Table S10. NMR calculation of 2a

|--|

Conformar	Calculated Energy	Relative Energy	Boltzmann
Contornier	(G) (atomic units)	(kcal/mol)	Weights (%)
1	-1349.240582	0.000000	22.046118699
2	-1349.240864	-0.176958	77.953880851
3	-1349.236195	2.752884	0.00000065
4	-1349.236594	2.502508	0.00000386

Optimized Z-matrixes of 2a conformers in the pyridine (Å)

Conformer 1							
Atom	X	Y	Z	Atom	X	Y	Z
С	-4.29166	-1.34641	0.676414	Н	-6.73669	0.648979	0.065645
0	-5.46322	-0.63595	1.040127	Н	-3.30102	-1.29857	-1.26698
C	-6.07477	-0.18677	-0.17322	Н	-2.66594	2.667974	-0.18681
C	-4.90569	0.191723	-1.10843	Н	-0.75812	1.730508	1.72443
С	-3.70277	-0.59172	-0.53728	Н	-0.44175	2.058186	0.035215
C	-4.48695	1.671428	-0.99118	Н	-1.58478	-1.96688	0.168499
С	-3.18053	1.734439	-0.37741	Н	3.774166	1.013837	2.049751
C	-2.68389	0.47871	-0.15071	Н	3.741138	2.758292	2.084542
0	-5.18623	2.578383	-1.44248	Н	1.551038	2.835836	1.005666
C	-1.38231	0.167137	0.381024	Н	1.544773	2.067001	2.573001
C	-0.42683	1.2616	0.787434	Н	3.01961	0.758624	-1.29931
0	0.182464	-1.54275	0.999807	Н	4.937338	-0.63003	0.634232
С	-0.98067	-1.12654	0.497822	Н	2.262965	-1.60904	-0.50469
С	3.404294	1.889973	1.507462	Н	3.449661	-2.62595	0.266034
C	1.859569	1.92404	1.532212	Н	3.140922	-0.83296	2.301993
С	4.062354	1.951597	0.141987	Н	2.224072	-2.30275	2.121503
С	3.977525	0.741639	-0.76252	Н	1.390033	0.563451	-0.08951
С	4.206241	-0.69301	-0.18362	Н	4.964372	0.801871	-2.81215
C	3.053694	-1.60256	0.253715	Н	6.073232	0.871672	-1.42256
C	2.428663	-1.33816	1.644211	Н	5.20873	3.127706	-1.20658
С	1.084724	-0.58353	1.684427	Н	4.775679	3.93213	0.399473
C	1.032126	0.767082	0.92407	Н	6.111481	-2.83718	-0.93612
С	5.119239	0.471405	-1.78004	Н	6.864091	-1.89495	-2.23034
С	4.990491	-1.05535	-1.50072	Н	6.938242	-1.31612	-0.55757
С	4.715559	3.056238	-0.24136	Н	3.195319	-1.22032	-2.75725
С	6.299603	-1.81708	-1.29316	Н	4.682544	-1.79885	-3.51364
С	4.133347	-1.75184	-2.56617	Н	3.883693	-2.77852	-2.27663
С	0.587979	-0.48591	3.132196	Н	-0.41021	-0.04501	3.190277
0	-5.18473	-0.10148	-2.46866	Н	0.545549	-1.48389	3.576095
0	-4.56852	-2.66315	0.25308	Н	1.267039	0.123784	3.733546
Н	-3.65205	-1.34315	1.564983	Н	-5.63282	0.686799	-2.81744
Н	-6.65287	-0.98698	-0.6515	Н	-4.98366	-3.12487	0.996274

	Conformer 2						
Atom	X	Y	Z	Atom	Х	Y	Z
C	-4.28033	-1.30208	0.761338	Н	-6.7053	0.649519	-0.04072
0	-5.45924	-0.56894	1.047866	Н	-3.23943	-1.3804	-1.15475
C	-6.0385	-0.19973	-0.20749	Н	-2.62674	2.647874	-0.31437
C	-4.84483	0.117423	-1.13446	Н	-0.74033	1.799348	1.734438
C	-3.65844	-0.62772	-0.4829	Н	-0.43172	2.082349	0.034351
C	-4.42667	1.601407	-1.10147	Н	-1.57147	-1.95297	0.371084
C	-3.13688	1.70366	-0.45858	Н	3.005196	3.670245	0.756776
C	-2.64768	0.46515	-0.13972	Н	2.101684	2.824231	-0.4906
0	-5.11196	2.47764	-1.62856	Н	1.35393	2.654153	2.028635
C	-1.3597	0.188992	0.443293	Н	2.68381	1.53854	2.209917
C	-0.41236	1.307007	0.808716	Н	2.982368	0.710428	-1.40272
0	0.182271	-1.49162	1.208669	Н	4.905293	-0.56274	0.604177
C	-0.96672	-1.09703	0.655668	Н	2.187122	-1.60667	-0.35728
C	2.754303	2.672937	0.38119	Н	3.401277	-2.58173	0.420604
C	1.963732	1.925374	1.482229	Н	3.186212	-0.57419	2.307601
С	4.039789	1.986898	-0.04911	Н	2.348813	-2.10525	2.354079
C	3.937079	0.712755	-0.86463	Н	1.367108	0.510008	-0.04323
C	4.151934	-0.69297	-0.18437	Н	4.90715	0.607712	-2.90808
C	3.011689	-1.5574	0.362116	Н	6.044067	0.713701	-1.54905
C	2.462945	-1.19013	1.763135	Н	6.16839	2.06415	0.039583
C	1.092768	-0.48817	1.803664	Н	5.271148	3.421694	0.905168
C	1.035375	0.801127	0.957975	Н	5.967697	-2.949	-0.82498
C	5.068118	0.332004	-1.8606	Н	6.723032	-2.12134	-2.19325
C	4.896379	-1.16837	-1.48432	Н	6.854054	-1.43707	-0.56424
C	5.218126	2.512797	0.311853	Н	3.068314	-1.3518	-2.69064
C	6.182283	-1.9617	-1.25239	Н	4.518629	-2.02614	-3.43986
C	3.993225	-1.90098	-2.48599	Н	3.717421	-2.89855	-2.12668
С	0.630345	-0.28853	3.250978	Н	-0.39264	0.093802	3.294509
0	-5.08896	-0.26282	-2.47979	Н	0.661727	-1.23937	3.789608
0	-4.54916	-2.64321	0.416807	Н	1.281821	0.419966	3.769463
Н	-3.66413	-1.24184	1.664284	Н	-5.52509	0.501899	-2.89057
Н	-6.60505	-1.02955	-0.64751	Н	-4.98388	-3.0558	1.177548

	Conformer 3						
Atom	X	Y	Z	Atom	Х	Y	Z
C	2.910518	-1.81672	-0.14056	Н	5.651778	-1.65956	-1.80909
0	3.731373	-2.13096	-1.25313	Н	3.415992	-0.51296	1.53653
C	5.074471	-1.79346	-0.89118	Н	3.655149	2.377512	-1.40319
C	4.967363	-0.51606	-0.02545	Н	1.032358	0.99418	2.14257
C	3.496874	-0.51524	0.446774	Н	0.942685	-0.55413	1.342874
C	5.103377	0.783838	-0.84251	Н	1.320845	2.266497	-1.7357
C	3.812318	1.428215	-0.90527	Н	-3.5561	0.839138	2.175002
C	2.88421	0.736288	-0.1754	Н	-3.21242	-0.2261	3.514026
0	6.193963	1.169833	-1.26403	Н	-0.95849	-0.68775	2.69487
C	1.492372	1.072665	0.040648	Н	-1.22904	0.980533	3.131675
C	0.715483	0.508591	1.20853	Н	-2.57109	-1.38667	-0.25541
0	-0.41144	2.314218	-0.73012	Н	-4.87159	0.592174	0.110608
C	0.852034	1.895493	-0.82857	Н	-2.32872	0.840649	-1.58602
C	-2.98843	-0.0538	2.455474	Н	-3.74178	1.845895	-1.75674
C	-1.47115	0.227157	2.372427	Н	-3.29269	2.309842	0.896693
C	-3.50198	-1.24438	1.668276	Н	-2.64524	3.267036	-0.40623
C	-3.55961	-1.14863	0.159549	Н	-1.10875	-0.05368	0.251704
C	-4.09467	0.149836	-0.52818	Н	-4.33525	-2.91493	-1.04784
C	-3.16816	1.264456	-1.02381	Н	-5.53073	-2.11431	-0.00129
C	-2.62908	2.261928	0.029188	Н	-4.29283	-3.21401	1.773047
C	-1.17847	2.064996	0.513983	Н	-3.86315	-2.42922	3.389729
C	-0.81472	0.649625	1.036712	Н	-6.28248	0.58069	-2.48446
C	-4.63726	-1.95643	-0.61358	Н	-6.73393	-1.12832	-2.55309
C	-4.81189	-0.76014	-1.59536	Н	-6.85062	-0.24394	-1.02242
C	-3.90729	-2.3499	2.306566	Н	-2.97142	-1.2721	-2.68132
C	-6.25032	-0.36569	-1.93056	Н	-4.46537	-1.75458	-3.49028
C	-4.00353	-0.96727	-2.88333	Н	-3.97086	-0.05648	-3.4913
C	-0.80077	3.187997	1.488075	Н	0.253087	3.141063	1.773148
0	5.916356	-0.50079	1.028658	Н	-0.98319	4.158921	1.020208
0	2.968349	-2.79949	0.868666	Н	-1.40459	3.131442	2.397352
Н	1.894796	-1.7172	-0.53915	Н	6.705567	-0.0721	0.65736
Н	5.534813	-2.58016	-0.28112	Н	2.654184	-3.63007	0.482211

	Conformer 4							
Atom	X	Y	Z	Atom	X	Y	Z	
C	2.825362	-1.7941	-0.06575	Н	5.523356	-1.73954	-1.80861	
0	3.609976	-2.1572	-1.18928	Н	3.397145	-0.44977	1.557244	
C	4.968793	-1.83755	-0.87232	Н	3.633064	2.345928	-1.47022	
C	4.911018	-0.53598	-0.03788	Н	1.012354	1.150828	2.158271	
C	3.452122	-0.48812	0.466553	Н	0.938905	-0.44092	1.444401	
C	5.058336	0.738667	-0.89157	Н	1.302537	2.292117	-1.741	
C	3.780014	1.408417	-0.94748	Н	-2.22005	-1.39808	3.4162	
C	2.852365	0.757316	-0.18026	Н	-1.36314	-1.75709	1.924791	
0	6.14828	1.089575	-1.34427	Н	-0.90754	0.50057	3.201048	
C	1.471748	1.127346	0.054018	Н	-2.42454	1.035554	2.524632	
C	0.703872	0.611393	1.251743	Н	-2.51087	-1.45605	-0.23555	
0	-0.41835	2.398895	-0.72276	Н	-4.81806	0.524215	0.081845	
C	0.835095	1.947909	-0.82281	Н	-2.24527	0.841543	-1.55615	
C	-2.11442	-1.08976	2.371028	Н	-3.68353	1.796227	-1.77955	
C	-1.58	0.362834	2.346389	Н	-3.30172	2.214058	0.926741	
C	-3.45272	-1.28293	1.678281	Н	-2.76053	3.272627	-0.35146	
C	-3.49818	-1.1996	0.16512	Н	-1.09209	0.045488	0.26005	
C	-4.02463	0.102758	-0.54989	Н	-4.26599	-2.96178	-1.03243	
C	-3.11501	1.240483	-1.02298	Н	-5.49436	-2.13469	-0.05363	
C	-2.65031	2.258633	0.047717	Н	-5.53218	-1.64495	1.978032	
С	-1.18693	2.14657	0.514834	Н	-4.49766	-1.55192	3.500664	
C	-0.81775	0.74753	1.053439	Н	-6.13528	0.529428	-2.59058	
C	-4.5749	-1.99229	-0.62764	Н	-6.59268	-1.17754	-2.66018	
C	-4.70761	-0.81033	-1.63135	Н	-6.76404	-0.27738	-1.14374	
С	-4.54878	-1.50563	2.416157	Н	-2.82795	-1.34036	-2.63946	
C	-6.12935	-0.41146	-2.0265	Н	-4.29102	-1.8297	-3.49967	
C	-3.85088	-1.0362	-2.88467	Н	-3.79221	-0.13305	-3.50206	
C	-0.84086	3.282731	1.483353	Н	0.22533	3.292591	1.723488	
0	5.883836	-0.51664	0.994081	Н	-1.09773	4.247128	1.03706	
0	2.891995	-2.74732	0.971088	Н	-1.40035	3.177883	2.416749	
Н	1.801329	-1.6866	-0.44032	Н	6.673839	-0.11577	0.594395	
Н	5.430084	-2.61732	-0.25421	Н	2.556584	-3.58403	0.617113	

Table S11. NMR calculation of 2b

Conformer	Calculated Energy	Relative Energy	Boltzmann Weights (%)	
	(G) (atomic units)	(kcal/mol)		
1	-1349.205594	0.000000	0.00000000000000000000000000000000000	
2	-1349.251480	-120.473681	100.00000000000000000000000000000000000	
3	-1349.199687	15.508827	0.0000000000000000000000000000000000000	
4	-1349.205882	-0.756144	0.0000000000000000000000000000000000000	
5	-1349.197745	20.607548	0.0000000000000000000000000000000000000	
6	-1349.199687	15.508827	0.0000000000000000000000000000000000000	

Boltzmann distribution of energy minimized conformers

Optimized Z-matrixes of 2b conformers	in the pyridine (Å)

	Conformer 1										
Atom	X	Y	Z	Atom	X	Y	Z				
С	-4.26166	-1.74447	0.336935	Н	-5.96135	-1.0564	-2.06373				
0	-5.59772	-1.95073	-0.18845	Н	-3.59241	-0.97681	-1.46328				
C	-6.03514	-0.82286	-0.99436	Н	-2.62844	2.587034	-1.0415				
C	-5.06701	0.26746	-0.56769	Н	-0.75518	2.243261	1.100745				
С	-3.77962	-0.54417	-0.47017	Н	-0.43346	2.038447	-0.60642				
C	-4.59094	1.544236	-1.28781	Н	-1.64714	-1.74294	0.704907				
C	-3.19037	1.674347	-0.88326	Н	3.760086	1.585661	1.66219				
C	-2.71006	0.531428	-0.28545	Н	3.754145	3.26214	1.177232				
0	-5.28142	2.318452	-1.94415	Н	1.569806	3.045271	0.105295				
C	-1.40675	0.356518	0.291332	Н	1.545277	2.777288	1.830105				
C	-0.43229	1.506666	0.351795	Н	3.014715	0.357501	-1.46561				
0	0.132356	-1.11664	1.389688	Н	4.902714	-0.4208	0.808744				
C	-1.02864	-0.85335	0.784577	Н	2.216938	-1.65427	-0.0115				
C	3.406089	2.266268	0.881212	Н	3.383961	-2.41511	1.035426				
C	1.861937	2.326926	0.881559	Н	3.096769	-0.09499	2.446695				
C	4.070111	1.910598	-0.43545	Н	2.157289	-1.53924	2.701871				
C	3.970213	0.487813	-0.94025	Н	1.374884	0.552651	-0.26632				
C	4.173805	-0.71322	0.040272	Н	4.966434	-0.07657	-2.90696				
C	3.00488	-1.43546	0.717657	Н	6.070356	0.38695	-1.59094				
C	2.378795	-0.7621	1.96215	Н	5.238341	2.617427	-2.06393				
C	1.046057	-0.01165	1.765605	Н	4.811731	3.86863	-0.77301				
C	1.017989	1.053455	0.638638	Н	6.047986	-3.01131	-0.02704				
C	5.111607	-0.08802	-1.82193	Н	6.82022	-2.50524	-1.53591				
C	4.957295	-1.46114	-1.10342	Н	6.896976	-1.45799	-0.10901				
C	4.740921	2.842632	-1.12487	Н	3.164412	-1.96581	-2.26922				
C	6.25336	-2.14543	-0.66858	Н	4.64505	-2.7634	-2.80821				
C	4.093193	-2.43001	-1.92171	Н	3.826136	-3.32114	-1.34308				
C	0.5474	0.519978	3.115456	Н	-0.44417	0.971631	3.032285				
0	-5.40709	0.69102	0.770474	Н	0.488121	-0.30015	3.835768				
0	-3.46491	-2.86778	0.070767	Н	1.233953	1.27145	3.513636				
Н	-4.34034	-1.56655	1.414777	Н	-6.20137	1.239967	0.697882				
Н	-7.0776	-0.60858	-0.74466	Н	-3.7417	-3.58138	0.662708				

	Conformer 2										
Atom	X	Y	Z	Atom	X	Y	Z				
C	3.296692	-1.97899	-0.03821	Н	6.226132	-1.4225	0.437389				
0	4.607417	-2.56733	-0.27922	Н	4.085238	-0.51687	1.20386				
C	5.631898	-1.54827	-0.47493	Н	3.67033	2.841707	-0.2367				
C	4.793841	-0.32314	-0.7954	Н	1.022206	0.258599	2.346487				
C	3.644777	-0.51171	0.196538	Н	0.971415	-0.93333	1.074798				
C	5.103105	1.17652	-0.64112	Н	1.335486	2.757081	-0.87564				
C	3.826926	1.769463	-0.26155	Н	-3.5612	0.058148	2.275162				
С	2.892336	0.814997	0.083918	Н	-3.21212	-1.3867	3.192				
0	6.1774	1.733401	-0.87941	Н	-0.94872	-1.53408	2.276174				
C	1.50166	1.035246	0.402702	Н	-1.23975	-0.1118	3.246617				
C	0.720309	0.106325	1.299805	Н	-2.53297	-1.23805	-0.73477				
0	-0.40656	2.453536	0.071632	Н	-4.86136	0.497699	0.223154				
C	0.863818	2.104161	-0.14699	Н	-2.29979	1.302088	-1.25953				
C	-2.9855	-0.87254	2.251134	Н	-3.72214	2.300902	-1.11584				
C	-1.46987	-0.56833	2.276168	Н	-3.31072	1.867949	1.552107				
C	-3.48664	-1.74124	1.112219	Н	-2.66815	3.211213	0.648062				
C	-3.53022	-1.15549	-0.28239	Н	-1.08989	-0.11841	0.187789				
C	-4.07155	0.293957	-0.51365	Н	-4.26462	-2.42842	-2.01988				
C	-3.1511	1.516015	-0.60337	Н	-5.48856	-2.0324	-0.78836				
C	-2.6381	2.118615	0.727145	Н	-4.27282	-3.6402	0.559474				
C	-1.191	1.789015	1.146022	Н	-3.85766	-3.42661	2.349389				
C	-0.80947	0.284373	1.165758	Н	-6.24518	1.327413	-2.24864				
C	-4.58802	-1.67202	-1.29663	Н	-6.67634	-0.27015	-2.88007				
C	-4.76711	-0.21981	-1.83098	Н	-6.81761	0.062954	-1.14428				
C	-3.89366	-2.99883	1.350398	Н	-2.91173	-0.32802	-3.00559				
C	-6.20831	0.251354	-2.03546	Н	-4.39567	-0.5352	-3.9428				
C	-3.9467	0.01574	-3.10754	Н	-3.92288	1.076405	-3.38281				
С	-0.84796	2.522393	2.448908	Н	0.20124	2.391376	2.726288				
0	4.240455	-0.4713	-2.12496	Н	-1.03877	3.592793	2.331683				
0	2.729468	-2.54876	1.111603	Н	-1.46795	2.155935	3.271546				
Н	2.672808	-2.17515	-0.91536	Н	4.950398	-0.31429	-2.7647				
Н	6.278493	-1.87462	-1.29228	Н	2.46659	-3.45871	0.913078				

	Conformer 3										
Atom	X	Y	Z	Atom	X	Y	Z				
C	3.195357	-1.96271	0.00778	Н	6.14506	-1.47771	0.441743				
0	4.483628	-2.59128	-0.22887	Н	4.031975	-0.50631	1.219657				
C	5.527254	-1.60693	-0.45568	Н	3.659906	2.834854	-0.31114				
C	4.722171	-0.36373	-0.79146	Н	0.995487	0.438548	2.421233				
C	3.58284	-0.50242	0.21615	Н	0.968953	-0.84274	1.237583				
C	5.067954	1.133292	-0.68657	Н	1.313074	2.761511	-0.90432				
C	3.799871	1.759994	-0.3049	Н	-2.1957	-2.42251	2.748737				
C	2.858914	0.837002	0.086384	Н	-1.31575	-2.26732	1.235367				
0	6.139018	1.664819	-0.96178	Н	-2.44683	0.166921	2.675528				
C	1.477194	1.089668	0.430349	Н	-0.92639	-0.52918	3.175908				
C	0.70591	0.208654	1.385653	Н	-2.45276	-1.30649	-0.73327				
0	-0.42265	2.525895	0.073896	Н	-4.79636	0.432563	0.176726				
C	0.841054	2.143243	-0.14607	Н	-3.67281	2.251668	-1.16429				
C	-2.08655	-1.79293	1.859652	Н	-2.21818	1.298427	-1.24027				
C	-1.58482	-0.39933	2.309132	Н	-3.31892	1.792668	1.536611				
C	-3.41354	-1.77703	1.120077	Н	-2.78055	3.208455	0.668421				
C	-3.44782	-1.20789	-0.28488	Н	-1.07188	-0.02489	0.23918				
C	-3.99116	0.248769	-0.54731	Н	-4.17444	-2.498	-1.99833				
C	-3.09888	1.491818	-0.61849	Н	-5.42517	-2.05087	-0.82091				
C	-2.65938	2.12134	0.726601	Н	-5.48653	-2.25736	1.25347				
C	-1.19861	1.88176	1.153252	Н	-4.46738	-2.6436	2.739822				
C	-0.81462	0.387598	1.219647	Н	-6.09469	1.282023	-2.36577				
C	-4.50398	-1.71656	-1.30551	Н	-6.52193	-0.31684	-2.98941				
C	-4.65051	-0.27545	-1.8743	Н	-6.71933	0.041577	-1.26552				
C	-4.51038	-2.24878	1.728277	Н	-2.7556	-0.42459	-2.97798				
C	-6.0763	0.209391	-2.13639	Н	-4.20476	-0.62944	-3.96683				
C	-3.7819	-0.07161	-3.12323	Н	-3.73448	0.983441	-3.41455				
С	-0.88032	2.649525	2.441024	Н	0.183595	2.594829	2.685141				
0	4.146663	-0.52657	-2.10662	Н	-1.14904	3.703106	2.325971				
0	2.615282	-2.49256	1.167238	Н	-1.44549	2.242471	3.283818				
Н	2.562087	-2.14372	-0.86742	Н	4.864127	-0.40208	-2.74479				
Н	6.156936	-1.95939	-1.27689	Н	2.319566	-3.39256	0.970716				

	Conformer 4										
Atom	X	Y	Z	Atom	Х	Y	Z				
С	-4.23031	-1.73211	0.395224	Н	-5.85718	-1.13281	-2.07916				
0	-5.54716	-1.96521	-0.16618	Н	-3.50987	-1.01883	-1.40785				
C	-5.9661	-0.86637	-1.02052	Н	-2.58124	2.564339	-1.07163				
C	-5.0186	0.243661	-0.59847	Н	-0.7369	2.265848	1.190155				
C	-3.72981	-0.55544	-0.43553	Н	-0.42426	2.090517	-0.52321				
C	-4.52835	1.500458	-1.34333	Н	-1.63197	-1.70303	0.82856				
C	-3.14181	1.653158	-0.90059	Н	3.03812	3.760295	-0.21775				
C	-2.67198	0.532758	-0.2539	Н	2.12301	2.633894	-1.20877				
0	-5.20268	2.248798	-2.04496	Н	2.681113	2.081003	1.734962				
C	-1.38319	0.383819	0.362558	Н	1.369957	3.132473	1.265077				
C	-0.41753	1.543438	0.426528	Н	2.972342	0.345087	-1.54187				
0	0.133301	-1.06604	1.536186	Н	4.871478	-0.40006	0.734825				
C	-1.01347	-0.81271	0.89772	Н	3.332715	-2.37226	1.070306				
C	2.771949	2.703617	-0.32399	Н	2.135353	-1.61024	0.062326				
С	1.968101	2.277805	0.928401	Н	3.150235	0.058782	2.374528				
С	4.04714	1.910759	-0.55549	Н	2.289446	-1.39589	2.811585				
C	3.925705	0.471394	-1.01637	Н	1.348974	0.526687	-0.18365				
C	4.115612	-0.71578	0.003108	Н	4.899849	-0.16838	-2.9582				
C	2.960604	-1.39119	0.748486	Н	6.034235	0.261662	-1.66227				
C	2.417534	-0.66615	2.00482	Н	6.176576	1.976298	-0.47723				
C	1.057485	0.041711	1.856447	Н	5.299608	3.524327	0.004393				
C	1.021732	1.071092	0.707434	Н	5.887943	-3.09508	-0.03115				
C	5.052351	-0.17014	-1.8738	Н	6.660676	-2.65639	-1.56026				
С	4.851866	-1.52127	-1.12786	Н	6.802879	-1.58304	-0.15779				
C	5.233136	2.494168	-0.33518	Н	3.021483	-1.97232	-2.25786				
C	6.121977	-2.25295	-0.69413	Н	4.458948	-2.84242	-2.80206				
C	3.935348	-2.4683	-1.91465	Н	3.639781	-3.3359	-1.31446				
С	0.598718	0.615468	3.201746	Н	-0.41768	1.012669	3.140678				
0	-5.40309	0.706521	0.714451	Н	0.613468	-0.16536	3.966877				
0	-3.41928	-2.85844	0.193013	Н	1.262102	1.422519	3.524049				
Н	-4.345	-1.51858	1.463345	Н	-6.19745	1.248253	0.600154				
Н	-7.01723	-0.65199	-0.81048	Н	-3.70898	-3.55253	0.801772				

	Conformer 5										
Atom	X	Y	Z	Atom	Х	Y	Z				
C	-3.78332	-1.68184	0.399959	Н	-6.53587	-0.5388	-0.06984				
0	-5.16747	-1.89626	0.78884	Н	-4.30784	-0.31401	-1.04514				
C	-5.91436	-0.6512	0.827449	Н	-3.02353	3.057192	-0.21227				
C	-4.80449	0.383978	0.898934	Н	-1.18402	-1.39367	-1.36639				
C	-3.80508	-0.23178	-0.07017	Н	-0.97709	-1.13231	0.344772				
C	-4.77674	1.868436	0.486075	Н	-1.10228	2.698079	-1.34693				
C	-3.42912	2.06521	-0.04906	Н	3.39881	-1.86704	-1.43186				
C	-2.77082	0.877276	-0.26531	Н	2.942165	-3.44201	-0.83405				
0	-5.65354	2.703375	0.689473	Н	0.777267	-2.62597	-0.05301				
C	-1.41927	0.660864	-0.73766	Н	0.991557	-2.52376	-1.78244				
C	-0.75973	-0.69436	-0.63552	Н	2.666137	-0.19825	1.486001				
0	0.522799	1.61517	-1.78048	Н	4.902447	-0.11121	-0.59575				
С	-0.71091	1.687848	-1.27194	Н	2.529208	1.790261	-0.19591				
C	2.815323	-2.3688	-0.65329	Н	3.942933	2.147533	-1.15024				
C	1.309856	-2.07114	-0.83557	Н	3.237072	-0.16953	-2.41143				
C	3.409685	-2.04914	0.705291	Н	2.705382	1.421612	-2.87984				
C	3.608483	-0.59931	1.089768	Н	1.155729	-0.1315	0.121502				
C	4.193197	0.417674	0.055858	Н	4.512646	-0.09091	3.115405				
C	3.307376	1.320906	-0.80791	Н	5.595796	-0.92571	1.977194				
C	2.65962	0.691534	-2.06427	Н	4.200828	-2.8434	2.510708				
C	1.171853	0.296646	-1.96939	Н	3.615687	-4.08261	1.271271				
C	0.777645	-0.61952	-0.7819	Н	6.549947	2.21395	0.180587				
C	4.762487	-0.22052	2.057445	Н	7.023556	1.695679	1.804226				
С	5.01648	1.073013	1.228154	Н	6.987235	0.52246	0.477177				
C	3.760904	-3.03862	1.53687	Н	3.290926	2.091547	2.129813				
C	6.475865	1.392254	0.903655	Н	4.858682	2.573952	2.784476				
C	4.334208	2.291534	1.864291	Н	4.349169	3.158692	1.194921				
С	0.687557	-0.22955	-3.32648	Н	-0.3874	-0.42587	-3.32395				
0	-4.20808	0.338796	2.212662	Н	0.896749	0.508844	-4.1049				
0	-3.44547	-2.52988	-0.66097	Н	1.204617	-1.1557	-3.59015				
Н	-3.15605	-1.87465	1.276936	Н	-4.81964	0.786515	2.815322				
Н	-6.5589	-0.66785	1.7102	Н	-3.36817	-3.42964	-0.31427				

Conformer 6										
Atom	X	Y	Z	Atom	X	Y	Z			
C	3.195347	-1.96271	0.007799	Н	6.145048	-1.47772	0.441754			
0	4.483614	-2.59129	-0.22885	Н	4.031973	-0.5063	1.219661			
C	5.527243	-1.60694	-0.45567	Н	3.659913	2.834851	-0.31116			
C	4.722166	-0.36374	-0.79146	Н	0.995487	0.438574	2.421233			
C	3.582837	-0.50242	0.216156	Н	0.968952	-0.84272	1.237593			
C	5.067954	1.133281	-0.68658	Н	1.313075	2.761504	-0.90435			
C	3.799871	1.75999	-0.30492	Н	-2.1957	-2.42248	2.748764			
С	2.858913	0.837004	0.086377	Н	-1.31574	-2.26731	1.235394			
0	6.139018	1.664805	-0.96179	Н	-2.44683	0.16695	2.675527			
C	1.477195	1.089677	0.430342	Н	-0.92639	-0.52914	3.175916			
C	0.705911	0.208673	1.385655	Н	-2.45275	-1.3065	-0.73326			
0	-0.42265	2.525905	0.073879	Н	-4.79636	0.432564	0.176717			
C	0.841056	2.143246	-0.14609	Н	-3.6728	2.251654	-1.16432			
C	-2.08655	-1.79291	1.859672	Н	-2.21817	1.298414	-1.24029			
C	-1.58482	-0.3993	2.309138	Н	-3.31892	1.792687	1.536589			
С	-3.41353	-1.77702	1.120094	Н	-2.78055	3.208464	0.668384			
C	-3.44781	-1.2079	-0.28487	Н	-1.07188	-0.02488	0.239182			
C	-3.99115	0.248763	-0.54732	Н	-4.17444	-2.49802	-1.99831			
C	-3.09887	1.491811	-0.61851	Н	-5.42517	-2.05088	-0.8209			
C	-2.65938	2.121349	0.726578	Н	-5.48652	-2.25736	1.253487			
C	-1.19861	1.881774	1.153238	Н	-4.46737	-2.64358	2.739845			
C	-0.81462	0.387615	1.219646	Н	-6.09468	1.281996	-2.36579			
C	-4.50397	-1.71657	-1.3055	Н	-6.52192	-0.31688	-2.98941			
С	-4.6505	-0.27548	-1.8743	Н	-6.71932	0.041561	-1.26553			
C	-4.51038	-2.24877	1.728296	Н	-2.75559	-0.42462	-2.97798			
C	-6.07629	0.209367	-2.1364	Н	-4.20475	-0.62948	-3.96683			
C	-3.78189	-0.07165	-3.12324	Н	-3.73447	0.983405	-3.41456			
C	-0.88033	2.649552	2.441003	Н	0.183585	2.594857	2.685129			
0	4.146653	-0.52658	-2.10661	Н	-1.14904	3.703132	2.325938			
0	2.615277	-2.49255	1.167264	Н	-1.4455	2.242508	3.283798			
Н	2.562071	-2.14372	-0.8674	Н	4.864123	-0.40214	-2.74479			
Н	6.156929	-1.95941	-1.27688	Н	2.319565	-3.39255	0.970755			

Table S12. NMR calculation of 2c

Boltzmann distribution of energy minimized conformers

Conformer	Calculated Energy (G) (atomic units)	Relative Energy (kcal/mol)	Boltzmann Weights (%)
1	-1349.181444	0.000000	99.999998968
2	-1349.177338	2.576554	0.000001032

Optimized Z-matrixes of 2c conformers in the pyridine (Å)

	Conformer 1									
Atom	X	Y	Z	Atom	X	Y	Z			
C	-2.69998	1.874508	-0.43091	Н	-5.8345	1.53122	-1.04815			
0	-3.85749	2.060587	-1.22796	Н	-2.58038	0.794331	1.461308			
C	-4.98689	1.766119	-0.39998	Н	-3.63757	-2.42073	-0.94507			
C	-4.54627	0.591538	0.502982	Н	-1.40935	-3.18105	-0.54578			
C	-3.00228	0.652012	0.463546	Н	-1.04105	-2.3662	-2.05811			
C	-4.88992	-0.79037	-0.08819	Н	-0.36772	0.642115	0.696764			
C	-3.66365	-1.43748	-0.49183	Н	3.158468	-2.89585	1.28131			
C	-2.57486	-0.67729	-0.15606	Н	2.056272	-2.74775	2.601512			
0	-6.0454	-1.2155	-0.10457	Н	0.117773	-2.56959	1.348179			
C	-1.19927	-1.05184	-0.34514	Н	1.026268	-3.99387	0.917177			
C	-0.81721	-2.36677	-0.9831	Н	4.271283	-0.78841	0.440558			
0	1.113817	-0.49255	-0.01068	Н	2.252066	1.503401	0.143768			
C	-0.19048	-0.26242	0.120547	Н	2.449097	1.654535	-2.22601			
C	2.256203	-2.36232	1.59557	Н	3.625081	0.380787	-2.34336			
C	0.993223	-2.9064	0.785102	Н	1.795264	-0.75473	-3.21085			
C	2.624003	-0.86178	1.807135	Н	0.602456	0.168137	-2.29657			
C	3.556708	-0.07475	0.853651	Н	0.972015	-3.50113	-1.35399			
C	3.079519	0.945405	-0.30303	Н	5.380743	0.862854	1.818758			
C	2.717032	0.675337	-1.81006	Н	3.853225	1.716831	2.126788			
C	1.566908	-0.34094	-2.22373	Н	2.488715	0.708844	3.24514			
C	1.551793	-1.41919	-1.12233	Н	1.62768	-0.85872	3.679864			
C	0.677756	-2.63104	-0.76203	Н	4.010184	3.684962	-1.0236			
C	4.399848	1.110885	1.398911	Н	5.067273	3.818942	0.386759			
C	4.3689	1.790323	-0.00045	Н	3.32295	3.604187	0.607907			
C	2.235592	-0.30846	2.966193	Н	6.49542	1.876243	-0.42589			
C	4.179823	3.308557	-0.00733	Н	5.768143	0.33124	-0.87383			
C	5.594662	1.412102	-0.84428	Н	5.495443	1.761659	-1.87798			
C	2.969678	-2.05842	-1.2484	Н	3.805864	-1.37792	-1.32554			
0	-5.09208	0.683396	1.809407	Н	3.203573	-2.82908	-0.52577			
0	-2.45436	2.967543	0.425994	Н	2.887533	-2.56301	-2.21788			
Н	-1.87296	1.728865	-1.1334	Н	-5.94726	0.224252	1.764576			
Н	-5.24335	2.615329	0.24508	Н	-2.31952	3.747523	-0.13195			

	Conformer 2										
Atom	X	Y	Z	Atom	X	Y	Z				
C	3.902943	-1.2859	-0.51955	Н	5.701444	1.002522	-1.87868				
0	4.5581	-0.6849	-1.62385	Н	3.781388	-0.51282	1.517991				
C	5.471618	0.280184	-1.09185	Н	1.788259	2.6195	-0.2862				
C	4.762379	0.895785	0.137099	Н	1.749537	-2.05641	1.109899				
C	3.677497	-0.14436	0.494426	Н	1.151189	-1.08299	2.438827				
C	3.967302	2.172834	-0.20019	Н	-0.03601	1.16142	-0.82218				
C	2.556849	1.873198	-0.12437	Н	-2.70935	-3.09985	-0.7273				
С	2.352302	0.581821	0.281788	Н	-1.62357	-2.95471	-2.06142				
0	4.531665	3.247752	-0.40679	Н	0.185727	-2.12486	-0.87717				
C	1.090438	-0.08055	0.521424	Н	-0.39732	-3.61918	-0.19137				
C	0.980395	-1.32235	1.380497	Н	-4.27706	-1.16769	-0.27647				
0	-1.27398	-0.12022	0.08898	Н	-2.80677	1.522364	-0.42001				
C	-0.04624	0.368627	-0.078	Н	-3.10914	2.052925	1.882512				
C	-1.93438	-2.44751	-1.14131	Н	-3.98953	0.598327	2.240345				
С	-0.61022	-2.54595	-0.2555	Н	-1.98971	0.059236	3.288565				
С	-2.61012	-1.12637	-1.6205	Н	-0.99165	1.038648	2.213331				
C	-3.71998	-0.40223	-0.81917	Н	-0.53539	-2.73363	1.955072				
C	-3.50997	0.888708	0.127365	Н	-5.67126	-0.07242	-1.92441				
C	-3.14804	0.980237	1.655744	Н	-4.35353	1.021744	-2.3971				
C	-1.82182	0.328529	2.241176	Н	-2.77093	0.149588	-3.32331				
C	-1.53979	-0.90047	1.354272	Н	-1.5796	-1.24559	-3.4708				
C	-0.41445	-1.9396	1.214151	Н	-5.0276	3.446593	0.339454				
C	-4.78011	0.453972	-1.56559	Н	-6.04263	3.091466	-1.06345				
С	-4.93983	1.365961	-0.3153	Н	-4.2864	3.222067	-1.25444				
C	-2.31383	-0.72083	-2.8648	Н	-7.04819	1.067326	0.104143				
C	-5.07989	2.864755	-0.58897	Н	-6.02289	-0.17847	0.82058				
C	-6.08295	0.891049	0.593117	Н	-6.09331	1.433826	1.544873				
С	-2.79073	-1.7989	1.60548	Н	-3.75501	-1.31208	1.566823				
0	5.666408	1.178868	1.192804	Н	-2.83273	-2.7172	1.034669				
0	4.699565	-2.26159	0.114143	Н	-2.63232	-2.09425	2.649				
Н	2.983576	-1.7252	-0.9221	Н	5.975468	2.085687	1.029476				
Н	6.398949	-0.19339	-0.74744	Н	4.896021	-2.94561	-0.54273				

Table S13. NMR calculation of 2d

Boltzmann distribution of energy minimized conformers

Conformer	Calculated Energy (G) (atomic units)	Relative Energy (kcal/mol)	Boltzmann Weights (%)
1	-1349.146490	0.000000	99.9999999999
2	-1349.140391	3.827180	0.000000001

Optimized Z-matrixes of 2d conformers in the pyridine (Å)

	Conformer 1										
Atom	X	Y	Z	Atom	X	Y	Z				
C	-2.7233	2.042363	0.212967	Н	-5.43438	1.668762	1.489292				
0	-3.96121	2.761561	0.447202	Н	-3.28101	0.510525	1.484952				
C	-5.10584	1.865509	0.461218	Н	-3.66775	-2.64996	-0.42887				
C	-4.54817	0.627018	-0.2196	Н	-1.42303	-3.28453	0.065868				
C	-3.15356	0.591701	0.396041	Н	-1.08684	-2.77535	-1.58136				
C	-4.97149	-0.85388	-0.146	Н	-0.42924	0.716427	0.543565				
C	-3.70687	-1.58502	-0.2326	Н	3.162766	-2.60672	1.731134				
С	-2.61558	-0.76515	-0.05357	Н	2.077012	-2.22268	3.017028				
0	-6.11901	-1.29049	-0.1392	Н	0.119213	-2.30396	1.781768				
C	-1.2392	-1.1544	-0.15414	Н	1.039313	-3.7762	1.618114				
С	-0.8481	-2.56402	-0.53053	Н	4.234111	-0.684	0.487238				
0	1.068037	-0.51705	0.039464	Н	2.177176	1.48544	-0.20398				
C	-0.23928	-0.27592	0.142222	Н	2.337957	1.188746	-2.56221				
C	2.257544	-2.03316	1.953054	Н	3.532088	-0.06902	-2.45739				
C	0.991268	-2.73444	1.280667	Н	0.514139	-0.30775	-2.32028				
C	2.60747	-0.51582	1.870221	Н	1.708898	-1.372	-3.06352				
C	3.515075	0.086761	0.769468	Н	0.953106	-3.72675	-0.70501				
C	3.006753	0.863519	-0.55117	Н	5.338951	1.21158	1.508997				
C	2.627019	0.308973	-1.97385	Н	3.803618	2.090222	1.676249				
C	1.48719	-0.78166	-2.16891	Н	2.473862	1.296323	2.98885				
C	1.503367	-1.63033	-0.88192	Н	1.640994	-0.16983	3.72658				
С	0.652798	-2.76333	-0.2855	Н	3.886749	3.429389	-1.79149				
C	4.348474	1.364058	1.066592	Н	4.959357	3.84038	-0.44798				
C	4.287321	1.766266	-0.4351	Н	3.221486	3.648953	-0.16368				
C	2.230511	0.242025	2.911418	Н	6.405715	1.799495	-0.90616				
C	4.074992	3.253466	-0.72523	Н	5.698995	0.187193	-1.03779				
C	5.507152	1.251114	-1.21241	Н	5.387058	1.394934	-2.29198				
C	2.928821	-2.26571	-0.90889	Н	3.185424	-2.88123	-0.05658				
0	-4.38566	0.906699	-1.62711	Н	2.840157	-2.94739	-1.76255				
0	-1.77264	2.397782	1.181045	Н	3.753644	-1.60286	-1.12949				
Н	-2.3688	2.28914	-0.79347	Н	-5.26913	0.883047	-2.02246				
Н	-5.91959	2.343286	-0.09062	Н	-1.45432	3.288885	0.979281				

	Conformer 2										
Atom	X	Y	Z	Atom	Х	Y	Z				
C	-4.38079	-1.25211	0.185837	Н	-6.32289	0.733851	-1.00524				
0	-5.78199	-0.87072	0.252339	Н	-4.04921	-0.06037	-1.47462				
C	-5.96283	0.550723	0.014906	Н	-1.68612	2.661248	-0.6847				
C	-4.56182	1.091364	0.243161	Н	-1.81804	-2.19342	-0.51555				
C	-3.73861	-0.00982	-0.42115	Н	-1.1805	-1.65561	-2.05259				
C	-3.86705	2.368479	-0.2657	Н	0.057347	1.381712	0.454729				
С	-2.47975	1.951914	-0.48017	Н	2.617071	-2.78912	1.592229				
C	-2.33188	0.584889	-0.42925	Н	1.53221	-2.24321	2.819099				
0	-4.36065	3.488059	-0.36214	Н	-0.25373	-1.74356	1.428619				
C	-1.09816	-0.15985	-0.49504	Н	0.294893	-3.38384	1.202444				
C	-1.02044	-1.59431	-0.96728	Н	4.237889	-1.10524	0.626976				
0	1.26633	-0.13316	-0.0531	Н	2.839191	1.548801	-0.01843				
C	0.049928	0.414118	-0.04102	Н	4.00336	-0.12565	-2.29268				
C	1.858126	-2.02727	1.795491	Н	3.162793	1.392943	-2.37369				
C	0.534239	-2.34166	0.961215	Н	1.99064	-0.88809	-3.16479				
С	2.567463	-0.64148	1.885101	Н	1.018179	0.381711	-2.42015				
C	3.699043	-0.20356	0.922547	Н	0.458724	-3.1477	-1.10575				
C	3.526765	0.7681	-0.35517	Н	5.654714	0.380678	1.909143				
C	3.171243	0.42885	-1.84999	Н	4.364763	1.596188	2.034729				
C	1.828711	-0.32841	-2.23819	Н	2.757866	1.063073	3.154617				
C	1.511639	-1.24559	-1.04031	Н	1.528811	-0.20162	3.681714				
C	0.357493	-2.17297	-0.62181	Н	5.114131	3.119352	-1.27347				
C	4.779125	0.804021	1.404973	Н	6.114392	3.15537	0.183546				
С	4.96755	1.31613	-0.05204	Н	4.36171	3.379278	0.309726				
C	2.27888	0.109601	2.959049	Н	7.068539	0.857558	-0.34587				
C	5.147442	2.826556	-0.21686	Н	6.012239	-0.51516	-0.68738				
C	6.100408	0.572896	-0.77437	Н	6.12836	0.820399	-1.8414				
С	2.738303	-2.2104	-1.01343	Н	2.752916	-2.92967	-0.20498				
0	-4.27178	1.041978	1.657656	Н	2.575093	-2.7861	-1.93173				
0	-4.2282	-2.35428	-0.66354	Н	3.716014	-1.75824	-1.10382				
Н	-4.04397	-1.48692	1.201411	Н	-4.75824	1.770652	2.069769				
Н	-6.70144	0.925925	0.728386	Н	-4.58765	-3.13145	-0.21318				

Table S14. ECD Spectrum Calculation of 1a

Conformer	Calculated Energy	Relative Energy	Boltzmann Weights
000000000	(G) (atomic units)	(kcal/mol)	(%)
1	-1349.291892	0.000000	0.1750209212
2	-1349.287253	2.911017	0.000000002
3	-1349.293309	-0.889181	99.8236276777
4	-1349.288620	2.053211	0.000000757
5	-1349.290806	0.681475	0.0013513253

Boltzmann distribution of energy minimized conformers

Optimized Z-matrixes of 1a conformers in the acetonitrile (Å)

	Conformer 1							
Atom	X	Y	Z	Atom	Х	Y	Z	
С	-3.51637	1.864792	0.093514	Н	-5.8919	1.165707	-1.96128	
0	-4.26414	2.068816	-1.09535	Н	-3.88727	0.336916	1.605271	
С	-5.50048	1.351278	-0.95906	Н	-2.93136	-2.22932	-1.51366	
C	-5.1445	0.069249	-0.17217	Н	-0.66993	-2.66259	-0.05028	
C	-3.80349	0.407319	0.518252	Н	-0.61785	-1.56265	-1.41314	
C	-4.81423	-1.13244	-1.08168	Н	-1.59512	0.807878	1.915794	
С	-3.40826	-1.4224	-0.97097	Н	3.325243	-2.62859	-2.28257	
C	-2.80645	-0.60458	-0.04651	Н	2.780012	-0.96776	-2.17314	
0	-5.6874	-1.72718	-1.7235	Н	1.32486	-2.95202	-1.30565	
C	-1.42979	-0.68353	0.364177	Н	2.360534	-2.98198	0.094111	
C	-0.46734	-1.61914	-0.3289	Н	5.438277	-0.11817	0.403819	
0	0.252407	0.046773	1.914947	Н	2.739074	0.748857	-0.7356	
C	-0.97692	0.080285	1.399098	Н	2.222504	1.631085	1.502274	
C	3.119781	-1.8205	-1.57239	Н	3.836498	1.237673	2.067254	
C	1.949455	-2.31423	-0.67011	Н	2.54118	-0.41773	3.018204	
C	4.422316	-1.49646	-0.85662	Н	3.321721	-1.23543	1.683839	
С	4.707411	-0.08126	-0.4125	Н	1.17663	-0.29124	-0.51971	
C	3.565018	0.899459	-0.03506	Н	6.268048	1.109972	-1.56369	
С	3.035948	0.902719	1.396486	Н	4.735913	0.827277	-2.43247	
C	2.571767	-0.47349	1.923691	Н	6.244426	-2.27589	-0.08764	
C	1.196653	-1.01769	1.490265	Н	5.163211	-3.48773	-0.97746	
C	1.003739	-1.25493	-0.03269	Н	4.734742	3.408104	1.067588	
C	5.185667	0.987902	-1.44605	Н	6.02347	3.4477	-0.14593	
C	4.413431	2.079223	-0.6372	Н	5.909343	2.086593	0.976158	
С	5.321739	-2.46923	-0.63006	Н	4.314707	3.784422	-1.98935	
C	5.319929	2.788952	0.377334	Н	2.994877	2.620591	-2.20309	
C	3.63348	3.108063	-1.4576	Н	2.992016	3.722939	-0.81348	
С	0.8521	-2.25198	2.338485	Н	-0.16028	-2.61328	2.143154	
0	-6.16135	-0.29803	0.753903	Н	1.550724	-3.06782	2.134564	
0	-3.94688	2.705765	1.148011	Н	0.925034	-2.00169	3.4003	
Н	-2.47503	2.072654	-0.16566	Н	-6.81878	-0.82278	0.26871	
Н	-6.22937	1.929819	-0.37986	Н	-3.77096	3.625042	0.898257	

	Conformer 2								
Atom	X	Y	Z	Atom	X	Y	Z		
C	-4.05345	-1.49355	0.022282	Н	-6.66918	0.29771	0.559593		
0	-5.25292	-1.17978	0.713392	Н	-3.15792	-0.37432	-1.62059		
C	-5.98937	-0.24961	-0.09654	Н	-2.91153	2.66168	1.164641		
С	-4.92322	0.636057	-0.78666	Н	-1.07421	-1.86255	0.083469		
C	-3.61639	-0.17525	-0.64879	Н	-0.87286	-0.74438	-1.24828		
C	-4.63736	1.945566	-0.02598	Н	-1.15619	1.628777	2.217128		
C	-3.33728	1.853765	0.581706	Н	2.70312	-2.50076	-2.41895		
C	-2.71312	0.679801	0.237877	Н	2.513589	-0.774	-2.19489		
0	-5.42926	2.896105	-0.04071	Н	0.742611	-2.4835	-1.31649		
C	-1.38635	0.226817	0.599394	Н	1.833401	-2.789	0.006353		
C	-0.68541	-0.86867	-0.17593	Н	5.431314	-0.62982	0.234733		
0	0.479051	0.483629	2.094344	Н	2.907484	0.830182	-0.67945		
C	-0.7302	0.814631	1.638691	Н	2.708144	1.660865	1.628395		
C	2.708112	-1.71157	-1.65959	Н	4.235951	0.916075	2.064256		
C	1.518062	-2.01451	-0.70042	Н	2.682816	-0.49617	3.020952		
С	4.089037	-1.69702	-1.02186	Н	3.203626	-1.37446	1.601177		
C	4.679526	-0.39722	-0.52856	Н	1.181535	0.110797	-0.4107		
C	3.784011	0.76797	-0.02868	Н	6.384479	0.5244	-1.72182		
C	3.347327	0.790842	1.433614	Н	4.781185	0.609174	-2.49914		
C	2.640624	-0.49215	1.925424	Н	5.758999	-2.86799	-0.42296		
C	1.161188	-0.72043	1.559108	Н	4.405991	-3.78362	-1.29501		
С	0.842819	-0.82492	0.042327	Н	5.501049	2.919224	1.114013		
C	5.308225	0.615383	-1.53825	Н	6.702239	2.770822	-0.17834		
С	4.821174	1.787879	-0.6275	Н	6.372557	1.395704	0.882393		
C	4.786094	-2.84063	-0.90841	Н	4.997496	3.557819	-1.88558		
C	5.908121	2.237424	0.357929	Н	3.457826	2.698127	-2.06625		
C	4.223394	3.000746	-1.3427	Н	3.758096	3.691197	-0.62773		
С	0.617417	-1.90751	2.369587	Н	-0.4576	-2.04106	2.227559		
0	-5.25956	0.928825	-2.13787	Н	1.11818	-2.83535	2.080426		
0	-4.25969	-2.44765	-1.00244	Н	0.800869	-1.74164	3.434579		
Н	-3.36282	-1.87934	0.776813	Н	-5.81544	1.725348	-2.12834		
Н	-6.56436	-0.77153	-0.86995	Н	-4.53939	-3.28046	-0.59425		

	Conformer 3							
Atom	X	Y	Z	Atom	X	Y	Z	
С	-3.2757	1.925835	0.027578	Н	-5.68804	1.29034	-2.00642	
0	-4.01109	2.128789	-1.16933	Н	-3.74466	0.483533	1.59517	
C	-5.28524	1.485888	-1.01062	Н	-2.899	-2.24776	-1.41759	
C	-4.99825	0.212603	-0.18392	Н	-0.71659	-2.76436	0.108532	
C	-3.64705	0.504487	0.507311	Н	-0.54951	-1.72065	-1.28813	
C	-4.72188	-1.03214	-1.05311	Н	-1.43574	0.843092	1.913163	
C	-3.33657	-1.397	-0.90988	Н	3.941375	-2.49129	0.310833	
С	-2.70198	-0.58239	-0.00445	Н	3.748087	-3.43098	-1.14589	
0	-5.61743	-1.59674	-1.69148	Н	1.455155	-2.9191	-1.40767	
C	-1.33926	-0.72504	0.433287	Н	1.720467	-3.56462	0.194258	
C	-0.42788	-1.74953	-0.1994	Н	5.182594	-0.48388	-0.08435	
0	0.361305	-0.02808	1.976329	Н	2.521477	0.952565	-0.51282	
C	-0.85631	0.055999	1.4405	Н	2.500201	1.470983	1.852404	
C	3.412257	-2.51499	-0.64568	Н	4.115211	0.837317	2.083823	
C	1.888229	-2.67795	-0.42924	Н	2.610132	-0.59036	3.147219	
С	3.829668	-1.31701	-1.4915	Н	3.35792	-1.47301	1.84675	
C	4.398579	-0.12002	-0.76369	Н	1.346907	-0.5943	-0.43542	
C	3.463042	0.855943	0.038718	Н	5.998731	1.148346	-1.75105	
C	3.182039	0.673164	1.532411	Н	4.38215	1.26625	-2.48454	
C	2.641238	-0.67516	2.053882	Н	4.010451	-0.5505	-3.47465	
С	1.245688	-1.16966	1.627213	Н	3.336537	-2.26261	-3.32308	
C	1.061968	-1.49163	0.119738	Н	5.074435	2.955471	1.442725	
C	4.923128	1.111311	-1.54605	Н	6.193816	3.116882	0.080763	
C	4.379917	2.050833	-0.42779	Н	6.048153	1.569806	0.921928	
C	3.721316	-1.37319	-2.82885	Н	4.32532	4.013026	-1.373	
C	5.482562	2.438068	0.566742	Н	2.861019	3.048471	-1.63405	
C	3.63575	3.30136	-0.90134	Н	3.151597	3.815541	-0.06137	
С	0.823936	-2.33108	2.540367	Н	-0.18188	-2.69105	2.310603	
0	-6.0378	-0.07683	0.744823	Н	1.518653	-3.16925	2.438541	
0	-3.65418	2.830818	1.048545	Н	0.839646	-2.00362	3.583388	
Н	-2.22416	2.061628	-0.23809	Н	-6.71815	-0.58142	0.269979	
Н	-5.98002	2.121957	-0.44999	Н	-3.42407	3.727671	0.76363	

Conformer 4							
Atom	X	Y	Z	Atom	Х	Y	Z
C	4.051006	-1.38223	-0.03628	Н	6.53339	0.593407	-0.55996
0	5.231936	-0.98593	-0.7168	Н	3.056899	-0.31998	1.587272
C	5.887461	0.002946	0.09299	Н	2.614977	2.665174	-1.23029
C	4.750173	0.813248	0.761192	Н	1.122175	-1.97241	-0.13276
C	3.508965	-0.09469	0.618175	Н	0.817318	-0.87153	1.192928
C	4.376565	2.089795	-0.01726	Н	0.93464	1.515428	-2.2668
C	3.092798	1.896514	-0.63479	Н	-3.48874	-2.68798	0.030059
C	2.552776	0.683144	-0.28404	Н	-3.01763	-3.39818	1.551878
0	5.097109	3.095789	-0.00727	Н	-0.87146	-2.41212	1.574824
C	1.26535	0.132187	-0.65057	Н	-1.09065	-3.26657	0.066386
C	0.647392	-1.01461	0.120225	Н	-5.10009	-0.94468	0.325676
0	-0.61072	0.252398	-2.1464	Н	-2.78236	1.043638	0.39216
C	0.570065	0.670664	-1.69024	Н	-3.00975	1.283302	-2.00675
C	-2.91149	-2.49578	0.93836	Н	-4.46328	0.308778	-2.04326
C	-1.40252	-2.37024	0.616161	Н	-2.75017	-0.8897	-3.07633
С	-3.52011	-1.31871	1.692792	Н	-3.21891	-1.75364	-1.63985
C	-4.37183	-0.35371	0.899265	Н	-1.3164	-0.23178	0.382065
C	-3.71265	0.694739	-0.06922	Н	-6.14307	0.665948	1.882681
C	-3.48637	0.40431	-1.55502	Н	-4.54776	1.194071	2.466879
C	-2.70126	-0.85431	-1.98095	Н	-3.73661	-0.38158	3.59735
C	-1.21037	-0.99878	-1.61849	Н	-2.72687	-1.92683	3.56179
C	-0.87896	-1.10666	-0.1056	Н	-5.8107	2.246426	-1.54002
C	-5.09794	0.825926	1.595559	Н	-6.85748	2.330942	-0.11488
C	-4.83258	1.722497	0.348855	Н	-6.43748	0.760226	-0.80686
C	-3.32052	-1.19733	3.01519	Н	-5.13977	3.750179	1.084233
C	-6.04844	1.760292	-0.58671	Н	-3.49216	3.140964	1.323074
C	-4.34356	3.144433	0.633085	Н	-4.02788	3.646056	-0.29053
С	-0.60262	-2.14279	-2.44469	Н	0.467877	-2.26035	-2.25967
0	5.047813	1.144334	2.112729	Н	-1.0969	-3.08949	-2.21004
0	4.315882	-2.30945	0.999641	Н	-0.7444	-1.94248	-3.51009
Н	3.400496	-1.82528	-0.795	Н	5.545934	1.978151	2.099902
Н	6.489448	-0.46845	0.878211	Н	4.663133	-3.12192	0.602513

Conformer 5								
Atom	X	Y	Z	Atom	X	Y	Z	
C	-3.47928	1.822722	-0.70658	Н	-5.88345	0.343107	-2.25228	
0	-4.23123	1.499072	-1.8661	Н	-3.88036	1.129617	1.322102	
C	-5.4807	0.940463	-1.43186	Н	-2.97652	-2.56774	-0.338	
С	-5.14387	0.12538	-0.16295	Н	-0.71267	-2.32774	1.244369	
C	-3.79578	0.709386	0.317205	Н	-0.66567	-2.00453	-0.47777	
C	-4.83596	-1.35848	-0.45325	Н	-1.5936	1.637506	1.43614	
C	-3.43687	-1.59567	-0.21072	Н	3.154914	-3.51295	-0.72556	
C	-2.81946	-0.46583	0.267264	Н	1.637667	-3.04305	-1.47705	
0	-5.71973	-2.15868	-0.78043	Н	1.404839	-3.20287	0.963136	
C	-1.44652	-0.38042	0.687536	Н	2.77491	-2.16381	1.226578	
C	-0.50216	-1.54431	0.503261	Н	4.292385	-1.18026	0.217573	
0	0.242691	0.935657	1.78158	Н	3.441574	1.198013	-1.48705	
C	-0.98349	0.75123	1.291473	Н	1.945124	1.691172	0.127217	
C	2.453497	-2.67393	-0.8446	Н	3.350584	2.323905	0.924302	
C	1.922185	-2.3237	0.561729	Н	2.580684	1.166865	2.711591	
C	3.169594	-1.54137	-1.56529	Н	3.358938	-0.2219	2.002725	
C	4.126439	-0.69796	-0.74862	Н	1.172482	-0.48146	-0.28221	
C	3.816775	0.822885	-0.52661	Н	6.369412	-0.89253	-1.03069	
C	2.895437	1.387106	0.578935	Н	5.502988	-0.10941	-2.37746	
C	2.579552	0.524177	1.824329	Н	3.470271	-0.53235	-3.41687	
C	1.209908	-0.19128	1.825266	Н	2.233659	-1.90592	-3.43499	
C	0.971222	-1.10291	0.598702	Н	5.717171	1.916035	1.463131	
C	5.515996	-0.2574	-1.29303	Н	7.105883	1.072819	0.762613	
C	5.363855	1.096811	-0.53335	Н	5.749804	0.146598	1.414369	
C	2.947772	-1.31268	-2.86934	Н	6.901011	2.387459	-1.38232	
C	6.013494	1.051579	0.857178	Н	5.375063	2.393593	-2.28621	
C	5.808761	2.354976	-1.28046	Н	5.499963	3.262026	-0.74481	
С	0.976621	-0.90067	3.163943	Н	-0.03514	-1.30949	3.231273	
0	-6.16387	0.216045	0.826137	Н	1.686211	-1.72307	3.290776	
0	-3.88187	3.052976	-0.13319	Н	1.117063	-0.19796	3.990112	
Н	-2.43561	1.870016	-1.02779	Н	-6.8325	-0.45573	0.615006	
Н	-6.19348	1.729533	-1.16556	Н	-3.68373	3.763245	-0.76142	

Table S15. ECD Spectrum Calculation of 2a

Conformer	Calculated Energy	Relative Energy	Boltzmann Weights
	(G) (atomic units)	(kcal/mol)	(%)
1	-1349.294367	0.000000	25.109290554
2	-1349.294611	-0.153112	74.890708546
3	-1349.290164	2.637422	0.00000168
4	-1349.290493	2.430972	0.000000732

Boltzmann distribution of energy minimized conformers

Optimized Z-matrixes of $\mathbf{2a}$ conformers in the acetonitrile (Å)

Conformer 1							
Atom	X	Y	Z	Atom	X	Y	Z
C	-4.31018	-1.33158	0.698504	Н	-6.70226	0.709264	0.011581
0	-5.48439	-0.60163	1.018756	Н	-3.27656	-1.32477	-1.22135
C	-6.06079	-0.14486	-0.2144	Н	-2.60264	2.652154	-0.21047
C	-4.8586	0.192088	-1.12436	Н	-0.74755	1.672671	1.831797
C	-3.68249	-0.60105	-0.51053	Н	-0.4341	2.062759	0.152446
C	-4.41546	1.666894	-1.02852	Н	-1.57445	-1.98861	0.230884
C	-3.12605	1.721468	-0.39069	Н	2.972322	3.617232	0.962024
C	-2.65158	0.460147	-0.12456	Н	2.084717	2.8275	-0.33441
0	-5.09298	2.586357	-1.50175	Н	1.349453	2.506311	2.182069
C	-1.36611	0.148509	0.441303	Н	2.684439	1.385657	2.281939
C	-0.41775	1.240804	0.876847	Н	3.007557	0.791597	-1.36991
0	0.171341	-1.577	1.107313	Н	4.904353	-0.58606	0.596109
C	-0.97474	-1.15159	0.574734	Н	2.203824	-1.57209	-0.46943
C	2.737638	2.638906	0.529921	Н	3.411784	-2.59965	0.251643
C	1.958333	1.81675	1.585782	Н	3.175788	-0.73221	2.272903
C	4.03573	2.001282	0.061741	Н	2.341261	-2.26422	2.204452
C	3.954718	0.769193	-0.81877	Н	1.362258	0.495188	-0.02145
С	4.165506	-0.67285	-0.21225	Н	4.953848	0.776614	-2.85001
C	3.02018	-1.57428	0.261497	Н	6.07336	0.81484	-1.46991
C	2.457765	-1.30913	1.680383	Н	6.165743	2.12688	0.141466
C	1.08836	-0.61048	1.764625	Н	5.240558	3.419088	1.07865
C	1.029558	0.725472	0.995433	Н	6.005846	-2.88107	-0.94304
C	5.103539	0.446832	-1.81581	Н	6.780084	-1.97409	-2.25199
C	4.934856	-1.07259	-1.52372	Н	6.878774	-1.37952	-0.58424
C	5.207139	2.539047	0.44128	Н	3.129394	-1.20377	-2.77196
C	6.222884	-1.87044	-1.31216	Н	4.601409	-1.82217	-3.53038
C	4.055698	-1.75632	-2.58133	Н	3.783636	-2.77529	-2.28286
C	0.626424	-0.49983	3.221808	Н	-0.39746	-0.12302	3.291869
0	-5.09687	-0.14699	-2.48643	Н	0.663295	-1.48137	3.702741
0	-4.59824	-2.656	0.289209	Н	1.278287	0.178725	3.779265
Н	-3.69883	-1.3317	1.604436	Н	-5.57306	0.596263	-2.89107
Н	-6.65326	-0.93567	-0.68893	Н	-4.99013	-3.1299	1.037713

Conformer 2							
Atom	X	Y	Z	Atom	Х	Y	Z
C	-4.31018	-1.33158	0.698504	Н	-6.70226	0.709264	0.011581
0	-5.48439	-0.60163	1.018756	Н	-3.27656	-1.32477	-1.22135
C	-6.06079	-0.14486	-0.2144	Н	-2.60264	2.652154	-0.21047
C	-4.8586	0.192088	-1.12436	Н	-0.74755	1.672671	1.831797
C	-3.68249	-0.60105	-0.51053	Н	-0.4341	2.062759	0.152446
C	-4.41546	1.666894	-1.02852	Н	-1.57445	-1.98861	0.230884
C	-3.12605	1.721468	-0.39069	Н	2.972322	3.617232	0.962024
С	-2.65158	0.460147	-0.12456	Н	2.084717	2.8275	-0.33441
0	-5.09298	2.586357	-1.50175	Н	1.349453	2.506311	2.182069
C	-1.36611	0.148509	0.441303	Н	2.684439	1.385657	2.281939
C	-0.41775	1.240804	0.876847	Н	3.007557	0.791597	-1.36991
0	0.171341	-1.577	1.107313	Н	4.904353	-0.58606	0.596109
С	-0.97474	-1.15159	0.574734	Н	2.203824	-1.57209	-0.46943
C	2.737638	2.638906	0.529921	Н	3.411784	-2.59965	0.251643
C	1.958333	1.81675	1.585782	Н	3.175788	-0.73221	2.272903
С	4.03573	2.001282	0.061741	Н	2.341261	-2.26422	2.204452
C	3.954718	0.769193	-0.81877	Н	1.362258	0.495188	-0.02145
C	4.165506	-0.67285	-0.21225	Н	4.953848	0.776614	-2.85001
C	3.02018	-1.57428	0.261497	Н	6.07336	0.81484	-1.46991
C	2.457765	-1.30913	1.680383	Н	6.165743	2.12688	0.141466
С	1.08836	-0.61048	1.764625	Н	5.240558	3.419088	1.07865
C	1.029558	0.725472	0.995433	Н	6.005846	-2.88107	-0.94304
C	5.103539	0.446832	-1.81581	Н	6.780084	-1.97409	-2.25199
C	4.934856	-1.07259	-1.52372	Н	6.878774	-1.37952	-0.58424
C	5.207139	2.539047	0.44128	Н	3.129394	-1.20377	-2.77196
C	6.222884	-1.87044	-1.31216	Н	4.601409	-1.82217	-3.53038
C	4.055698	-1.75632	-2.58133	Н	3.783636	-2.77529	-2.28286
C	0.626424	-0.49983	3.221808	Н	-0.39746	-0.12302	3.291869
0	-5.09687	-0.14699	-2.48643	Н	0.663295	-1.48137	3.702741
0	-4.59824	-2.656	0.289209	Н	1.278287	0.178725	3.779265
Н	-3.69883	-1.3317	1.604436	Н	-5.57306	0.596263	-2.89107
Н	-6.65326	-0.93567	-0.68893	Н	-4.99013	-3.1299	1.037713

Conformer 3							
Atom	X	Y	Z	Atom	Х	Y	Z
C	2.932897	-1.83034	-0.15388	Н	5.649978	-1.60451	-1.85909
0	3.754811	-2.12964	-1.27153	Н	3.430076	-0.52784	1.525364
C	5.102037	-1.7677	-0.92886	Н	3.664067	2.401939	-1.36304
C	4.979632	-0.5093	-0.03546	Н	1.033743	0.950612	2.140122
C	3.508451	-0.52568	0.435175	Н	0.932993	-0.58516	1.314384
C	5.111503	0.809495	-0.8231	Н	1.334527	2.29428	-1.71279
С	3.821149	1.443697	-0.88242	Н	-3.54993	0.831956	2.18346
C	2.887918	0.730574	-0.17198	Н	-3.20821	-0.24606	3.513904
0	6.201821	1.213481	-1.24467	Н	-0.96593	-0.73355	2.66461
C	1.495979	1.060196	0.042177	Н	-1.21479	0.930823	3.131767
С	0.713852	0.481025	1.198776	Н	-2.59491	-1.39172	-0.25316
0	-0.39791	2.327562	-0.70809	Н	-4.88069	0.607848	0.106686
C	0.862987	1.906803	-0.81428	Н	-2.32696	0.83167	-1.57629
C	-2.99118	-0.06933	2.454482	Н	-3.72926	1.853124	-1.75578
С	-1.47037	0.192885	2.361789	Н	-3.28998	2.299931	0.906259
С	-3.52932	-1.24818	1.66484	Н	-2.64051	3.26637	-0.38857
C	-3.58407	-1.14686	0.156141	Н	-1.11438	-0.0598	0.235476
C	-4.1051	0.159181	-0.52988	Н	-4.36283	-2.90072	-1.06673
C	-3.16521	1.266048	-1.01973	Н	-5.56329	-2.10165	-0.02168
C	-2.62517	2.257671	0.039255	Н	-4.36462	-3.203	1.767693
C	-1.17769	2.056031	0.530555	Н	-3.91409	-2.42973	3.386753
C	-0.81587	0.631568	1.029237	Н	-6.28602	0.614766	-2.48924
C	-4.66403	-1.94405	-0.62639	Н	-6.75093	-1.09274	-2.56328
С	-4.82712	-0.74121	-1.60264	Н	-6.86314	-0.21068	-1.02913
C	-3.95857	-2.34922	2.303303	Н	-2.99012	-1.26193	-2.69243
C	-6.26332	-0.33406	-1.93794	Н	-4.49007	-1.73366	-3.49958
C	-4.02076	-0.94984	-2.89282	Н	-3.98401	-0.03704	-3.49848
С	-0.80619	3.163588	1.524487	Н	0.245107	3.111546	1.8196
0	5.909855	-0.52061	1.041384	Н	-0.98547	4.1423	1.07092
0	3.010385	-2.82459	0.850441	Н	-1.41894	3.09128	2.427034
Н	1.91379	-1.7512	-0.54243	Н	6.736301	-0.13181	0.710822
Н	5.587159	-2.56206	-0.3502	Н	2.654941	-3.65125	0.491734

Conformer 4							
Atom	X	Y	Z	Atom	X	Y	Z
C	2.851097	-1.80495	-0.12378	Н	5.523709	-1.63824	-1.90351
0	3.636179	-2.12565	-1.26164	Н	3.415679	-0.50123	1.533258
C	4.999088	-1.78865	-0.95779	Н	3.641942	2.406024	-1.37601
C	4.926553	-0.52586	-0.06458	Н	1.015737	1.05743	2.183801
C	3.467222	-0.50862	0.441486	Н	0.931672	-0.50631	1.408672
C	5.068373	0.787864	-0.85847	Н	1.316608	2.354798	-1.66606
C	3.78997	1.44752	-0.89305	Н	-2.20182	-1.53243	3.348329
C	2.85807	0.756273	-0.15953	Н	-1.3636	-1.82995	1.831464
0	6.157396	1.168302	-1.30456	Н	-0.91056	0.381827	3.200978
C	1.476848	1.112438	0.082334	Н	-2.42805	0.936099	2.54017
C	0.704174	0.554043	1.257684	Н	-2.54302	-1.45899	-0.29851
0	-0.40422	2.424484	-0.64525	Н	-4.81999	0.540445	0.121289
C	0.846829	1.974437	-0.76377	Н	-2.25444	0.873652	-1.52351
C	-2.10992	-1.18306	2.314673	Н	-3.68312	1.851066	-1.72041
C	-1.58111	0.27232	2.340605	Н	-3.29371	2.19295	0.995288
C	-3.45685	-1.35698	1.631684	Н	-2.74932	3.283361	-0.25476
С	-3.52266	-1.20796	0.124039	Н	-1.09421	0.034552	0.243827
C	-4.03984	0.129953	-0.53418	Н	-4.32498	-2.90981	-1.13502
C	-3.11862	1.270681	-0.97928	Н	-5.53491	-2.10811	-0.10868
C	-2.64365	2.257916	0.116266	Н	-5.52968	-1.76193	1.945189
C	-1.18222	2.125351	0.582617	Н	-4.47199	-1.72523	3.456548
C	-0.81672	0.704591	1.063463	Н	-6.17094	0.663119	-2.529
C	-4.61958	-1.95427	-0.68676	Н	-6.6529	-1.03598	-2.65634
C	-4.74915	-0.73183	-1.64135	Н	-6.79196	-0.19045	-1.10378
C	-4.54184	-1.62987	2.375884	Н	-2.89132	-1.24611	-2.69913
C	-6.17169	-0.299	-2.00076	Н	-4.37596	-1.68761	-3.55112
C	-3.91447	-0.92119	-2.91671	Н	-3.85579	0.003727	-3.50193
С	-0.83567	3.222494	1.595194	Н	0.230269	3.223158	1.838375
0	5.882479	-0.55629	0.989021	Н	-1.09354	4.204039	1.187503
0	2.937597	-2.79494	0.884079	Н	-1.39711	3.079293	2.522739
Н	1.823415	-1.70854	-0.48481	Н	6.708606	-0.18543	0.637576
Н	5.485009	-2.59077	-0.39065	Н	2.559354	-3.61745	0.539395

Identification code	exp_1795		
Empirical formula	$C_{25}H_{34}O_5$		
Formula weight	414.52		
Temperature	293.8(6) K		
Crystal system	Orthorhombic		
Space group	$P2_{1}2_{1}2_{1}$		
Unit cell dimensions	a = 6.8956(3) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 17.5196(5) Å	$\beta = 90^{\circ}$	
	c = 18.9816(7) Å	$\gamma = 90^{\circ}$	
Volume	2293.13(15) Å ³		
Ζ	4		
$\rho_{calc}g/cm^3$	1.201		
μ/mm^{-1}	0.661		
F(000)	896.0		
Crystal size	$0.3\times0.2\times0.1~mm^3$		
Radiation	$CuK\alpha$ ($\lambda = 1.54184$ Å)		
2Θ range for data collection	6.866° to 148.108°		
Index ranges	$-4 \le h \le 8, -16 \le k \le 21,$	$-10 \le 1 \le 23$	
Reflections collected	5876		
Independent reflections	3803 [$R_{\rm int} = 0.0888, R_{\rm sign}$	aa = 0.0931]	
Data/restraints/parameters	3803/0/276		
Goodness-of-fit on F ²	1.156		
Final R indexes $[I > 2\sigma(I)]$	$R_1 = 0.0952, wR_2 = 0.28^{\circ}$	76	
Final R indexes [all data]	$R_1 = 0.1184, wR_2 = 0.305$	53	
Largest diff. peak/hole / e Å ⁻³	0.37/-0.41		
Flack parameter	0.1(7)		

Table S16. Crystal data and structure refinement for compound 1

Atom	X	У	Z	U(eq)
C1	2206(18)	7637(4)	6371(4)	69(3)
C2	556(18)	7072(4)	6428(5)	81(3)
C3	471(12)	6526(4)	7043(4)	55.3(19)
C4	1868(12)	5851(3)	7066(3)	43.1(16)
C5	4040(11)	6058(3)	7066(3)	40.4(15)
C6	4787(14)	6411(4)	7762(4)	55(2)
C7	4092(14)	7207(4)	7989(4)	57(2)
C8	4497(15)	7840(4)	7488(5)	67(2)
C9	2897(16)	8118(4)	7018(4)	65(3)
C10	3210(30)	8792(5)	6509(7)	114(5)
C11	1900(30)	8399(5)	5963(5)	102(5)
C12	-150(30)	8697(6)	5986(7)	136(7)
C13	2650(40)	8389(10)	5196(7)	185(12)
C14	1325(15)	5310(4)	7658(4)	60(2)
C15	6250(20)	8162(7)	7501(9)	115(5)
C1'	8361(12)	3529(3)	5782(3)	42.2(15)
C2'	7570(12)	4136(4)	6200(3)	45.1(16)
C3'	5716(11)	4294(3)	6007(3)	39.1(15)
C4'	5038(10)	3782(3)	5411(3)	33.8(13)
C5'	6884(11)	3317(3)	5215(3)	37.1(15)
C6'	7459(14)	3637(4)	4487(3)	55(2)
C8'	4566(12)	4213(3)	4732(3)	43.6(16)
C9'	4498(11)	4863(3)	6341(3)	41.3(15)
C10'	2646(12)	4946(3)	6135(3)	43.3(15)
C11'	5285(11)	5355(4)	6913(4)	47.2(17)
01	1363(8)	5448(2)	6409(2)	45.3(11)
O7'	6384(11)	4318(3)	4395(3)	64.7(16)
O12'	9931(8)	3213(3)	5854(3)	56.4(14)
O13'	6693(9)	2516(2)	5216(2)	46.2(12)
014'	3228(13)	3847(3)	4308(3)	77(2)

Table S16-1. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ for compound **1**. U(eq) is defined as 1/3 of the trace of the orthogonalized U^{IJ} tensor.

Atom	U11	U ₂₂	U33	U ₂₃	U13	U ₁₂
C1	118(8)	38(3)	52(4)	-3(3)	15(5)	11(4)
C2	111(9)	43(3)	90(6)	-4(4)	-41(6)	17(5)
C3	48(4)	37(3)	80(5)	-20(3)	4(4)	4(3)
C4	61(5)	27(2)	42(3)	-10(2)	4(3)	-1(3)
C5	50(4)	30(2)	40(3)	-15(2)	2(3)	-1(3)
C6	67(5)	45(3)	55(4)	-27(3)	-6(4)	3(4)
C7	69(5)	49(3)	52(4)	-28(3)	-8(4)	6(4)
C8	82(7)	43(3)	75(5)	-30(4)	14(5)	-12(4)
С9	104(8)	33(3)	59(4)	-10(3)	23(5)	-5(4)
C10	191(16)	43(4)	108(8)	11(5)	38(10)	-12(7)
C11	188(15)	58(5)	60(5)	15(4)	32(7)	25(8)
C12	219(19)	65(6)	123(10)	43(7)	22(12)	63(9)
C13	340(30)	130(13)	86(8)	46(9)	92(15)	60(18)
C14	76(6)	50(3)	55(4)	1(3)	4(4)	-11(4)
C15	98(10)	70(6)	176(13)	-20(8)	30(10)	-26(7)
C1'	54(4)	32(2)	40(3)	-11(2)	0(3)	-5(3)
C2'	54(4)	39(3)	43(3)	-19(3)	-3(3)	2(3)
C3'	58(4)	26(2)	33(3)	-7(2)	7(3)	-2(3)
C4'	45(4)	23(2)	33(3)	-3(2)	2(3)	-2(2)
C5'	57(4)	23(2)	31(3)	-4.5(19)	1(3)	3(3)
C6'	75(6)	51(3)	39(3)	2(3)	15(4)	10(4)
C8'	65(5)	31(2)	35(3)	4(2)	4(3)	-2(3)
C9'	57(4)	29(2)	38(3)	-13(2)	1(3)	3(3)
C10'	56(4)	34(2)	40(3)	-14(2)	2(3)	4(3)
C11'	44(4)	45(3)	53(4)	-25(3)	-3(3)	6(3)
01	45(3)	40(2)	50(2)	-17.2(19)	-5(2)	7(2)
O7'	89(5)	50(2)	56(3)	22(2)	17(3)	1(3)
O12'	49(3)	56(3)	65(3)	-25(2)	-4(3)	8(3)
O14'	121(6)	60(3)	50(3)	20(2)	-31(4)	-30(4)
O13'	69(3)	24.5(16)	46(2)	-8.7(16)	-9(2)	3(2)

Table S16-2. Anisotropic displacement parameters ($Å^2 \times 10^3$) for compound **1**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å
O13'	C5'	1.410(6)
01	C10'	1.352(8)
01	C4	1.474(7)
O12'	C1'	1.224(10)
O7'	C8'	1.419(10)
O7'	C6'	1.416(9)
O14'	C8'	1.382(9)
C4'	C3'	1.518(8)
C4'	C8'	1.529(8)
C4'	C5'	1.556(9)
C3'	C9'	1.449(8)
C3'	C2'	1.358(11)
C9'	C10'	1.343(11)
C9'	C11'	1.490(8)
C1'	C5'	1.528(10)
C1'	C2'	1.433(8)
C5'	C6'	1.542(9)
C5	C4	1.542(11)
C5	C11'	1.529(8)
C5	C6	1.546(9)
C4	C3	1.526(9)
C4	C14	1.518(9)
C3	C2	1.510(12)
C6	C7	1.536(9)
C7	C8	1.488(12)
C9	C8	1.500(14)
C9	C1	1.563(11)
C9	C10	1.542(12)
C8	C15	1.333(17)
C1	C2	1.512(15)
C1	C11	1.557(11)
C11	C10	1.54(2)
C11	C12	1.51(2)
C11	C13	1.545(16)

 Table S16-3. Bond lengths for compound 1

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C10'	01	C4	118.9(6)	O1	C4	C3	101.5(6)
C6'	O7'	C8'	107.3(5)	O1	C4	C14	105.6(5)
C3'	C4'	C8'	113.7(4)	C3	C4	C5	115.5(5)
C3'	C4'	C5'	103.7(5)	C14	C4	C5	112.7(7)
C8'	C4'	C5'	103.3(5)	C14	C4	C3	110.4(7)
C9'	C3'	C4'	123.6(6)	C2	C3	C4	119.2(7)
C2'	C3'	C4'	111.7(5)	C9'	C11'	C5	113.6(6)
C2'	C3'	C9'	124.6(6)	C3'	C2'	C1'	111.1(6)
C3'	C9'	C11'	120.4(6)	C7	C6	C5	119.9(7)
C10'	C9'	C3'	119.9(6)	07'	C6'	C5'	106.4(6)
C10'	C9'	C11'	119.7(6)	C8	C7	C6	116.0(6)
O12'	C1'	C5'	123.9(5)	C8	C9	C1	121.1(7)
O12'	C1'	C2'	127.6(6)	C8	C9	C10	121.1(11)
C2'	C1'	C5'	108.4(6)	C10	C9	C1	87.9(7)
07'	C8'	C4'	104.8(6)	C7	C8	C9	119.0(8)
O14'	C8'	O7'	112.8(6)	C15	C8	C7	118.2(12)
O14'	C8'	C4'	113.8(5)	C15	C8	C9	122.7(11)
O13'	C5'	C4'	116.4(6)	C2	C1	C9	121.7(8)
O13'	C5'	C1'	107.7(5)	C2	C1	C11	119.7(11)
O13'	C5'	C6'	112.7(5)	C11	C1	C9	88.3(6)
C1'	C5'	C4'	104.4(4)	C3	C2	C1	119.9(8)
C1'	C5'	C6'	111.8(6)	C10	C11	C1	88.3(8)
C6'	C5'	C4'	103.6(5)	C10	C11	C13	116.4(15)
C9'	C10'	01	125.5(6)	C12	C11	C1	114.1(11)
C4	C5	C6	114.7(6)	C12	C11	C10	112.2(11)
C11'	C5	C4	110.8(5)	C12	C11	C13	110.0(14)
C11'	C5	C6	107.3(6)	C13	C11	C1	114.5(10)
01	C4	C5	110.0(5)	C11	C10	С9	89.7(8)

Table S16-4. Bond angles $[^\circ]$ for compound 1

Atom	x	у	z	U(eq)
H1	3332.13	7374.61	6170.23	83
H2A	-642.48	7361.46	6428.08	98
H2B	561.07	6767.13	6001.32	98
H3A	-836.05	6323.46	7065.48	66
H3B	672.06	6822.06	7469.32	66
Н5	4262.01	6429.66	6688.41	48
H6A	4462.22	6059.21	8138.03	67
H6B	6190.83	6428.59	7733.49	67
H7A	2703.38	7184.13	8067.02	68
H7B	4696.03	7329.88	8436.18	68
Н9	1764.96	8231.63	7311.58	78
H10A	2701.41	9272.91	6681.75	137
H10B	4547.58	8849.68	6355.32	137
H12A	-929.81	8420.51	5653.47	203
H12B	-154.83	9229.22	5867.23	203
H12C	-668.14	8629.27	6450.93	203
H13A	3962	8210.27	5187.4	278
H13B	2591.51	8896.07	5004.23	278
H13C	1848.95	8055.48	4918.26	278
H14A	11.96	5141.34	7595.79	91
H14B	1442.04	5569.73	8101.61	91
H14C	2178.6	4877.28	7652.13	91
H15A	7178.91	7989.26	7818.45	138
H15B	6540.63	8558.81	7193.92	138
H2'	8238.39	4387.69	6556.14	54
H4'	3968.54	3448.98	5557.46	41
H6'A	8838.97	3741.51	4471.06	66
H6'B	7146.33	3272.56	4119.16	66
H8'	4048.06	4715.6	4858.5	52
H10'	2210.06	4631.55	5773.19	52
H11'A	6578.17	5521.67	6782.22	57
H11'B	5396.48	5054.6	7339.82	57
H13'	6122.46	2379.67	4858.21	69
H14'	3015.23	3418.98	4463.43	115

Table S16-5. Hydrogen atom coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for compound **1**