SUPPORTING INFORMATION

For

Facile Synthesis of Chiral 2-functionalized Tetrahydroquinolines via $\mathrm{Pd} / \mathrm{Cu}$-catalyzed Cascade $\gamma-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Arylation/C-N Coupling of Amides Derived from Amino Acids and Their Derivatives

Dian Yu, ${ }^{\text {a, \# }}$ Si-Yuan Peng, ${ }^{\text {b, \# }}$ Han Wang, ${ }^{\text {a, \# }}$ Qiu-Cui Zheng, ${ }^{\text {a }}$ Ya-Hui Ma, ${ }^{\text {a }}$ Dong-Yi Xiao, ${ }^{\text {a }}$ Qian-Li Li, ${ }^{\text {c }}$ Wen-Shu Wang, ${ }^{\text {a }}$ Xiao-Jie Cui, ${ }^{\text {a }}$ Fei-Xian Luo ${ }^{\text {a,* }}$
a. Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, College of Life and Environmental Sciences, Minzu University of China, and Center for Bioimaging \& System Biology, Minzu University of China, Beijing, 100081, China. Email:luofeixian@muc.edu.cn
${ }^{\text {b. }}$ Department of Chemistry, Capital Normal University, Beijing, 100048, China.
c. School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, China
${ }^{\text {}}$ D. Yu, S.-Y. Peng, and H. Wang contributed equally to this work

Email: luofeixian@muc.edu.cn

Content	P2
I General consideration	P2
II Substrate amides in this manuscript	P3
III General procedure for the synthesis of substrate amides	P4
IV Characterization data for substrates	P10
V Standard procedure for Pd-catalyzed C-H Arylation / C-N Coupling	P10
VI Gram-scale synthesis of 3a and removal of the protecting group	P11
VII Characterization data for products	P23
VIII ee value of selected starting materials and products	P24
IX NMR spectra	P76
X HPLC spectra	

I General consideration

General experimental section

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR data, and ${ }^{19} \mathrm{~F}$ NMR spectra were obtained on Bruker 600 M nuclear resonance spectrometers unless otherwise specified, respectively. CDCl_{3} was employed as the solvent and tetramethyl silane (TMS) as the internal standard. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum as 0.00 ppm . The data of ${ }^{1} \mathrm{H}$ NMR was reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiple, $\mathrm{dq}=$ double quadruplet, $\mathrm{dt}=$ double triplet, and $\mathrm{br}=$ broad $)$, coupling constant $(J$ values $)$ in Hz and integration . Chemical shifts for ${ }^{13} \mathrm{C}$ NMR spectra were recorded in ppm from TMS using the central peak of $\mathrm{CDCl}_{3}(77.2 \mathrm{ppm})$ as the internal standard. According to standard techniques, flash chromatography was performed using 200-300 mesh silica gels with the indicated solvent system. Analytical thinlayer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm). Optical rotations were measured by polarimeter. HRMS (ESI) analysis was performed by Analytical Instrumentation Center, Peking University. The analytical data for the known compounds were found to match the literature data.

General preparation for chemicals

The ortho halogen substituted phenyl iodides were all purchased from Ark. The metal catalyst $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, amino acids and amino alcohols were purchased from EnergyChemical Co. Ltd. CuI was purchased from Sinopharm Chemical Reagent Co. Ltd. t-Amyl OH was purchased from Alfa Aesar Co. Ltd and used directly without further purification. Toluene and other related solvents were purchased from Tongguang Chemical Reagent Co. Ltd and used directly without further purification.

II Substrate amides in this manuscript

Table S1 Substrate Amides

 1a		 1b	
	 1d		 $1 f$
		 $1 i$	 1j
		 11	

III General procedure for the synthesis of substrate amides

3-1 General procedure for the synthesis of amides $1 \mathrm{a}-1 \mathrm{f}, 11$, and 1 m

Scheme S1 General procedure for the synthesis of amides $1 \mathrm{a}-1 \mathrm{f}, 11$, and 1 m

According to the literature procedures. ${ }^{1}$
Step1: To a solution of the amino acids (20 mmol) in $\mathrm{MeOH}(30 \mathrm{~mL})$ in ice water bath was slowly added $\mathrm{SOCl}_{2}(20 \mathrm{mmol})$, and then two drops of DMF were added. The resulting mixture was stirred in oil bath at $50{ }^{\circ} \mathrm{C}$ with a condenser for 4 h . After the reaction, the mixture was evaporated under vacuum, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and further evaporated under vacuum to give crude amino acid esters without further purification.
Step2: To a solution of the amino acid esters in DMF (0.3 M) was sequentially added picolinic acid (1 equiv), EDCI (1equiv), triethylamine (2 equiv), HOBt (1 equiv) at rt . The reaction mixture was stirred for 12 h under the same conditions. Upon completion, the mixture was quenched with water and diluted with EA. The organic layer was removed and the aqueous layer was extracted with EA. The combined organic layers were washed with brine. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation. The residue thus obtained was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}$) to afford the pure amide.

3-2 General procedure for the synthesis of amides $1 \mathrm{~g}-1 \mathrm{k}$

According to the literature procedures with slight modification. ${ }^{2}$

Scheme S2 General procedure for the reduction of amides 1a and 1d

Step 1, reduction step: The solution of picolinamides $\mathbf{1 a}$ or 1d, (1 equiv) in THF (20 mL) under an argon atmosphere was cooled in water/ice bath to $0^{\circ} \mathrm{C}$ and lithium borohydride (4 M in THF, 1.3 equiv.) was added slowly dropwise, then the reaction mixture was stirred at room temperature for 3 h. The reaction was monitored by TLC to achieve full conversion, then cooled in water/ice bath and quenched by 15% citric acid solution in water. The organic solvent was evaporated in vacuum and water phase was extracted by DCM $(2 \times 30 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure to afford the crude product, which was used in next step without further purification.
Scheme S3 General procedure of the silylation of amino alcohols for $\mathbf{1 i}, \mathbf{1} \mathbf{j}$, and $\mathbf{1 j}$-s

Step 2, alcohol protection with silyl reagent. alcohols $\mathbf{1 a}$-ol or $\mathbf{1} \mathbf{j}$-ol in DMF (5 mL) was added with imidazole (1.3 equiv) and tertbutyldimethylsilyl chloride (1.3 equiv). The reaction mixture was stirred at room temperature to achieve full conversion, the solution was diluted with EtOAc (30 mL) and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic phase was separated and the water phase was extracted with EtOAc $(20 \mathrm{~mL})$, the combined organic phase was washed with brine $(20 \mathrm{~mL})$ and further dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure to afford the crude product, which was further purified by flash chromatography on silica gel using petroleum ether/EtOAc (6/1) as an eluent to give the corresponding product as colorless oil.

Scheme S4 General procedure of esterification of amino alcohols for $\mathbf{1 g}, \mathbf{1 h}$, and $\mathbf{1 k}$

1d-ol

Step 3, esterification of alcohols step, alcohols $\mathbf{1 a}$-ol or $\mathbf{1 d}-\mathrm{ol}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added with $\mathrm{Ac}_{2} \mathrm{O}$ or $\mathrm{PivCl}(1.1$ equiv) and TEA (1.2 equiv) and DMAP (0.1 equiv). The reaction mixture was stirred at room temperature to achieve full conversion, the solution was evaporated under vacuum and diluted with EtOAc $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic phase was separated and the water phase was extracted with EtOAc (20 mL), the combined organic phase was washed with brine (20 mL) and further dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure to afford the crude product, which was further purified by flash chromatography on silica gel using petroleum ether/EtOAc (3/1) as an eluent to give the corresponding product as a colourless oil.

IV Characterization data for substrates

methyl O-(tert-butyl)-N-picolinoyl-L-threoninate (1a), 4.4 g (20 mmol scale), 75%, White solid, $R f=0.45(\mathrm{PE} / \mathrm{EtOAc}=3 / 1),[\alpha]^{30}{ }_{\mathrm{D}}=44.8\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right), \mathrm{mp}=126.8-128.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 8.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $8.63(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 1.23$ (d, $J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform- d) $\delta 171.4,164.9,149.7,148.5,137.3,126.4,122.5,74.3,67.8$, 58.2, 52.4, 28.5, 21.1.

The data is in agreement with that reported in the literature ${ }^{1}$.

methyl O-(tert-butyl)-N-picolinoyl-D-threoninate (1a-R), 2.4 g (10 mmol scale), 82%, White solid, $R f=0.45(\mathrm{PE} / \mathrm{EtOAc}=3 / 1),[\alpha]^{26} \mathrm{D}=-53.28\left(\mathrm{c} 0.404, \mathrm{CHCl}_{3}\right), \mathrm{mp}=131.5-132.4^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 8.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 0 \mathrm{H}), 4.71(\mathrm{dd}, J=9.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (qd, $J=6.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz , Chloroform-d) $\delta 171.4,164.9,149.8,149.7,148.54,148.50,137.4,137.3$, 126.4, 122.6, 74.3, 67.9, 58.3, 52.4, 28.5, 21.1.

The data is in agreement with that reported in the literature ${ }^{3}$.

1b
tert-butyl O-(tert-butyl)-N-picolinoyl-L-threoninate (1b), 2.6 g (10 mmol scale), 78\%, Colorless liquid, $R f=0.45(\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v}),[\alpha]^{29}{ }_{\mathrm{D}}=50.5\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 8.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{dt}, J=7.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$, 1.22 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform-d) $\delta 169.9,164.7,149.8,148.5,137.3,137.3,126.3,122.4,122.4$, 82.0, 74.0, 67.7, 58.7, 28.8, 28.2, 20.9.

HRMS (ESI): found: $351.2289\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 351.2284.

methyl picolinoyl-L-valinate ($\mathbf{1 c - S}$), 3.3 g (20 mmol scale), 78%, Colorless liquid, $R f=0.45$ $(\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v}),[\alpha]^{29}{ }_{\mathrm{D}}=33.5\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform- d) $\delta 172.4,164.4,149.6,148.4,137.4,126.5,122.5,57.5,52.3$, 31.6, 19.3, 18.0.

The data is in agreement with that reported in the literature ${ }^{1}$.

methyl picolinoyl-L-valinate ($\mathbf{1 c - R}$), $3.3 \mathrm{~g}(20 \mathrm{mmol}$ scale), 78%, Colorless liquid, $R f=0.45$ $(\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v}),[\alpha]^{29}{ }_{\mathrm{D}}=-24.6\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 4.76-4.63(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{dt}, J=10.4,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 0.97$ (s, 6H).
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 172.2,164.3,149.4,148.3,137.4,126.4,122.3,57.3,52.2$, 31.5, 19.2, 17.9.

The data is in agreement with that reported in the literature ${ }^{1}$.

methyl 3-(picolinamido)pentanoate, 1.7 g (20 mmol scale), 72%, Colorless liquid, $R f=0.51$ (PE/EA=3:1, v/v).
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.47$ (ddd, $J=4.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.29 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.09 (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (td, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (ddd, $J=7.6,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.31 (ddt, $J=12.6,9.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.57$ (m, 2H), 0.89 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 171.9,163.8,149.8,148.1,137.2,126.0,122.1,51.6,47.7$, 38.5, 27.3, 10.6.

The data is in agreement with that reported in the literature ${ }^{4}$.

ethyl 2-ethyl-4,4,4-trifluoro-2-(picolinamido)butanoate (1e), 1.9 g (20 mmol scale), 61%, white solid, $\mathrm{mp}=66.5-67.1^{\circ} \mathrm{C}, R f=0.48(\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v})$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{p}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{tq}, J=7.8,4.1,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{p}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dq}, J=14.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dq}, J=14.7,7.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19} \mathrm{~F}$ NMR (565 MHz , Chloroform- d) δ - 62.35 .
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 171.8,163.9,149.7,148.5,137.5,126.5,121.9,62.7,60.7$, 38.0 (q, $J=30.2 \mathrm{~Hz}$), 28.9, 14.2, 7.9.

HRMS (ESI): found: $305.1119\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$, Exact Mass: 305.1113.

1f
methyl 2-methyl-2-(picolinamido)butanoate(1f), $1.8 \mathrm{~g}(10 \mathrm{mmol}), 76 \%$, Colorless liquid, $R f=$ 0.48 (PE/EA=3:1, v/v).
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 0.85$ $(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform-d) $\delta 174.7,163.4,150.1,148.2,137.4,126.3,122.0,60.7,52.7$, 30.1, 22.6, 8.6.

HRMS (ESI): found: $237.1234\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$, Exact Mass: 237.1239.

(2R,3R)-3-(tert-butoxy)-2-(picolinamido)butyl acetate (1g), $2.0 \mathrm{~g}(10 \mathrm{mmol}), 65 \%$, colorless liquid, $R f=0.46(\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v}),[\alpha]^{28}{ }_{\mathrm{D}}=20.62\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 4.33-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{p}, J=9.6,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 171.1,164.7,149.8,148.3,137.4,126.3,122.4,74.1,65.5$, 63.7, 53.30, 28.7, 21.0, 20.1.

HRMS (ESI): found: $309.1811\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 309.1814.

(2R,3R)-3-(tert-butoxy)-2-(picolinamido)butyl pivalate (1h), 320 mg (1 mmol), 90%, white solid, $\mathrm{mp}=64.9-65.5^{\circ} \mathrm{C}, R f=0.49(\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v}),[\alpha]^{28}{ }_{\mathrm{D}}=20.60\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-$ $4.15(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform- d) $\delta 178.4,164.7,148.4,137.4,126.3,122.4,74.1,65.5,63.4$, 53.3, 38.9, 28.8, 27.3, 20.3.

HRMS (ESI): found: $351.2287\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 351.2284.

$1 i$
$\mathbf{N - ((2 R , 3 R) - 3 - (t e r t - b u t o x y) - 1 - ((t e r t - b u t y l d i m e t h y l s i l y l) o x y) b u t a n - 2 - y l) ~ p i c o l i n a m i d e ~ (1 i) , ~}$ $380.6 \mathrm{mg}(1 \mathrm{mmol}), 94 \%$, white solid, $\mathrm{mp}=56.6-56.9^{\circ} \mathrm{C}, R f=0.54(\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v}),[\alpha]^{27}{ }_{\mathrm{D}}=16.5$ (c $0.1, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, 0.05 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 164.5,150.3,148.3,137.4,126.1,122.3,73.9,64.6,61.2$, 55.9, 28.8, 26.0, 20.5, 18.3, -5.2, -5.3.

HRMS (ESI): found: $381.2578\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$, Exact Mass: 381.2573.

1j
\mathbf{N}-(1-((tert-butyldimethylsilyl)oxy)butan-2-yl)picolinamide (1j), 262.2 mg (1 mmol), 85%, colorless liquid, $R f=0.52$ (PE/EA=3:1, v/v).
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.62(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{dt}, J=13.7,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.64(\mathrm{dt}, J=13.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 164.0,150.2,148.1,137.4,126.1,122.3,64.4,52.2,26.0$, 24.6, 18.4, 10.7, -5.3, -5.4.

The data is in agreement with that reported in the literature ${ }^{5}$.

1j-s
(S)-N-(1-((tert-butyldimethylsilyl)oxy)butan-2-yl)picolinamide (1j-s), $274.6 \mathrm{mg}(1 \mathrm{mmol}), 89 \%$, colorless liquid, $R f=0.52(\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v}),[\alpha]^{29} \mathrm{D}=-50.30\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 8.56$ (s, 1H), $8.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H})$, 1.67 (ddt, $J=15.7,11.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 0.93$ (s, 8H), 0.07 (s, 6 H).
${ }^{13}$ C NMR (151 MHz , Chloroform- d) $\delta 164.00,150.23,148.14,137.38,126.09,122.29,64.35,52.19$, 25.97, 24.64, 18.39, 10.74, -5.33, -5.37.

The data is in agreement with that reported in the literature ${ }^{5}$.

1k
3-(picolinamido)pentyl acetate ($\mathbf{1 k}$), $237.8 \mathrm{mg}(1 \mathrm{mmol}), 95 \%$, colorless liquid, $R f=0.42$ (PE/EA=3:1, v/v).
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 8.53$ (s, 1H), 8.19 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.97 (d, $J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.09(\mathrm{~m}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.85(\mathrm{dd}, J=13.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{dt}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform- d) δ 171.2, 164.1, 149.9, 148.0, 137.6, 126.3, 122.5, 61.9, 48.4, 33.5, 28.1, 21.1, 10.5.

HRMS (ESI): found: $251.1390\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$, Exact Mass: 251.1396.

\mathbf{N}-(sec-butyl)picolinamide (11), $2.82 \mathrm{~g}(20 \mathrm{mmol}), 79 \%$, white solid, $\mathrm{mp}=66.5-67.6^{\circ} \mathrm{C}, R f=0.45$ ($\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H})$, $4.18-4.04(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.02-0.89(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform- d) $\delta 163.7,150.2,148.0,137.5,126.1,122.4,122.4,46.8,29.9$, 20.6, 10.6.

The data is in agreement with that reported in the literature ${ }^{5}$.

\mathbf{N}-(1,1,1-trifluorobutan-2-yl)picolinamide (1m), $998.4 \mathrm{mg}(20 \mathrm{mmol}), 86 \%$, white solid, $\mathrm{mp}=79.6-80.7^{\circ} \mathrm{C}, R f=0.45(\mathrm{PE} / \mathrm{EA}=3: 1, \mathrm{v} / \mathrm{v})$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 4.78-4.61(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.64(\mathrm{~m}$, $1 \mathrm{H}), 1.04(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19}$ F NMR (565 MHz , Chloroform- d) δ-75.74.
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 164.7$, 148.9, 148.3, 137.7, 126.9, 122.8, 52.2, 52.0, 51.8, 21.9, 9.9.

The data is in agreement with that reported in the literature ${ }^{6}$.

Reference

[1] He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen G. J. Am. Chem. Soc. 2012, 134, 3-6.
[2] Lukasevics, L.; Cizikovs, A.; Grigorjeva, L. Org. Lett. 2020, 22, 2720-2723.
[3] Biswas, S.; Bheemireddy, N. R.; Bal, M.; Van Steijvoort, B. F.; Maes, B. U. W. J. Org. Chem. 2019, 84, 13112-13123.
[4] Wang, P.-L.; Li, Y.; Wu, Y.; Li, C.; Lan, Q.; Wang X.-S. Org. Lett. 2015, 17, 3698-3701.
[5] Li, Q.; Zhang, S.-Y.; He, G.; Nack, W. A.; Chen, G. Adv. Syn. Cat. 2014, 356(7): 1544-1548.
[6] Nack, W. A.; He, G.; Zhang, S.-Y.; Lu, C.; Chen, G. Org. Lett. 2013, 15(13): 3440-3443.

V Standard procedure for Pd-catalyzed C-H Arylation / C-N Coupling

Scheme S5 standard procedure Pd-catalyzed C-H Arylation / C-N Coupling

To an oven-dried Schlenk tube equipped with a magnetic stir bar added by amides (0.2 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(55.0 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1equiv), $\mathrm{CuI}(3.9 \mathrm{mg}, 0.02$ mmol, 0.1 equiv) and $\mathrm{NaOAc}(65.6 \mathrm{mg}, 0.8 \mathrm{mmol}, 4$ equiv). Then 0.9 mL of toluene and 0.1 mL of t -AmylOH were added sequentially and 2-bromo iodobenzene ($0.3 \mathrm{mmol}, 1.5$ equiv) was injected into the resulting mixture with a microinjector. After that, the tube was sealed with a rubber stopper and the resulting mixture was stirred at $140^{\circ} \mathrm{C}$ in an oil bath for 24 h . After the reaction was finished, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (1:1) as the eluent to give the desired product.

VI Gram-scale synthesis of 3a and removal of the protecting group

Scheme S6 Gram-scale synthesis of 3a

To an oven-dried Schlenk tube (100 mL) equipped with a magnetic stir bar added by methyl O-(tert-butyl)-N-picolinoyl-L-threoninate (3a, 5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($112 \mathrm{mg}, 0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(55.0 \mathrm{mg}, 5 \mathrm{mmol}$, lequiv), $\mathrm{CuI}(96 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{NaOAc}(1.64 \mathrm{~g}, 20 \mathrm{mmol}$, 4 equiv). Then 22.5 mL of toluene and 2.5 mL of t-AmylOH were added sequentially and 2-bromo iodobenzene ($7.5 \mathrm{mmol}, 1.5$ equiv) was injected into the resulting mixture. After that, the tube was sealed with a rubber stopper and the resulting mixture was stirred at $140^{\circ} \mathrm{C}$ in an oil bath for 24 h . After the reaction was finished, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (1:1) as the eluent to give $\mathbf{3 a}(1.15 \mathrm{~g}, 62 \%)$.

Scheme S7 removal of picolinyl protecting group

To a solution of compound $\mathbf{3 a}(0.2 \mathrm{mmol}, 74 \mathrm{mg})$ in a mixture of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1,12 \mathrm{~mL})$ an aqueous solution of $\mathrm{HCl}(1 \mathrm{M}, 2 \mathrm{~mL})$ and Zn powder $(2 \mathrm{mmol}, 130 \mathrm{mg})$ were added, and the resulting solution was stirred at room temperature for 16 hours. After evaporation of the solvent, the resulting crude was diluted with EtOAc and washed with a saturated solution of NaHCO_{3}. The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1) as the eluent to give $\mathbf{3 a - 1}$ ($39.5 \mathrm{mg}, 75 \%$).

VII Characterization data for products

methyl (2S,3R)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2-carboxylate (3a), $47.9 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 65 \%$, light yellow solid, $R f=0.4(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25}{ }_{\mathrm{D}}=-83.80(\mathrm{c}$ $\left.0.502, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{dd}, J=10.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}$, $1 \mathrm{H}), 5.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=14.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.71(\mathrm{~m}$, 1H), 1.15 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,168.7,154.0,148.9,137.7,136.7,129.6,128.8,126.3,125.0$, 124.8, 124.3, 74.9, 68.3, 62.4, 52.0, 34.7, 28.4.

HRMS (ESI): found: 369.1811 ($[\mathrm{M}+\mathrm{H}]^{+}$), calcd. Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 369.1814.

methyl (2R,3S)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2-carboxylate (3a-R), $44.9 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 61 \%$, light yellow oil, $R f=0.4(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25} \mathrm{D}=93.00(\mathrm{c} 0.514$, CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.18$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=14.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.16 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform- d) $\delta 169.5,168.6,153.8,148.9,136.7,129.5,128.8,126.3,124.9$, 124.8, 124.7, 124.2, 74.9, 68.2, 62.3, 52.0, 34.6, 28.4.

HRMS (ESI): found: 369.1817 ($[\mathrm{M}+\mathrm{H}]^{+}$), calcd. Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 369.1814.

tert-butyl (2S,3R)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2-carboxylate (3b), $43.5 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 53 \%$, light yellow oil, $R f=0.45(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{29} \mathrm{D}=-57.64(\mathrm{c}$ $\left.0.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=13.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 168.6,168.1,154.3,149.1,137.5,136.6,129.3,128.7,126.1,124.6$, 124.5, 124.0, 81.4, 74.8, 67.9, 62.1, 34.5, 28.3, 28.2.

HRMS (ESI): found: $411.2286\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 411.2284.

methyl (2S)-3-methyl-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2-carboxylate (3c-S), 46.5 mg (0.2 mmol scale) $, 75 \%, \mathrm{dr}=5.8: 1$, light yellow oil, $R f=0.43(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25} \mathrm{D}=-232.48$ (c $0.45, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform-d) $\delta 8.39$ (s, 1H), $7.70(\mathrm{~d}, J=24.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.80-4.68(\mathrm{~m}, 1 \mathrm{H}), 3.73$ ($\mathrm{s}, 2 \mathrm{H}$), 2.76 - 2.71 (m, 1H), 2.61 (t, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 172.1,171.8,168.6,168.5,153.64,148.8,148.7,138.3,138.0$, $136.6,133.2,131.8,128.6,128.4,127.5,127.3,126.33,126.25,125.2,125.0,124.95,124.88,124.8$, $124.5,124.3,124.2,63.0,52.5,52.3,40.6,36.5,35.0,35.5,32.0,20.5$.
HRMS (ESI): found: $311.1393\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$, Exact Mass: 311.1396.

methyl (2R)-3-methyl-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2-carboxylate (3c-R), 49.0 mg (0.2 mmol scale), $79 \%, \mathrm{dr}=3.6: 1$, light yellow oil, $R f=0.43(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25} \mathrm{D}=159.12(\mathrm{c}$ $0.45, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.24$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.79-4.70(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 2 \mathrm{H})$, 1.25 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz, Chloroform-d) $\delta 172.0,171.7,170.5,168.6,168.5,153.9,153.6,148.74,148.65$, $138.3,137.9,137.1,136.6,136.5,128.5,128.3,127.4,127.2,126.3,126.2,125.2,124.9,124.7,124.5$, 124.1, 62.9, 60.8, 52.4, 52.2, 51.8, 40.6, 36.4, 34.9, 33.5, 31.9,20.3, 16.8.

HRMS (ESI): found: $311.1390\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$, Exact Mass: 311.1396.

methyl 2-(1-picolinoyl-1,2,3,4-tetrahydroquinolin-2-yl)acetate (3d), 37.9 mg (0.2 mmol scale), 61%, light yellow oil, $R f=0.43(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.28$ (m, 4H), $2.82-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform- d) δ 171.2, 171.1, 168.2, 154.7, 148.9, 148.0, 137.5, 126.4, 126.1, 126.0, 125.3, 124.3, 123.6, 122.4, 61.7, 61.5, 44.6, 33.7, 21.12, 21.06.

ethyl 1-picolinoyl-2-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinoline-2-carboxylate (3e), 52.6 $\mathrm{mg}(0.2 \mathrm{mmol} \mathrm{scale}), 67 \%$, light yellow oil, $R f=0.46(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.55(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=$ $14.6,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dq}, J=15.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{t}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dq}, J$ $=15.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19}$ F NMR (565 MHz, DMSO- d_{6}) δ-58.72.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,169.7,154.3,149.6,137.6,136.3,133.4,127.2,127.1,126.5$, $126.3,125.3,125.2,124.5,123.4,63.2,62.4,37.5(\mathrm{q}, J=3 \mathrm{~Hz}), 35.1,25.3,14.2$.

HRMS (ESI): found: $393.1430\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$, Exact Mass: 393.1426.

methyl 2-methyl-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2-carboxylate (3f), 36.0 mg (0.2 mmol scale), 58%, light yellow oil, $R f=0.42(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$.
${ }^{1}{ }^{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 174.1,168.8,154.6,149.5,137.9,136.4,134.6,127.2,126.3,126.2$, $125.1,124.5,123.6,63.6,52.8,39.2,25.9,23.5$.

HRMS (ESI): found: $311.1398\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$, Exact Mass: 311.1396.

(2R,3R)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinolin-2-yl)methyl acetate (3g), 55.1 mg (0.2 mmol scale), 72%, light yellow oil, $R f=0.42(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25}{ }_{\mathrm{D}}=-150.12$ (c 0.364, CHCl_{3}).
${ }^{1}{ }^{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(\mathrm{dd}, J=17.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=17.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 171.1,168.4,154.8,148.8,136.8,129.2,128.6,126.0,125.7,125.1$, 124.6, 123.7, 74.8, 65.6, 60.3, 33.9, 28.3, 21.1.

HRMS (ESI): found: 383.1967 ($[\mathrm{M}+\mathrm{H}]^{+}$), calcd. Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 383.1971.

((2R,3R)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinolin-2-yl)methyl pivalate (3h), $54.3 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 64 \%$, light yellow oil, $R f=0.48(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25}{ }_{\mathrm{D}}=-144.18(\mathrm{c}$ $\left.0.338, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.12(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=17.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=17.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.4,168.2,154.9,148.6,136.9,129.3,128.8,125.9,125.5,125.0$, 124.6, 123.9, 74.8, 65.6, 60.3, 38.8, 34.2, 28.4, 27.3.

HRMS (ESI): found: $425.2445\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 425.2440.

((2R,3R)-3-(tert-butoxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3,4-dihydroquinolin-1(2H)-yl)(pyridin-2-yl)methanone (3i), $55.5 \mathrm{mg}(0.2 \mathrm{mmol}$ scale), 61%, light yellow oil, $R f=0.52$ $(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25}{ }_{\mathrm{D}}=-118.94\left(\mathrm{c} 0.398, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}$, $1 \mathrm{H}), 7.26(\mathrm{t}, J=17.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=24.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=16.9$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=16.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,155.6,148.6,136.8,129.0,129.0,125.9$ 124.8, 124.2, 123.8, 74.64 (s), 65.62 (s), 58.63 (s$), 34.26$ (s$), 28.41$ (s), 26.00 (s$), 18.33$ (s$),-5.38$ (s$),-5.55(\mathrm{~s})$.

HRMS (ESI): found: $455.2735\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$, Exact Mass: 455.2730.

3j
2-(((tert-butyldimethylsilyl)oxy)methyl)-3,4-dihydroquinolin-1(2H)-yl)(pyridin-2-yl) methanone ($\mathbf{3 j}$), $46.7 \mathrm{mg}(0.2 \mathrm{mmol}$ scale), 61%, light yellow oil, $R f=0.54(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$, ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=9.7,4.1 \mathrm{~Hz}$,

1 H), $3.66(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=12.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}),-$ 0.02 (d, $J=11.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,155.0,149.1,136.3,127.5,126.0,125.9,125.05,124.20123 .5$, 63.8, 54.9, 26.0, 25.8, 18.2, -5.3, -5.4.

HRMS (ESI): found: $383.2153\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$, Exact Mass: 383.2155.

(S)2-(((tert-butyldimethylsilyl)oxy)methyl)-3,4-dihydroquinolin-1(2H)-yl)(pyridin-2-yl)
methanone (3j), $44.4 \mathrm{mg}(0.2 \mathrm{mmol}$ scale), 58%, light yellow oil, $R f=0.54(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$, $[\alpha]^{25}{ }_{\mathrm{D}}=-226.54\left(\mathrm{c} 0.806, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=9.8$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{td}, J=16.7$, $15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.77(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 168.4,155.0,149.0,136.5,126.0,125.9,125.1,124.2,123.5,26.0$, 25.8, 18.2 -5.3, -5.4.

HRMS (ESI): found: $383.2153\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$, Exact Mass: 383.2150 .

2-(1-picolinoyl-1,2,3,4-tetrahydroquinolin-2-yl)ethyl acetate (3k), 50.6 mg (0.2 mmol scale), 78%, light yellow oil, $R f=0.44(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.05(\mathrm{~m}, 3 \mathrm{H}), 2.81(\mathrm{ddt}, J=28.7,15.4,7.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.03 ($\mathrm{s}, 2 \mathrm{H}$), $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,171.1,168.2,164.1,154.8,149.7,148.9,148.1,137.6,136.5$, $128.2,126.4,126.1,125.3,124.3,123.6,122.4,61.7,61.6,44.7,33.8,21.1,21.1$.

HRMS (ESI): found: 325.1548 ([M+H $]^{+}$), calcd. Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$, Exact Mass: 325.1552.

31

(2-methyl-3,4-dihydroquinolin-1(2H)-yl)(pyridin-2-yl)methanone (31), 49.6 mg (0.2 mmol scale), 87%, light yellow oil, $R f=0.5(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H})$, $7.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{q}, J=$ $15.0,11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, Chloroform- d) $\delta 168.0,155.1,148.1,137.5,149.0,136.4,127.8,126.2,125.9$, 125.1, 124.2, 123.4, 49.6, 31.8, 25.7, 19.5.

HRMS (ESI): found: $253.1343\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$, Exact Mass: 253.1341.

pyridin-2-yl(2-(trifluoromethyl)-3,4-dihydroquinolin-1(2H)-yl)methanone (3m), $49.6 \mathrm{mg}(0.2$ mmol scale), 81%, light yellow oil, $R f=0.49(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.66-5.55(\mathrm{~m}, 1 \mathrm{H})$, $2.83(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{dt}, J=16.1,8.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{19}$ F NMR (565 MHz , Chloroform-d) $\delta-73.96$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,153.7,148.7,138.1,136.5,134.4,127.3,126.7,126.3,126.0$, 124.6, 123.7, 52.6, 52.4, 52.2, 25.4, 25.3.

HRMS (ESI): found: $307.1055\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$, Exact Mass: 307.1058.

methyl (2S,3R)-3-(tert-butoxy)-6-methoxy-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2-carboxylate (4a), $47.8 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 60 \%$, light yellow oil, $R f=0.40(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25}{ }_{\mathrm{D}}=-86.45$ (c $0.44, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}$, $2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.16 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,168.2,156.9,154.0,148.9,136.7,131.0,125.6,124.6,124.2$, 114.1, 111.6, 74.9, 68.2, 62.2, 55.4, 51.9, 35.0, 28.4.

HRMS (ESI): found: $399.1921\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}$, Exact Mass: 399.1920.

methyl (2S,3R)-3-(tert-butoxy)-7-methyl-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2carboxylate (4b), $48.1 \mathrm{mg}(0.2 \mathrm{mmol}$ scale), 63%, light yellow oil, $R f=0.40(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$, $[\alpha]^{25}{ }_{D}=-68.26\left(\mathrm{c} 0.576, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=14.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}$, 3H), 1.16 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 169.6,168.6,154.1,148.9,137.2,136.7,135.9,128.5,126.3,125.8$, 125.4, 124.6, 124.2, 74.9, 68.2, 62.2, 52.0, 34.2, 28.4, 21.1.

HRMS (ESI): found: $383.1975\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 383.1971.
 4c
methyl (2S,3R)-3-(tert-butoxy)-1-picolinoyl-6-(trifluoromethoxy)-1,2,3,4-tetrahydroquinoline -2-carboxylate (4c), $60.6 \mathrm{mg}(0.2 \mathrm{mmol}$ scale), 67%, light yellow oil, $R f=0.40(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$, $[\alpha]^{25} \mathrm{D}=-106.42\left(\mathrm{c} 0.666, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, J=14.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}$, 9H).
${ }^{19}$ F NMR (565 MHz, Chloroform-d) $\delta-58.16$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,168.6,153.0,148.8,147.1,138.8,137.0,129.6,128.2,125.2$, $124.5,121.1,119.4,117.9,117.8,75.1,67.9,62.4,52.1,34.3,28.4$.
HRMS (ESI): found: $453.1639\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$, Exact Mass: 453.1637.

methyl (2S,3R)-3-(tert-butoxy)-1-picolinoyl-6-(trifluoromethyl)-1,2,3,4-tetrahydroquinoline-2-carboxylate (4C), 49.8 mg (0.2 mmol scale), 57%, light yellow oil, $R f=0.40(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$,
$[\alpha]^{25}{ }_{D}=-123.82\left(\mathrm{c} 0.556, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ (s, 1H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=14.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{19}$ F NMR (565 MHz, Chloroform- d) δ-62.10.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,168.6,153.0,148.7,141.1,137.1,130.1,127.1,126.9,126.8,126.6$, $126.4,126.0,125.9,125.9,125.9,125.34,125.1,124.7,124.6,123.4,123.4,123.4,123.4,123.3,75.2$, 67.8, 62.7, 52.1, 34.8, 28.4.

HRMS (ESI): found: $437.1684\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$, Exact Mass: 437.1688.

methyl (2S,3R)-3-(tert-butoxy)-6-fluoro-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2carboxylate (4e), $50.2 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 61 \%$, light yellow oil, $R f=0.40(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$, $[\alpha]^{25} \mathrm{D}=-144.34\left(\mathrm{c} 0.388, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{dd}$, $J=14.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{19} \mathrm{~F}$ NMR (565 MHz, Chloroform- d) $\delta-117.85$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,168.3,160.8,159.2,153.5,148.7,136.9,132.0,126.1,125.0$, $124.5,115.6,115.4,113.3,113.1,75.0,68.0,62.6,52.0,34.9,29.8,28.5$.

HRMS (ESI): found: $387.1723\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{4}$, Exact Mass: 387.1720.

methyl (2S,3R)-3-(tert-butoxy)-6-chloro-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2carboxylate (4f), $55.6 \mathrm{mg}(0.2 \mathrm{mmol}$ scale), 69%, light yellow oil, $R f=0.40(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$, $[\alpha]^{25}{ }_{D}=-85.20\left(\mathrm{c} 0.544, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 169.2,168.3,153.1,148.6,138.7,137.1,131.4,129.7,128.0,125.2$, $125.0,124.7,124.5,75.0,67.8,62.5,52.1,34.3,28.4$.

HRMS (ESI): found: $403.1423\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{4}$, Exact Mass: 403.1425.

methyl
(2S,3R)-6-bromo-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2carboxylate ($\mathbf{4 g}$), $54.6 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 61 \%$, light yellow oil, $R f=0.40(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$, $[\alpha]^{25} \mathrm{D}=-128.62\left(\mathrm{c} 0.374, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}$, $J=12.6,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.02(\mathrm{dd}, J=14.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,168.1,153.2,148.6,137.2,131.9,131.6,129.3,126.1,125.2$, 124.6, 118.2, 75.1, 67.9, 62.5, 52.1, 34.6, 28.4.

HRMS (ESI): found: $447.0921\left([M+H]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{4}$, Exact Mass: 447.0919.

4h

methyl
(2S,3R)-3-(tert-butoxy)-7-cyano-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2carboxylate ($4 \mathbf{h}$), $44.1 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 56 \%$, light yellow oil, $R f=0.40(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$, $[\alpha]^{25}{ }_{D}=-97.12\left(\mathrm{c} 0.214, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.10(\mathrm{dd}, J=14.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 168.9,168.2,152.4,148.4,139.1,137.5,135.6,129.8,128.4,127.9$, 125.7, 125.0, 118.6, 110.1, 75.3, 67.7, 62.9, 52.2, 35.2, 28.5.

HRMS (ESI): found: $394.1763\left([M+H]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}$, Exact Mass: 394.1767.

dimethyl (2S,3R)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2,6-dicarboxylate
(4h), $49.5 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 58 \%$, light yellow oil, $R f=0.3(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25}{ }_{\mathrm{D}}=-70.86$ (c $0.682, \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.11$ $(\mathrm{m}, 3 \mathrm{H}), 5.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.11(\mathrm{dd}, J=14.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2$ (s), 168.5, 166.5, 153.3, 148.5, 138.0, 137.0, 135.0, 128.9, 128.4, $126.0,125.8,125.00,124.6,75.0,67.9,62.55(\mathrm{~s}), 52.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 34.94$ (s), $28.42(\mathrm{~s})$.
HRMS (ESI): found: $427.1871\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}$, Exact Mass: 427.1869.

4j

methyl (2S,3R)-3-(tert-butoxy)-6-nitro-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2carboxylate (4j), $51.3 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 62 \%$, light yellow oil, $R f=0.40(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$, $[\alpha]^{25}{ }_{\mathrm{D}}=-70.86\left(\mathrm{c} 0.682, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}$, $1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,168.3,152.4,148.4,146.4,139.0,137.5,137.3,129.4,125.7$, 125.0, 119.6, 75.3, 67.6, 62.8, 52.2, 35.1, 28.4.

HRMS (ESI): found: $414.1665\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}$, Exact Mass: 414.1665.

methyl (2S,3R)-3-(tert-butoxy)-1,2,3,4-tetrahydroquinoline-2-carboxylate (3a-1), 39.5 mg (0.2 mmol scale), 75%, light yellow oil, $R f=0.6(\mathrm{PE} / \mathrm{EtOAc}=3 / 1),[\alpha]_{\mathrm{D}}^{25}=-18.26\left(\mathrm{c} 0.614, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.94$ ($\mathrm{td}, J=17.6,16.9,4.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.17(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz , Chloroform- d) $\delta 172.1,142.4,129.8,127.0,119.3,118.1,114.8,74.3,64.2,59.1$, 52.1, 34.5, 28.6.

HRMS (ESI): found: $264.1605\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3}$, Exact Mass: 264.1600.

2-(((2S,3R)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinolin-2-yl)methyl) 1-(tert-butyl) (S)-pyrrolidine-1,2-dicarboxylate (3n), $58.1 \mathrm{mg}(0.2 \mathrm{mmol}$ scale), 54%, light yellow oil, $R f=0.34$ $(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25}{ }_{\mathrm{D}}=38.26\left(\mathrm{c} 0.275, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=83.8,10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{td}, J=16.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dt, $J=26.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=19.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}$, $3 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,172.7,168.3,154.7,154.5,153.8,148.8,148.7,136.9,129.3,129.3$, $129.0,128.5,126.0,125.6,125.0,124.6,124.5,123.9,79.9,79.8,74.9,74.8,65.5,60.8,59.4,58.9,46.6$, 46.4, 34.1, 30.8, 30.0, 28.6, 28.4, 28.4, 28.4, 24.4, 23.8.

HRMS (ESI): found: $538.2913\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{6}$, Exact Mass: 538.2917.

6-((3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl) 2-methyl (2S,3R)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2,6-dicarboxylate (4k), $70.7 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 54 \%$, light yellow oil, $R f=0.41(\mathrm{PE} / \mathrm{EtOAc}=$ $1 / 1),[\alpha]^{25}{ }_{\mathrm{D}}=-28.62\left(\mathrm{c} 0.476, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (dd, $J=23.8,7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 7.26 (s, 2H), 7.23 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}$, $J=20.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H}), 1.29$ ($\mathrm{s}, 3 \mathrm{H}$), 1.27 ($\mathrm{s}, 3 \mathrm{H}$), 1.13 ($\mathrm{s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, Chloroform- d) $\delta 169.2$, 148.6, 138.4, 137.0, 135.7, 129.1, 127.9, 126.4, 125.6, $125.2,124.6,112.4,109.4,105.1,83.4,79.9,76.4,75.2,72.4,68.0,67.2,62.7,52.1,35.1,28.5,27.0$, 26.8, 26.3, 25.6.

HRMS (ESI): found: $655.2861\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{11}$, Exact Mass: 655.2867.

6-((3S,8S,9S,10R,13R,14S)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12, 13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl) 2-methyl (2S,3R)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2,6-dicarboxylate (4l), $101.5 \mathrm{mg}(0.2 \mathrm{mmol}$ scale $), 65 \%$, light yellow oil, $R f=0.51(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25}{ }_{\mathrm{D}}=-33.4\left(\mathrm{c} 0.374, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65(\mathrm{ddd}, J=24.9,12.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=14.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=$ $14.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 10 \mathrm{H}), 1.13-1.11(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.02-$ $0.94(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (151 MHz , Chloroform-d) $\delta 169.3,168.7,165.3,153.6,148.8,139.7,137.8,136.9,129.1,128.8$, $126.0,125.7$ 125.0, 124.4, 122.9, 75.1, 74.4, 67.9, 62.4, 56.8, 56.3, 52.1, 50.1, 42.5, 39.9, 39.7, 38.2, $37.1,36.7,36.3,35.9,35.0,32.04,32.00,29.8,28.5,28.4,28.2,27.9,24.4,24.0,23.0,22.7,21.2,19.5$, 18.9, 12.0.

HRMS (ESI): found: $781.5159\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{49} \mathrm{H}_{69} \mathrm{~N}_{2} \mathrm{O}_{6}$, Exact Mass: 781.5156

2-methyl 6-((R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl) (2S,3R)-3-(tert-butoxy)-1-picolinoyl-1,2,3,4-tetrahydroquinoline-2,6-dicarboxylate (4m), $92.4 \mathrm{mg}(1.252$ mmol scale $), 56 \%$, light yellow oil, $R f=0.46(\mathrm{PE} / \mathrm{EtOAc}=1 / 1),[\alpha]^{25} \mathrm{D}=-68.26\left(\mathrm{c} 0.576, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform- d) $\delta 8.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}$, 1 H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 3.18 (dd, $J=14.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=14.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 2 \mathrm{H})$, $2.07(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=19.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 5 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 4 \mathrm{H}), 1.26$ $(\mathrm{s}, 7 \mathrm{H}), 1.23(\mathrm{~s}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{t}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{dd}, J=11.2,6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{dd}, J=$ $11.4,6.6 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, Chloroform- d) δ 169.3, 168.7, 164.7, 153.4, 149.5, 148.5, 140.5, 138.2, 137.1, $135.4,129.1,127.8,126.6,126.0,125.1,124.7,123.1,117.5,75.2,67.9,62.4,52.1,40.5,39.5,37.6$, $37.4,35.1,32.94,32.89,31.3,28.5,28.1,24.9,24.6,24.2,23.9,22.9,22.8,21.2,20.7,19.9,19.8,13.2$, 12.4, 12.3, 12.0.

HRMS (ESI): found: $825.5414\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, calcd. Chemical Formula: $\mathrm{C}_{51} \mathrm{H}_{73} \mathrm{~N}_{2} \mathrm{O}_{7}$, Exact Mass: 825.5418.

VIII Ee value of selected starting materials and related products
Table S2 ee value of selected starting materials and related products

IX NMR spectra of substrates and products

1a ${ }^{1} \mathrm{H}$ NMR

1a ${ }^{13} \mathrm{C}$ NMR

1a-R ${ }^{1} H$ NMR

1a-R ${ }^{13} \mathrm{C}$ NMR

$\underbrace{\text { NNONONO, }}$
$\stackrel{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\dot{\sim}}$

1b ${ }^{1} \mathrm{H}$ NMR
(

1b ${ }^{13} \mathrm{C}$ NMR

1c-S ${ }^{1} \mathrm{H}$ NMR
J/ \iint
$\stackrel{\substack{0}}{\substack{\text { M }}}$
$\underset{i}{\bar{i}} \stackrel{\text { N }}{i}$
-1.01
5
0
i
i

1c-S ${ }^{13} \mathrm{C}$ NMR
Nollollo

1c-R ${ }^{1} \mathrm{H}$ NMR

$\hat{\circ}$
$\dot{\circ}$
i
Jr J J J

$1 \mathrm{c}-\mathrm{R}{ }^{13} \mathrm{C}$ NMR

$$
\mathrm{H}^{\mathrm{N}} \mathrm{O}^{\mathrm{N}}
$$

1d ${ }^{1} \mathrm{H}$ NMR

$1 \mathrm{~d}^{13} \mathrm{C}$ NMR

1e ${ }^{1} \mathrm{H}$ NMR

/J||
C)

1e ${ }^{19}$ F NMR

1e ${ }^{13} \mathrm{C}$ NMR

∞	\square	入-	\bigcirc	$\stackrel{\sim}{\mathrm{N}} \stackrel{\stackrel{\Im}{\mathrm{~N}}}{\stackrel{\sim}{N}}$
「	¢	$\stackrel{\square}{ \pm}$	-	
\|	\|	\/	\|	

C

1f ${ }^{1} \mathrm{H}$ NMR

J/ \| 1

1f ${ }^{13} \mathrm{C}$ NMR

$\stackrel{\Gamma}{i} \underset{1}{\stackrel{\sim}{\dot{\sim}}} \stackrel{0}{\infty}$

1g ${ }^{1} \mathrm{H}$ NMR

\qquad il \&
dri

\qquad

1g ${ }^{13}$ C NMR

1h ${ }^{1} \mathrm{H}$ NMR

1h ${ }^{13} \mathrm{C}$ NMR
Cose

1i ${ }^{1} \mathrm{H}$ NMR

$1 i^{13} \mathrm{C}$ NMR

$\stackrel{\text { ¢ }}{+}$	웅	-
\|	$1 /$	।

1j ${ }^{1} \mathrm{H}$ NMR

$1 \mathrm{j}{ }^{13} \mathrm{C}$ NMR

Nペ＋

ペ

$\mathbf{1 j - s}{ }^{1} \mathrm{H}$ NMR

$11{ }^{1} \mathrm{H}$ NMR

	$\stackrel{+1}{8}$	$\stackrel{\text { が }}{\stackrel{\circ}{\circ}}$	$\underset{\sim}{\text { Nָ }}$	$\begin{aligned} & \text { M' } \\ & \stackrel{y}{\circ} \end{aligned}$																
9. 0	8.5	8.0	7.5	7.0	6. 5	6. 0	5. 5	5.0	1. 5	$\underset{(\mathrm{ppm})}{4.0}$	3.5	3.0	${ }^{1} .5$	2.0	1.5	1.0	0.5	${ }^{1} .0$	${ }_{-0.5}^{\text {- }}$	${ }_{-1.0}$

$11{ }^{13} \mathrm{C}$ NMR

1m ${ }^{1} \mathrm{H}$ NMR

1m ${ }^{19}$ F NMR

1m ${ }^{13} \mathrm{C}$ NMR

190	180	170	160	150	140	130	${ }_{120}$	${ }_{110}$	100	90	80	10	60	50	${ }_{40}$	1	1	10	1	10
										$f 1$										

3a ${ }^{1} \mathrm{H}$ NMR

3a ${ }^{13} \mathrm{C}$ NMR

NヘN

3a-R ${ }^{1} H$ NMR

3a-R ${ }^{13} \mathrm{C}$ NMR

3b

3b ${ }^{1} \mathrm{H}$ NMR

3b ${ }^{13} \mathrm{C}$ NMR

3c-S ${ }^{1} \mathrm{H}$ NMR
~
م号
$\stackrel{n}{i}$
f. Il||s
$\iiint_{r} \mid()_{l}$

3c-S ${ }^{13} \mathrm{C}$ NMR

190	180	170	160	150	${ }_{140}^{1}$	130	120	${ }_{110}$	100	${ }_{90}$	18	${ }_{70}$	${ }_{60}$	50	40	${ }_{30}$	${ }_{20}$	10	0	${ }_{-10}$

3c-R ${ }^{1} \mathrm{H}$ NMR

$3 \mathrm{c}-\mathrm{R}{ }^{13} \mathrm{C}$ NMR

3d ${ }^{1} \mathrm{H}$ NMR

3d ${ }^{13}$ C NMR

[^0]

3e ${ }^{1} \mathrm{H}$ NMR

3e ${ }^{19} \mathrm{~F}$ NMR
$\stackrel{N}{N}$

3e ${ }^{13} \mathrm{C}$ NMR

3f ${ }^{1} \mathrm{H}$ NMR

Sf ${ }^{13} \mathrm{C}$ NMR

Sg ${ }^{1} \mathrm{H}$ NMR

3g ${ }^{13} \mathrm{C}$ NMR

$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{\Gamma}{\dot{\sim}}$
\bar{i}

3h ${ }^{1} \mathrm{H}$ NMR
安
 $\iint \rho \iint$

	$\begin{aligned} & \text { To } \\ & \infty \\ & \hline \end{aligned}$									$\begin{gathered} \text { T' } \\ \substack{\infty \\ 0} \end{gathered}$		$\begin{aligned} & \text { W'W } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 'ó } \\ & \stackrel{+}{+} \end{aligned}$			$\begin{aligned} & \text { 客等 } \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$				
9.0	${ }_{8}^{1.5}$	8.0	7.5	${ }_{7.0}^{1.0}$	${ }_{6}{ }^{1} 5$	6.0	5． 5	5． 0	$4_{\mathrm{f} 1}^{1.5}$	$\begin{aligned} & 1.0 \\ & (\mathrm{ppm}) \end{aligned}$	${ }^{1} .5$	${ }^{1} .0$	2.5	2.0	1.5	${ }_{1}^{1.0}$	0.5	0.0	${ }_{-0.5}$	${ }_{-1.0}$

3h ${ }^{13} \mathrm{C}$ NMR

$3 \mathbf{i}^{1} \mathrm{H}$ NMR
©

\qquad
\qquad ll \qquad us,尘

	$\stackrel{7}{\circ}$		Oth						$\begin{gathered} \text { T } \\ \underset{\sim}{4} \end{gathered}$	$\stackrel{\underset{~}{T}}{\stackrel{\rightharpoonup}{+}}$						¢	-		Now		
9.0	8.5	8.0	7.5	7.0	6.5	6. 0	5. 5	5.0	4.5	1.0			3.0	2. 5	2.0	1.5	1.0	0.5	0.0	-0.	1.

$3 \mathbf{i}^{13} \mathrm{C}$ NMR

$\stackrel{\bullet}{\circ} \quad \stackrel{\bullet}{\circ}$

3j ${ }^{1} \mathrm{H}$ NMR

3j ${ }^{13} \mathrm{C}$ NMR
$\stackrel{\stackrel{n}{\infty}}{\stackrel{\infty}{\infty}}$

$\underbrace{\text { NNO }}$

${\underset{\gamma}{\circ} \stackrel{\infty}{\circ} \stackrel{\sim}{\infty}}_{\stackrel{\infty}{\infty}}^{\sim}$
M

3j-S ${ }^{1} \mathrm{H}$ NMR

3j-S ${ }^{13} \mathrm{C}$ NMR
$\stackrel{+}{\infty}$

NNO

3k ${ }^{1} \mathrm{H}$ NMR

f / INIIN $\int|||\mid$

3k ${ }^{13} \mathrm{C}$ NMR

$31{ }^{1} \mathrm{H}$ NMR

$\stackrel{\text { Un }}{\substack{\infty \\ \sim}}$

\circ
0
1
1

$31{ }^{13} \mathrm{C}$ NMR

3m ${ }^{1} \mathrm{H}$ NMR

3m ${ }^{19}$ F NMR

4a ${ }^{1} \mathrm{H}$ NMR

4a ${ }^{13} \mathrm{C}$ NMR

4b

4b ${ }^{1} \mathrm{H}$ NMR

4b ${ }^{13} \mathrm{C}$ NMR

4c ${ }^{1} \mathrm{H}$ NMR
(

4c ${ }^{19}$ F NMR

$4 c^{13} \mathrm{C}$ NMR

4d ${ }^{1} \mathrm{H}$ NMR

4d ${ }^{19}$ F NMR

$4 d^{13} \mathrm{C}$ NMR

$4 e^{1} \mathrm{H}$ NMR

$4 e^{19} \mathrm{~F}$ NMR

$$
\begin{aligned}
& \stackrel{\infty}{\infty} \\
& \stackrel{\sim}{\underset{i}{2}}
\end{aligned}
$$

\qquad

$4 \mathbf{e}^{13} \mathrm{C}$ NMR

$4 f^{1}{ }^{1}$ NMR

4g ${ }^{1} \mathrm{H}$ NMR

$4 g{ }^{13} \mathrm{C}$ NMR
ジゅ
$\stackrel{\sim}{\sim}$

4h ${ }^{1} \mathrm{H}$ NMR

4h ${ }^{13} \mathrm{C}$ NMR

$4 i^{1}{ }^{1} \mathrm{NMR}$
(
NiN

皿

$4 i^{13} \mathrm{C}$ NMR

$$
\begin{aligned}
& \text { Noセも }
\end{aligned}
$$

4j
4j ${ }^{1} \mathrm{H}$ NMR

4j ${ }^{13} \mathrm{C}$ NMR
-送

+i人on

3n ${ }^{1} \mathrm{H}$ NMR

4k ${ }^{1} \mathrm{H}$ NMR
$4 k{ }^{13} \mathrm{C}$ NMR

$41{ }^{1} \mathrm{H}$ NMR

4l ${ }^{13} \mathrm{C}$ NMR

4m ${ }^{1}$ HNMR

4m ${ }^{13}$ C NMR

ГГ

3a-1 ${ }^{1} \mathrm{H}$ NMR

3a-1 ${ }^{13} \mathrm{C}$ NMR

3a， $\mathrm{OJ}-3, \mathrm{Hex} / \mathrm{PrOH}=80 / 20$ ，rate $=0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝

3a－R，OJ－3， $\mathrm{Hex} /{ }^{i} \mathrm{PrOH}=80 / 20$ ，rate $=0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝

3a－R＋3a（1：1），OJ－3， $\mathrm{Hex} / /^{\prime} \mathrm{PrOH}=80 / 20$ ，rate $=0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝

1a IB－N5，Hex $/$ i $\operatorname{PrOH}=80 / 20$ ，rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

1a－R，IB－N5，Hex $/{ }^{i} \operatorname{PrOH}=80 / 20$ ，rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝

1a－R＋1a（1：1），IB－N5，Hex $/ \operatorname{PrOH}=80 / 20$, rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝
mV

1c， $\mathrm{IB}-\mathrm{N} 5, \mathrm{Hex} /{ }^{/} \mathrm{PrOH}=80 / 20$ ，rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝

1c－R，IB－N5，Hex $/{ }^{\prime} \mathrm{PrOH}=80 / 20$ ，rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

2022／12／11 22：24：33 1／1 ＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝ mV

$\mathbf{1 c}+\mathbf{1 c}-\mathrm{R}, \mathrm{IB}-\mathrm{N} 5, \mathrm{Hex} /{ }^{\mathrm{i}} \mathrm{PrOH}=80 / 20$, rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

2022／12／11 22：24：41 $1 / 1$
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝

3c， IB－N5， $\mathrm{Hex} /{ }^{2} \mathrm{PrOH}=80 / 20$ ，rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝

3c－R，IB－N5，Hex $/{ }^{2} \operatorname{PrOH}=80 / 20$ ，rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝
mV

$\mathbf{3 c}+\mathbf{3 c}-\mathrm{R}(1: 1), \mathrm{IB}-\mathrm{N} 5, \mathrm{Hex} /{ }^{i} \mathrm{PrOH}=80 / 20$, rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

2022／12／12 12：55：57 1／1
＝＝＝＝Shimadzu LabSolutions 分析报告＝＝＝＝
mV

$\mathbf{1 j}$－S，AD－3 rate $0.5 \mathrm{ml} / \mathrm{min}$ Hex：iPr 90：10， 254 nm
2022／11／12 16：38：32 1／1
2022／12／29 09：45：35 1／1

（ H SHIMADZU
 LabSolutions
 分析报告

＜样品信息＞

＜峰表＞

峰号	保留时间	面积	高度	浓度	浓度单位	标记	化合物名
1	9.770	92430011	3368278	99.720		M	
2	10.934	259430	11969	0.280		M	
总计		92689441	3380247				

1j，AD－3 rate $0.5 \mathrm{ml} / \mathrm{min}$ Hex：iPr 90：10， 254 nm

措 $\begin{aligned} & \text { shmadzu } \\ & \text { LabSolutions 分析报台 }\end{aligned}$

＜样品信息〉

＜峰表＞

峰号	保留时间	面积	高度	浓度	浓度单位	标记	化合物名
1	9.813	31958331	1099012	49.786			
2	11.024	32232607	1111730	50.214		V	
总计		64190938	2210742				

3j $\mathrm{IB}-\mathrm{N} 5, \mathrm{Hex} /{ }^{i} \operatorname{PrOH}=80 / 20$ ，rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

3 j－S IB－N5， $\mathrm{Hex} / \mathrm{PrOH}=80 / 20$ ，rate $=1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

```
==== Shimadzu LabSolutions 分析报告 ====
```


[^0]:

