Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

# **Supplementary Information**

For

# Selective *N*-α-C-H Alkylation of Cyclic Tertiary Amides via Visible-Light-Mediated 1,5-Hydrogen Atom Transfer

Junlei Wang<sup>\*,1</sup>, Qinglin Xie<sup>1</sup>, Guocheng Gao<sup>1</sup>, Hongqing Li<sup>1</sup>, Wenyun Lu<sup>1, \*</sup>, Xiaodong Cai<sup>1</sup>, Xuemei Chen<sup>1</sup> and Binbin Huang<sup>\*,2</sup>

1. School of Chemical Engineering, Guizhou Minzu University, Guiyang 550000, China. E-mail: junleiwang@gzmu.edu.cn; luwenyun@163.com

2. College of Education for the Future & College of Arts and Sciences, Beijing Normal University,

Zhuhai 519087, China.

*E-mail: binbinhuang@bnu.edu.cn.* 

# **Contents**

| 1 | General Information                                          | <b>S</b> 1 |
|---|--------------------------------------------------------------|------------|
| 2 | Optimization Studies                                         | S2         |
| 3 | General Procedure for Alkylation Reactions                   | S5         |
| 4 | General procedure for the Synthesis of Substrates.           | <b>S</b> 6 |
| 5 | Product Characterization                                     | <b>S</b> 7 |
| 6 | Synthetic Applications                                       | S17        |
| 7 | Mechanistic Studies                                          | S24        |
| 8 | Reference                                                    | S27        |
| 9 | Spectra for Substrates and Products Product Characterization | S28        |

## 1. General Information

All of reactions were performed under an ambient temperature, magnetically stirred, and monitored by thin-layer chromatography (TLC) using Qingdao Puke Separation Materials Co., Ltd TLC plates precoated with 250 um thickness silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. All of the manipulations were carried out using oven-dried glassware, including standard Schlenk techniques. All of the reagents were purchased from Alfa, Energy-Chemical or Sigma-Aldrich and used without further purification. Solvents were purified according to the method of Grubbs.<sup>1</sup> <sup>1</sup>H NMR, <sup>13</sup>C NMR were recorded on a Bruker AV-400 (<sup>1</sup>H NMR at 400 MHz, <sup>13</sup>C NMR at 100 MHz, <sup>19</sup>F NMR at 376 MHz) spectrometers using tetramethylsilane (TMS) as internal standard. <sup>1</sup>H and <sup>19</sup>F multiplicities are indicated as follows: singlet (s), doublet (d), triplet (t), doublet of doublets (dd), quartet (q), multiplet (m), and broad resonance (br). Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (CDCl<sub>3</sub>: 7.26 ppm <sup>1</sup>H NMR, 77.16 ppm <sup>13</sup>C NMR). High resolution masspectra (HRMS) were collected on Bruker Esquire LC mass spectrometer using electrospray ionization. Flash column chromatography was carried out on silica gel (particle size 300-400 mesh) and eluted with petroleum/ethyl acetate.

# 2. Optimization Studies

1 2 3

4

Table S1. Photocatalyst Screening.<sup>a,b</sup>

4-CzIPN

fac-Ir(dFppy)3

|       | N +<br>0 +<br>1a                     | OE<br>O<br>2a | Et Photoca<br>DIPEA, (<br>Blue LE | CH <sub>3</sub> CN C | OEt<br>O<br>3a |                   |
|-------|--------------------------------------|---------------|-----------------------------------|----------------------|----------------|-------------------|
| Entry | Photocatalyst                        |               | Reductant                         | Solvent              | Conversion(%)  | Y(%) <sup>b</sup> |
| 1     | Ru(bpy) <sub>3</sub> Cl <sub>2</sub> |               | DIPEA                             | CH <sub>3</sub> CN   | 10             | 5                 |
| 2     | Eosin Y                              |               | DIPEA                             | CH <sub>3</sub> CN   | 0              | 0                 |
|       |                                      |               |                                   |                      |                |                   |

| <sup>a</sup> Reaction | conditions: photocatalyst (1              | mol%) <b>1</b> a (0.1 | mmol 10 equiv)     | <b>2a</b> (0.2 mmol | 2 equiv) |
|-----------------------|-------------------------------------------|-----------------------|--------------------|---------------------|----------|
| 8                     | $Ir(dFCF_3ppy)_2bpyPF_6$                  | DIPEA                 | CH <sub>3</sub> CN | 6                   | 2        |
| 7                     | $Ir(dFCF_3ppy)_2dtbpyPF_6$                | DIPEA                 | CH <sub>3</sub> CN | 38                  | 61       |
| 6                     | Ir(dFppy) <sub>2</sub> bpyPF <sub>6</sub> | DIPEA                 | CH <sub>3</sub> CN | 57                  | 54       |
| 5                     | $Ir(dFppy)_2dtbpyPF_6$                    | DIPEA                 | CH <sub>3</sub> CN | 65                  | 61       |

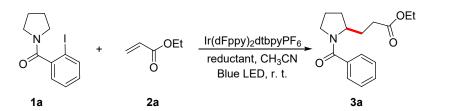
DIPEA

DIPEA

CH<sub>3</sub>CN

CH<sub>3</sub>CN

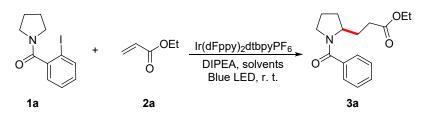
42


6

57

3

<sup>a</sup>Reaction conditions: photocatalyst (1 mol%), 1a (0.1 mmol, 1.0 equiv), 2a (0.2 mmol, 2 equiv.), Reductant (2 equiv.), CH<sub>3</sub>CN (1 mL), room temperature, N<sub>2</sub> atmosphere, 12\*2 W blue LEDs, 72 h. <sup>b</sup>The isolated yields are shown.


Table S2. Reductant Screening.<sup>*a,b*</sup>



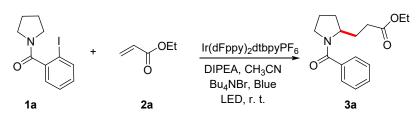
| Entry | Photocatalyst                               | Reductant           | Solvent            | Conversion(%) | Y(%) <sup>b</sup> |
|-------|---------------------------------------------|---------------------|--------------------|---------------|-------------------|
| 1     | $Ir(dFppy)_2dtbpyPF_6$                      | Et <sub>3</sub> N   | CH <sub>3</sub> CN | 25            | 40                |
| 2     | $Ir(dFppy)_2dtbpyPF_6$                      | TMEDA               | CH <sub>3</sub> CN | 10            | 30                |
| 3     | $Ir(dFppy)_2dtbpyPF_6$                      | quinuclidine        | CH <sub>3</sub> CN | 0             | 0                 |
| 4     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | Hantzsch Esters     | CH <sub>3</sub> CN | 47            | 38                |
| 5     | $Ir(dFppy)_2dtbpyPF_6$                      | Et <sub>3</sub> SiH | CH <sub>3</sub> CN | 0             | 0                 |

<sup>a</sup>Reaction conditions: photocatalyst (1 mol%), 1a (0.1 mmol, 1.0 equiv), 2a (0.2 mmol, 2 equiv.), Reductant (2 equiv.), CH<sub>3</sub>CN (1 mL), room temperature, N<sub>2</sub> atmosphere, 12\*2 W blue LEDs, 72 h. <sup>b</sup>The isolated yields are shown.

 Table S3. Solvent Screening.<sup>a,b</sup>



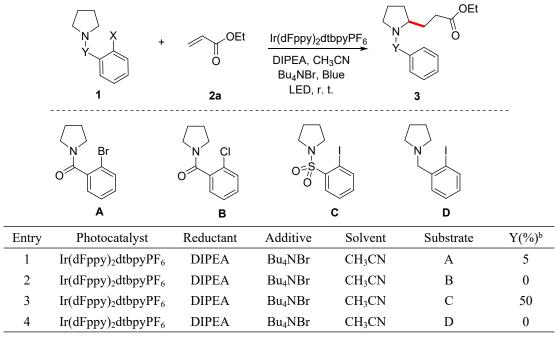
| Entry | Photocatalyst                               | Reductant | Solvent                            | Conversion(%) | Y(%) <sup>b</sup> |
|-------|---------------------------------------------|-----------|------------------------------------|---------------|-------------------|
| 1     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | DCM                                | 36            | 37                |
| 2     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | DCE                                | 42            | 29                |
| 3     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | DMF                                | 0             | 0                 |
| 4     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | DMSO                               | 55            | 38                |
| 5     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | DMA                                | 30            | 39                |
| 6     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | PhCF <sub>3</sub>                  | 3             | trace             |
| 7     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | THF                                | 6             | trace             |
| 8     | $Ir(dFppy)_2dtbpyPF_6$                      | DIPEA     | HFIP                               | 0             | 0                 |
| 9     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | CF <sub>3</sub> CH <sub>2</sub> OH | 0             | 0                 |
| 10    | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | 1,4-dioxane                        | 0             | 0                 |


<sup>*a*</sup>Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2 equiv.), Reductant (2 equiv.), CH<sub>3</sub>CN (1 mL), room temperature, N<sub>2</sub> atmosphere, 12\*2 W blue LEDs, 72 h. <sup>*b*</sup>The isolated yields are shown.

# Table S4. Additive Screening.<sup>a,b</sup>

|       | N +                                         | OEt<br>O  | Ir(dFppy)₂dtb<br>DIPEA, CH₃<br>additive, Bli<br>LED, r. t. | CN 0               | OEt           |                   |
|-------|---------------------------------------------|-----------|------------------------------------------------------------|--------------------|---------------|-------------------|
|       | 1a                                          | 2a        |                                                            |                    | 3a            |                   |
| Entry | Photocatalyst                               | Reductant | Additive                                                   | Solvent            | Conversion(%) | Y(%) <sup>b</sup> |
| 1     | Ir(dFppy) <sub>2</sub> dtbpyPF <sub>6</sub> | DIPEA     | NH <sub>4</sub> Cl                                         | CH <sub>3</sub> CN | 68            | 59                |
| 2     | $Ir(dFppy)_2dtbpyPF_6$                      | DIPEA     | Bu <sub>4</sub> NCl                                        | CH <sub>3</sub> CN | 77            | 74                |
| 3     | $Ir(dFppy)_2dtbpyPF_6$                      | DIPEA     | $\mathrm{Bu}_4\mathrm{NBr}$                                | CH <sub>3</sub> CN | 87            | 78                |
| 4     | $Ir(dFppy)_2dtbpyPF_6$                      | DIPEA     | Bu <sub>4</sub> NI                                         | CH <sub>3</sub> CN | 46            | 41                |

<sup>*a*</sup>Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2 equiv.), Reductant (2 equiv.), CH<sub>3</sub>CN (1 mL), room temperature, N<sub>2</sub> atmosphere, 12\*2 W blue LEDs, 72 h. <sup>*b*</sup>The isolated yields are shown.


#### Table S5. Reductant Amount Screening.<sup>a,b</sup>



| Entry | Photocatalyst          | Reductant | Additive            | Solvent            | Conversion(%) | Y(%) <sup>b</sup> |
|-------|------------------------|-----------|---------------------|--------------------|---------------|-------------------|
| $1^c$ | $Ir(dFppy)_2dtbpyPF_6$ | DIPEA     | Bu <sub>4</sub> NBr | CH <sub>3</sub> CN | 100           | 81                |
| $2^d$ | $Ir(dFppy)_2dtbpyPF_6$ | DIPEA     | $Bu_4NBr$           | CH <sub>3</sub> CN | 100           | 80                |

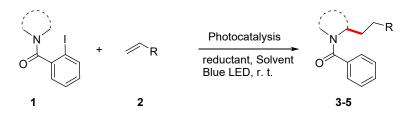
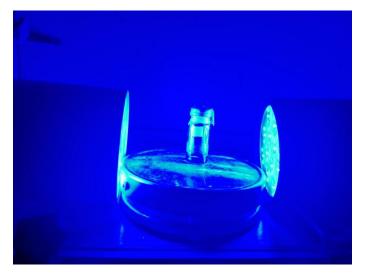
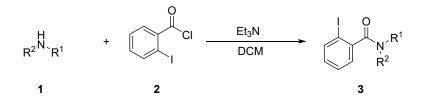

<sup>*a*</sup>Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2 equiv.), Reductant (2 equiv.), CH<sub>3</sub>CN (1 mL), room temperature, N<sub>2</sub> atmosphere, 12\*2 W blue LEDs, 72 h. <sup>*b*</sup>The isolated yields are shown. <sup>*c*</sup>the reaction was conducted with DIPEA (4 equiv.). <sup>*d*</sup>the reaction was conducted with DIPEA (6 equiv.).

Table S6. Directing Group Screening.<sup>a,b</sup>

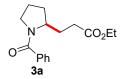



<sup>*a*</sup>Reaction conditions: photocatalyst (1 mol%), **1** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2 equiv.), Reductant (2 equiv.), CH<sub>3</sub>CN (1 mL), room temperature, N<sub>2</sub> atmosphere, 12\*2 W blue LEDs, 72 h. <sup>*b*</sup>The isolated yields are shown.


### 3. General Procedure for Alkylation Reactions



In a dried sealed tube, 1 (0.1 mmol), 2 (0.2 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (1.0 mol %), DIPEA (0.4 mmol), Bu<sub>4</sub>NBr (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. And then, the reaction flask was exposed to 12 W\*2 blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished, the reaction solvent was distill under vacuum, the residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the desired products. The reaction set-up with blue LEDs (2\*12 W, Manufacturer: ouying, Model: 5317 (blue), WLP: 459.1 nm,  $\Phi$ : 436.9 lm, Tc: 25000 K) as the light source. The irradiation vessel was in the middle of the two spotlights, approximate 7 cm to the light source.

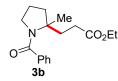



# 4. General procedure for the synthesis of substrates.



Amine 1 (1.0 equiv.),  $Et_3N$  (2 equiv.) were dissolved in DCM (0.2 M). And 2-iodobenzoylchloride 2 (1.0 equiv.) was added in dropwise at 0 °C. After addition, the reaction mixture was stirred at room temperature for 12 hours. After the material was completed consumed, 10 mL 1N HCl was added in the reaction mixture, and extracted with EA (20 mL\*3), the combine solvents was washed with brine (30 mL), dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was concentrated and purification by chromatography on silica gel to afford the desired substrates.<sup>2-5</sup>

# 5. Product Characterization

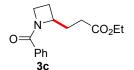



The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 3a was purified by flash column chromatography with PE/EA (10:1) to afford 3a (19.8 mg, 81% yield) as a colorless oil, 81% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.50 (d, J = 5.9 Hz, 2H), 7.38 (d, J = 5.8 Hz, 3H), 4.42-4.28 (m, 1H), 4.19-4.07 (m, 2H), 3.51-3.33 (m, 2H), 2.49-2.34 (m, 2H), 2.25 (dd, J = 13.2, 6.1 Hz, 1H), 2.11-2.04 (m, 1H), 1.94-1.84 (m, 2H), 1.78-1.70 (m, 1H), 1.70 - 1.61 (m, 1H), 1.24 (t, J = 6.9 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 173.6, 170.4, 137.3, 130.1, 128.3, 127.5, 60.6, 56.7, 50.2, 31.4, 30.3, 29.4, 25.1, 14.3.

HRMS (ESI): calcd for C<sub>16</sub>H<sub>22</sub>NO<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>: 276.1594, found: 276.1600.




The reaction was conducted according to the general procedure using **1b** with  $CH_3CN$  as the solvent. The reaction was run for 72 h, the desired product **3b** was purified by flash column chromatography with PE/EA (10:1) to afford **3b** (23.1 mg, 80% yield) as a colorless oil, 80% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta_H$  7.39 (ddd, J = 9.7, 6.8, 3.4 Hz, 5H), 4.13 (q, J = 7.1 Hz, 2H), 3.39 (t, J = 6.5 Hz, 2H), 2.59-2.47 (m, 1H), 2.44 - 2.26 (m, 3H), 1.97 (dt, J = 11.1, 6.9 Hz, 1H), 1.83 - 1.70 (m, 3H), 1.57 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 173.8, 169.6, 138.9, 129.4, 128.4, 126.4, 64.6, 60.6, 52.2, 38.5, 32.8, 30.3, 24.5, 23.3, 14.4.

HRMS (ESI): calcd for C<sub>17</sub>H<sub>24</sub>NO<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>: 290.1751, found: 290.1750.

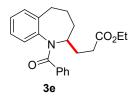


The reaction was conducted according to the general procedure using 1c with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 3c was purified by flash column chromatography with PE/EA (10:1) to afford 3c (19.6 mg, 75% yield) as a colorless oil, 75% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.61 (d, J = 7.1 Hz, 2H), 7.48 - 7.34 (m, 3H), 4.70 - 4.56 (m, 1H), 4.30 (s, 1H), 4.12 (d, J = 6.7 Hz, 2H), 4.02 (s, 1H), 2.50 (s, 2H), 2.29 (s, 1H), 2.16 (s, 1H), 1.98 (s, 1H), 1.25 (dd, J = 14.7, 7.8 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 173.6, 171.6, 136.2, 131.1, 128.5, 128.0, 61.2, 60.6, 51.0, 30.9, 30.8, 22.4, 14.3.

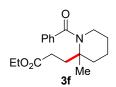
HRMS (ESI): calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>, 262.1438, found: 262.1445.




The reaction was conducted according to the general procedure using **1d** with  $CH_3CN$  as the solvent. The reaction was run for 72 h, the desired product **3d** was purified by flash column chromatography with PE/EA (10:1) to afford **3d** (20.7 mg, 71% yield) as a colorless oil, 71% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.40 (dd, J = 7.1, 2.9 Hz, 3H), 7.36 (dd, J = 6.7, 3.2 Hz, 2H), 4.83 - 4.27 (m, 1H), 4.12 (s, 2H), 3.80 (s, 2H), 3.69-3.61 (m, 1H), 3.43 (s, 3H), 2.35 (s, 3H), 2.00 (s, 1H), 1.24 (d, J = 6.2 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 173.1, 170.9, 135.7, 129.9, 128.7, 126.99, 69.7, 67.3, 60.7, 48.8, 43.7, 31.0, 24.3, 14.3.


HRMS (ESI): calcd for C<sub>16</sub>H<sub>22</sub>NO<sub>4</sub><sup>+</sup>, (M+H)<sup>+</sup>: 292.1543, found: 292.1540.



The reaction was conducted according to the general procedure using 1e with CH<sub>3</sub>CN as the solvent. The reaction was run for 96 h, the desired product 3e was purified by flash column chromatography with PE/EA (10:1) to afford 3e (12.3 mg, 35% yield) as a colorless oil, 35% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.18 (t, J = 7.3 Hz, 2H), 7.12 (q, J = 7.6 Hz, 4H), 7.06 (t, J = 7.4 Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 6.59 (d, J = 7.8 Hz, 1H), 5.27 - 5.09 (m, 1H), 4.17 - 4.00 (m, 2H), 3.08 - 2.94 (m, 1H), 2.90 - 2.78 (m, 1H), 2.39-2.24 (m, 2H), 2.04 (ddd, J = 15.3, 7.6, 3.7 Hz, 1H), 1.94-1.84 (m, 1H), 1.74 (ddd, J = 28.4, 12.9, 2.7 Hz, 1H), 1.58 (dd, J = 12.5, 7.5 Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C NMR (101 MHz, CDCl<sub>3</sub>)**:  $\delta_C$  173.2, 170.1, 139.6, 139.5, 136.9, 130.6, 130.0, 129.5, 127.9, 127.8, 127.6, 126.8, 60.6, 51.8, 34.9, 32.9, 31.6, 26.3, 21.0, 14.3.

HRMS (ESI): calcd for C<sub>22</sub>H<sub>25</sub>NNaO<sub>3</sub><sup>+</sup>, (M+Na)<sup>+</sup>: 374.1727, found: 327.1722.



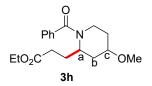

The reaction was conducted according to the general procedure using 1f with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 3f was purified by flash column chromatography with PE/EA (10:1) to afford 3f (25.7 mg, 85% yield) as a colorless oil, 85% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.44-7.34 (m, 3H), 7.34-7.28 (m, 2H), 4.81 (s, 1H), 4.11 (d, J = 5.4 Hz, 3H), 2.45 (s, 1H), 1.96 (s, 3H), 1.82 (td, J = 12.9, 6.4 Hz, 1H), 1.66 (s, 3H), 1.56-1.43 (m, 2H), 1.35-1.15 (m, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 173.5, 171.9, 137.7, 128.99, 128.6, 125.9, 60.5, 49.6, 47.7, 32.2, 30.6, 30.1, 28.3, 21.1, 14.6, 14.3.

**HRMS (ESI)**: calcd for C<sub>18</sub>H<sub>26</sub>NO<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>, 304.1907, found, 304.1915.



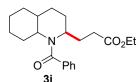

The reaction was conducted according to the general procedure using 1g with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 3g was purified by flash column chromatography with PE/EA (10:1) to afford 3g (13.6 mg, 45% yield) as a colorless oil, a:b = 1.6:1 (determined by NMR), 45% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.67-7.31 (m, 5H), 5.27 (s, 0.62H), 4.96 (s, 0.38H), 4.22-3.98 (m, 3H), 3.58-3.13 (m, 1H), 2.75 (s, 1H), 2.33 (s, 4H), 1.93 (dd, J = 17.8, 10.4 Hz, 2H), 1.33-1.15 (m, 4H).

**Major**: <sup>13</sup>C **NMR (101 MHz, CDCl<sub>3</sub>)**: δ<sub>C</sub> 206.5, 172.50, 171.3, 135.5, 130.2, 128.8, 126.7, 60.8, 60.6, 45.7, 40.97, 31.7, 27.8, 14.23, 14.18.

**Minor**: <sup>13</sup>**C NMR (101 MHz, CDCl<sub>3</sub>):** *δ*<sub>C</sub> 206.6, 172.6, 171.5, 135.5, 130.2, 128.7, 126.6, 60.98, 60.5, 41.9, 33.8, 31.6, 27.1, 14.20, 14.11.

HRMS (ESI): calcd for C<sub>17</sub>H<sub>22</sub>NO<sub>4</sub><sup>+</sup>, (M+H)<sup>+</sup>: 304.1543, found: 304.1537.



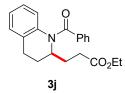

The reaction was conducted according to the general procedure using **1h** with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product **3h** was purified by flash column chromatography with PE/EA (10:1) to afford **3h** (10.8 mg, 34% yield) as a colorless oil, a:c = 1.5:1 (determined by NMR), 34% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta_H$  7.38 (dd, J = 6.6, 2.7 Hz, 3H), 7.34 (dd, J = 6.6, 3.0 Hz, 2H), 4.87 (d, J = 137.3 Hz, 1H), 4.12 (s, 2H), 3.73-3.44 (m, 2H), 3.39-3.28 (m, 3H), 3.03 (t, J = 68.9 Hz, 1H), 2.39 (s, 2H), 1.85 (ddd, J = 39.9, 34.8, 29.7 Hz, 5H), 1.55 (s, 1H), 1.24 (t, J = 9.8 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 173.4, 170.98, 136.4, 129.6, 128.7, 126.6, 73.5, 60.7, 55.8, 48.6, 41.6, 34.7, 32.2, 31.5, 26.2, 14.3.

HRMS (ESI): calcd for C<sub>18</sub>H<sub>25</sub>NNaO<sub>4</sub><sup>+</sup>, (M+Na)<sup>+</sup>: 342.1676, found: 342.1683.



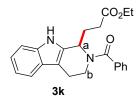

The reaction was conducted according to the general procedure using 1i with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 3i was purified by flash column chromatography with PE/EA (10:1) to afford 3i (10.6 mg, 31% yield) as a colorless oil, 31% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.44 -7.39 (m, 2H), 7.39 - 7.33 (m, 3H), 4.16 - 4.05 (m, 2H), 3.91 - 3.80 (m, 1H), 2.94 (td, J = 11.3, 3.7 Hz, 1H), 2.38 (ddd, J = 19.1, 14.6, 5.1 Hz, 1H), 2.27 (dt, J = 9.7, 5.3

Hz, 2H), 2.23 - 2.13 (m, 1H), 2.12 - 2.00 (m, 1H), 1.87 - 1.82 (m, 1H), 1.81-1.78 (m, 1H), 1.78 - 1.69 (m, 3H), 1.63 (dd, *J* = 13.1, 2.6 Hz, 2H), 1.46 (ddd, *J* = 10.9, 3.9, 2.0 Hz, 1H), 1.37 (dd, *J* = 11.1, 4.0 Hz, 1H), 1.33 - 1.27 (m, 1H), 1.24 (dd, *J* = 9.3, 4.9 Hz, 3H), 1.19 (dt, *J* = 13.0, 3.1 Hz, 1H), 1.02 (ddd, *J* = 15.5, 12.0, 6.3 Hz, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 174.5, 173.2, 139.0, 129.6, 128.6, 127.0, 60.7, 58.97, 56.8, 39.3, 33.99, 31.5, 30.2, 29.2, 27.97, 26.96, 25.7, 25.3, 14.3.

HRMS (ESI): calcd for C<sub>21</sub>H<sub>30</sub>NO<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>: 344.2220, found: 344.2223.




The reaction was conducted according to the general procedure using 1j with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 3j was purified by flash column chromatography with PE/EA (10:1) to afford 3j (10.6 mg, 38% yield) as a colorless oil, 38% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.29 (ddd, J = 8.6, 3.6, 1.7 Hz, 1H), 7.25-7.17 (m, 3H), 7.15 (d, J = 7.1 Hz, 1H), 7.00 (td, J = 7.5, 0.9 Hz, 1H), 6.82 (t, J = 7.5 Hz, 1H), 6.51 (d, J = 7.2 Hz, 1H), 4.97- 4.81 (m, 1H), 4.17-4.04 (m, 2H), 2.80 (t, J = 6.8 Hz, 2H), 2.53 - 2.29 (m, 3H), 1.95-1.75 (m, 2H), 1.69 (tt, J = 12.9, 6.3 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 173.4, 170.1, 138.0, 136.4, 132.6, 130.0, 128.7, 128.0, 126.9, 126.1, 125.3, 60.6, 51.9, 31.2, 29.9, 28.8, 25.2, 14.4.

**HRMS (ESI)**: calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>: 338.1751, found: 338.1743.



The reaction was conducted according to the general procedure using 1k with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 3k was purified by flash column chromatography with PE/EA (10:1) to afford 3k (17.3 mg, 46% yield) as a colorless oil, a:b = 3:1 (determined by NMR), 46% isolated yield.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta_H$  8.33 (s, 0.76H), 7.81 (s, 0.24H), 7.45 (s, 6H), 7.33 (d, J = 7.9 Hz, 0.79H), 7.25-7.22 (m, 0.18H), 7.21-7.07 (m, 2H), 5.56 (d, J = 17.1 Hz, 0.76H), 5.37 (s, 0.24H), 4.55 (dd, J = 64.8, 17.4 Hz, 0.49H), 4.36-4.19 (m, 1.55H), 4.12 (dd, J = 14.2, 7.1 Hz, 1H), 4.00 (dd, J = 6.9, 2.6 Hz, 1H), 3.15 (d, J = 15.5 Hz, 1H), 2.73 (t, J = 20.2 Hz, 1H), 2.56-2.14 (m, 2H), 2.11-2.00 (m, 1H), 1.80-1.69 (m, 1H), 1.28-1.15 (m, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 172.6, 172.1, 136.6, 136.4, 130.1, 128.9, 128.7, 127.4, 126.8, 122.0, 119.7, 117.9, 111.2, 106.0, 60.8, 53.8, 37.3, 31.1, 27.1, 26.4, 14.3.

**HRMS (ESI)**: calcd for C<sub>23</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>: 377.1860, found: 377.1859.

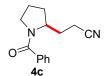



The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 4a was purified by flash column chromatography with PE/EA (20:1) to afford 4a (23.9 mg, 79% yield) as a colorless oil, 79% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.56-7.47 (m, 2H), 7.43 - 7.36 (m, 3H), 4.40 - 4.22 (m, 1H), 3.52 - 3.33 (m, 2H), 2.35 (dd, J = 15.7, 6.4 Hz, 2H), 2.27 - 2.17 (m, 1H), 2.12 - 2.03 (m, 1H), 1.96 - 1.86 (m, 1H), 1.79 (dd, J = 20.4, 6.0 Hz, 2H), 1.69 (dd, J = 11.5, 5.7 Hz, 1H), 1.45 (s, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 172.9, 170.3, 137.4, 129.95, 128.3, 127.4, 80.3, 56.7, 50.1, 32.5, 30.3, 29.4, 28.2, 25.1.

HRMS (ESI): calcd for C<sub>18</sub>H<sub>26</sub>NO<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>: 304.1907, found: 304.1900.

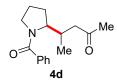



The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 4b was purified by flash column chromatography with PE/EA (20:1) to afford 4b (14.6 mg, 42% yield) as a colorless oil, 42% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.54 - 7.46 (m, 2H), 7.45 -7.33 (m, 3H), 4.52 (dd, J = 12.8, 7.2 Hz, 1H), 4.26 - 3.99 (m, 4H), 3.64 (dt, J = 10.1, 4.8 Hz, 1H), 3.41 (dd, J = 9.0, 6.1 Hz, 2H), 2.83 (dd, J = 16.7, 10.4 Hz, 1H), 2.53 (dd, J = 16.7, 4.5 Hz, 1H), 2.12-2.03 (m, 1H), 2.00 -1.81 (m, 2H), 1.77-1.70 (m, 1H), 1.33-1.19 (m, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 173.2, 171.8, 170.5, 137.0, 130.3, 128.4, 127.6, 61.0, 60.9, 58.3, 50.8, 43.1, 34.0, 27.4, 25.1, 14.4, 14.3.

HRMS (ESI): calcd for C<sub>19</sub>H<sub>26</sub>NO<sub>5</sub><sup>+</sup>, (M+H)<sup>+</sup>: 348.1805, found: 348.1798.




The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 4c was purified by flash column chromatography with PE/EA (20:1) to afford 4c (8.4 mg, 37% yield) as a colorless oil, 37% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_C$  7.53 (d, J = 6.9 Hz, 2H), 7.41 (q, J = 6.1 Hz, 3H), 4.49 - 4.29 (m, 1H), 3.58-3.36 (m, 1H), 2.58-2.41 (m, 2H), 2.20 (ddd, J = 19.3, 13.0, 6.9 Hz, 2H), 2.01 - 1.90 (m, 2H), 1.75 (dq, J = 14.5, 7.6 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) :*δ*<sub>C</sub> 171.1, 136.9, 130.4, 128.4, 127.5, 119.98, 56.5, 50.4, 30.7, 30.2, 25.2, 14.5.

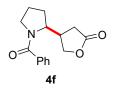
HRMS (ESI): calcd for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sup>+</sup>, (M+H)<sup>+</sup>: 229.1335, found: 229.1341.



The reaction was conducted according to the general procedure using **1a** with  $CH_3CN$  as the solvent. The reaction was run for 72 h, the desired product **4d** was purified by flash column chromatography with PE/EA (20:1) to afford **4d** (16.0 mg, 62% yield) as a colorless oil, dr = 1.9:1 (determined by NMR), 62% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta_H$  7.57-7.44 (m, 2H), 7.44-7.32 (m, 3H), 4.31 (ddd, J = 19.3, 12.2, 7.4 Hz, 1H), 3.4813.26 (m, 2H), 2.97-2.50 (m, 2H), 2.28 (dd, J = 16.2, 6.5 Hz, 1H), 2.13 (d, J = 4.6 Hz, 3H), 2.04-1.82 (m, 2H), 1.73 (ddd, J = 14.6, 11.8, 9.7 Hz, 2H), 0.97 (dd, J = 11.1, 6.9 Hz, 3H). <sup>13</sup>**C NMR (101 MHz, CDCl<sub>3</sub>):**  $\delta_C$  209.2, 209.1, 171.3, 170.9, 137.1, 130.4, 130.2, 128.4, 128.3, 127.7, 127.6, 61.1, 51.8, 50.4, 48.6, 47.5, 32.4, 32.1, 30.4, 29.6, 27.1, 26.6, 25.4, 24.99, 16.9, 16.4. **HRMS (ESI)**: calcd for C<sub>16</sub>H<sub>22</sub>NO<sub>2</sub><sup>+</sup>, (M+H)<sup>+</sup>, 260.1645, found, 260.1646.

The reaction was conducted according to the general procedure using **1a** with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product **4e** was purified by flash column chromatography with PE/EA (20:1) to afford **4e** (11.3 mg, 45% yield) as a colorless oil, 45% isolated yield. **<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  9.74 (s, 1H), 7.49-7.39 (m, 2H), 7.37-7.28 (m, 3H), 4.26 (dd, J = 13.4, 6.9 Hz, 1H), 3.42 – 3.27 (m, 2H), 2.73 (dt, J = 13.7, 6.8 Hz, 1H), 2.63 (dd, J = 16.5, 5.5 Hz, 1H), 2.23 (ddd, J = 16.4, 7.3, 1.7 Hz, 1H), 1.95-1.81 (m, 2H), 1.74-1.62 (m, 2H), 0.94 (d, J = 6.8 Hz, 3H). **<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)**:  $\delta_C$  202.6, 171.0, 137.1, 130.3, 128.4, 127.6, 61.1, 50.8, 48.5, 30.8, 26.8, 25.2, 15.8.

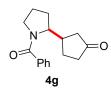

HRMS (ESI): calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>2</sub><sup>+</sup>, (M+H)<sup>+</sup>: 246.1489, found: 246.1494.

The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 4e' was purified by flash column chromatography with PE/EA (20:1) to afford 4e' (7.8 mg, 32% yield) as a colorless oil, 32% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta_H$  9.65 (d, J = 3.6 Hz, 1H), 7.57-7.47 (m, 2H), 7.44-7.35 (m, 3H), 4.32 (dd, J = 7.8, 4.2 Hz, 1H), 3.48-3.39 (m, 1H), 3.30-3.12 (m, 2H), 2.52-2.40 (m, 1H), 2.32-2.22 (m, 1H), 2.08-1.96 (m, 1H), 1.84 (d, J = 5.7 Hz, 1H), 1.84 (d, J = 5.7 Hz, 1H), 1.75-1.60 (m, 3H), 1.05 (d, J = 7.0 Hz, 3H).

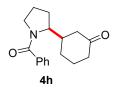
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 202.3, 171.4, 136.8, 130.6, 128.4, 127.7, 61.5, 51.7, 46.8, 30.3, 25.6, 25.4, 17.5.

HRMS (ESI): calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>2</sub><sup>+</sup>, (M+H)<sup>+</sup>: 246.1489, found: 246.1491.




The reaction was conducted according to the general procedure using **1a** with  $CH_3CN$  as the solvent. The reaction was run for 72 h, the desired product **4f** was purified by flash column chromatography with PE/EA (20:1) to afford **4f** (9.6 mg, 37% yield) as a colorless oil, dr = 1:1 (determined by NMR), 37% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.50 (d, J = 7.2 Hz, 2H), 7.47- 7.36 (m, 3H), 4.39 (ddd, J = 51.7, 38.0, 6.3 Hz, 3H), 3.48 (dd, J = 17.2, 8.4 Hz, 2H), 3.30 - 2.99 (m, 1H), 2.55 (tdd, J = 64.1, 17.6, 8.9 Hz, 2H), 2.22-2.04 (m, 1H), 2.01-1.87 (m, 1H), 1.78 (s, 1H), 1.73 - 1.61 (m, 1H).


<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 176.9, 176.5, 171.7, 171.5, 136.4, 136.4, 130.6, 130.6, 128.4, 127.5, 127.5, 71.8, 69.9, 58.5, 58.3, 51.7, 51.2, 40.2, 38.6, 31.8, 31.4, 28.6, 27.7, 25.1.

HRMS (ESI): calcd for C<sub>15</sub>H<sub>17</sub>NNaO<sub>3</sub><sup>+</sup>, (M+Na)<sup>+</sup>: 282.1101, found: 282.1100.



The reaction was conducted according to the general procedure using **1a** with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product **4g** was purified by flash column chromatography with PE/EA (20:1) to afford **4g** (20.6 mg, 80% yield) as a colorless oil, dr = 1.4:1, 80% isolated yield. **<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.50 (d, J = 5.6 Hz, 2H), 7.45-7.37 (m, 3H), 4.69 - 4.44 (m, 1H), 3.47 (t, J = 6.6 Hz, 2H), 2.84 -2.59 (m, 1H), 2.45-2.29 (m, 2H), 2.24 - 2.02 (m, 4H), 1.91 (dd, J = 23.0, 9.3 Hz, 2H), 1.84-1.66 (m, 2H).

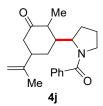
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 218.8, 218.7, 171.2, 137.1, 130.3, 128.4, 127.5, 59.4, 59.3, 50.8, 50.6, 42.6, 41.4, 41.2, 40.9, 38.7, 38.5, 28.0, 27.9, 26.7, 25.6, 25.2, 25.1.
HRMS (ESI): calcd for C<sub>16</sub>H<sub>20</sub>NO<sub>2</sub><sup>+</sup>, (M+H)<sup>+</sup>: 258.1489, found: 258.1483.



The reaction was conducted according to the general procedure using **1a** with CH<sub>3</sub>CN as the solvent. The reaction was run for 48 h, the desired product **4h** was purified by flash column chromatography with PE/EA (20:1) to afford **4h** (21.9 mg, 81% yield) as a colorless oil, dr = 2:1 (determined by NMR), 81% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.55-7.46 (m, 2H), 7.42-7.33 (m, 3H), 4.52-4.30 (m, 1H), 3.55-3.26 (m, 2H), 2.44 (d, J = 9.9 Hz, 1H), 2.37 (dd, J = 14.1, 1.7 Hz, 1H), 2.31-2.22 (m, 2H), 2.10 (ddd, J = 19.7, 9.8, 6.6 Hz, 1H), 2.04-1.95 (m, 1H), 1.94-1.82 (m, 3H), 1.80-1.67 (m, 2H), 1.66-1.46 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 211.4, 211.3, 171.1, 170.96, 137.0, 130.3, 130.3, 128.3, 127.6, 127.6, 60.3, 51.0, 50.8, 45.1, 43.1, 42.2, 41.5, 41.3, 28.3, 27.3, 27.0, 26.5, 25.4, 25.3, 25.2.
HRMS (ESI): calcd for C<sub>17</sub>H<sub>22</sub>NO<sub>2</sub><sup>+</sup>, (M+H)<sup>+</sup>, 272.1645, found, 272.1653.

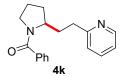

The reaction was conducted according to the general procedure using **1a** with  $CH_3CN$  as the solvent. The reaction was run for 72 h, the desired product **4i** was purified by flash column chromatography with PE/EA (20:1) to afford **4i** (16.1 mg, 46% yield) as a colorless oil, dr = 1:1 (determined by NMR), 46% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.53 (d, J = 6.3 Hz, 2H), 7.41 (t, J = 6.3 Hz, 3H), 4.53 (s, 1H), 3.60 - 3.36 (m, 2H), 3.06 (dd, J = 14.6, 3.3 Hz, 1H), 2.77 - 2.62 (m, 1H), 2.14 (d, J = 6.7 Hz, 1H), 1.97 - 1.85 (m, 1H), 1.74 (dt, J = 15.8, 8.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 170.3, 137.1, 130.2, 128.7, 128.4, 127.71 (dd, *J* = 312.6 Hz), 127.5, 126.6, 126.6, 56.1, 50.6, 34.1, 29.9, 29.8 (q, *J* = 30.4 Hz), 29.6, 25.1.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta_F$  -82.49 (d, J = 40.8 Hz), -89.00 (d, J = 40.8 Hz).

HRMS (ESI): calcd for C<sub>14</sub>H<sub>16</sub>BrF<sub>3</sub>NO<sup>+</sup>, (M+H)<sup>+</sup>, 350.0362, found, 350.0370.

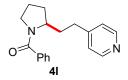



The reaction was conducted according to the general procedure using **1a** with  $CH_3CN$  as the solvent. The reaction was run for 72 h, the desired product **4j** was purified by flash column chromatography with PE/EA (20:1) to afford **4j** (26.3 mg, 81% yield) as a colorless oil, dr = 1:1 (determined by NMR), 81% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_{\rm H}$  7.57-7.46 (m, 2H), 7.44 -7.33 (m, 3H), 4.89 - 4.79 (m, 1H), 4.69 (s, 1H), 4.52 (td, J = 8.1, 5.0 Hz, 1H), 3.64-3.49 (m, 1H), 3.43 (td, J = 10.7, 5.4 Hz, 1H), 2.83 (s, 1H), 2.75 -2.60 (m, 2H), 2.49 (dd, J = 14.9, 6.1 Hz, 1H), 2.15 (dq, J = 12.9, 6.5 Hz, 1H), 2.08 – 1.98 (m, 2H), 1.95-1.84 (m, 2H), 1.82-1.69 (m, 3H), 1.28-1.23 (m, 1H), 1.19 (d, J = 6.6 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 211.9, 170.2, 145.8, 137.3, 130.3, 128.5, 127.5, 113.1, 58.6, 52.1, 47.4, 44.5, 40.1, 39.0, 26.9, 25.7, 25.1, 21.8, 11.8.

HRMS (ESI): calcd for C<sub>21</sub>H<sub>28</sub>NO<sub>2</sub><sup>+</sup>, (M+H)<sup>+</sup>, 326.2115, found, 326.2110.

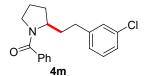



The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 68 h, the desired product 4k was purified by flash column chromatography with PE/EA (20:1) to afford 4k (21.3 mg, 76% yield) as a colorless oil, 76% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_C$  8.52 (d, J = 4.3 Hz, 1H), 7.61 (t, J = 7.3 Hz, 1H), 7.48 (d, J = 7.4 Hz, 2H), 7.38 (d, J = 6.7 Hz, 3H), 7.29 (d, J = 7.9 Hz, 1H), 7.16 - 7.07 (m, 1H), 4.44 - 4.33 (m, 1H), 3.54 - 3.35 (m, 2H), 2.92 (t, J = 8.1 Hz, 2H), 2.49 - 2.40 (m, 1H), 2.19-2.09 (m, 1H), 1.94 (dt, J = 11.9, 7.4 Hz, 2H), 1.76 (ddd, J = 22.0, 12.9, 7.6 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 170.3, 161.7, 149.0, 137.5, 136.8, 130.0, 128.3, 127.5, 123.1, 121.3, 57.2, 50.3, 34.9, 33.8, 30.5, 25.3.

HRMS (ESI): calcd for C<sub>21</sub>H<sub>28</sub>N<sub>2</sub>O<sup>+</sup>, (M+H)<sup>+</sup>: 281.1648, found: 281.1644.

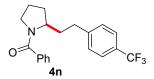



The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 60 h, the desired product 4l was purified by flash column chromatography with PE/EA (20:1) to afford 4l (23.4 mg, 83% yield) as a colorless oil, 83% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  8.42 (d, J = 5.1 Hz, 2H), 7.42 (d, J = 7.2 Hz, 2H), 7.36 -7.27 (m, 3H), 7.13 (d, J = 5.0 Hz, 2H), 4.25 (d, J = 14.7 Hz, 1H), 3.39 (t, J = 6.5 Hz, 2H), 2.66 (t, J = 8.0 Hz, 2H), 2.38 - 2.27 (m, 1H), 2.091 2.03 (m, 1H), 1.85 (d, J = 10.3 Hz, 2H), 1.78 - 1.61 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta_C$  170.4, 151.0, 149.8, 137.3, 130.2, 128.4, 127.4, 123.99, 57.1, 50.4, 34.3, 31.8, 30.6, 25.3.

HRMS (ESI): calcd for C<sub>21</sub>H<sub>28</sub>N<sub>2</sub>O<sup>+</sup>, (M+H)<sup>+</sup>: 281.1648, found: 281.1639.



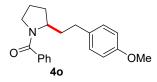

The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 4m was purified by flash column chromatography with PE/EA (20:1) to afford 4m (21.6 mg, 69% yield) as a colorless oil, 69% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta_H$  7.49 (d, J = 7.3 Hz, 2H), 7.44 -7.34 (m, 3H), 7.23 (s, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.16 (s, 2H), 4.34 (s, 1H), 3.52-3.36 (m, 2H), 2.70 (t, J = 6.8 Hz, 2H), 2.37 (dd, J = 10.1, 5.9 Hz, 1H), 2.18-2.07 (m, 1H), 1.92 (dd, J = 11.2, 5.3 Hz, 1H), 1.82-1.69 (m, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 170.2, 144.1, 137.5, 134.2, 130.1, 129.8, 128.6, 128.4, 127.5, 126.7, 126.2, 57.2, 50.3, 35.4, 32.2, 30.6, 25.3.

HRMS (ESI): calcd for C<sub>19</sub>H<sub>21</sub>ClNO<sup>+</sup>, (M+H)<sup>+</sup>: 314.1306, found: 314.1311.



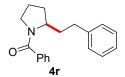

The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 4n was purified by flash column chromatography with PE/EA (20:1) to afford 4n (26.7 mg, 77% yield) as a colorless oil, 77% isolated yield.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta_H$  7.53 (d, J = 7.9 Hz, 2H), 7.47 (d, J = 7.2 Hz, 2H), 7.39 (dd, J = 12.6, 6.8 Hz, 5H), 4.34 (s, 1H), 3.45 (t, J = 6.6 Hz, 2H), 2.79 (t, J = 8.0 Hz, 2H), 2.45 - 2.33 (m, 1H), 2.15 (dd, J = 15.2, 8.5 Hz, 1H), 1.92 (dd, J = 10.9, 5.1 Hz, 1H), 1.77 (ddd, J = 18.9, 12.1, 6.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta_C$  170.2, 146.0, 137.3, 129.97, 128.7, 128.7, 128.3 (m).128.2, 127.3,

125.3 (dd, J = 7.6, 3.9 Hz), 57.0, 50.2, 35.0, 32.2, 30.5 , 25.2.

<sup>19</sup>**F NMR (376 MHz, CDCl<sub>3</sub>)**:  $\delta_F$  -62.30.

HRMS (ESI): calcd for C<sub>20</sub>H<sub>21</sub>F<sub>3</sub>NO<sup>+</sup>, (M+H)<sup>+</sup>: 348.1570, found: 348.1568.



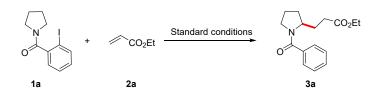

The reaction was conducted according to the general procedure using **1a** with  $CH_3CN$  as the solvent. The reaction was run for 72 h, the desired product **4r** was purified by flash column chromatography with PE/EA (20:1) to afford **4r** (7.1 mg, 23% yield) as a colorless oil, 23% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.48 (d, J = 6.8 Hz, 1H), 7.39 (t, J = 6.1 Hz, 3H), 7.17 (d, J = 8.1 Hz, 2H), 6.89-6.78 (m, 2H), 6.70 (s, 1H), 4.33 (s, 1H), 3.54-3.24 (m, 2H), 2.66 (t, J = 7.4 Hz, 1H), 2.43- 2.30 (m, 1H), 2.12 (m, 1H), 1.90 (m, 1H), 1.74 (d, J = 5.7 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 170.1, 157.9, 137.6, 134.1, 129.99, 129.4, 128.3, 127.5, 113.9, 57.3, 55.4, 50.3, 35.7, 31.5, 30.5, 25.3.

HRMS (ESI): calcd for C<sub>20</sub>H<sub>24</sub>NO<sub>2</sub><sup>+</sup>, (M+H)<sup>+</sup>, 310.1802, found, 310.1809.



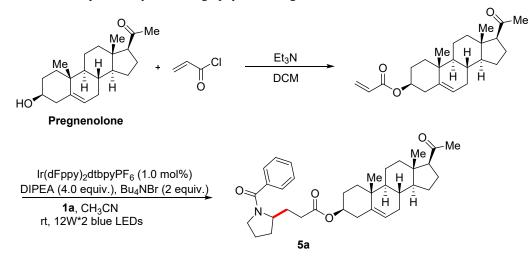

The reaction was conducted according to the general procedure using 1a with CH<sub>3</sub>CN as the solvent. The reaction was run for 72 h, the desired product 4r was purified by flash column chromatography with PE/EA (20:1) to afford 4r (8.6 mg, 31% yield) as a colorless oil, 31% isolated yield.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta_H$  7.49 (d, J = 7.1 Hz, 2H), 7.39 (t, J = 5.9 Hz, 4H), 7.29 (d, J = 7.5 Hz, 1H), 7.25 - 7.22 (m, 1H), 7.21-7.09 (m, 2H), 4.35 (s, 1H), 3.44 (dd, J = 13.0, 6.4 Hz, 2H), 2.73 (t, J = 8.1 Hz, 2H), 2.45 - 2.34 (m, 1H), 2.20- 2.10 (m, 1H), 1.91 (dd, J = 15.8, 10.6 Hz, 1H), 1.83-1.69 (m, 3H). <sup>13</sup>**C NMR (101 MHz, CDCl<sub>3</sub>)**:  $\delta_C$  170.1, 142.1, 137.6, 130.0, 129.97, 128.5, 128.3, 127.5, 125.9, 57.3, 50.3, 35.6, 32.5, 30.5, 25.3.

HRMS (ESI): calcd for C<sub>19</sub>H<sub>22</sub>NO<sup>+</sup>, (M+H)<sup>+</sup>, 280.1696, found, 280.1690.

# 6. Synthetic applications

#### a) Gram Scale-up Reaction




In a dried sealed tube, **1a** (3.3 mmol), **2a** (6.6 mmol),  $Ir(dFppy)_2dtbyPF_6$  (1.0 mol %), DIPEA (13.2 mmol),  $Bu_4NBr$  (6.6 mmol) were dissolved in CH<sub>3</sub>CN (33.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. And then, the reaction flask was exposed to 12 W\*2 blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished (96 h), the reaction solvent was distill under vacuum, the residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the desired products **3a** in 79% yield.

#### b) Late-stage alkylation of complex molecules

#### Synthesis of 5a:

Synthesis of substrate Pregnenolone derivative: Pregnenolone (632 mg, 2.0 mmol), Et<sub>3</sub>N (404 mg, 4 mmol) were added in DCM (20 mL) at 0-5 °C, acryloyl chloride (216 mg, 2.4 mmol) was added with dropwise. After that, the reaction was removed to room temperature, and stirring overnight at room temperature. When the starting material was completely consumed, 20 ml saturated  $NH_4Cl$  was added, extracted with DCM (20 ml\*3), the combined phase was washed with brine, dried over  $Na_2SO_4$ , concentrated and purified by chromatography on silica gel to afford the desired substrate.

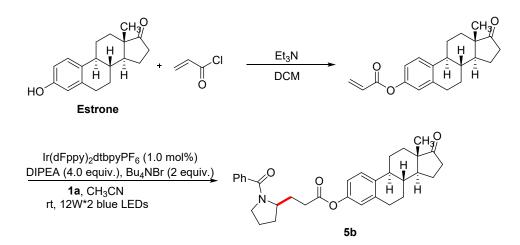


#### Characterization data of substrate:

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  6.38 (dd, J = 17.3, 1.4 Hz, 1H), 6.10 (dd, J = 17.3, 10.4 Hz, 1H), 5.80 (dd, J = 10.4, 1.4 Hz, 1H), 5.38 (d, J = 4.9 Hz, 1H), 4.69 (tdd, J = 11.1, 6.7, 4.4 Hz, 1H), 2.53 (t, J = 8.9 Hz, 1H), 2.36 (d, J = 7.1 Hz, 2H), 2.18 (dt, J = 20.2, 10.0 Hz, 1H), 2.12 (s, 3H), 2.01 (ddd, J = 17.4, 9.7, 5.9 Hz, 2H), 1.94-1.85 (m, 2H), 1.73-1.52 (m, 6H), 1.48 (dd, J = 16.4, 6.9 Hz, 2H), 1.28 – 1.11 (m, 3H), 1.03 (s, 4H), 0.63 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 209.7, 165.8, 139.8, 130.5, 129.1, 122.6, 74.1, 63.8, 56.98, 50.0, 44.1, 38.9, 38.2, 37.1, 36.8, 31.96, 31.9, 31.7, 27.9, 24.6, 22.98, 21.2, 19.5, 13.4.

**Photoredox reaction:** In a dried sealed tube, **1a** (0.2 mmol), **Pregnenolone derivative** (0.1 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (1.0 mol %), DIPEA (0.4 mmol),  $Bu_4NBr$  (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. And then, the reaction flask was exposed to 12 W\*2 blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished, the reaction solvent was distill under vacuum, the residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the desired products.


#### Characterization data of 5a:

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.50 (d, J = 6.8 Hz, 2H), 7.41-7.33 (m, 3H), 5.47-5.13 (m, 1H), 4.72 – 4.44 (m, 1H), 4.34 (s, 1H), 3.60-3.33 (m, 2H), 2.52 (t, J = 8.9 Hz, 1H), 2.40 (dd, J = 15.5, 8.0 Hz, 1H), 2.34-2.25 (m, 2H), 2.25-2.14 (m, 2H), 2.11 (s, 3H), 2.06-1.99 (m, 2H), 1.96 (s, 1H), 1.92-1.76 (m, 5H), 1.75-1.63 (m, 4H), 1.62-1.48 (m, 4H), 1.45 (t, J = 9.2 Hz, 2H), 1.28- 1.20 (m, 1H), 1.20-1.10 (m, 2H), 1.04-0.94 (m, 4H), 0.62 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 209.7, 173.0, 170.4, 139.8, 137.3, 130.1, 128.3, 127.5, 122.4, 73.96, 63.8, 56.95, 56.7, 50.2, 49.98, 44.1, 38.9, 38.1, 37.1, 36.7, 31.9, 31.9, 31.7, 30.3, 29.4, 27.8, 27.8, 25.1, 24.6, 22.9, 21.1, 19.4, 13.3.

HRMS (ESI): calcd for C<sub>35</sub>H<sub>48</sub>NO<sub>4</sub><sup>+</sup>, (M+H)<sup>+</sup>: 546.3578, found: 546.3582.

Synthesis of 5b:



**Synthesis of substrate Estrone derivative:** Estrone (540 mg, 2.0 mmol), Et<sub>3</sub>N (404 mg, 4 mmol) were added in DCM (20 mL) at 0-5 °C, acryloyl chloride (216 mg, 2.4 mmol) was added with dropwise. After that, the reaction was removed to room temperature, and stirring overnight at room temperature. When the starting material was completely consumed, 20 ml saturated was added, extracted with DCM (20 ml\*3), the combined phase was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by chromatography on silica gel to afford the desired product.

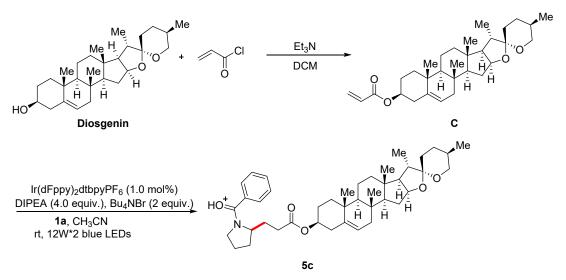
#### Characterization data of substrate:

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>):  $\delta_H 7.30$  (d, J = 8.4 Hz, 1H), 6.90 (dd, J = 8.4, 2.5 Hz, 1H), 6.86 (d, J

= 2.4 Hz, 1H), 6.59 (dd, J = 17.3, 1.3 Hz, 1H), 6.31 (dd, J = 17.3, 10.4 Hz, 1H), 6.00 (dd, J = 10.4, 1.3 Hz, 1H), 2.96 – 2.88 (m, 2H), 2.51 (dd, J = 18.8, 8.5 Hz, 1H), 2.45 - 2.38 (m, 1H), 2.35 - 2.25 (m, 1H), 2.05 (dddd, J = 12.8, 12.0, 9.5, 6.5 Hz, 3H), 1.73-1.38 (m, 7H), 0.91 (s, 3H), <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta_C$  220.9, 165.0, 148.6, 138.2, 137.6, 132.6, 128.2, 126.6, 121.7, 118.8,

50.6, 48.1, 44.3, 38.1, 36.0, 31.7, 29.5, 26.5, 25.9, 21.7, 13.97.

**Photoredox reaction:** In a dried sealed tube, **1a** (0.2 mmol), **Estrone derivative** (0.1 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (1.0 mol %), DIPEA (0.4 mmol),  $Bu_4NBr$  (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. And then, the reaction flask was exposed to 12 W\*2 blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished, the reaction solvent was distill under vacuum, the residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the desired product **5b**.


#### Characterization data of 5b:

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta_H$  7.52 (d, J = 7.3 Hz, 2H), 7.43 - 7.34 (m, 3H), 7.25 (d, J = 6.6 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.79 (s, 1H), 4.46 (dd, J = 12.6, 6.4 Hz, 1H), 3.46 (ddd, J = 22.5, 14.0, 7.2 Hz, 2H), 2.93-2.82 (m, 2H), 2.69 (tt, J = 16.2, 8.0 Hz, 2H), 2.50 (dd, J = 18.8, 8.6 Hz, 1H), 2.42 -2.36 (m, 1H), 2.35-2.22 (m, 2H), 2.20-2.09 (m, 2H), 2.08-2.03 (m, 1H), 2.02-1.92 (m, 4H), 1.82-1.69 (m, 2H), 1.63-1.59 (m, 1H), 1.59-1.47 (m, 4H), 1.45-1.39 (m, 1H), 0.90 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 220.98, 172.5, 170.6, 148.7, 138.1, 137.4, 137.3, 130.1, 128.3, 127.5, 126.5, 121.8, 118.9, 56.7, 50.6, 50.2, 48.1, 44.3, 38.1, 35.99, 31.7, 31.5, 30.5, 29.5, 26.5, 25.9, 25.1, 21.7, 13.96.

HRMS (ESI): calcd for C<sub>32</sub>H<sub>38</sub>NO<sub>4</sub><sup>+</sup>, (M+H)<sup>+</sup>: 500.2795, found: 500.2800.

Synthesis of 5c:



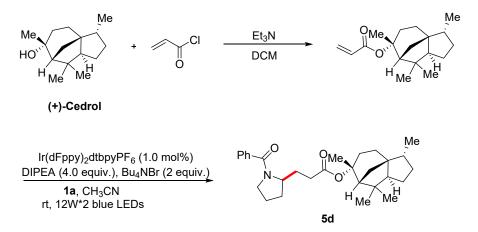
**Synthesis of substrate Diosgenin derivative:** Diosgenin (856 mg, 2.0 mmol), Et<sub>3</sub>N (404 mg, 4 mmol) were added in DCM (20 mL) at 0-5 °C, acryloyl chloride (216 mg, 2.4 mmol) was added with dropwise. After that, the reaction was removed to room temperature, and stirring overnight at room temperature. When the starting material was completely consumed, 20 ml saturated was added, extracted with DCM (20 ml\*3), the combined phase was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by

chromatography on silica gel to afford the desired substrate.

### Characterization data of substrate:

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta_H$  6.38 (dd, J = 17.3, 1.3 Hz, 1H), 6.10 (dd, J = 17.3, 10.4 Hz, 1H), 5.80 (dd, J = 10.4, 1.2 Hz, 1H), 5.39 (d, J = 4.7 Hz, 1H), 4.75-4.60 (m, 1H), 4.41 (dd, J = 14.9, 7.5 Hz, 1H), 3.47 (dd, J = 10.1, 3.2 Hz, 1H), 3.37 (t, J = 10.9 Hz, 1H), 2.37 (d, J = 6.2 Hz, 2H), 1.99 (dt, J = 12.3, 5.4 Hz, 2H), 1.94-1.82 (m, 3H), 1.81-1.72 (m, 2H), 1.70-1.55 (m, 7H), 1.54-1.40 (m, 3H), 1.35-1.24 (m, 2H), 1.23-1.06 (m, 4H), 1.04 (d, J = 10.0 Hz, 3H), 0.99 (dd, J = 11.2, 7.0 Hz, 3H), 0.79 (d, J = 4.8 Hz, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta_C$  165.7, 139.8, 130.4, 129.1, 122.6, 109.4, 80.9, 74.1, 66.9, 62.2, 56.6, 50.1, 41.7, 40.4, 39.8, 38.2, 37.1, 36.9, 32.2, 31.95, 31.5, 30.4, 28.9, 27.9, 20.9, 19.5, 17.3, 16.4, 14.6.

**Photoredox reaction:** In a dried sealed tube, **1a** (0.2 mmol), **Diosgenin derivative** (0.1 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (1.0 mol %), DIPEA (0.4 mmol),  $Bu_4NBr$  (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. And then, the reaction flask was exposed to 12 W\*2 blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished, the reaction solvent was distill under vacuum, the residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the desired product **5c**.


### Characterization data of 5c:

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.50 (d, J = 6.4 Hz, 2H), 7.42-7.33 (m, 3H), 5.42-5.22 (m, 1H), 4.70 - 4.51 (m, 1H), 4.38 (dt, J = 17.9, 6.6 Hz, 2H), 3.57-3.32 (m, 4H), 2.40 (dd, J = 15.7, 8.5 Hz, 2H), 2.33 - 2.19 (m, 3H), 2.13-2.05 (m, 1H), 2.02-1.92 (m, 3H), 1.85 (td, J = 12.5, 7.0 Hz, 4H), 1.71 (ddd, J = 16.4, 12.5, 6.4 Hz, 6H), 1.60 (dd, J = 14.2, 9.7 Hz, 5H), 1.54-1.37 (m, 4H), 1.27 (dt, J = 14.2, 6.8 Hz, 2H), 1.18 (dd, J = 12.6, 4.7 Hz, 1H), 1.14-1.05 (m, 2H), 1.01 (s, 3H), 0.95 (dd, J = 12.4, 6.1 Hz, 4H), 0.78 (d, J = 4.5 Hz, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 173.0, 170.4, 139.9, 137.3, 130.1, 128.3, 127.5, 122.4, 109.4, 80.9, 74.0, 66.95, 62.2, 56.7, 56.6, 50.2, 50.1, 41.7, 40.4, 39.8, 38.2, 38.2, 37.1, 36.8, 32.2, 31.95, 31.7, 31.5, 30.4, 30.3, 29.4, 28.9, 27.8, 25.1, 20.9, 19.5, 17.3, 16.4, 14.6.

**HRMS (ESI)**: calcd for C<sub>42</sub>H<sub>60</sub>NO<sub>5</sub><sup>+</sup>, (M+H)<sup>+</sup>: 658.4466, found: 658.4474.

Synthesis of 5d:



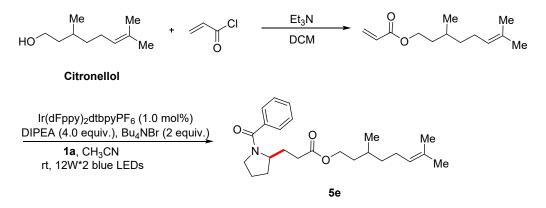
**Synthesis of substrate** (+)-Cedrol derivative: (+)-Cedrol (444 mg, 2.0 mmol), Et<sub>3</sub>N (404 mg, 4 mmol) were added in DCM (20 mL) at 0-5 °C, acryloyl chloride (216 mg, 2.4 mmol) was added with dropwise.

After that, the reaction was removed to room temperature, and stirring overnight at room temperature. When the starting material was completely consumed, 20 ml saturated was added, extracted with DCM (20 ml\*3), the combined phase was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by chromatography on silica gel to afford the desired substrate.

### Characterization data of substrate:

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H 6.27$  (dd, J = 17.3, 1.6 Hz, 1H), 6.01 (dd, J = 17.3, 10.3 Hz, 1H), 5.70 (dd, J = 10.3, 1.6 Hz, 1H), 2.44 (d, J = 5.2 Hz, 1H), 2.07 (ddt, J = 13.5, 5.6, 1.6 Hz, 1H), 2.03 – 1.92 (m, 1H), 1.85 (ddd, J = 22.6, 14.1, 7.0 Hz, 2H), 1.70-1.61 (m, 2H), 1.57 (s, 3H), 1.51 (ddd, J = 14.6, 7.3, 4.9 Hz, 1H), 1.47-.42 (m, 1H), 1.42-1.31 (m, 3H), 1.30-1.20 (m, 1H), 1.13 (s, 3H), 0.96 (s, 3H), 0.83 (d, J = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 165.5, 130.8, 129.3, 86.7, 56.97, 56.9, 54.1, 43.6, 41.4, 41.1, 37.1, 33.3, 31.4, 28.6, 27.2, 26.0, 25.4, 15.6.


**Photoredox reaction:** In a dried sealed tube, **1a** (0.2 mmol), **(+)-Cedrol derivative** (0.1 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (1.0 mol %), DIPEA (0.4 mmol),  $Bu_4NBr$  (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. And then, the reaction flask was exposed to 12 W\*2 blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished, the reaction solvent was distill under vacuum, the residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the desired product **5d**.

#### Characterization data of 5d:

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.48 (d, J = 6.4 Hz, 2H), 7.41-7.32 (m, 3H), 4.31 (s, 1H), 3.55-3.29 (m, 2H), 2.38 (d, J = 4.4 Hz, 1H), 2.34-2.15 (m, 3H), 2.05 (dd, J = 12.8, 6.9 Hz, 2H), 1.97-1.87 (m, 3H), 1.87-1.80 (m, 2H), 1.79-1.72 (m, 2H), 1.67-1.58 (m, 3H), 1.56-1.45 (m, 4H), 1.44-1.28 (m, 5H), 1.28-1.23 (m, 1H), 1.15 (s, 2H), 0.95 (s, 3H), 0.81 (d, J = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 172.6, 170.3, 137.4, 129.95, 128.3, 127.4, 86.5, 57.0, 56.7, 54.0, 50.1, 43.5, 41.4, 41.1, 37.0, 33.2, 32.7, 31.3, 30.3, 29.3, 28.6, 27.2, 25.9, 25.4, 25.1, 15.6.
HRMS (ESI): calcd for C<sub>29</sub>H<sub>42</sub>NO<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>: 452.3159, found: 452.3161.

Synthesis of 5e:



**Synthesis of substrate Citronellol derivative:** Citronellol (312 mg, 2.0 mmol), Et<sub>3</sub>N (404 mg, 4 mmol) were added in DCM (20 mL) at 0-5 °C, acryloyl chloride (216 mg, 2.4 mmol) was added with dropwise. After that, the reaction was removed to room temperature, and stirring overnight at room temperature.

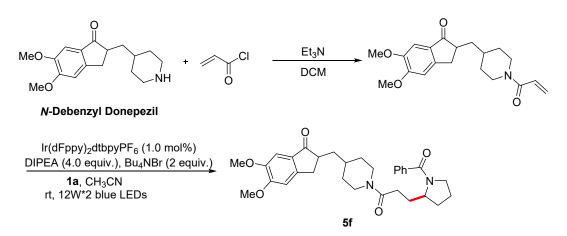
When the starting material was completely consumed, 20 ml saturated was added, extracted with DCM (20 ml $^{*3}$ ), the combined phase was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by chromatography on silica gel to afford the desired substrate.

#### Characterization data of substrate:

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  6.39 (dd, J = 17.3, 1.5 Hz, 1H), 6.12 (dd, J = 17.3, 10.4 Hz, 1H), 5.81 (dd, J = 10.4, 1.5 Hz, 1H), 5.15-5.02 (m, 1H), 4.26-4.09 (m, 2H), 2.08-1.88 (m, 2H), 1.78-1.69 (m, 1H), 1.68 (s, 3H), 1.59-1.50 (m, 2H), 1.50-1.40 (m, 1H), 1.36 (ddd, J = 8.7, 6.4, 3.2 Hz, 1H), 1.28-1.16 (m, 2H), 0.94 (t, J = 6.8 Hz, 3H), 0.90-0.82 (m, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): *δ*<sub>C</sub> 166.5, 131.5, 130.5, 128.8, 124.7, 63.3, 37.1, 35.6, 29.7, 25.9, 25.5, 19.6, 17.8.

**Photoredox reaction:** In a dried sealed tube, **1a** (0.2 mmol), **Citronellol derivative** (0.1 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (1.0 mol %), DIPEA (0.4 mmol),  $Bu_4NBr$  (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. And then, the reaction flask was exposed to 12 W\*2 blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished, the reaction solvent was distill under vacuum, the residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the desired product **5e**.


#### Characterization data of 5e:

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta_H$  7.49 (d, J = 7.1 Hz, 2H), 7.41-7.34 (m, 3H), 5.07 (t, J = 7.1 Hz, 1H), 4.41-4.23 (m, 1H), 4.11 (dd, J = 14.1, 7.0 Hz, 2H), 3.61-3.33 (m, 2H), 2.42 (dd, J = 16.0, 9.3 Hz, 2H), 2.28-2.15 (m, 1H), 2.08 (dd, J = 12.3, 6.0 Hz, 1H), 2.01-1.85 (m, 4H), 1.74 (dd, J = 13.9, 6.3 Hz, 2H), 1.67 (s, 4H), 1.59 (s, 3H), 1.52 (dd, J = 12.6, 5.9 Hz, 1H), 1.41 (dd, J = 7.7, 4.5 Hz, 1H), 1.32 (ddd, J = 9.1, 6.7, 3.6 Hz, 1H), 1.20-1.12 (m, 1H), 0.89 (d, J = 6.5 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 173.7, 170.4, 137.3, 131.4, 130.1, 128.3, 127.5, 124.7, 63.2, 56.7, 50.2, 37.1, 35.5, 31.4, 30.3, 29.6, 29.4, 25.8, 25.5, 25.1, 19.5, 17.8.

HRMS (ESI): calcd for C<sub>24</sub>H<sub>36</sub>NO<sub>3</sub><sup>+</sup>, (M+H)<sup>+</sup>, 386.2690, found, 386.2697.

Synthesis of 5f:



**Synthesis of substrate** *N***-Debenzyl Donepezil derivatve:** *N*-Debenzyl Donepezil (578 mg, 2.0 mmol), Et<sub>3</sub>N (404 mg, 4 mmol) were added in DCM (20 mL) at 0-5 °C, acryloyl chloride (216 mg, 2.4 mmol) was added with dropwise. After that, the reaction was removed to room temperature, and stirring

overnight at room temperature. When the starting material was completely consumed, 20 ml saturated was added, extracted with DCM (20 ml\*3), the combined phase was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and purified by chromatography on silica gel to afford the desired product.

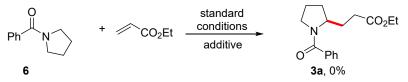
### Characterization data of substrate:

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta_H$  7.11 (s, 1H), 6.82 (s, 1H), 6.54 (dd, J = 16.8, 10.6 Hz, 1H), 6.20 (dd, J = 16.8, 2.0 Hz, 1H), 5.61 (dd, J = 10.6, 2.0 Hz, 1H), 4.61 (d, J = 11.9 Hz, 1H), 3.96 (s, 1H), 3.91 (s, 3H), 3.85 (s, 3H), 3.22 (dd, J = 17.4, 8.0 Hz, 1H), 3.02 (t, J = 12.6 Hz, 1H), 2.73-2.53 (m, 3H), 1.85 (dd, J = 9.0, 4.3 Hz, 1H), 1.76 (d, J = 8.8 Hz, 3H), 1.33 (dd, J = 16.5, 10.0 Hz, 1H), 1.23-1.09 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta_C$  207.3, 165.4, 155.6, 149.5, 148.6, 129.2, 128.0, 127.2, 107.4, 104.4, 56.3, 56.1, 46.1, 45.0(d, J = 22.3 Hz), 42.3, 38.5 (d, J = 24.0 Hz), 34.6 (d, J = 29.6 Hz), 33.8-32.9 (m), 32.5 (d, J = 18.0 Hz), 31.43.

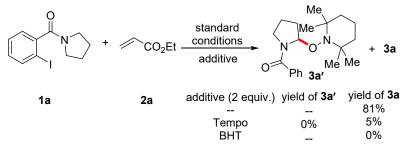
**Photoredox reaction:** In a dried sealed tube, **1a** (0.2 mmol), *N*-**Debenzyl Donepezil derivatve** (0.1 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (1.0 mol %), DIPEA (0.4 mmol),  $Bu_4NBr$  (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. And then, the reaction flask was exposed to 12 W\*2 blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished, the reaction solvent was distill under vacuum, the residue was purified by flash column chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to give the desired products.

### Characterization data of 5f:


<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**:  $\delta_H$  7.48 (s, 2H), 7.41-7.31 (m, 3H), 7.16 (s, 1H), 6.85 (s, 1H), 4.62 (d, J = 9.4 Hz, 1H), 4.45-4.34 (m, 1H), 3.95 (s, 3H), 3.90 (s, 3H), 3.54-3.44 (m, 1H), 3.41-3.31 (m, 1H), 3.23 (dd, J = 14.9, 5.5 Hz, 1H), 2.99 (t, J = 11.7 Hz, 1H), 2.73-2.62 (m, 2H), 2.57-2.51 (m, 1H), 2.48- 2.38 (m, 1H), 2.18 (d, J = 3.9 Hz, 1H), 2.11-2.03 (m, 1H), 1.95 (dd, J = 12.0, 5.9 Hz, 1H), 1.84 (dd, J = 17.7, 4.6 Hz, 2H), 1.79-1.68 (m, 7H), 1.35-1.26 (m, 1H), 1.24-1.07 (m, 2H).

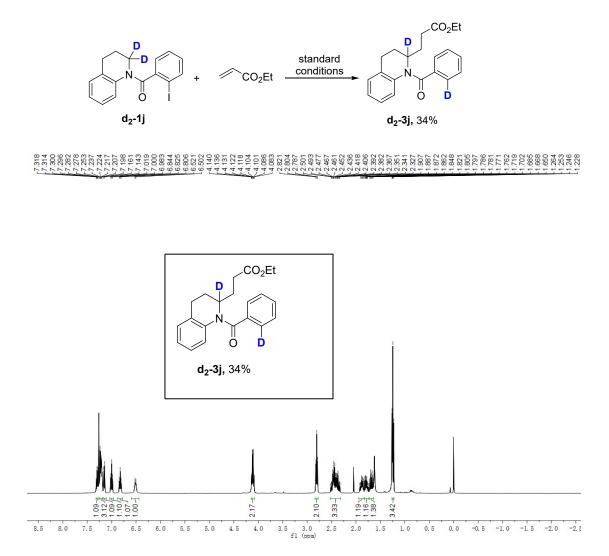
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta_C$  207.5, 171.1, 170.4, 155.6, 149.5, 148.7, 137.3, 129.9, 129.2, 128.3, 127.3, 107.4, 104.4, 56.85 (d, J = 5.6 Hz), 56.3, 56.1, 49.9, 45.9 (d, J = 8.6 Hz), 45.3-44.96, 41.9 (d, J = 6.8 Hz), 38.7-38.4 (m), 34.8-34.6 (m), 33.5-33.2 (m), 32.6-32.2 (m), 31.5, 30.7, 30.5, 30.1, 24.9. HRMS (ESI): calcd for  $C_{31}H_{39}N_2O_5^+$ , (M+H)<sup>+</sup>, 519.2853, found, 519.2849.

# 7. Mechanistic Studies


#### a) Control experiment

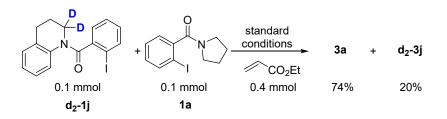
To illustrate the mechanism, the control experiment were conducted: In a dried sealed tube, **8** (0.1 mmol), **2a** (0.2 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (1.0 mol %), DIPEA (0.4 mmol),  $Bu_4NBr$  (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. Then, the reaction flask was exposed to 12 W\*2 blue leds until full completely consumed (monitored by TLC) and quenched with 4 mL saturated NH<sub>4</sub>Cl. The mixture was extracted with DCM (5 mL\*3). The combined solvent were dried over Na<sub>2</sub>SO<sub>4</sub> and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to afford the alkylation product **3a** in 0% yield, which demonstrate the activation of C-I bond are crucial to the successful transformation of the procedure.




#### b) Radical inhibition experiments

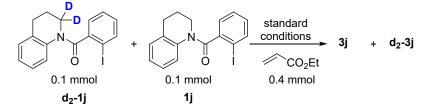
In a dried sealed tube, **1a** (0.1 mmol), **2a** (0.2 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (1.0 mol %), DIPEA (0.4 mmol), Bu<sub>4</sub>NBr (0.2 mmol), TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. And then, the reaction flask was exposed to 12 W\*2 blue LEDs at room temperature until the starting materials was completely consumed (monitored by TLC). After the reaction finished, the reaction solvent was detected only trace of desired product **3a** on GC-MS, with 5% isolated yield. When the inhibitor BHT (2,6-di-tert-butyl-4-methylphenol) (0.2 mmol) was used, the alkylation process was completely inhibited, which indicate the novel transformation was radical intermediate involved through a single-electron transfer.

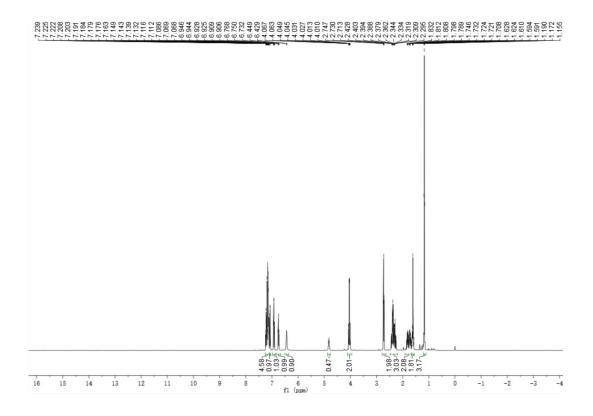



#### c) Deuterium labeling experiment

To illustrate the mechanism, the deuterium labeling experiments were conducted: In a dried sealed tube,  $d_2-1j$  (0.1 mmol), 2a (0.2 mmol), Ir(dFppy)<sub>2</sub>dtbpyPF<sub>6</sub> (1.0 mol %), DIPEA (0.4 mmol), Bu<sub>4</sub>NBr (0.2 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. Then, the reaction flask was exposed to 12 W\*2 blue leds until full completely consumed (monitored by TLC) and quenched with 4 mL saturated NH<sub>4</sub>Cl. The mixture was extracted with DCM (5 mL\*3). The combined solvent were dried over Na<sub>2</sub>SO<sub>4</sub> and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to afford the alkylation product d<sub>2</sub>-3j in 34% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta_H$  7.32-7.27 (m, 3H), 7.22 (dt, J = 7.5, 4.9 Hz, 1H), 7.15 (d, J = 7.4 Hz, 1H), 7.00 (t, J = 7.2 Hz, 1H), 6.82 (t, J = 7.6 Hz, 1H), 6.51 (d, *J* = 7.4 Hz, 1H), 4.17-4.05 (m, 2H), 2.80 (t, *J* = 6.8 Hz, 2H), 2.52 – 2.32 (m, 3H), 1.88 (ddd, *J* = 15.5, 9.8, 5.8 Hz, 1H), 1.78 (ddd, *J* = 13.8, 9.8, 6.3 Hz, 1H), 1.73-1.64 (m, 1H), 1.25 (dd, *J* = 8.6, 5.7 Hz, 3H).



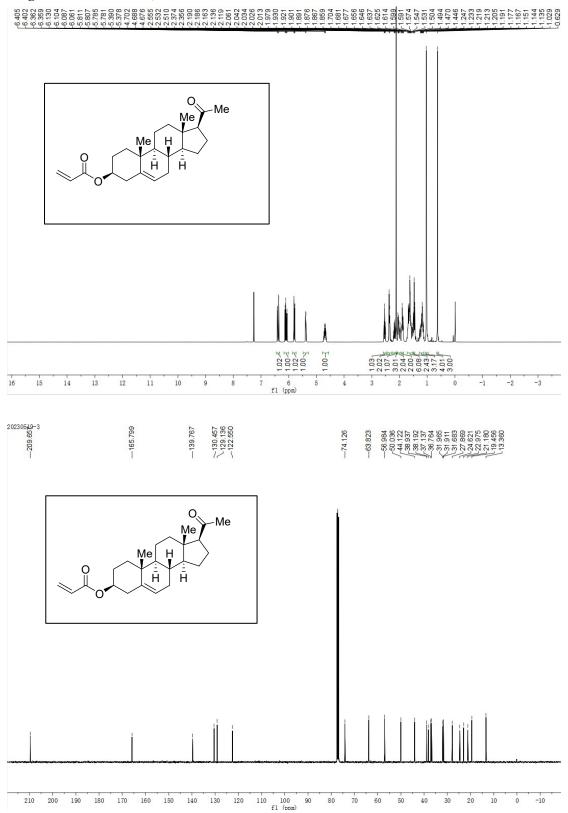

d) Deuterium labeling experiment to rule out 1,5-HAT of intermolecular


In a dried sealed tube, **1a** (0.1 mmol), **d<sub>2</sub>-1j** (0.1 mmol), **2a** (0.4 mmol),  $Ir(dFppy)_2dtbpyPF_6$  (2.0 mol %), DIPEA (0.8 mmol), Bu<sub>4</sub>NBr (0.4 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. Then, the reaction flask was exposed to 12 W\*2 blue leds until full completely consumed (monitored by TLC) and quenched with 4 mL saturated NH<sub>4</sub>Cl. The mixture was extracted with DCM (5 mL\*3). The combined solvent were dried over Na<sub>2</sub>SO<sub>4</sub> and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to afford the alkylation product **3a** and **d<sub>2</sub>-3j** in 74% and 20% yields respectively, without finding the intermolecular 1,5-HAT product.



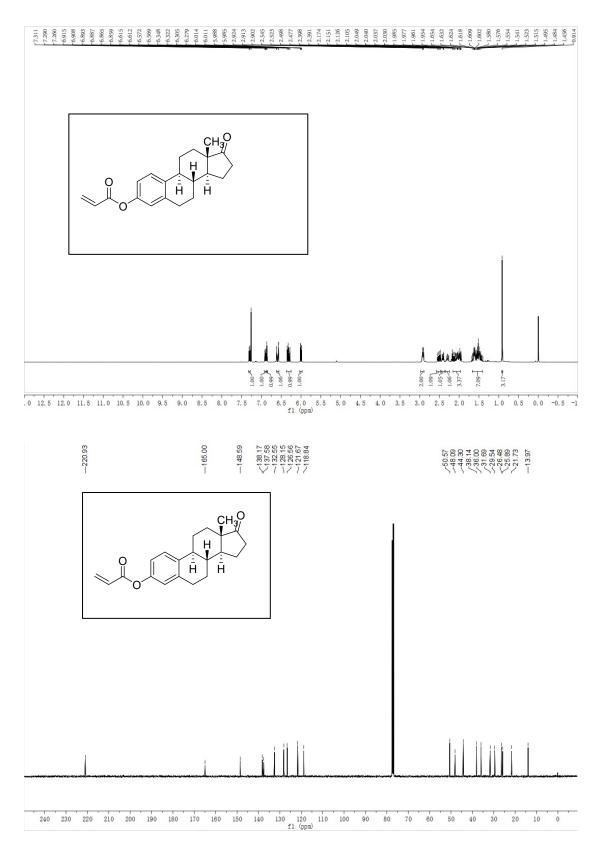
#### e) Deuterium labeling experiment to evaluate the KIE value

To illustrate the mechanism, the deuterium labeling experiments were conducted: In a dried sealed tube,  $d_2$ -1j (0.1 mmol), 1j (0.1 mmol), 2a (0.4 mmol), Ir(dFppy)<sub>2</sub>dtbpyPF<sub>6</sub> (1.0 mol %), DIPEA (0.4 mmol), Bu<sub>4</sub>NBr (0.4 mmol) were dissolved in CH<sub>3</sub>CN (1.0 mL). The flask was caped and degassed oxygen with N<sub>2</sub> for three times at -78 °C. Then, the reaction flask was exposed to 12 W\*2 blue leds until full completely consumed (monitored by TLC) and quenched with 4 mL saturated NH<sub>4</sub>Cl. The mixture was extracted with DCM (5 mL\*3). The combined solvent were dried over Na<sub>2</sub>SO<sub>4</sub> and filtered. The filtrate was concentrated and purification by chromatography on silica gel with a eluent of petroleum ether (PE) and ethyl acetate (EA) to afford the alkylation product d<sub>2</sub>-3j and 3j in 25% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta_H$  7.25-7.10 (m, 4H), 7.09-7.04 (m, 1H), 6.93 (td, J = 7.5, 1.1 Hz, 1H), 6.75 (t, J = 7.2 Hz, 1H), 6.44 (d, J = 7.7 Hz, 1H), 4.90-4.75 (m, 0.47H), 4.14-3.97 (m, 2H), 2.73 (t, J = 6.8 Hz, 1H), 2.48- 2.20 (m, 3H), 1.91-1.66 (m, 2H), 1.66-1.55 (m, 1H), 1.17 (t, J = 7.1 Hz, 3H).

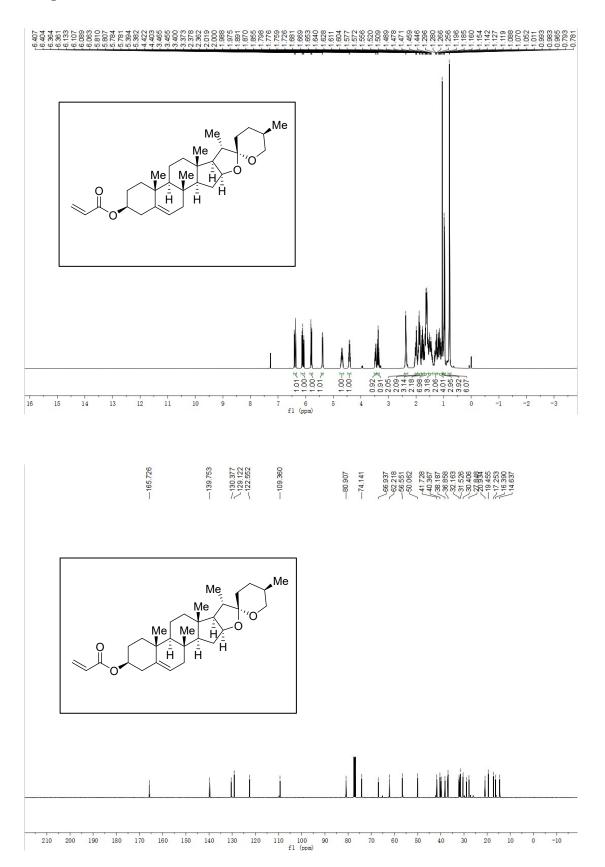




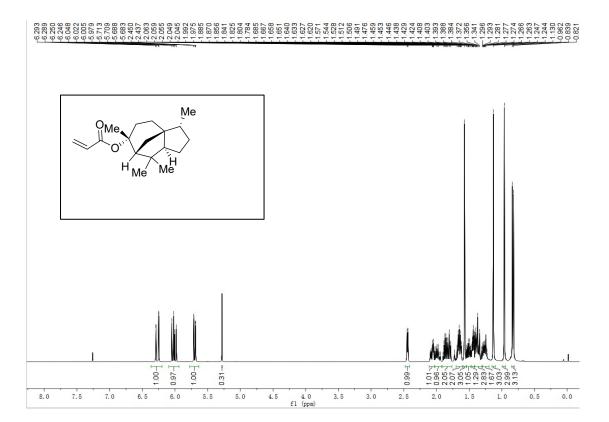

# 8. Reference

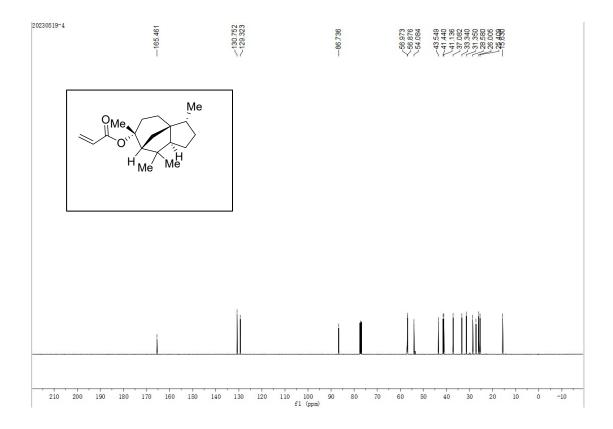

- 1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* 1996, 15, 1518.
- 2. S. Sarkar, W. Sidhant, X. Jia, V. Gevorgyan, Chem 2022, 8, 3096-3108.
- 3. R. Guo, H. Xiao, S. Li, Y. Luo, J. Bai, M. Zhang, Y. Guo, X. Qi, G. Zhang, *Angew. Chem. Int. Ed.*, **2022**, *61*, e202208232.
- 4. J. B. McManus, N. P. R. Onuska, D. A. Nicewicz, J. Am. Chem. Soc., 2018, 140, 9056-9060.
- 5. J. B. McManus, N. P. R. Onuska, M. S. Jeffreys, N. C. Goodwin, D. A. Nicewicz, *Org. Lett.* **2020**, *22*, 679-683.

# 9. Spectra for Substrates and Products Product Characterization



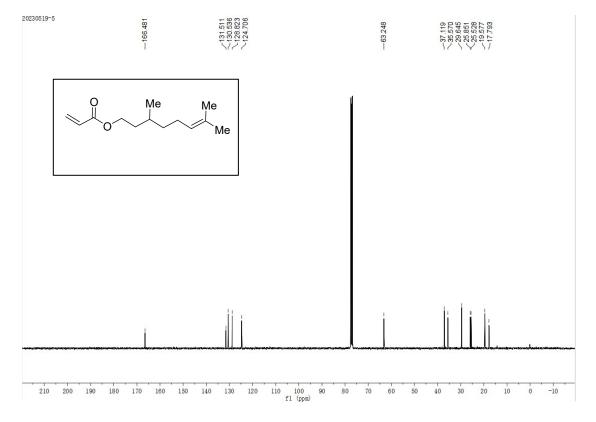

# Pregnenolone derivative, <sup>1</sup>H+<sup>13</sup>C


# Estrone derivative, <sup>1</sup>H+<sup>13</sup>C

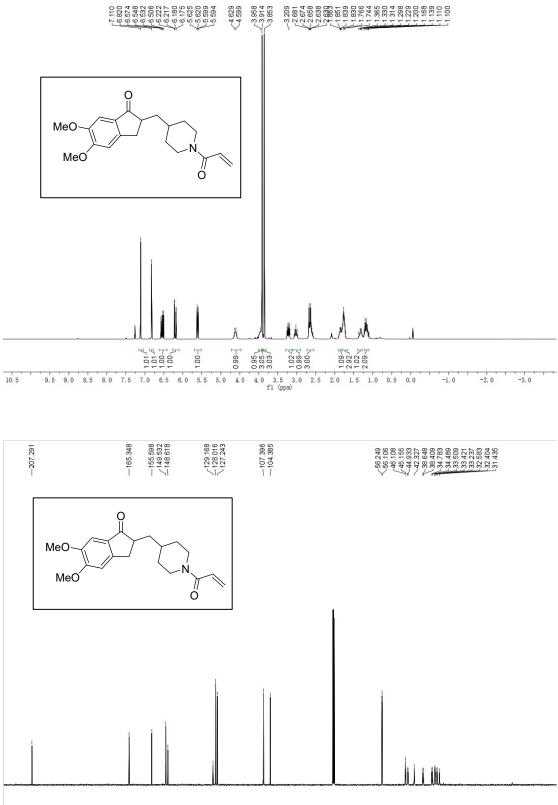



# Diosgenin derivative, <sup>1</sup>H+<sup>13</sup>C





# (+)-Cedrol derivative, <sup>1</sup>H+<sup>13</sup>C

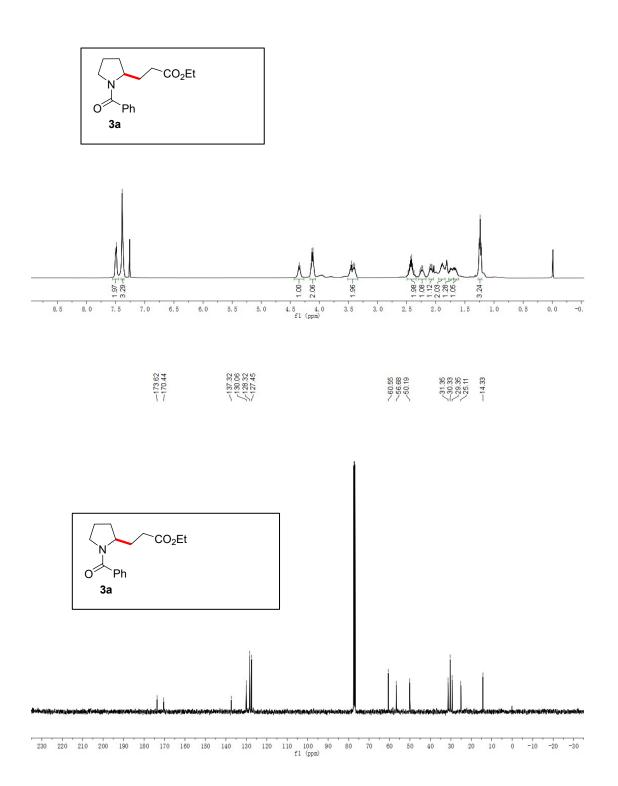


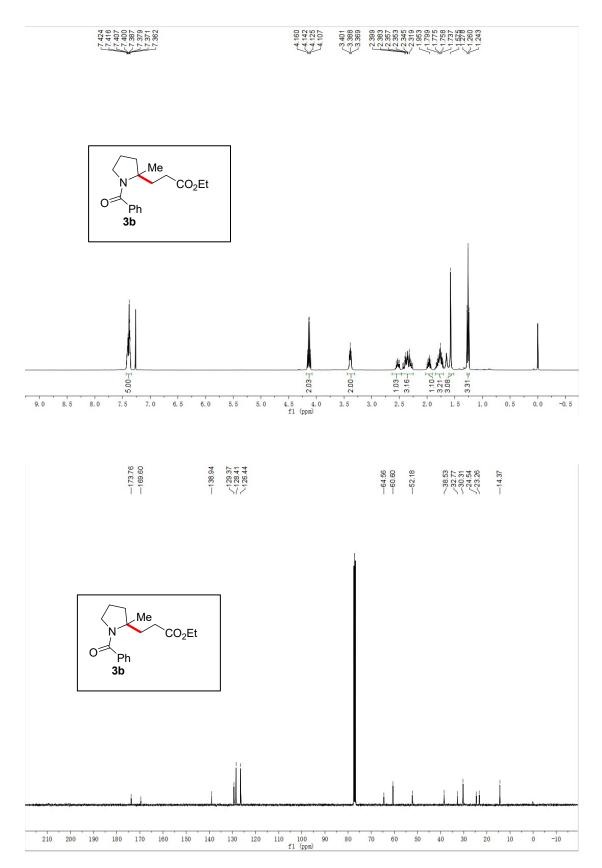



# Citronellol derivative, <sup>1</sup>H+<sup>13</sup>C



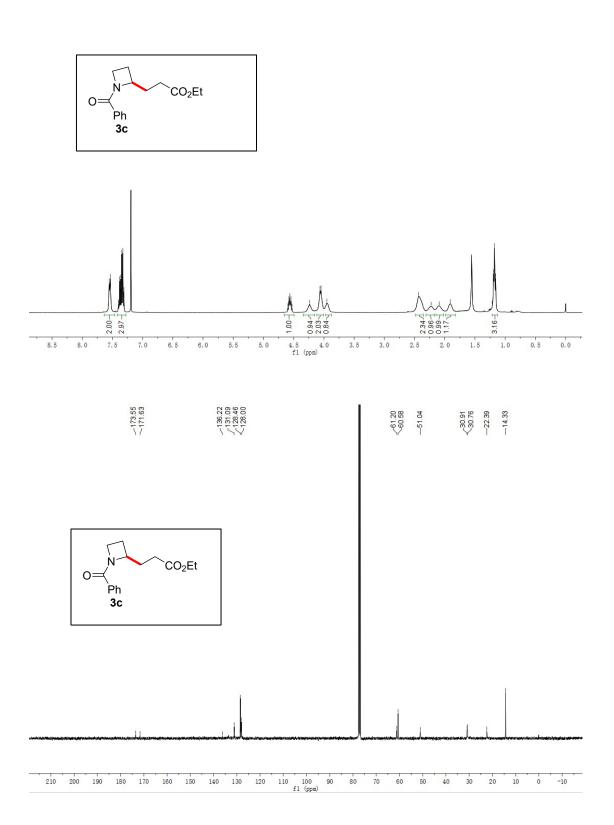



# N-Debenzyl Donepezil derivatve, <sup>1</sup>H+<sup>13</sup>C



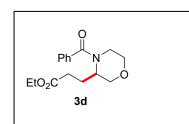

110 100 fl (ppm) -10 200 190 180 170 160 150 140 130 120 

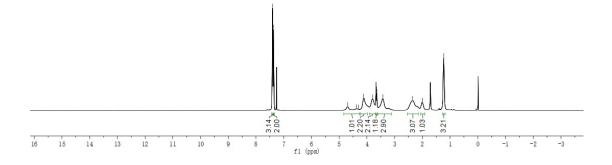
3a, <sup>1</sup>H+<sup>13</sup>C

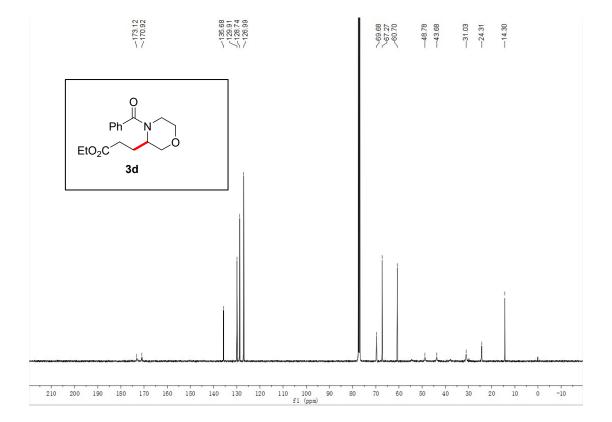




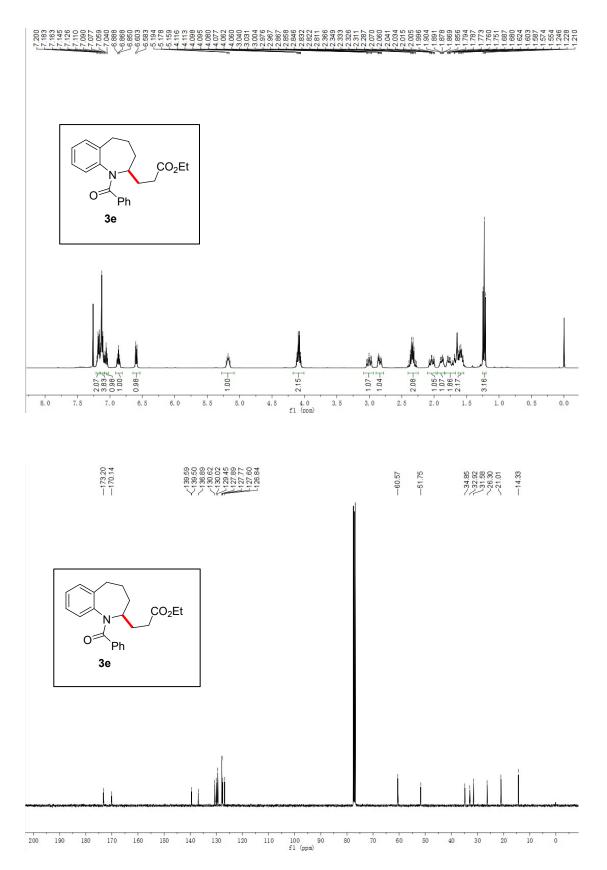




3c, <sup>1</sup>H+<sup>13</sup>C

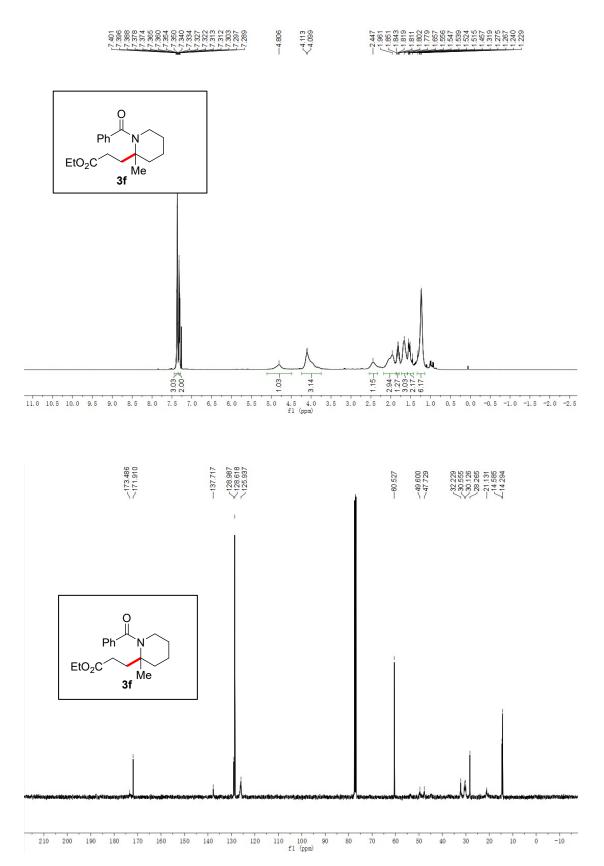


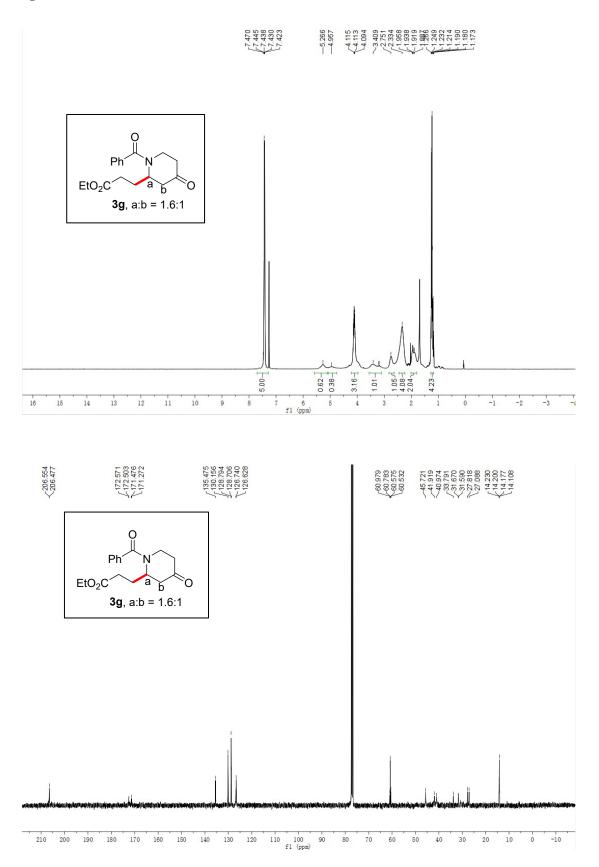

3d, <sup>1</sup>H+<sup>13</sup>C


7,413 7,407 7,407 7,407 7,407 7,387 7,387 7,387 7,387 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,347 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247 7,247

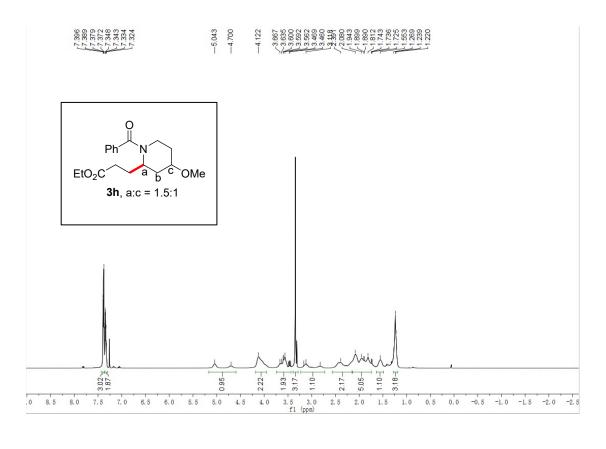


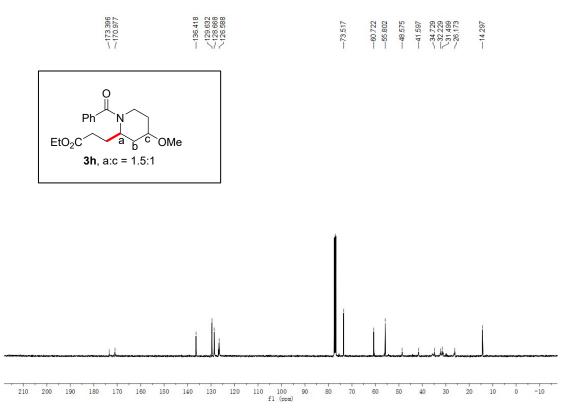




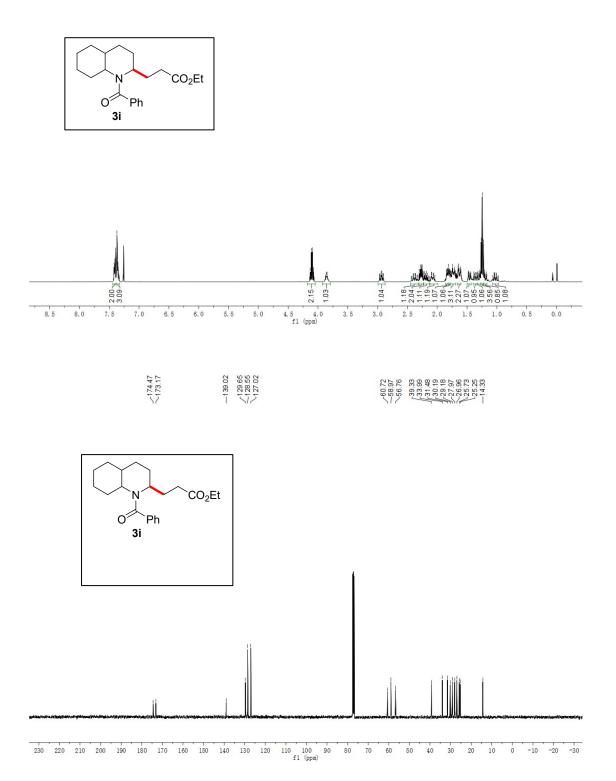


# 3e, <sup>1</sup>H+<sup>13</sup>C



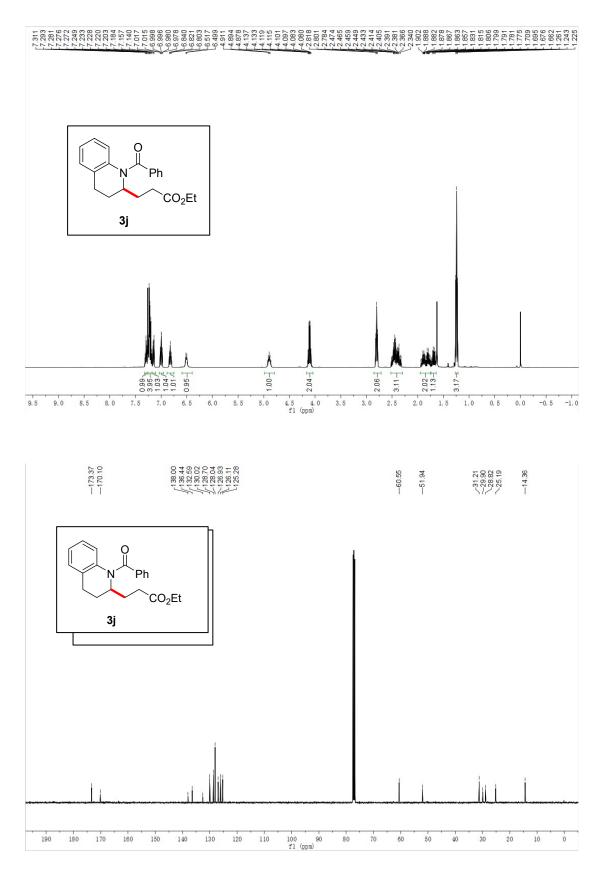

3f, <sup>1</sup>H+<sup>13</sup>C



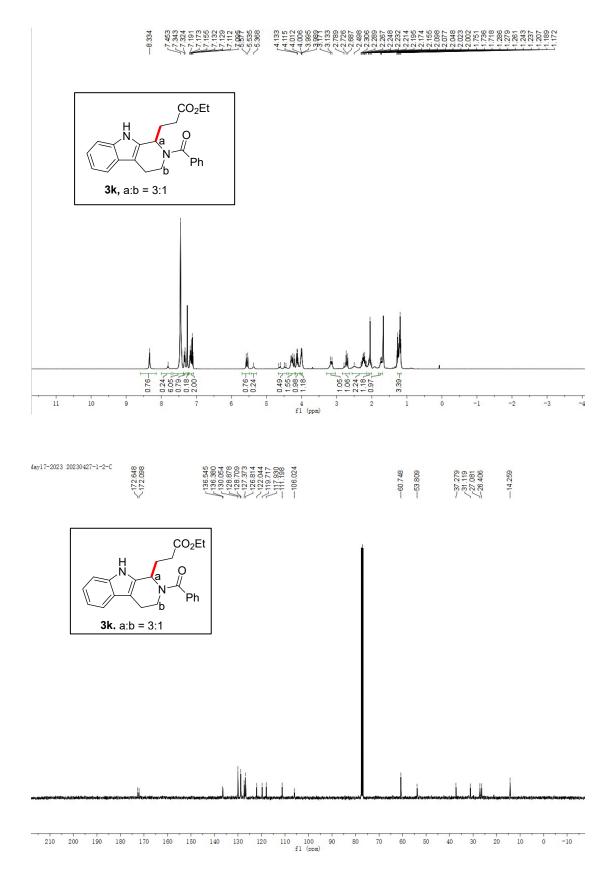

3g, <sup>1</sup>H+<sup>13</sup>C

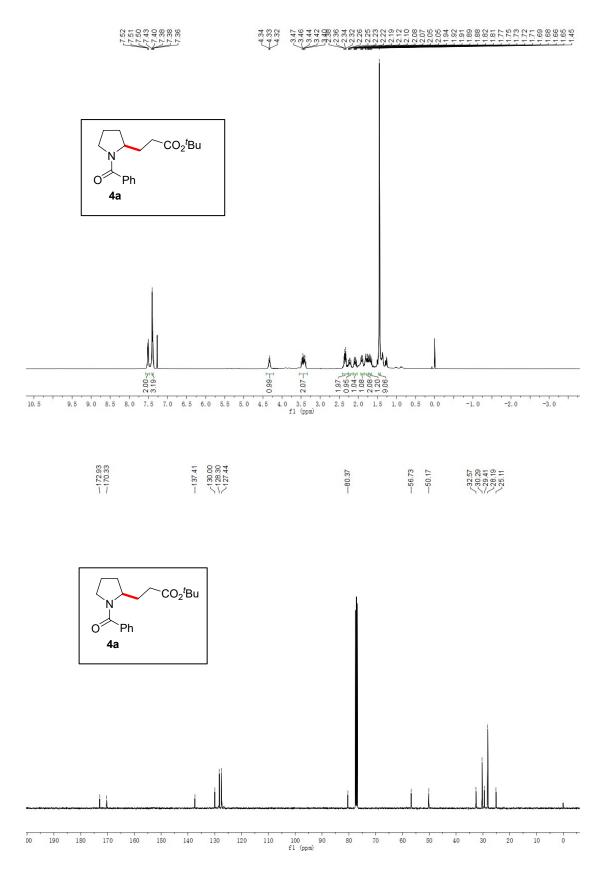



3h, <sup>1</sup>H+<sup>13</sup>C



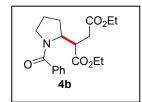


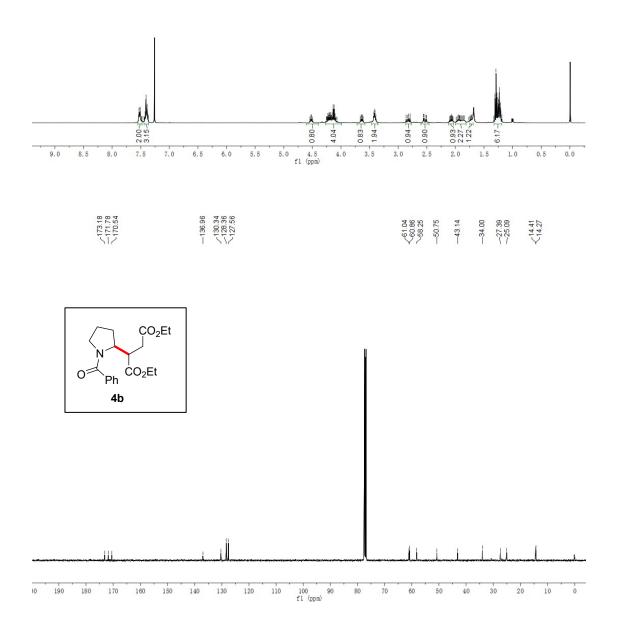


3i, <sup>1</sup>H+<sup>13</sup>C



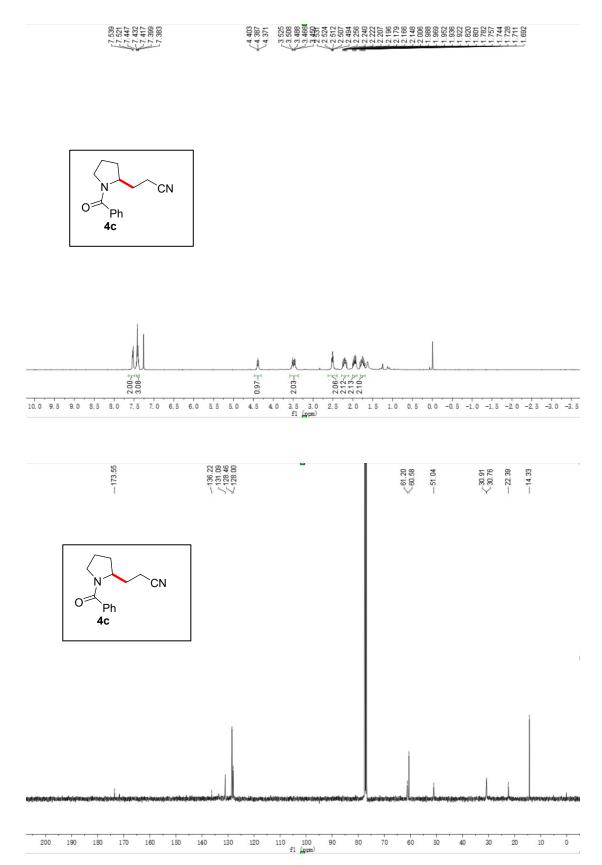

# 3j, <sup>1</sup>H+<sup>13</sup>C




# 3k, <sup>1</sup>H+<sup>13</sup>C



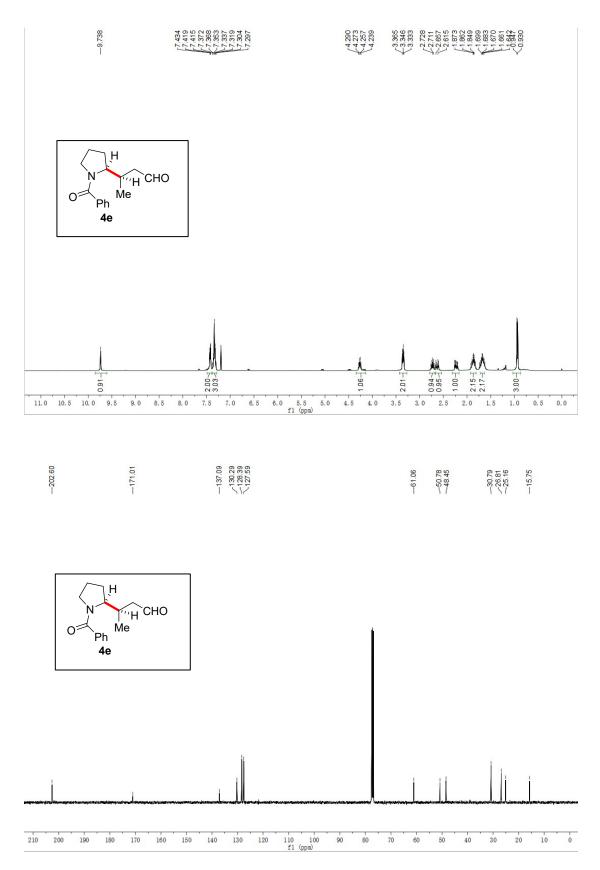




4b, <sup>1</sup>H+<sup>13</sup>C

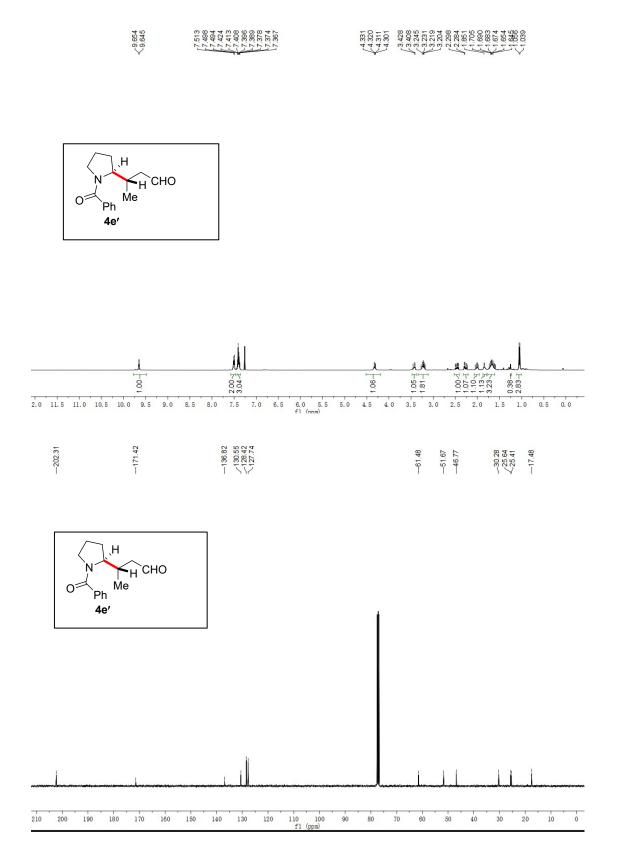
2.2.2017 2.2.2027 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019 2.2.2019







4c, <sup>1</sup>H+<sup>13</sup>C

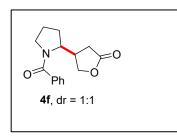


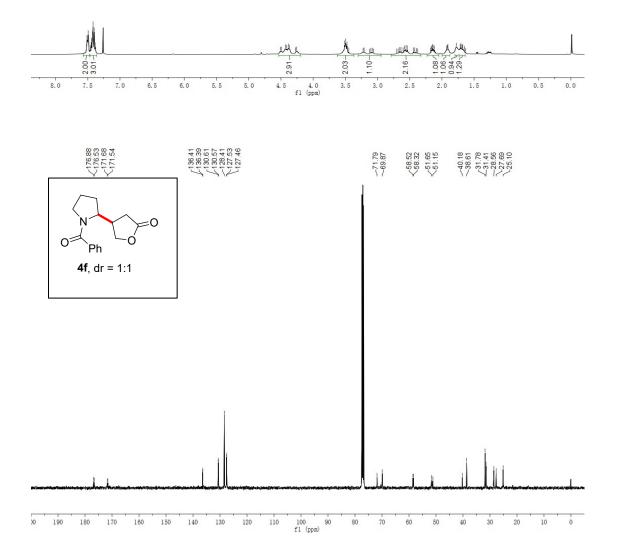

4d, <sup>1</sup>H+<sup>13</sup>C



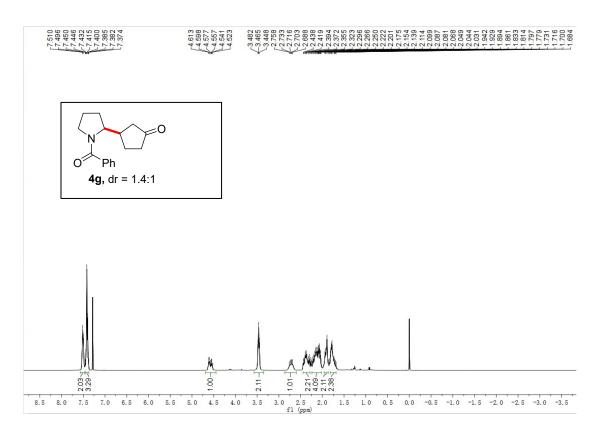
4e, <sup>1</sup>H+<sup>13</sup>C

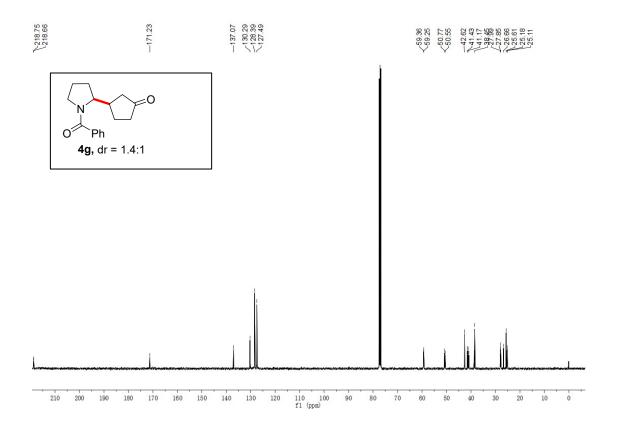



4e', <sup>1</sup>H+<sup>13</sup>C

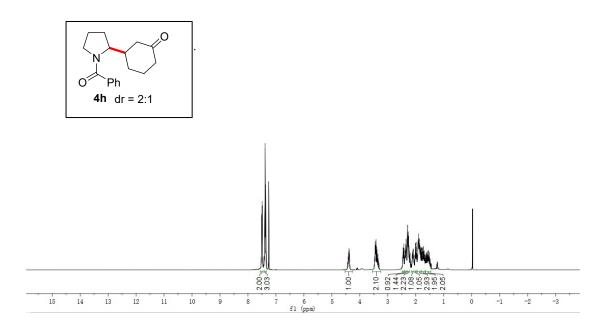


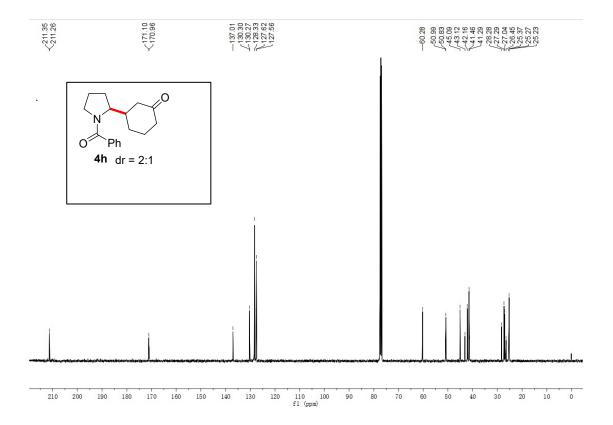

| 4f, | <sup>1</sup> H+ <sup>13</sup> | С |
|-----|-------------------------------|---|
| тг, | <b>I</b> I ' '                |   |

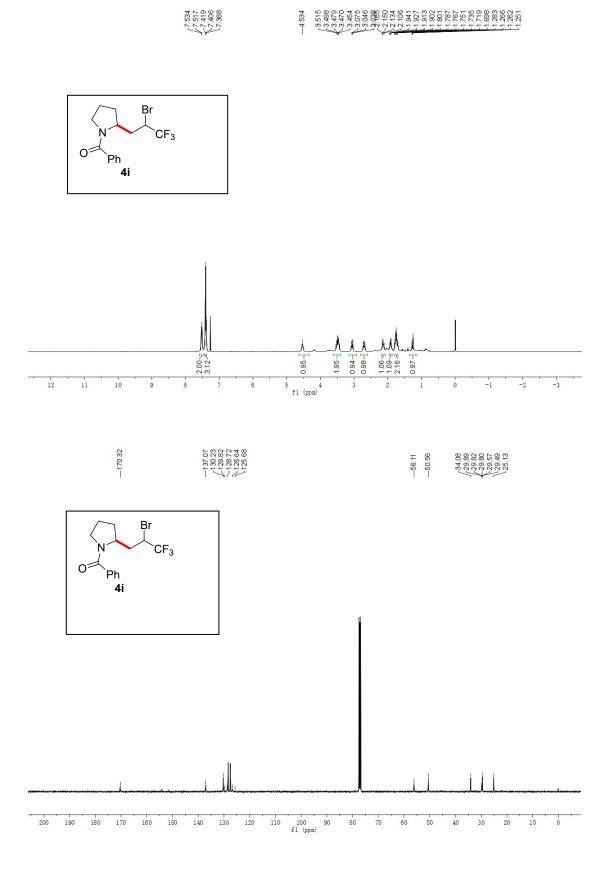

#### 7.383 7.383 7.442 7.442 7.442 7.442 7.383


# 



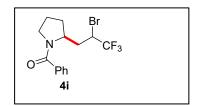


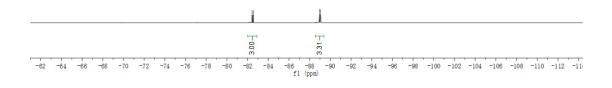


# 4g, <sup>1</sup>H+<sup>13</sup>C



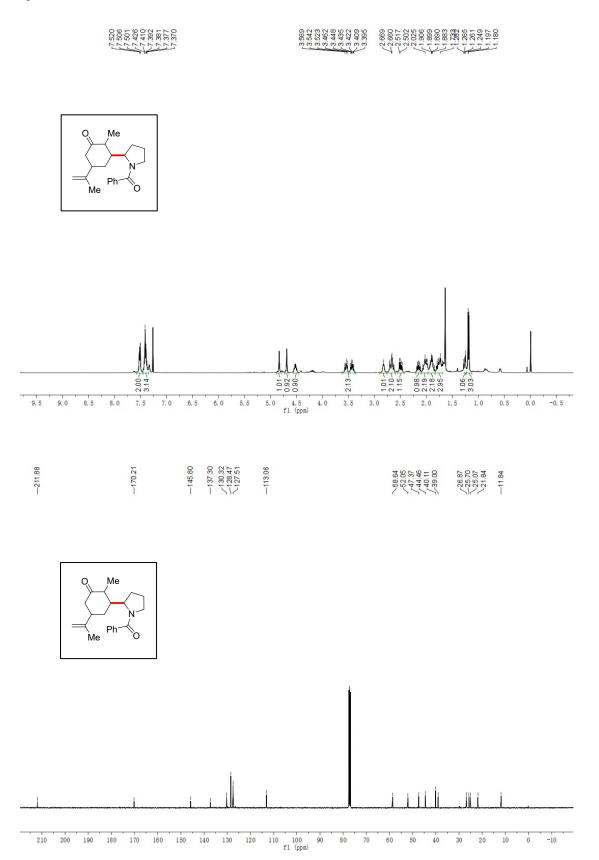



4h, <sup>1</sup>H+<sup>13</sup>C

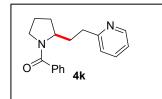


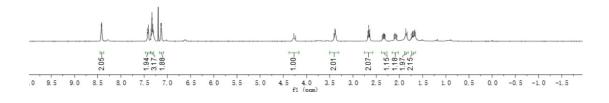



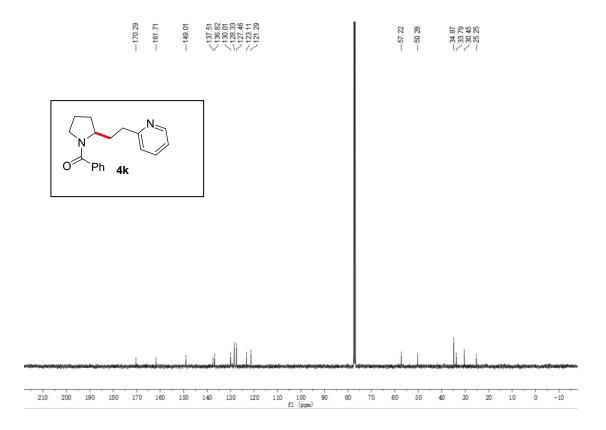


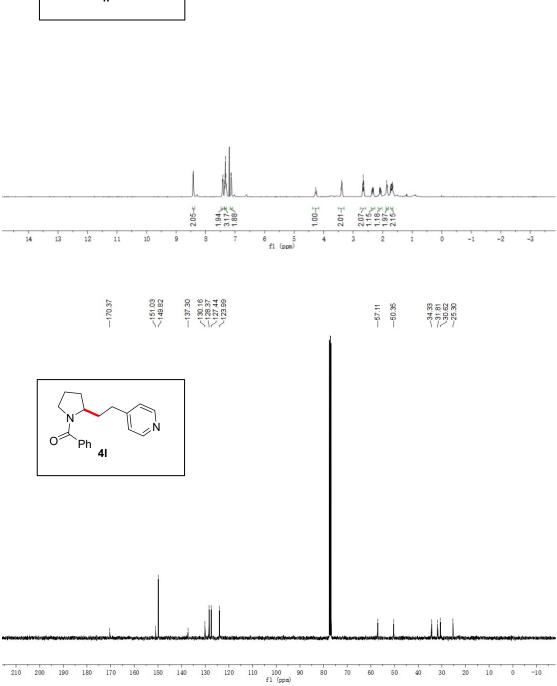


4i, <sup>1</sup>H+<sup>13</sup>C

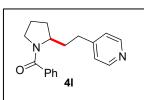
82.44
 82.55
 88.94
 89.05



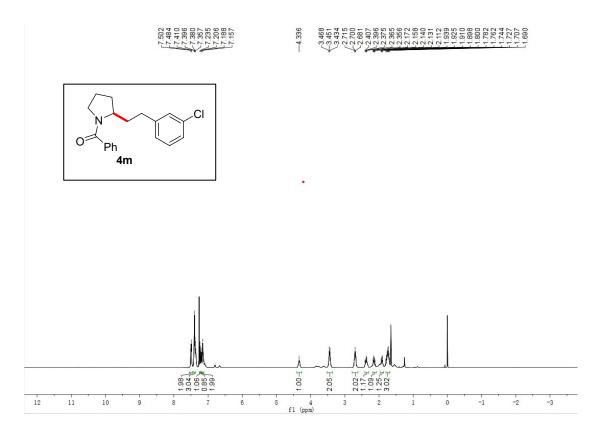


4j, <sup>1</sup>H+<sup>13</sup>C

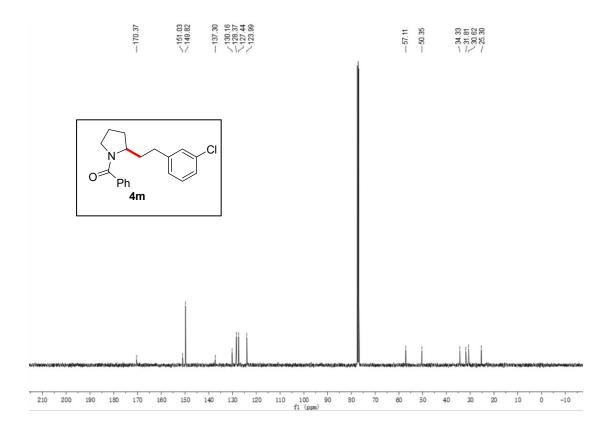




# 4k, <sup>1</sup>H+<sup>13</sup>C



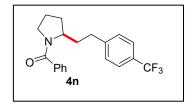


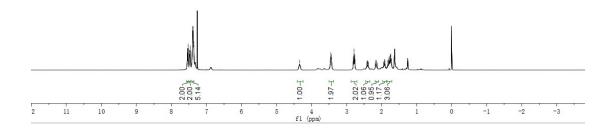


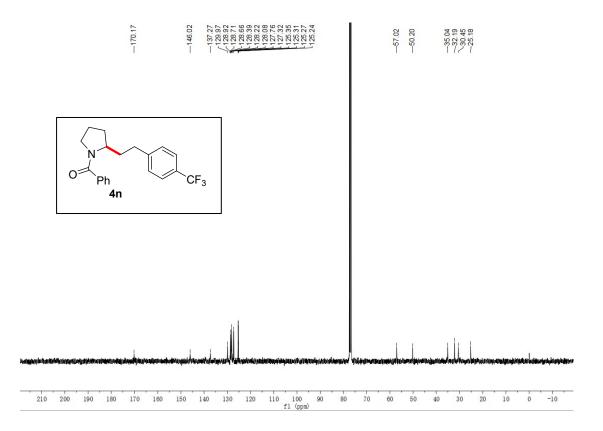





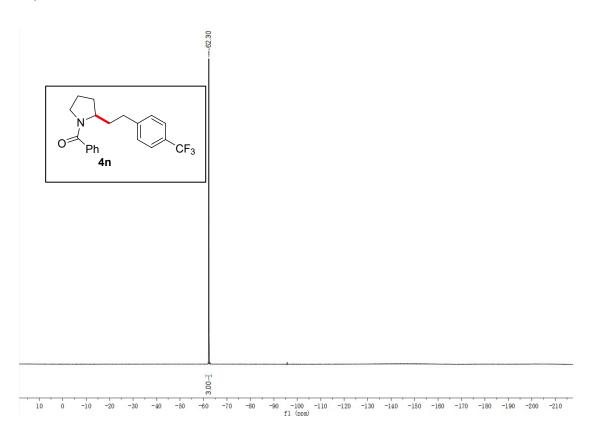

4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 4444
4444 44444
4444 4444
4444 4444
4444 4444
4444 


# 4m, <sup>1</sup>H+<sup>13</sup>C

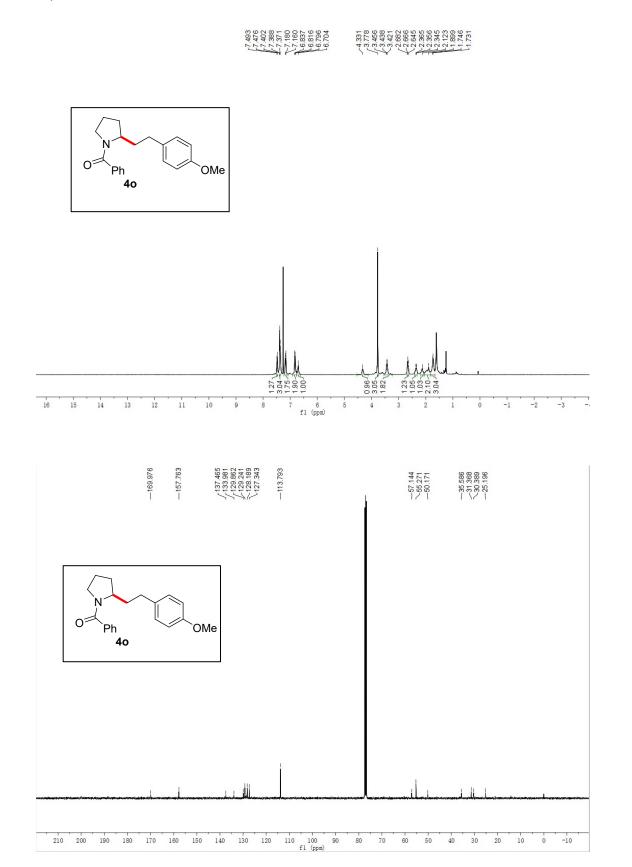



4n, <sup>1</sup>H+<sup>13</sup>C

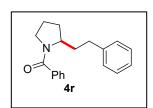


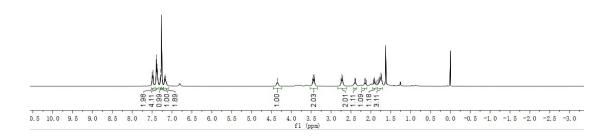


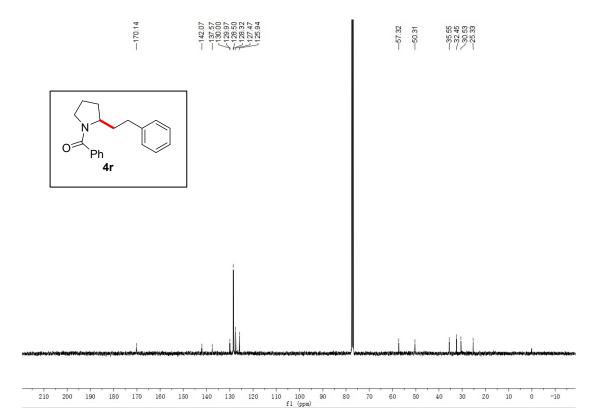





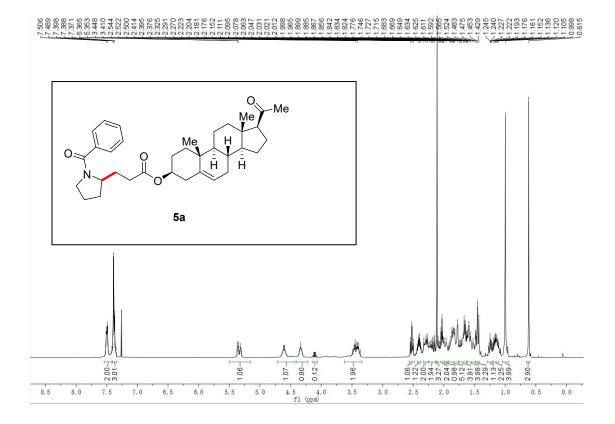

4n, <sup>19</sup>F

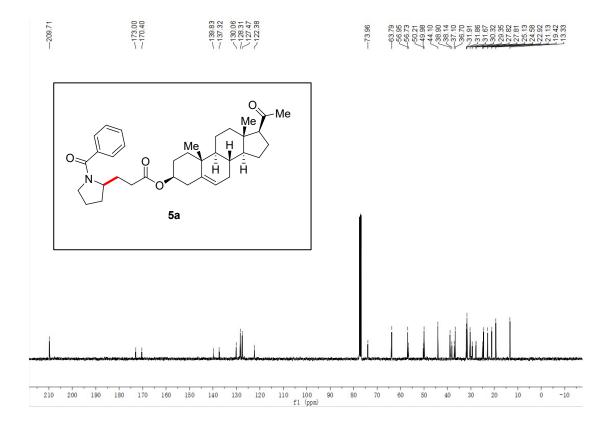




40, <sup>1</sup>H+<sup>13</sup>C

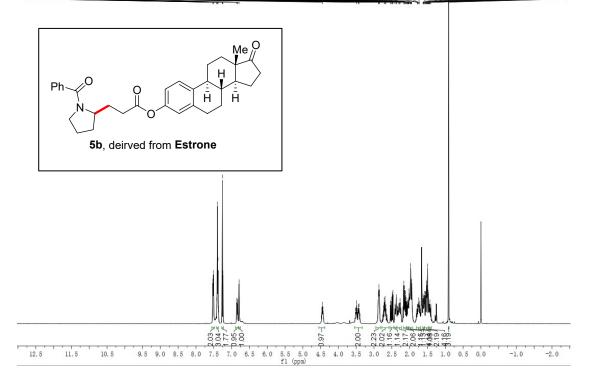


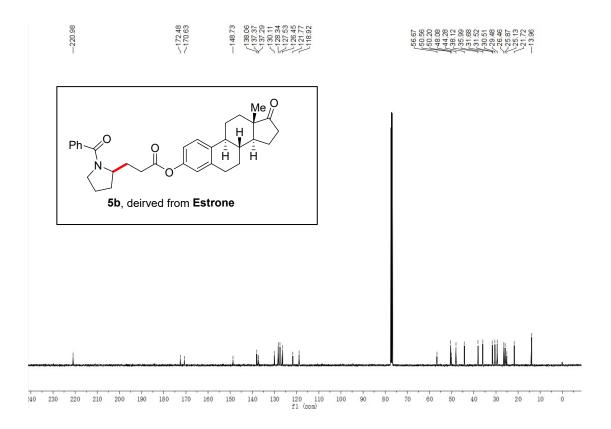

4r, <sup>1</sup>H+<sup>13</sup>C


7,1497 7,7490 7,7490 7,7490 7,7493 7,7493 7,7493 7,7493 3,444 7,7493 3,446 7,7493 3,446 7,7493 3,446 7,7493 3,446 7,7493 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503 1,1503



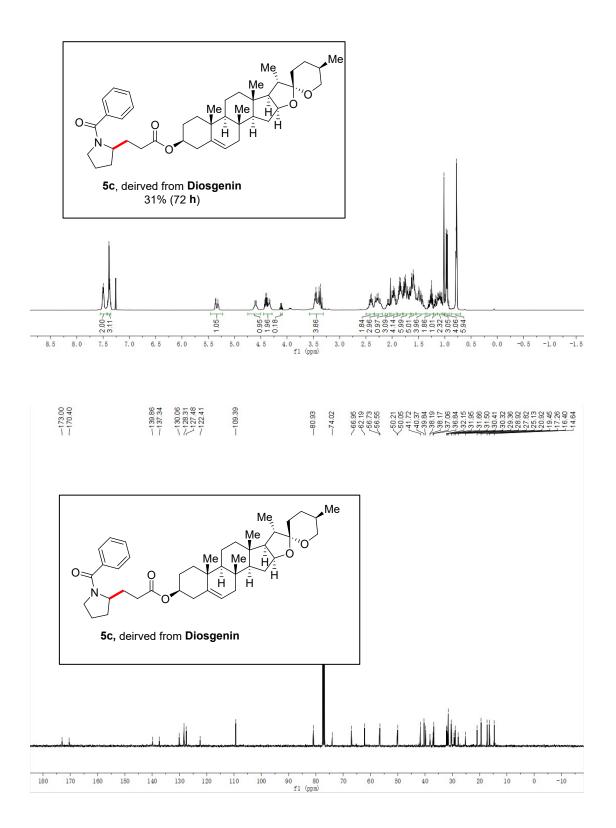


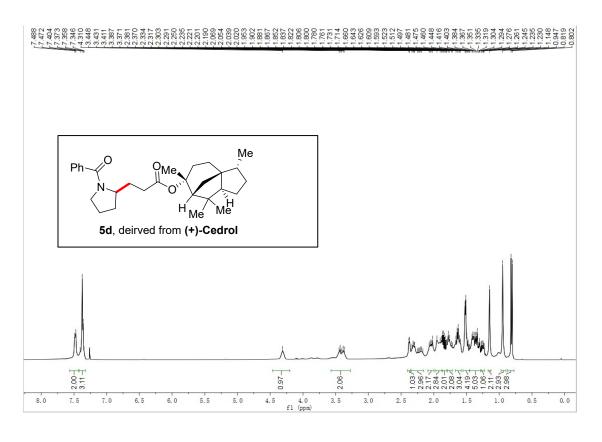


# 5a, <sup>1</sup>H+<sup>13</sup>C

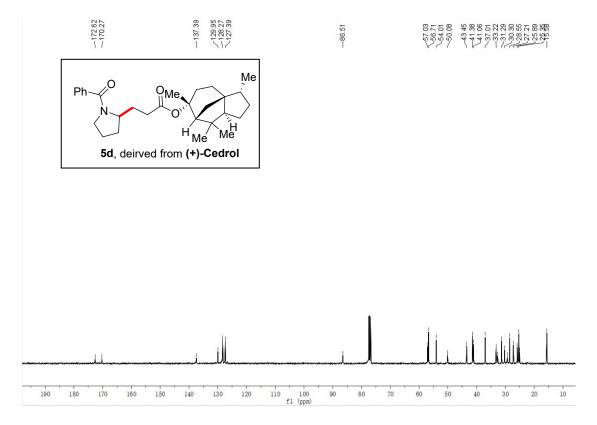




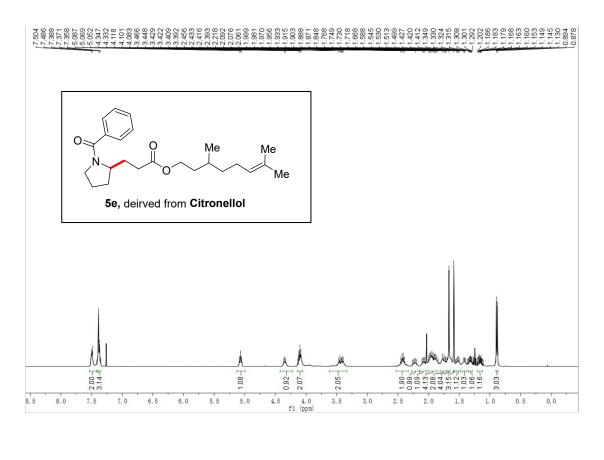


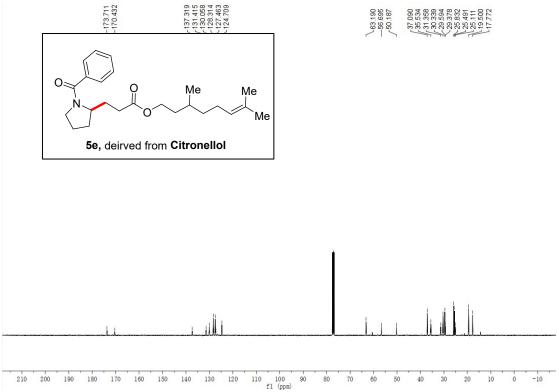


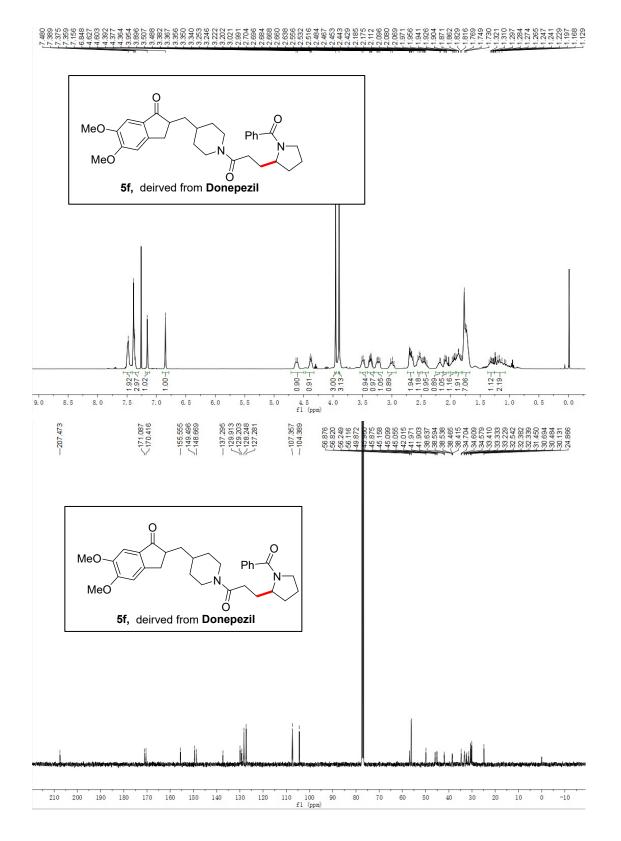


5c, <sup>1</sup>H+<sup>13</sup>C







# 5d, <sup>1</sup>H+<sup>13</sup>C






# 5e, <sup>1</sup>H+<sup>13</sup>C





# 5f, <sup>1</sup>H+<sup>13</sup>C

