Supporting Information

Visible-light-mediated photocatalytic sequential N-arylation: An eco-friendly synthetic route to unsymmetrical di-arylamines and imatinib drug

Sravani Sana, ${ }^{a}$ Sowmya Dastari, ${ }^{a}$ Dannarm Srinivas Reddy, ${ }^{\text {b }}$ Ramya Tokala, ${ }^{a}$ Manda Sathish, ${ }^{\text {c }}$ Rajesh Sonti, ${ }^{\text {b }}$ Nagula Shankaraiah ${ }^{\text {a* }}$
${ }^{a}$ Department of Medicinal Chemistry, ${ }^{b}$ Department of Pharmaceutical Analysis, National
Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500 037, India
${ }^{c}$ Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca-3460000, Chile
*Corresponding author: Dr. Nagula Shankaraiah; Email: shankar@niperhyd.ac.in;
shankarnbs@gmail.com

Content

I	Detailed Optimization	2
II	Experimental Data	4
III	Emission quenching experiments	13
IV	Copies of NMR Spectra	18

I. Detailed Optimization:

Table S1. Detailed optimization conditions for Cu -catalyzed sequential N-arylation of ammonia with aryl bromides under visible-light mediated ruthenium photoredox catalysis

$\begin{gathered} \text { Ent } \\ \text { ry } \end{gathered}$	Catalyst (mol\%)	$\begin{aligned} & \text { Co-catalyst } \\ & (\mathrm{mol} \%) \end{aligned}$	NH- Source	Light source ${ }^{\mathrm{c}}(\mathrm{CFL}) /$ temp.	Solvent	Yield (\%) ${ }^{b}$
1	Eosin Y (5)	$\mathrm{Cu}(\mathrm{OAc})_{2}(5)$	NH_{3} (aq.)	5W	toluene	N.R
2	Eosin Y (10)	$\mathrm{Cu}_{2} \mathrm{O}$ (10)	NH_{3} (aq.)	5W	toluene	N.R
3	Eosin Y (10)	$\mathrm{Cu}(\mathrm{OAc})_{2}(10)$	NH_{3} (aq.)	8W	toluene	N.R
4	Eosin Y (10)	$\mathrm{Cu}(\mathrm{OAc})_{2}(10)$	NH_{3} (aq.)	23W	toluene	N.R
5	Rose Bengal (5)	$\mathrm{Cu}(\mathrm{OAc})_{2}(5)$	NH_{3} (aq.)	23W	toluene	trace
6	Rose Bengal (10)	$\mathrm{Cu}(\mathrm{OAc})_{2}(10)$	NH_{3} (aq.)	23W	toluene	20
7	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (5)	$\mathrm{Cu}_{2} \mathrm{O}$ (5)	NH_{3} (aq.)	23W	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	20
8	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (5)	$\mathrm{CuI}(5)$	NH_{3} (aq.)	23W	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	-
9	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (5)	$\mathrm{Cu}(\mathrm{OAc})_{2}(5)$	$\mathrm{NH}_{4} \mathrm{HCO}_{3}$	23W	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	-
10	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (5)	$\mathrm{Cu}(\mathrm{OAc})_{2}(5)$	$\mathrm{NH}_{4} \mathrm{Cl}$	23W	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	-
11	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (5)	$\mathrm{Cu}(\mathrm{OAc})_{2}(5)$	$\begin{aligned} & \mathrm{NH}_{3} \text { (aq.) } \\ & +\mathrm{NH}_{4} \mathrm{OAc} \end{aligned}$	23W	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	50
12	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (5)	$\mathrm{Cu}(\mathrm{OAc})_{2}(5)$	NH_{3} (aq.)	23W	$\mathrm{H}_{2} \mathrm{O}$	35
13	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (5)	$\left(\mathrm{nBu} \mathrm{N}^{2}\right)_{2} \mathrm{Cu}_{2} \mathrm{I}_{4}$	NH_{3} (aq.)	23W	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	-
14	$\mathrm{Ru}\left(p\right.$-cymene) ${ }_{2} \mathrm{Cl}_{2}(5)$	$\mathrm{Cu}(\mathrm{OAc})_{2}(5)$	NH_{3} (aq.)	$80-100{ }^{\circ} \mathrm{C}$	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	-
15	-	$\mathrm{Cu}(\mathrm{OAc})_{2}(5)$	NH_{3} (aq.)	23 W	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	25
16	$\mathrm{Ru}(\text { bpy })_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (5)	$\mathrm{Cu}(\mathrm{OAc})_{2}(5)$	NH_{3} (aq.)	-	$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$	-

${ }^{a}$ Reaction conditions: i) 4a/1a (1 mmol), photocatalyst ($5 \mathrm{~mol} \%$), co-catalyst ($5 \mathrm{~mol} \%$), N-H source (10 mmol), Base (1.5 mmol), 23W CFL, reaction carried out under 23 W CFL, rt, $4-6 \mathrm{~h}$ in a seal-tube; ii) $\mathbf{2 a}$ (1.1 mmol) reaction carried out under 23 W CFL, rt, 18-24 h, open air. Solvent 5 mL . ${ }^{b}$ Isolated yields.

Table S2. Detailed optimization conditions for $\mathrm{Cu}^{\mathrm{II}}$-catalyzed sequential N -arylation of ammonia with aryl bromides under visible-light mediated ruthenium photoredox catalysis

	i)Photocat NH-sour Cu(II), base, $23 W C F L$, sela $4-6$ii) Phenyl boron Open air, $18-2$	 5a
entry	base	yield (\%) ${ }^{\text {b }}$
1	DIPEA	68
2	$\mathrm{Et}_{3} \mathrm{~N}$	25
3	$\mathrm{K}_{2} \mathrm{CO}_{3}$	NR
4	$\mathrm{CS}_{2} \mathrm{CO}_{3}$	55
5	NaHCO_{3}	NR
6	$\mathrm{K}_{3} \mathrm{PO}_{4}$	NR
7	DBU	NR
8	NaOtBu	35
9	DMAP	NR
10	-	NR

${ }^{a}$ Reaction conditions: i) $\mathbf{4 a}(1 \mathrm{mmol})$, photocatalyst ($2 \mathrm{~mol} \%$), co-catalyst ($2 \mathrm{~mol} \%$), $\mathrm{N}-\mathrm{H}$ source (10 mmol), Base $(1.5 \mathrm{mmol}), 23 \mathrm{~W}$ CFL, reaction carried out under 23 W CFL, $\mathrm{rt}, 4-6 \mathrm{~h}$ in a seal-tube; ii) $\mathbf{2 a}$ (1.1 mmol) reaction carried out under 23 W CFL, rt, 18-24 h, open air. Solvent 5 mL . ${ }^{b}$ Isolated yields.

Table S3. Additional substrate scope with complex functional groups

entry	R	X	yield (\%) ${ }^{\text {b }}$
1	$\mathrm{CO}_{2} \mathrm{Et}$	Br	12
2	CHO	Br	ND
3	CN	Br	trace
4	Ac	Br	20
5	1-bromo butane	Br	NR
6	-	Cl	NR
7	-	I	25
8	-	OTf	ND
9	-	F	NR

II. Experimental Data

General information: Commercially available reagents and solvents were used without further purification. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 500 MHz Bruker NMR spectrometer. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (DMSO$d_{6}: \delta=2.50 \mathrm{ppm}$ and $\left.\mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}\right) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on the same spectrometer operating at 125 MHz with proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (DMSO- $d_{6}: \delta=39.52 \mathrm{ppm}$ and $\mathrm{CDCl}_{3}: \delta=$ $77.16 \mathrm{ppm})$. The following abbreviations were used for ${ }^{1} \mathrm{H}$ NMR spectra to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). HRMS was measured in ESI-QTOF mass spectrophotometer. Thin-layer chromatography was performed on MERCK precoated silica gel 60F-254 (0.5 mm) aluminum plates and visualized under UV light at 254 nm . Column chromatography was performed using silica gel 60-120 and 100-200 mesh. Spectro-fluorescence experiments were performed on the Perkin Elmer EnVision® Multimode Plate Reader using fluorescence intensity experiment.

Reaction Apparatus: 23W CFL bulb; Reaction vessel is approximately 4 cm away from light source.

II-1 General procedure for the synthesis of diarylamines: Aryl halide ($\mathbf{1}, 1 \mathrm{mmol}$), aq. ammonia (10 mmol), $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, DIPEA ($1.5 \mathrm{~mol} \%$) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(1: 1,5.0 \mathrm{~mL})$ were added to an oven-dried reaction vessel equipped with a magnetic stir bar, and the reaction vessel was irradiated in a seal tube under 23W CFL bulb at room temperature for 4-6 h . Then the reaction mixture was stirred for 30 minutes under open air
until the reaction mixture becomes clear solution and then substituted aryl boronic acids (2, 1.1 $\mathrm{mmol})$ were added to the reaction mixture. TLC was used to monitor the progress of the reaction. After completion of the reaction, the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude residue, which was purified by column chromatography on silica gel ($60-120$ mesh) using petroleum ether/ethyl acetate $(100 \%$ to $80: 30)$ as an eluent to afford the N-arylated products ($\mathbf{3 a - k}$ and $\mathbf{5 a - v}$).

II-2 General experimental procedure for the synthesis of compound 8: Compound 6 (1 mmol), aq. ammonia (10 mmol), $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, DIPEA (1.5 $\mathrm{mol} \%)$ were added to $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(1: 1,5.0 \mathrm{~mL})$ in an oven-dried reaction vessel equipped with a magnetic stir bar, and the reaction vessel was irradiated in a sealed tube under 23W CFL bulb at room temperature for 4-8 h . Then compound $7(1.1 \mathrm{mmol})$ was added to the reaction mixture. The progress of the reaction was monitored by TLC. After completion of the reaction in 24 h , the reaction mixture was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get the crude residue, which was purified by column chromatography on silica gel ($60-120$ mesh) using petroleum ether/ethyl acetate (20:80) as an eluent to afford the imatinib drug in 84% yield.

Diphenylamine (3a). White solid; yield 84%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.2,150.9,133.6,130.2$, 129.6, 129.5, 128.5, 125.9, 121.7; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}$ 170.0970 found 170.0977 .

2-Methyl-N-phenylaniline (3b). White solid; yield $52 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-$ $7.23(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.83(\mathrm{~m}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0,141.2,131.0,129.3,129.2,128.4,126.8,122.0,120.5$, 118.9, 117.5, 17.9; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N} 184.1126$ found 184.1131.

3,5-Dimethoxy-N-phenylaniline (3c). White solid; yield 83%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.32-7.26 (m, 2H), 7.15-7.06 (m, 2H), 6.99-6.93 (m, 1H), $6.24(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{t}, J=$
$2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.6,145.2,142.5,129.3,121.5$, 118.8, 95.8, 93.0, 55.3; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2} 230.1181$ found 230.1183.

4-Chloro-N-phenylaniline (3d). Brown solid; yield 78\%; ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.03-7-05(\mathrm{~m}, 1 \mathrm{H}), 6.98-7.01(\mathrm{~m}, 1 \mathrm{H})$; 6.89-6.92 (m, 1H) 6.85-6.88 (m, 1H) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.9,141.9,130.6$, $129.5,123.4,123.1,122.1,119.5,119.0,115.5$; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN} 204.0580$ found 204.0586.

4-Fluoro-N-phenylaniline (3e). Brown oil; yield 75\%; ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-$ $7.24-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl_{3}): $\delta 159.0,157.14,143.9,138.9,129.4,120.6,120.5,116.8,116.0$, 115.8; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FN} 188.0876$ found 188.0879.

3-Bromo-N-phenylaniline (3f). Brown solid; yield 79\%; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 77.33-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 144.9,141.9,130.6,129.5,123.4,123.1,122.1,119.5$, 119.0, 115.5; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN} 248.0075$ found 249.0005 .

4-Iodo-N-phenylaniline (3g). Brown solid; yield 82%; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.8$, $141.9,135.0,130.3,129.5,122.1,120.4,119.0,116.6,115.1$; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{IN} 295.9936$ found 295.9941 .

3-Chloro-4-fluoro-N-phenylaniline (3h). White solid; yield $62 \% ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=6.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H})$, 6.93-6.86 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 153.9,152.0,142.7,140.1,129.5,121.6$, 119.6, 117.9, 117.6, 117.6, 117.0, 116.9; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClFN} 222.0486$ found 222.0496 .

4-Nitro-N-phenylaniline (3i). Lime-yellow solid; yield $68 \% ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=4.2,3.2, \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{td}, J=8.4,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.1,142.2,138.0,129.4,121.8$, 119.2, 118.5; HRMS (ESI-QTOF): $m / z[M+H]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} 215.0821$ found 215.0825 .

4-(Phenylamino)benzonitrile (3j). White solid; yield 69%; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51-$ 7.45 (m, 2H), 7.40-7.33 (m, 2H), 7.17 (dd, $J=3.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.94$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.16,140.08,133.78,129.65,123.95,121.24$, 120.04, 114.94, 101.30; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} 195.0922$ found 195.0928.

N-Phenylpyridin-2-amine (3k). Off-white solid; yield $71 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.21-8.09 (m, 2H), 7.60-7.54 (m, 1H), $7.44(\mathrm{t}, \mathrm{J}=10.7,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.22-$ $7.19(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.1,149.9,132.5,129.1$, 128.7, 128.5, 128.4, 127.5, 124.8, 122.1, 120.7, 117.8; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} 171.0922$ found 171.0932.

4-(Benzo[d]thiazol-2-yl)-N-phenylaniline (5a). Off-white solid; yield 82%; mp: $140-142{ }^{\circ} \mathrm{C}$; FT-IR (cm^{-1}): 3337, 3162, 2982, 1648, 1485, 1296; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.31(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (d, $J=8.3,1 \mathrm{H}), 7.63(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (t, 1H), 7.36-7.33 (m, 1H), 7.29 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): δ 147.5, 140.8, 137.1, 131.9, 130.7, 129.5, 129.1, 129.0, 128.4, 127.0, 126.1, 124.5, 121.7, 117.6, 111.4; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S} 303.0956$ found 303.0963 .

4-(Benzo[dJthiazol-2-yl)-N-(p-tolyl)aniline (5b). Off-white solid; yield 90\%; mp: 137-139 ${ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3325,3154,2955,1626,1365,1272 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.30(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 160.1,148.2$,
$147.8,145.7,138.0,136.9,135.4,134.1,129.5,127.7,127.1,126.1,120.4,119.2,116.3,20.9$; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S} 317.1112$ found 317.1114.

N-(4-(Benzo[d]thiazol-2-yl)phenyl)-3,5-dimethoxyaniline (5c). White solid; yield 82%; mp: $166-168{ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3321,3127,2942,1655,1373,1165$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta 8.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 3 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 160.1,153.2,148.1,147.6,145.8,137.9,135.5,134.2,127.7,126.8$, 120.3, 119.3, 116.2, 116.1, 103.9, 56.2; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 363.1167$ found 363.1169 .

4-(Benzo[d]thiazol-2-yl)-N-(4-isopropylphenyl)aniline (5d). Off-white solid; yield 75\%; mp: $145-147{ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3321,3027,2872,1637,1382,1165 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta 8.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.02-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.91$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.31(\mathrm{~m}$, $3 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 6 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 160.1,148.8,148.2,147.7,145.6,137.4,135.4,134.1$, 129.0, 127.7, 126.9, 126.1, 120.4, 119.1, 116.3, 33.4, 24.1; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S} 345.1425$ found 345.1428 .

4-(Benzo[d]thiazol-2-yl)-N-(4-chlorophenyl)aniline (5e). White solid; yield 81\%; mp: 120-122 ${ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3336,3137,2956,1662,1242,824 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.56$ (s, 1H), 8.08 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.99-7.96$ (m, 1H), 7.95 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (s, 1H), 7.75 $-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.15(\mathrm{~m}, 1 \mathrm{H})$, 7.06 (d, $J=2.9 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 167.9,156.2,154.2,154.2,147.6$, 134.4, 129.5, 129.0, 126.8, 125.4, 125.2, 124.3, 123.3, 122.6, 116.8, 116.6, 115.6; HRMS (ESIQTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{~S} 337.0566$ found 337.0574. (m, 3

N-(4-(Benzo[dIthiazol-2-yl)phenyl)-3-bromoaniline (5f). Off-white solid; yield 81\%; mp: 170$172{ }^{\circ} \mathrm{C}$; FT-IR (cm^{-1}): 3327, 3147, 2892, 1626, 1212, $678 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ 8.43-8.48 (m, 1H), $8.35-8.41(\mathrm{~m}, 1 \mathrm{H}), 8.2-8.32(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.12$ (m, 1H), $7.98-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}) 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.20-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): δ 162.7, 152.7, 149.2, 135.1,
133.1, 131.8, 129.0, 128.2, 126.5, 126.3, 125.9, 121.4, 116.0, 115.8; HRMS (ESI-QTOF): m / z $[\mathrm{M}+2]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{~S} 381.0061$ found 381.0001 (this is not $[\mathrm{M}+2]^{+}$value).

N-(4-(Benz[d]thiazol-2-yl)phenyl)-3-fluoro-4-methoxyaniline (5g). Off-white solid; yield 72\%; mp: $160-162{ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3342,3156,2956,1686,1476,1065 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d $_{6}: \delta 8.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 158.3$, 147.8, $141.9,140.4,132.8,132.2,131.4,128.8,126.5,124.4,122.9,120.8,117.9,111.6,108.5,55.7 ;$ HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{OS} 351.0967$ found 351.0971

N-(4-(Benzo[dJthiazol-2-yl)phenyl)pyridin-4-amine (5h). Off-white solid; yield 76\%; mp: 157$159{ }^{\circ} \mathrm{C}$; FT-IR (cm^{-1}): $3316,3176,2979,1636,1382,1288 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.2$ Hz 1H), 7.56-7.51 (m, 1H), $7.44(\mathrm{t}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 167.4,154.2,150.7,149.2,144.3,134.6,129.1,127.0,126.5,125.5,122.9$, 122.6, 119.1, 111.0; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S} 304.0908$ found 304.0912.

N-(4-(Benzo[dIthiazol-2-yl)phenyl)naphthalen-1-amine (5i). Light-yellow solid; yield 79\%; mp: 180-182 ${ }^{\circ} \mathrm{C}$; FT-IR (cm^{-1}): 3321, 3027, 2942, 1655, 1582, $1165 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 8.36$ (d, $\left.J=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.89$ (s, 1H), 7.79 (s, 1H), 7.65 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 ($\mathrm{s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}), 7.24$ (t, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 147.3,141.7,140.3$, $132.2,131.9,131.5,130.1,128.8,127.9,126.4,125.2,124.0,122.7,121.4,121.0,118.1,112.3 ;$ HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S} 353.1112$ found 353.1124 .

N-(4-(6-Methoxybenzo[d]thiazol-2-yl)phenyl)naphthalen-1-amine (5j). Light-yellow solid; yield 84%; mp: $175-177{ }^{\circ} \mathrm{C}$; FT-IR (cm^{-1}): 3338, 3092, 2852, 1635, 1223, 1096; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta \quad 9.40(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96$ (dd, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (s, 1H), 7.70-7.60 (m, 3H), 7.58-7.54 (m, 1H), 7.35-7.28 (m, 2H), $7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6} : δ 160.0, 147.3, 141.6, 139.3, 131.8, 130.6, 130.2, 129.2, 128.5, 127.4, 126.4, 125.1,
123.5, 121.3, 118.0, 114.9, 112.1, 55.8; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS} 383.1218$ found 383.1214 .

N-(4-(Benzo[d]thiazol-2-yl)-2-chlorophenyl)naphthalen-1-amine (5k). Light-yellow solid; yield 68%; mp: $178-180{ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3342,3115,2886,1646,1242,878 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d d_{6} : $\delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.11-8.05 (m, 2H), $7.99(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $7.68-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.9,130.2,129.6$, 129.5, 129.0, 128.8, 128.5, 127.8, 127.4, 126.3, 126.1, 123.6, 121.3, 118.1, 112.1; HRMS (ESIQTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{~S} 387.0723$ found 387.0727.

N-(4-(1H-Benzo[d]imidazol-2-yl)phenyl)-3-methylaniline (5l). Off-white solid; yield 85\%; mp:166-168 ${ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3328,3056,2924,1625,1450 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 12.57(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.47$ $(\mathrm{s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.05$ $(\mathrm{m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5,147.6$, 140.5, 131.5, 131.5, 128.1, 127.1, 123.8, 122.5, 120.3, 115.0, 18.4; HRMS (ESI-QTOF): $m / z[M$ $+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} 300.1501$ found 300.1510.

N-(4-(1H-Benzo[d]imidazol-2-yl)phenyl)-3,4,5-trimethoxyaniline (5m). Off-white solid; yield $57 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $13.17(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dt}, J=9.1,4.7$ $\mathrm{Hz}, 3 \mathrm{H}), 7.54(\mathrm{dd}, J=11.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=11.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H})$, $7.44(\mathrm{~s}, 3 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.4$, $137.4,131.2,130.5,129.0,125.7,124.9,122.3,121.3,120.6,119.8,118.3,105.0,60.0,55.8$; HRMS (ESI-QTOF): $m / z[M+H]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} 376.1661$ found 376.1659 .

N-(4-(1H-Benzo[dJimidazol-2-yl)phenyl)-4-isopropylaniline (5n). Off-white solid; yield 62\%; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $13.38(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,138.4,131.7,129.9,128.5,127.7,126.5,125.5,121.9,121.4$, 121.4, 118.8, 34.5, 23.5; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} 328.1814$ found 328.1816.

4-(6-Nitro-1H-benzo[dJimidazol-2-yl)-N-phenylaniline (5o). Lime-yellow solid; yield $52 \% ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $13.36(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.25-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92-7.89(\mathrm{~d}, J=8.2,1 \mathrm{H}), 7.78$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.58$ (m, 3H), 7.51 (dd, $J=11.2$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 152.7,143.1,138.3,135.6,133.1,131.8,129.8,128.6,127.8,126.6,125.6,124.2$, 122.0, 121.5, 121.1, 22.0; HRMS (ESI-QTOF): $m / z[M+H]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} 331.1195$ found 331.1192.

N-(3-(9H-Pyrido[3,4-blindol-1-yl)phenyl)-3-methylaniline (5p). White solid; yield 81\%; mp: 200-202 ${ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3338,3043,2942,1636,1450,1386 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right): \delta 11.96(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=5.7 \mathrm{~Hz} 1 \mathrm{H}), 8.17(\mathrm{~d}, J=6.3 \mathrm{~Hz} 1 \mathrm{H})$, $7.93-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.62(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}$), $1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 172.4,147.4,141.7,136.8,133.8$, 131.5, 130.1, 129.5, 128.8, 127.5, 126.5, 123.9, 121.4, 121.1, 118.0, 112.3, 21.5; HRMS (ESIQTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} 350.1657$ found 350.1659 .

N-(3-(9H-Pyrido[3,4-b/indol-1-yl)phenyl)pyridin-4-amine (5q). White solid; yield 78\%; mp: $220-222{ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3325,3065,2894,1645,1323 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ $12.56(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.79$ (s, 1H), $7.70(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87$ (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 163.8,147.9,145.0$, 133.9, 131.6, 131.0, 130.1, 127.8, 126.2, 122.0, 117.8, 115.3, 114.9; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} 337.1453$ found 337.1456 .

2-(4-(Phenylamino)phenyl)quinazolin-4(3H)-one (5r). White solid; yield 78\%; mp: 190-192 ${ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3326,3021,2966,1640,1438,1243 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ $10.40(\mathrm{~s}, 1 \mathrm{H}), 10.02(\mathrm{~s}, 1 \mathrm{H}), 8.68-8.50(\mathrm{~m}, 3 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 3 \mathrm{H}), 7.91(\mathrm{~s}, 3 \mathrm{H}), 7.82(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.69 (s, 1H), $7.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 159.5,158.3,150.9$, $139.8,138.8,135.8,134.5,134.2,133.6,130.7,129.4,128.8,128.3,126.3,123.1,121.0,114.4 ;$ HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O} 314.1293$ found 314.1295.

2-(4-((3,5-Dimethoxyphenyl)amino)phenyl)quinazolin-4(3H)-one (5s). White solid; yield 72\%; mp: 222-224 ${ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3332,3056,2985,1639,1473,1195 ;{ }^{1} \mathrm{H}$ NMR (500 MHz ,

DMSO- d_{6}): $\delta 11.82(\mathrm{~s}, 1 \mathrm{H}), 10.11(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.99(\mathrm{~m}$, $1 \mathrm{H}), 7.92-7.76(\mathrm{~m}, 2 \mathrm{Hs}), 7.70-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.62(\mathrm{~m}, 1 \mathrm{H}) 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 6.86-$ $6.63(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.70(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 163.4,161.6,152.3,149.6,146.0,140.3,134.8,133.5,132.3,128.5,127.7$, 126.6, 122.8, 114.1, 56.5, 56.0; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ 374.1505 found 374.1505 .

2-(3-Nitro-4-(phenylamino)phenyl)quinazolin-4(3H)-one (5t). Lime-yellow solid; yield 50\%; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.39(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27-8.21(\mathrm{~m}, 2 \mathrm{H})$, $8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.52-6.58(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~s}$, $1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.0,132.2,131.8,129.9,128.6,127.8$, 126.7, 125.9, 123.3, 122.2, 121.6, 120.8; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} 359.1144$ found 359.1146 .

2-(4-(Naphthalen-2-ylamino) phenyl) quinazolin-4(3H)-one (5u). White solid; yield 65\%; mp: $232-234{ }^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3343,3054,2987,1640,1538,1267 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO$\left.d_{6}\right): \delta 10.56(\mathrm{~s}, 1 \mathrm{H}), 9.92(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, 8.32-8.27 (m, 1H), $7.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 163.2,159.5,158.3,150.9,150.1$, $144.6,139.0,138.8,135.9,134.9,133.6,130.7,128.8,128.6,128.5,128.4,128.3,126.3,123.4$, 123.1, 121.0, 114.4; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O} 364.1450$ found.

2-(4-(Quinolin-6-ylamino)phenyl)quinazolin-4(3H)-one (5v). White solid; yield 58\%; mp: 246$248{ }^{\circ} \mathrm{C} ;$ FT-IR $\left(\mathrm{cm}^{-1}\right): 3335,3081,2973,1635,1472,1234 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): δ $10.63(\mathrm{~s}, 1 \mathrm{H}), 9.92(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=$ $8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=7.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 164.7,161.0,159.8,152.4,151.6,146.1,140.5,137.4,136.3$, 135.1, 132.2, 130.3, 129.9, 127.8, 124.6, 122.5, 115.9; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O} 365.1402$ found 365.1406 .

N-(4-Methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)-4-((4-methylpiperazin-1-

yl)methyl)benzamide (8). White solid; yield $84 \% ; \mathrm{mp}: 207-210^{\circ} \mathrm{C}$; FT-IR $\left(\mathrm{cm}^{-1}\right): 3422,3289$,

2965, 2966, 2938, 2810, 2720, 1630, 1480, 1452, 1414, 666; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ $10.17(\mathrm{~s}, 1 \mathrm{H}), 9.28(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48$ (s, 1H), 8.09 (s, 1H), $7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 8 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 165.7$, 162.0, 161.6, 159.9, 151.8, 148.6, 142.5, 138.2, $137.6,134.8,134.2,132.6,130.5,129.1,128.0,128.0,124.2,117.6,117.2,107.9,62.0,55.1$, 53.0, 46.2, 18.1; HRMS (ESI-QTOF): $m / z[M+H]^{+}$calcd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O} 494.2668$ found 494.2672.

4-(Benzo[d]thiazol-2-yl)aniline ($\mathbf{5 w}$). White solid; yield $26 \% ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): δ 8.03 (dd, $J=7.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.71-$ $6.55(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 168.6,154.3,152.6,134.1,129.2$, 126.6, 124.7, 122.3, 122.2, 120.5, 114.0; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{~S}$ 227.0637, found 227.0647.

2-(2-Aminophenyl) quinazolin-4(3H)-one (5x). White solid; yield $21 \% ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.2,1 \mathrm{H}), 7.83(\mathrm{t}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6,1 \mathrm{H}), 7.52(\mathrm{t}, 1 \mathrm{H})$, $7.4(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.2,1 \mathrm{H}), 7.1(\mathrm{t}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO$\left.d_{6}\right): \delta 162.6,153.5,149.4,149.3,135.0,133.9,129.5,127.8,126.7,126.3,212.4,117.3,115.4$, 113.3; HRMS (ESI-QTOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}$ 238.0975, found 238.098.

III-1. Emission quenching experiments:

Figure S1. $\left[\operatorname{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ emission quenching by aqueous ammonia, bromobenzothiazole, phenylboronic acid, and copper (II) acetate. Note the increase in emission intensity of tris(bipyridine)ruthenium(II) chloride $(100 \mu \mathrm{M})$ after addition of increasing volumes of aqueous
ammonia ($0-10 \mu \mathrm{~L}$) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (1:1) and the slight decrease in emission intensity $\left.[\mathrm{Ru}(\mathrm{bpy}))^{2+}\right]^{2+}(200 \mu \mathrm{M})$ after addition of increasing concentrations of bromobenzothiazole (0-10 $\mathrm{mM})$ in N, N dimethylformamide. The emission intensity of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}(100 \mu \mathrm{M})$ is decreased significantly after addition of increasing concentrations of phenylboronic acid ($0-20 \mathrm{mM}$) and copper (II) acetate ($0-10 \mathrm{mM}$) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(1: 1)$.

2. Determination of reaction quantum yield:

The quantum yield calculation of the reaction was determined in two stages:

Determination of the light intensity obtained from the CFL lamp:

The photon flux of the CFL lamp was obtained using the standard potassium ferrioxalate actinometer method described in literature. ${ }^{1,2}$ The iron (III) actinometer complex potassium trisoxalatoferrate(III) trihydrate was synthesized according to literature reports. ${ }^{3}$ For the evaluation of the light intensity an experiment was set by preparing a 0.15 M solution of ferrioxalate actinometer by dissolving 0.737 g of potassium tris oxalato ferrate trihydrate complex
in 10 mL of a $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. A 0.2% by weigh solution of 1,10 -phenanthroline ligand was prepared in a buffer solution prepared by dissolving 5.63 g sodium acetate in 25 mL of a 0.5 M solution $\mathrm{H}_{2} \mathrm{SO}_{4}$ Both solutions were stored in the dark. The actinometer measurement was done as follows: 2.0 mL of actinometer solution was placed in a cuvette and irradiated for 90 seconds, after irradiation, of the actinometer solution, 0.35 mL of the phenanthroline solution was added to the cuvette and the mixture was allowed to stir in the dark for 1.0 h to allow the complexation of phenanthroline ligand with the produced ferrous forming $\left[\mathrm{Fe}(\mathrm{phen})_{3}\right]^{2+}$ complex whose absorbance was measured after dilution (1:1) at $\lambda 510 \mathrm{~nm}$ against reagent blank. Using the similar procedure, a non-irradiated sample (which contains actinometer solution, buffer, and phenanthroline ligand in the same proportion as mentioned except it is not irradiated) was also prepared and its absorbance at $\lambda 510 \mathrm{~nm}$ was also measured. The moles of Fe^{2+} formed can be determined according to the Beer's Laws using equation: ${ }^{4}$

$$
\text { moles of } \mathrm{Fe}^{2+}=\frac{V(L) \times \Delta A(510) \mathrm{nm}^{-1}}{L(\mathrm{~cm}) \times E\left(L \mathrm{~mol} \mathrm{~m}^{-1} \mathrm{~cm}^{-1}\right.}=4.08 \times 10^{-7}
$$

Where V is the total volume of the solution $(0.00235 \mathrm{~L})$ after addition of all reagents, $\Delta \mathrm{A}$ is the difference in absorbance at $\lambda 510 \mathrm{~nm}$ between the irradiated and non-irradiated actinometer solutions $(2.05-0.12) .1$ is the path length $(1.00 \mathrm{~cm})$, and ε is the molar absorptivity of the
ferrioxalate actinometer at $\lambda 510 \mathrm{~nm}\left(11,100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$. The photon flux of the CFL lamp was calculated as under: ${ }^{5}$

$$
\text { Photon flux }=\frac{\text { molesof } \mathrm{Fe}^{2+}}{\overline{\operatorname{xxt} \times f}}=4.08 \times 10^{-9}
$$

Where Φ is the quantum yield for the ferrioxalate actinometer (1.12), t is the irradiation time (90 s), and f is the fraction of light absorbed by the ferrioxalate actinometer. An absorption spectrum gave an absorbance value of >3, indicating that the fraction of absorbed light (f) is >0.999. The photon flux was thus calculated (average of three experiments) to be 4.08×10^{-9} Einstein's s ${ }^{-1}$.
2. Determination of Reaction quantum yield: 2-(4-Bromophenyl)benzothiazole (22.3 mg , $0.077 \mathrm{mmol}, 1.0$ equiv), aq. ammonia ($0.0 .3 \mathrm{ml}, 0.77 \mathrm{mmol}, 10$ equiv), $\mathrm{Cu}(\mathrm{OAc})_{2}(0.7 \mathrm{mg}, 0.003$ mmol, 0.05 equiv), $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{Cl}_{2}(2.9 \mathrm{mg}, 0.003 \mathrm{mmol}, 0.05$ equiv), DIPEA ($0.2 \mathrm{~mL}, 0.116$ mmol, 1.5 equiv), phenyl boronic acid ($10.3 \mathrm{mg}, 0.085 \mathrm{mmol}, 1.1$ equiv), and 0.5 ml each of MeCN and $\mathrm{H}_{2} \mathrm{O}$ (HPLC grade) were placed in a quartz cuvette. The sample was stirred and irradiated for 90 s. After irradiation, the yield of product $\mathbf{5 a}$ formed was determined using GC technique. The yield of the product $\mathbf{5 a}$ formed after 90 s of irradiation with 27 W CFL was found to be 1.25% corresponding to $\left(2.2 \times 10^{-6} \mathrm{~mol}\right)$. The reaction quantum yield (Φ) was then arrived at using equation: ${ }^{6}$

$$
\emptyset=\frac{\text { moles of product formed }}{\text { photon flux } \times t \times f}
$$

Where the photon flux is 4.05×10^{-9} einsteins s^{-1} (determined by actinometry as described in step 1), t is the reaction time (90 s) and f is the fraction of incident light absorbed by the reaction mixture. An initial absorption spectrum of the aforementioned reaction mixture gave an absorbance value of >3 at 410 nm , indicating that essentially all the incident light is absorbed by the photo catalyst in the reaction mixture and therefore ($\mathrm{f} \sim 0.999$).

The reaction quantum yield (Φ) was thus determined to be 6.04 . Quantum yields greater than 1 are normally the hallmark of photo-induced chain reactions, in which a single photon triggers a chain of transformations diagnostic of radical path of the reaction. ${ }^{7}$

Figure S2: Initial absorption spectra of the reaction mixture showing the absorption > 3 indicating that essentially all the incident light is absorbed by the photo catalyst and therefore (f ~ 0.999).

Figure S3. Absorption spectra's of actinometer solution without and after irradiation for 90s.

References:

1. T. Aillet, K. Loubière, O. Dechy-Cabaret, L. Prat, Accurate Measurement of the Photon Flux Received inside Two Continuous Flow Microphotoreactors by Actinometry, International Journal of Chemical Reactor Engineering 2014, 12 (1), 1-13.
2. R. Ananthakrishnan, S. Gazi, $\left[\mathrm{Ru}(\mathrm{Bpy})_{3}\right]^{2+}$ Aided Photocatalytic Synthesis of 2Arylpyridines via Hantzsch Reaction under Visible Irradiation and Oxygen Atmosphere. Catalysis Science \& Technology 2012, 2 (7), 1463.
3. M. Majek, A. J. von Wangelin, Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions. Accounts of Chemical Research 2016, 49 (10), 2316-2327.
4. J. Pedro Silva, S. Sousa, J. Rodrigues, H. Antunes, J. J. Porter, I. Gonçalves, S. FerreiraDias, Adsorption of Acid Orange 7 Dye in Aqueous Solutions by Spent Brewery Grains. Separation and Purification Technology 2004, 40 (3), 309-315.
5. S. F. Kowal, S. R. Allen, T. F. Kahan, Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HO_{x} Production, Environ Sci. Technol. 2017, 51 (18), 10423-10430.
6. R. J. Brandi, M. A. Citroni, O. M. Alfano, A. E. Cassano, Absolute Quantum Yields in Photocatalytic Slurry Reactors, Chemical Engineering Science 2003, 58 (3-6), 979-985.
7. G. A. Crosby, J. N. Demas, Measurement of Photoluminescence Quantum Yields. Review, The Journal of Physical Chemistry 1971, 75 (8), 991-1024.

IV. Copies of NMR Spectra:

Compound 3a: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3a: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3b: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

$\stackrel{\sim}{\circ}$

Compound 3b: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

 IU

Compound 3c: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).
99' 19 -

$\stackrel{\overrightarrow{1}}{\stackrel{\rightharpoonup}{n}}$

Compound 3c: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3d: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3d: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3e: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3e: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3f: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3f: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3g: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3g: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3h: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3h: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3i: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3i: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3j: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3j: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3k: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 3k: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 5a: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

150	140	130	120	11	10	90	80	C	60	50	40	30	20	10	0

Compound 5a: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5b: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5b: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).


```
    \infty
```


Compound 5c: ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}).

Compound 5c: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5d: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5d: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

\qquad

Compound 5e: ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}).

Compound 5e: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5f: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5f: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5g: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

$\stackrel{\sim}{2}$

Compound 5g: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5h: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5h: ${ }^{13}$ C NMR (125 MHz , DMSO- d_{6}).

Compound 5i: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5i: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5j: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5j: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5k: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).
இO

Compound 5k: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).
$\stackrel{\text { N }}{\substack{\text { N } \\ \multirow{2}{2}{\hline}\\ \hline}}$
$\stackrel{\sim}{N}$

 $\xrightarrow{ }$

Compound 5I: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
150	140	130	120	110	10		f1 (ppm)	\%	6	50				

Compound 5I: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5m: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 5m: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 5n: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 5n: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 50: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).
A

Compound 5o: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 5p: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5q: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound $\mathbf{5 q}:{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

$\underbrace{(}$

Compound 5r: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5r: ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}).

Compound 5s: ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}).

in
in
î

Compound 5s: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5t: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 5t: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Compound 5u: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5u: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5v: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5v: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 5x: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 5x: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

Compound 8: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}).

Compound 8: ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}).

