Supporting Information

Asymmetric synthesis of bicyclic pyran scaffolds bearing two oxa-quaternary stereocenters via zinc-catalyzed [5 + 1] annulations

Cui Zhang, Tao Jiang, Yuan-Zhao Hua,* Guang-Jian Mei, Min-Can Wang and Shi-Kun Jia*

College of Chemistry and Institute of Green Catalysis, Zhengzhou University Zhengzhou City, Henan 450000, P. R. China Email: hyzhao@zzu.edu.cn, jiashikun@zzu.edu.cn

Table of Contents

1. General Information	2
2. General Procedure for optimization of the reaction conditions	2
3. Synthesis of enantioenriched 3	2
4. Scale-up reaction	13
5. Derivatization	13
6. References	15
7. NMR Spectra	16
8. HPLC	41
9. Single-crystal X-ray diffraction	65

General Information

All reactions were carried out under an atmosphere of argon using oven-dried glassware. Super dry solvents, metal catalysts, were purchased from chemical companies and used without further treatment. Flash column chromatography was performed using silica gel (300-400 mesh). ¹H NMR ,¹³C NMR, ¹⁹F NMR spectra were recorded in CDCl₃ or DMSO-d₆ on a 400 MHz spectrometer; chemical shifts are reported in ppm with the solvent signals as reference, and coupling constants (*J*) are given in Hertz. The peak information is described as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra (HRMS) were obtained using an Agilent LC-MSAD-Trap-XCT instrument using electrospray ionization time-of-flight (ESI-TOF). High performance liquid chromatography (HPLC) was performed on instrument consisted of JASCO model PU-1580 intelligent HPLC pump and JASCO model UV-1575 intelligent UV-vis detector (254 nm) using Daicel Chiralpak IC, IE, IF (4.6 mm × 250 mm) columns. Melting points were determined using YRT-3 melting point apparatus. Optical rotations were measured with Perkin Elmer, model 341 Polarimeter. The instrumentation used for the crystal measurement is Oxford Gemini E X-ray single-crystal diffractometer and Bruker D8 VENTURE Metaljet PHOTON II. Cyclohexadienone-tethered enones¹ and *α*-hydroxy aryl ketones² were synthesized according to the literature.

General Procedure for optimization of the reaction conditions.

Under the nitrogen atmosphere, a solution of diethylzinc (20 μ L, 1.0 M in hexane, 0.02 mmol) was added dropwise to a solution of **L1** (0.01 mmol, 6.4 mg) and additives (50 mg) in solvent (2 mL). After the mixture was stirred for 30 min at 40 °C. 2-Hydroxy-1-phenylethan-1-one **1a** (0.1 mmol, 13.6 mg) and (E)-4-methyl-4-((4-oxo-4-phenylbut-2-en-1-yl) oxy) cyclohexa-2,5-dien-1-one **2a** (0.1 mmol, 26.8 mg) were added. The reaction mixture was stirred for corresponding time at the same temperature. The reaction was quenched with NH₄Cl solution (2 mL) and the aqueous layer was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography with petroleum ether/ethyl acetate (3:1) to afford the desired product **3a**.

Synthesis of enantioenriched 3

Under the nitrogen atmosphere, a solution of diethylzinc (40 μ L, 1.0 M in hexane, 0.04 mmol) was added dropwise to a solution of L1 or L2 (0.02 mmol) and 3Å MS (200 mg) in toluene (2 mL). After the mixture was stirred for 30 min at 40 °C. Then, 1a (0.2 mmol, 53.6 mg) and 2a (0.2 mmol, 27.2 mg) were added. The reaction mixture was stirred for 24 h at 40 °C. The reaction was quenched with NH₄Cl solution (4 mL), and the aqueous layer was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography with petroleum ether/ethyl acetate (3:1) to afford the desired product **3**

(3*R*,4*R*,4a*R*,8a*R*)-4-benzoyl-4-hydroxy-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3a)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3a** as a yellow solid (57.5 mg, 71% yield, >20:1 dr); $[\alpha]_D^{20} = -41.3$ (c = 0.2, DCM, 95% ee); **m.p.** = 64.8-65.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 8.06 (m, 2H), 7.84 – 7.72 (m, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.57 – 7.47 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 2H), 6.69 (dd, *J* = 10.4, 1.5 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 4.70 (s, 1H), 4.13 – 3.80 (m, 1H), 3.68 (t, *J* = 11.0 Hz, 1H), 3.57 – 3.39 (m, 1H), 3.04 (d, *J* = 6.0 Hz, 1H), 2.87 – 2.71 (m, 1H), 2.65 – 2.55 (m, 1H), 2.50 – 2.36 (m, 1H), 1.98 (d, *J* = 17.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 197.4, 196.2, 152.2, 136.4, 133.9, 133.4, 132.9, 131.3, 129.8, 128.9, 128.6, 127.9, 81.5, 79.8, 72.9, 63.7, 46.6, 4.1, 37.1, 34.7, 28.9. HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₄NaO₅]⁺: 427.1516, found: 427.1524; HPLC: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 19.13 min and t_{minor} = 26.49 min. (**3***R*,**4***R*,**4a***R*,**8a***R*)-**4**-(**4**-chlorobenzoyl)-**4**-hydroxy-**8a**-methyl-**3**-(**2**-oxo-**2**-phenylethyl)-**3**,**4**,**4a**,**8a**-tetrahydro-**2***H*-chromen-**6**(**5***H*)-one (**3**b)

Followed the general procedure, using **1b** (0.2 mmol, 34.0 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3b** as a pale yellow solid (63.9 mg, 73% yield, >20:1 dr); $[\alpha]_D^{20} = -56.9$ (c = 0.2, DCM, 90% ee); **m.p.** = 153.4-154.6 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 8.7 Hz, 2H), 7.79 – 7.72 (m, 2H), 7.56 – 7.45 (m, 3H), 7.38 (t, J = 7.7 Hz, 2H), 6.69 (dd, J = 10.4, 1.6 Hz, 1H), 6.07 (d, J = 10.4 Hz, 1H), 4.68 – 4.63 (m, 1H), 3.92 – 3.80 (m, 1H), 3.69 (t, J = 11.0 Hz, 1H), 3.46 – 3.32 (m, 1H), 2.96 (d, J = 6.0 Hz, 1H), 2.80 – 2.70 (m, 1H), 2.69 – 2.60 (m, 1H), 2.47 – 2.36 (m, 1H), 1.94 (d, J = 17.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.5, 197.4, 195.9, 152.1, 140.5, 136.3, 133.5, 131.3, 131.3, 129.2, 128.6, 127.9, 81.4, 73.0, 63.7, 46.7, 38.2, 37.1, 34.7, 28.9. **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₃FNaO₅]⁺: 461.1126, found: 461.1133; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, $t_{major} = 22.70$ min and $t_{minor} = 36.16$ min.

(3*R*,4*R*,4a*R*,8a*R*)-4-(4-fluorobenzoyl)-4-hydroxy-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3c)

Followed the general procedure, using **1c** (0.2 mmol, 30.8 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3c** as a white solid (55.7 mg, 66% yield, >20:1 dr); $[\alpha]_D^{20} = -63.3$ (c = 0.4, DCM, 99% ee); **m.p.** = 113.9-115.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 - 8.05 (m, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.55 - 7.46 (m, 1H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 8.4 Hz, 2H), 6.68 (dd, *J* = 10.4, 1.3 Hz, 1H), 6.06 (d,

J = 10.4 Hz, 1H), 4.70 (s, 1H), 3.85 (m, J = 11.3, 4.4 Hz, 1H), 3.68 (t, J = 11.0 Hz, 1H), 3.48 – 3.32 (m, 1H), 2.98 (d, J = 6.0 Hz, 1H), 2.75 (m, J = 18.3, 7.9 Hz, 1H), 2.61 (m, J = 18.3, 3.9 Hz, 1H), 2.42 (m, J = 17.4, 6.1 Hz, 1H), 1.95 (d, J = 17.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 197.4, 196.0, 165.9 (d, J = 258.56Hz), 152.1, 136.3, 133.4, 132.9, 132.8, 131.3, 128.6, 127.9, 116.2 (d, J = 22.22Hz), 81.3, 73.0, 63.7, 46.8, 38.3, 37.1, 34.7, 28.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -102.61. HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₃FNaO₅]⁺: 445.1422, found: 445.1426; HPLC: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 21.21 min and t_{minor} = 29.70 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-hydroxy-8a-methyl-4-(4-methylbenzoyl)-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3d)

Followed the general procedure, using **1d** (0.2 mmol, 30.0 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3d** as a white solid (35.1 mg, 42% yield, >20:1 dr); $[\alpha]_D^{20} = -69.4$ (c = 0.7, DCM, 98% ee); **m.p.** = 153.4-154.6 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.3 Hz, 2H), 7.84 – 7.69 (m, *J* = 8.3, 1.1 Hz, 2H), 7.56 – 7.44 (m, 1H), 7.39 – 7.28 (m, 4H), 6.69 (dd, *J* = 10.4, 1.6 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 4.77 (s, 1H), 3.95 – 3.85 (m, *J* = 11.3, 4.4 Hz, 1H), 3.68 (t, *J* = 11.0 Hz, 1H), 3.54 – 3.37 (m, 1H), 3.07 (d, *J* = 6.0 Hz, 1H), 2.87 – 2.68 (m, *J* = 18.2, 8.7 Hz, 1H), 2.64 – 2.53 (m, *J* = 18.1, 3.4 Hz, 1H), 2.48 – 2.32 (m, 4H), 1.97 (d, *J* = 17.4 Hz, 1H), 1.52 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 201.6, 197.4, 196.2, 152.2, 145.2, 136.4, 133.3, 131.3, 130.2, 129.9, 129.6, 128.6, 127.9, 81.2, 73.0, 63.7, 46.8, 38.3, 37.1, 34.7, 28.9, 21.7. **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₆H₂₆NaO₅]⁺: 441.1672, found: 441.1677; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 23.76 min and t_{minor} = 34.51 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-([1,1'-biphenyl]-4-carbonyl)-4-hydroxy-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3e)

Followed the general procedure, using **1e** (0.2 mmol, 42.4 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3e** as a yellow solid (77.8 mg, 81% yield, >20:1 dr); $[\alpha]_D^{20} = -80.5$ (c = 0.9, DCM, 93% ee); **m.p.** = 72.3-74.1 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, J = 8.5 Hz, 2H), 7.79 – 7.71 (m, 4H), 7.66 – 7.61 (m, 2H), 7.53 – 7.46 (m, J = 10.4, 4.2 Hz, 3H), 7.45 – 7.40 (m, 1H), 7.35 (t, J = 7.7 Hz, 2H), 6.71 (dd, J = 10.4, 1.4 Hz, 1H), 6.08 (d, 1H), 4.77 (s, 1H), 3.95 – 3.86 (m, J = 11.3, 4.4 Hz, 1H), 3.70 (t, J = 1.2

11.0 Hz, 1H), 3.59 - 3.42 (m, 1H), 3.11 (d, J = 6.0 Hz, 1H), 2.88 - 2.73 (m, J = 18.2, 8.5 Hz, 1H), 2.70 - 2.58 (m, J = 18.2, 3.5 Hz, 1H), 2.53 - 2.41 (m, J = 17.4, 6.1 Hz, 1H), 2.01 (d, J = 17.4 Hz, 1H), 1.54 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 201.7, 197.5, 196.3, 152.3, 146.6, 139.2, 136.4, 133.4, 131.3, 131.3, 130.7, 129.1, 128.7, 128.6, 128.0, 127.5, 127.3, 81.4, 73.1, 63.7, 46.8, 38.3, 37.2, 34.8, 29.0. **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₃₁H₂₈NaO₅]⁺: 503.1829, found: 503.1837; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 34.01 min and t_{minor} = 52.52 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-(3-bromobenzoyl)-4-hydroxy-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3f)

Followed the general procedure, using **1f** (0.2 mmol, 42.8 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3f** as a light yellow solid (50.1 mg, 52% yield, >20:1 dr); $[\alpha]_D^{20} = -43.8$ (c = 0.4, DCM, 99% ee); **m.p.** = 136,0-136.9 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (t, *J* = 1.6 Hz, 1H), 8.07 (d, *J* = 7.9 Hz, 1H), 7.81 – 7.70 (m, 3H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.44 – 7.36 (m, *J* = 8.2 Hz, 3H), 6.69 (dd, *J* = 10.4, 1.5 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 4.60 (s, 1H), 3.92 – 3.80 (m, *J* = 11.4, 4.4 Hz, 1H), 3.69 (t, *J* = 11.0 Hz, 1H), 3.49 – 3.30 (m, *J* = 10.9, 7.0 Hz, 1H), 2.94 (d, *J* = 6.0 Hz, 1H), 2.79 – 2.63 (m, *J* = 18.3, 6.0 Hz, 2H), 2.51 – 2.40 (m, *J* = 17.4, 6.1 Hz, 1H), 1.95 (d, *J* = 17.4 Hz, 1H), 1.51 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 201.8, 197.4, 195.9, 152.2, 136.6, 136.3, 135.0, 133.5, 132.8, 131.3, 130.3, 128.6, 127.9, 123.3, 81.7, 72.9, 63.6, 46.8, 38.0, 37.2, 34.7, 28.9. **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₃BrNaO₅]⁺: 505.0621, found: 505.0623; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 17.18 min and t_{minor} = 24.40 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-(3-chlorobenzoyl)-4-hydroxy-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3g)

Followed the general procedure, using **1g** (0.2 mmol, 34.0 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3g** as a bright yellow solid (50.8 mg, 58% yield, >20:1 dr); $[\alpha]_D^{20} = -11.3$ (c = 0.2, DCM, 98% ee); **m.p.** = 66.5-67.8 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 – 7.95 (m, *J* = 3.7, 1.9 Hz, 2H), 7.78 (d, *J* = 7.3 Hz, 2H), 7.63 – 7.57 (m, *J* = 8.0, 0.7 Hz, 1H), 7.55 – 7.44 (m, *J* = 12.0, 11.5, 5.1 Hz, 2H), 7.38 (t, *J* = 7.7 Hz, 2H), 6.69 (dd, *J* = 10.4, 1.4 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 4.61 (s, 1H), 3.89 – 3.81 (m, *J* = 11.4, 4.4 Hz, 1H), 3.69 (t, *J* = 11.0 Hz, 1H), 3.46 – 3.33 (m, 1H), 2.95 (d, *J* = 5.9 Hz, 1H), 2.83 – 2.61 (m, *J* = 18.3, 6.0 Hz, 2H), 2.54 – 2.39 (m, *J* = 17.4, 6.1 Hz, 1H), 1.96 (d, *J* = 17.4 Hz, 1H), 1.52 (s,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.8, 197.4, 195.9, 152.2, 136.3, 135.3, 134.8, 133.7, 133.5, 131.3, 130.1, 129.9, 128.6, 127.9, 127.6, 81.7, 72.9, 63.6, 46.5, 38.0, 37.2, 34.7, 28.9. HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₃ClNaO₅]⁺: 461.1126, found: 461.1131; HPLC: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 16.64 min and t_{minor} = 24.00 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-hydroxy-4-(2-methoxybenzoyl)-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3h)

Followed the general procedure, using **1h** (0.2 mmol, 33.2 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3h** as a light yellow solid (31.2 mg, 36% yield, >20:1 dr); $[\alpha]_D^{20} = 12.1$ (c = 0.2, DCM, 92% ee); **m.p.** = 84.9-85.7 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 3H), 7.16 – 7.10 (m, J = 7.6, 1.5 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.69 (dd, J = 10.4, 1.5 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 4.47 (s, 1H), 3.87 – 3.76 (m, J = 11.2, 4.4 Hz, 1H), 3.66 (s, 3H), 3.50 (t, J = 11.0 Hz, 1H), 3.17 – 3.01 (m, J = 14.8, 8.2, 4.1 Hz, 1H), 2.85 – 2.73 (m, 3H), 2.63 – 2.52 (m, J = 17.5, 6.1 Hz, 1H), 2.38 (d, J = 17.5 Hz, 1H), 1.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.1, 197.6, 196.8, 156.1, 152.9, 136.7, 133.4, 132.2, 131.2, 128.7, 127.9, 127.7, 126.3, 120.9, 111.7, 83.5, 72.6, 63.3, 55.6, 44.2, 37.8, 35.5, 35.1, 28.7. **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₆H₂₆NaO₆]⁺: 457.1622, found: 457.1629; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 44.50 min and t_{minor} = 25.51 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-(3,4-dimethoxybenzoyl)-4-hydroxy-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3i)

Followed the general procedure, using **1i** (0.2 mmol, 39.2 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3i** as a yellow solid (58.5 mg, 63% yield, >20:1 dr); $[\alpha]_D^{20} = -83.6$ (c = 0.6, DCM, 86% ee); **m.p.** = 135.6-136.8 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, *J* = 8.6, 2.0 Hz, 1H), 7.79 – 7.74 (m, 2H), 7.64 (d, *J* = 2.0 Hz, 1H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 1H), 6.70 (dd, *J* = 10.4, 1.5 Hz, 1H), 6.08 (d, *J* = 10.4 Hz, 1H), 4.89 – 4.82 (m, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 3.92 – 3.87 (m, *J* = 11.3, 4.4 Hz, 1H), 3.68 (t, *J* = 11.0 Hz, 1H), 3.52 – 3.41 (m, *J* = 11.9, 7.2 Hz, 1H), 3.12 (d, *J* = 5.8 Hz, 1H), 2.83 – 2.73 (m, *J* = 18.2, 8.9 Hz, 1H), 2.59 – 2.50 (m, *J* = 18.1, 2.7 Hz, 1H), 2.49 – 2.38 (m, *J* = 17.4, 6.1 Hz, 1H), 2.00 (d, *J* = 17.4 Hz, 1H), 1.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 197.5, 196.3, 154.1, 152.2, 149.2, 136.4, 133.3, 131.3, 128.6, 128.0, 127.9, 124.9, 112.7,

110.1, 81.1, 73.1, 63.8, 56.2, 56.1, 47.4, 38.9, 37.2, 34.8, 29.1; **HRMS** (ESI): m/z [M + Na]⁺ calcd for $[C_{27}H_{28}NaO_7]^+$: 487.1727, found: 487.1730; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 42.09 min and t_{minor} = 47.13 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-(benzo[d][1,3]dioxole-5-carbonyl)-4-hydroxy-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3j)

Followed the general procedure, using **1a** (0.2 mmol, 36.0 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3j** as a light yellow solid (41.2 mg, 46% yield, >20:1 dr); $[\alpha]_D^{20} = -95.6$ (c = 0.2, DCM, 99% ee); **m.p.** = 100.0-100.8 °C; **¹H NMR** (400 MHz, CDCl₃) δ 7.84 (m, J = 8.3, 1.7 Hz, 1H), 7.80 – 7.73 (m, 2H), 7.61 (d, J = 1.7 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.7 Hz, 2H), 6.90 (d, J = 8.3 Hz, 1H), 6.69 (dd, J = 10.4, 1.5 Hz, 1H), 6.07 (d, J = 9.5 Hz, 3H), 4.82 (s, 1H), 3.92 – 3.84 (m, J = 11.3, 4.4 Hz, 1H), 3.66 (t, J = 11.0 Hz, 1H), 3.49 – 3.30 (m, 1H), 3.06 (d, J = 6.0 Hz, 1H), 2.81 – 2.69 (m, J = 18.2, 8.6 Hz, 1H), 2.61 – 2.50 (m, J = 18.2, 3.3 Hz, 1H), 2.47 – 2.36 (m, J = 17.4, 6.1 Hz, 1H), 1.97 (d, J = 17.4 Hz, 1H), 1.53 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 199.7, 197.5, 196.2, 152.6, 152.2, 148.4, 136.4, 133.4, 131.3, 128.6, 127.9, 126.9, 110.0, 108.2, 102.3, 81.1, 73.1, 63.8, 47.1, 38.6, 37.2, 34.8, 29.0; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₆H₂₄NaO₇]⁺: 471.1414, found: 471.1423; **HPLC**: Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 16.53 min and t_{minor} = 28.72 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-(2-naphthoyl)-4-hydroxy-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3k)

Followed the general procedure, using **1k** (0.2 mmol, 37.2 mg), **2a** (0.2 mmol, 53,6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3k** as a white solid (63.6 mg, 70% yield, >20:1 dr); $[\alpha]_D^{20} = -113.4$ (c = 0.6, DCM, 91% ee); **m.p.** = 88.9-91.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.22 – 8.09 (m, *J* = 8.7, 1.5 Hz, 1H), 8.01 (d, *J* = 8.1 Hz, 1H), 7.98 – 7.85 (m, *J* = 19.6, 8.4 Hz, 2H), 7.74 (d, *J* = 7.5 Hz, 2H), 7.69 – 7.55 (m, *J* = 23.8, 7.3 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 2H), 6.71 (d, *J* = 10.4 Hz, 1H), 6.09 (d, *J* = 10.4 Hz, 1H), 4.81 (s, 1H), 3.93 (m, *J* = 11.2, 4.2 Hz, 1H), 3.74 (t, *J* = 10.9 Hz, 1H), 3.67 – 3.52 (m, 1H), 3.15 (d, *J* = 5.8 Hz, 1H), 2.87 – 2.75 (m, *J* = 18.1, 8.1 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (101 MHz, 1H), 2.48 – 2.32 (m, *J* = 17.4, 6.1 Hz, 1H), 2.03 (d, *J* = 17.4 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (101 MHz, 1H), 2.48 – 2.32 (m, *J* = 17.4, 6.1 Hz, 1H), 2.03 (d, *J* = 17.4 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (101 MHz, 1H), 2.48 – 2.32 (m, *J* = 17.4, 6.1 Hz, 1H), 2.03 (d, *J* = 17.4 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (101 MHz, 1H), 2.48 – 2.32 (m, *J* = 17.4, 6.1 Hz, 1H), 2.03 (d, *J* = 17.4 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (101 MHz, 1H), 2.48 – 2.32 (m, *J* = 17.4, 6.1 Hz, 1H), 2.03 (d, *J* = 17.4 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (101 MHz, 1H), 2.48 – 2.32 (m, *J* = 17.4, 6.1 Hz, 1H), 2.03 (d, *J* = 17.4 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (101 MHz).

CDCl₃) δ 202.4, 197.5, 196.3, 152.3, 136.4, 135.5, 133.4, 132.3, 131.9, 131.3, 130.3, 130.1, 129.4, 128.8, 128.6, 127.9, 127.7, 127.3, 125.1, 81.6, 73.1, 63.8, 46.8, 38.4, 37.2, 34.8, 29.0; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₉H₂₆NaO₅]⁺: 477.1672, found: 477.1678; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 33.42 min and t_{minor} = 41.71 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-(furan-2-carbonyl)-4-hydroxy-8a-methyl-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (31)

Followed the general procedure, using **11** (0.2 mmol, 25.2 mg), **2a** (0.2 mmol, 53.6 mg) and **L1** (0.02 mmol, 12.8 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **31** as a yellow solid (64.6 mg, 82% yield, >20:1 dr); $[\alpha]_D^{20} = -81.0$ (c = 0.4, DCM, 90% ee); **m.p.** = 67.9-69.5 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 – 7.70 (m, 3H), 7.55 – 7.47 (m, *J* = 9.4, 5.3 Hz, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 6.71 (dd, *J* = 10.4, 1.2 Hz, 1H), 6.65 (d, *J* = 2.0 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 4.48 (s, 1H), 3.99 – 3.78 (m, *J* = 11.3, 4.2 Hz, 1H), 3.65 (t, *J* = 11.1 Hz, 1H), 3.40 (s, 1H), 3.14 (d, *J* = 3.9 Hz, 1H), 2.81 – 2.62 (m, *J* = 17.8, 9.0 Hz, 1H), 2.57 – 2.44 (m, *J* = 17.5, 6.0 Hz, 2H), 2.03 (d, *J* = 17.4 Hz, 1H), 1.55 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 196.4, 189.5, 152.5, 149.7, 147.7, 136.4, 133.3, 131.2, 128.6, 127.9, 122.5, 113.1, 80.5, 72.8, 63.4, 45.5, 37.2, 37.0, 34.7, 28.9. HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₃H₂₂NaO₆]⁺: 417.1309, found: 417.1314; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 11.40 min and t_{minor} = 15.70 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-benzoyl-4-hydroxy-3-(2-(4-methoxyphenyl)-2-oxoethyl)-8a-methyl-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3m)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2b** (0.2 mmol, 59.6 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3m** as a yellow solid (46.0 mg, 46% yield, >20:1 dr); $[\alpha]_D^{20} = -63.8$ (c = 0.4, DCM, 90% ee); **m.p.** = 59.1-63.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.05 (m, 2H), 7.80 – 7.73 (m, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 6.83 (d, *J* = 8.9 Hz, 2H), 6.69 (dd, *J* = 10.4, 1.6 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 4.70 (s, 1H), 3.92 – 3.80 (m, 4H), 3.67 (t, *J* = 11.0 Hz, 1H), 3.50 – 3.37 (m, 1H), 3.02 (d, *J* = 6.0 Hz, 1H), 2.79 – 2.65 (m, 1H), 2.59 – 2.50 (m, 1H), 2.47 – 2.37 (m, 1H), 1.98 (d, *J* = 17.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.7, 196.2, 195.9, 163.8, 152.3, 133.8, 133.1, 131.3, 130.3, 129.8, 129.5, 128.9, 113.7, 81.6, 72.9, 63.7, 55.8, 46.6, 38.2, 37.2, 34.3, 28.9; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₆H₂₆NaO₆]⁺: 457.1622, found: 457.1630; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 30.08 min and t_{minor} = 53.48 min.

(3*R*,4*R*,4a*R*,8a*R*)-3-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-4-benzoyl-4-hydroxy-8a-methyl-3,4.4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3n)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2c** (0.2 mmol, 68.8 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3n** as a yellow solid (38.4 mg, 40% yield, >20:1 dr); $[\alpha]_D^{20} = -93.0$ (c = 0.4, DCM, 99% ee); **m.p.** = 189.0-190.1 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.16 – 8.09 (m, 2H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.60 – 7.49 (m, 6H), 7.45 (t, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 6.70 (dd, *J* = 10.4, 1.5 Hz, 1H), 6.08 (d, *J* = 10.4 Hz, 1H), 4.73 (s, 1H), 3.98 – 3.82 (m, 1H), 3.70 (t, *J* = 11.0 Hz, 1H), 3.59 – 3.39 (m, 1H), 3.05 (d, *J* = 6.0 Hz, 1H), 2.86 – 2.72 (m, 1H), 2.68 – 2.57 (m, 1H), 2.50 – 2.37 (m, 1H), 1.99 (d, *J* = 17.4 Hz, 1H), 1.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.6, 197.0, 196.2, 152.3, 146.1, 139.7, 135.1, 133.9, 132.9, 131.3, 129.9, 128.9, 128.9, 128.6, 128.3, 127.2, 127.2, 81.5, 73.0, 63.7, 46.6, 38.2, 37.2, 34.8, 28.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₃₁H₂₈NaO₅]⁺: 503.1829, found: 503.1837; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 33.35 min and t_{minor} = 60.89 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-benzoyl-4-hydroxy-8a-methyl-3-(2-oxo-2-(p-tolyl)ethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (30)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2d** (0.2 mmol, 56.4 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3o** as an orange solid (58.5 mg, 70% yield, >20:1 dr); $[\alpha]_D^{20} = -99.6$ (c = 0.2, DCM, 95% ee); **m.p.** = 68.4-70.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.7 Hz, 2H), 7.77 – 7.58 (m, 3H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.69 (d, *J* = 10.4 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 4.70 (s, 1H), 3.96 – 3.80 (m, 1H), 3.67 (t, *J* = 11.0 Hz, 1H), 3.50 – 3.37 (m, 1H), 3.03 (d, *J* = 5.7 Hz, 1H), 2.82 – 2.70 (m, 1H), 2.61 – 2.53 (m, 1H), 2.47 – 2.38 (m, 1H), 2.36 (s, 3H), 1.98 (d, *J* = 17.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.6, 202.2, 197.1, 196.2, 152.3, 144.3, 133.9, 133.8, 133.0, 131.3, 129.8, 129.3, 128.9, 128.1, 81.5, 72.9, 63.7, 46.6, 38.2, 37.2, 34.6, 28.9, 21.6; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₆H₂₆NaO₅]⁺: 441.1672, found: 441.1680; HPLC: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 20.58 min and t_{minor} = 37.41 min. (*3R*,*4R*,*4aR*,*8aR*)-4-benzoyl-3-(2-(4-bromophenyl)-2-oxoethyl)-4-hydroxy-8a-methyl-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3p)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2e** (0.2 mmol, 69.2 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3p** as a yellow solid (65.6 mg, 68% yield, >20:1 dr); $[\alpha]_D^{20} = -78.6$ (c = 0.6, DCM, 89% ee); **m.p.** = 57.1-58.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.5 Hz, 2H), 7.68 – 7.58 (m, 3H), 7.56 – 7.46 (m, 4H), 6.69 (dd, *J* = 10.4, 1.4 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 4.69 (s, 1H), 3.92 – 3.79 (m, 1H), 3.67 (t, *J* = 11.0 Hz, 1H), 3.53 – 3.36 (m, 1H), 3.04 (d, *J* = 6.0 Hz, 1H), 2.79 – 2.65 (m, 1H), 2.62 – 2.52 (m, 1H), 2.49 – 2.36 (m, 1H), 1.97 (d, *J* = 17.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.4, 196.4, 196.1, 152.1, 135.1, 133.9, 131.9, 131.3, 129.8, 129.5, 128.9, 128.6, 81.4, 73.0, 63.6, 46.6, 38.1, 37.1, 34.7, 28.9; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₃BrNaO₅]⁺: 505.0621, found: 505.0630; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 26.06 min and t_{minor} = 36.18 min.

(3R,4R,4aR,8aR)-4-benzoyl-3-(2-(2-chlorophenyl)-2-oxoethyl)-4-hydroxy-8a-methyl-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3q)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2f** (0.2 mmol, 60.4 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3q** as a yellow solid (54.3 mg, 62% yield, >20:1 dr); $[\alpha]_D^{20} = -40.5$ (c = 0.4, DCM, 95% ee); **m.p.** = 60.4-61.4 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 – 8.05 (m, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.34 – 7.28 (m, 2H), 7.25 – 7.16 (m, 2H), 6.68 (dd, *J* = 10.4, 1.6 Hz, 1H), 6.06 (d, *J* = 10.4, 0.6 Hz, 1H), 4.63 (s, 1H), 4.00 – 3.89 (m, 1H), 3.78 – 3.63 (m, 1H), 3.50 – 3.31 (m, 1H), 3.03 (d, *J* = 6.1 Hz, 1H), 2.81 – 2.67 (m, 1H), 2.65 – 2.54 (m, 1H), 2.51 – 2.36 (m, 1H), 1.96 (d, *J* = 17.4 Hz, 1H), 1.51 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 202.4, 200.9, 196.1, 152.1, 138.8, 133.9, 132.9, 131.9, 131.3, 130.6, 130.5, 129.8, 128.9, 128.6, 126.9, 81.3, 73.0, 63.6, 46.5, 39.3, 38.4, 37.1, 28.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₃CINaO₅]⁺: 461.1126, found: 461.1137; **HPLC**: Daicel Chiralpak IC, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 26.60 min and t_{minor} = 19.12 min.

(3R,4R,4aR,8aR)-4-benzoyl-4-hydroxy-8a-methyl-3-(2-(naphthalen-2-yl)-2-oxoethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3r)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2g** (0.2 mmol, 63.6 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3r** as a light yellow solid (59.9 mg, 66% yield, >20:1 dr); $[\alpha]_D^{20} = -180.3$ (c = 0.4, DCM, 93% ee); **m.p.** = 146.6-148.2 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.25 (s, 1H), 8.13 (d, *J* = 7.5 Hz, 2H), 7.86 – 7.76 (m, 4H), 7.65 – 7.46 (m, 5H), 6.70 (dd, *J* = 10.4, 1.4 Hz, 1H), 6.09 (d, *J* = 10.4 Hz, 1H), 4.77 (s, 1H), 3.99 – 3.85 (m, 1H), 3.73 (t, *J* = 11.0 Hz, 1H), 3.60 – 3.45 (m, 1H), 3.06 (d, *J* = 5.9 Hz, 1H), 2.97 – 2.83 (m, 1H), 2.81 – 2.69 (m, 1H), 2.52 – 2.37 (m, 1H), 2.00 (d, *J* = 17.4 Hz, 1H), 1.52 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 202.6, 197.4, 196.1, 152.2, 135.6, 133.9, 133.7, 133.0, 132.4, 131.3, 129.8, 129.8, 129.6, 128.9, 128.6, 128.5, 127.7, 126.8, 123.6, 81.6, 73.0, 63.7, 46.6, 38.3, 37.2, 34.8, 28.9; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₉H₂₆NaO₅]⁺: 477.1672, found: 477.1682; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 22.41 min and t_{minor} = 32.28 min.

(3R,4R,4aR,8aR)-4-benzoyl-3-(2-(furan-2-yl)-2-oxoethyl)-4-hydroxy-8a-methyl-3,4,4a,8a-tetrahydro-2H-chromen-6(5H)-one (3s)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2h** (0.2 mmol, 51.6 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3s** as a light yellow solid (35.5 mg, 45% yield, >20:1 dr); $[\alpha]_D^{20} = -51.3$ (c = 0.2, DCM, 99% ee); **m.p.** = 74.8-76.1 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 – 8.06 (m, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.44 (d, *J* = 1.0 Hz, 1H), 7.04 (d, *J* = 3.5 Hz, 1H), 6.69 (dd, *J* = 10.4, 1.5 Hz, 1H), 6.45 (dd, *J* = 3.6, 1.6 Hz, 1H), 6.07 (d, *J* = 10.4 Hz, 1H), 4.68 (s, 1H), 3.91 – 3.80 (m, 1H), 3.69 (t, *J* = 11.0 Hz, 1H), 3.49 – 3.30 (m, 1H), 3.02 (d, *J* = 6.0 Hz, 1H), 2.69 – 2.56 (m, 1H), 2.52 – 2.38 (m, 2H), 1.98 (d, *J* = 17.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.4, 196.1, 186.6, 152.2, 146.5, 133.8, 132.9, 131.3, 129.8, 128.9, 117.4, 112.3, 100.0, 81.4, 72.9, 63.6, 46.6, 37.9, 37.16, 34.7, 28.9. HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₃H₂₂NaO₆]⁺: 417.1309 , found: 417.1315 ; **HPLC**: Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, t_{major} = 14.35 min and t_{minor} = 19.39 min.

(3R,4R,4aR,8aR)-4-benzoyl-4-hydroxy-8a-methyl-3-(2-oxo-2-(thiophen-2-yl)ethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3t)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2i** (0.2 mmol, 54.8 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3t** as a yellow solid (43.5 mg, 53% yield, >20:1 dr); $[\alpha]_D^{20} = -46.4$ (c = 0.1, DCM, 94% ee); **m.p.** = 76.1-78.2 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.5 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H),

7.60 – 7.56 (m, 1H), 7.56 – 7.47 (m, 3H), 7.06 – 7.00 (m, 1H), 6.69 (dd, J = 10.4, 1.5 Hz, 1H), 6.07 (d, J = 10.4 Hz, 1H), 4.70 (s, 1H), 3.94 – 3.84 (m, 1H), 3.69 (t, J = 11.0 Hz, 1H), 3.51 – 3.36 (m, 1H), 3.02 (d, J = 6.0 Hz, 1H), 2.78 – 2.66 (m, 1H), 2.59 – 2.48 (m, 1H), 2.48 – 2.38 (m, 1H), 1.98 (d, J = 17.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.4, 196.2, 190.3, 152.2, 143.7, 134.1, 133.9, 132.9, 132.2, 131.3, 129.8, 129.0, 128.2, 81.4, 72.9, 63.6, 46.6, 38.3, 37.2, 35.4, 28.9; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₃H₂₂NaO₅S]⁺: 433.1080, found: 433.1082; HPLC: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 24.86 min and t_{minor} = 34.66 min.

(3*R*,4*R*,4a*R*,8a*R*)-4-benzoyl-8a-butyl-4-hydroxy-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3u)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2j** (0.2 mmol, 62.0 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3u** as a yellow solid (58.9 mg, 66% yield, >14:1 dr); $[\alpha]_D^{20} = -24.5$ (c = 0.6, DCM, 97% ee); **m.p.** = 70.4-71.2 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 – 8.09 (m, 2H), 7.80 – 7.72 (m, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.55 – 7.48 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 2H), 6.74 (dd, *J* = 10.5, 1.5 Hz, 1H), 6.10 (d, *J* = 10.4 Hz, 1H), 4.70 (s, 1H), 3.93 – 3.83 (m, 1H), 3.67 (t, *J* = 11.0 Hz, 1H), 3.51 – 3.36 (m, 1H), 3.13 (d, *J* = 6.1 Hz, 1H), 2.83 – 2.73 (m, 1H), 2.64 – 2.54 (m, 1H), 2.44 – 2.33 (m, 1H), 1.94 (d, *J* = 17.5 Hz, 1H), 1.88 – 1.79 (m, 1H), 1.73 – 1.63 (m, 1H), 1.55 – 1.44 (m, 2H), 1.37 – 1.29 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 197.5, 196.5, 152.4, 136.4, 133.9, 133.4, 132.8, 131.5, 129.9, 128.6, 127.9, 81.6, 77.1, 76.8, 74.7, 63.5, 44.3, 41.6, 38.1, 36.9, 34.7, 25.3, 23.1, 14.1; **HRMS** (ESI): m/z [M + Na]⁺ calcd for [C₂₈H₃₀NaO₅]⁺: 469.1985, found: 469.1991; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, λ = 254 nm, major product: t_{major} = 14.63 min and t_{minor} = 21.85 min. minor product: t_{major} = 11.40 min and t_{minor} = 19.55 min.

(3R,4R,4aR,8aR)-4-benzoyl-8a-(tert-butyl)-4-hydroxy-3-(2-oxo-2-phenylethyl)-3,4,4a,8a-tetrahydro-2*H*-chromen-6(5*H*)-one (3v)

Followed the general procedure, using **1a** (0.2 mmol, 29.6 mg), **2k** (0.2 mmol, 62.0 mg) and **L2** (0.02 mmol, 14.0 mg). Purified by flash column chromatography (petroleum ether/ethyl acetate 4:1) to afforded **3v** as a white solid (46.4 mg, 52% yield, >20:1 dr); $[\alpha]_D^{20} = -48.0$ (c = 0.4, DCM, 98% ee); **m.p.** = 76.8-78.2 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.5 Hz, 2H), 7.77 (d, *J* = 7.4 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.56 – 7.47 (m, 3H), 7.36 (t, *J* = 7.7 Hz, 2H), 6.68 (dd, *J* = 10.7, 1.2 Hz, 1H), 6.27 (d, *J* = 10.7 Hz, 1H), 4.70 (s, 1H), 3.93 – 3.82 (m, 1H), 3.66 (t, *J* = 10.9 Hz, 1H), 3.42 – 3.29 (m, 2H), 2.85 – 2.70 (m, 1H), 2.62 – 2.41 (m, 2H), 1.86 (d, *J* = 18.3 Hz, 1H), 1.08 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 202.4, 197.6, 196.8, 150.2, 136.5, 134.1, 133.5, 133.4, 132.4, 130.1, 128.9, 128.6, 127.9, 82.3, 78.1,

62.8, 41.3, 39.6, 38.5, 37.9, 34.7, 26.2; **HRMS** (ESI): $m/z [M + Na]^+$ calcd for $[C_{28}H_{30}NaO_5]^+$: 469.1985, found: 469.1991; **HPLC**: Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, $t_{major} = 13.76$ min and $t_{minor} = 21.30$ min.

Scale-up reaction

Under the nitrogen atmosphere, a solution of diethylzinc (100 μ L, 1.0 M in hexane, 0.1 mmol) was added dropwise to a solution of **L1** (0.05 mmol, 35 mg) and 3A (400 mg) in toluene (6 mL). After the mixture was stirred for 60 min at 20 °C. Then, **1a** (1 mmol, 136 mg) and **2a** (1 mmol, 268 mg) were added. The reaction mixture was stirred for 24 h at 40 °C. First, the 3Å MS was filtered out with a sand core funnel and filtrate was quenched with NH₄Cl solution (10 mL), then the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure by using a rotary evaporator. The residue was purified by flash chromatography with petroleum ether/ethyl acetate (5:1) to afford the desired product **3a** (248 mg).

Derivatization

Synthesis of 4^1 : Compound 3a (80.8 mg, 0.2 mmol, 1 eq.) were dissolved in 3 mL of MeOH/H₂O (v:v = 1:2). Then NaOH (24 mg, 0.6 mmol, 3eq.) was added. Upon completion as shown by TLC, the reaction mixture was washed with NH₄Cl (2 mL) and extracted with CH₂Cl₂ (3 × 1 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography with petroleum ether/ethyl acetate (4:1) to give the product 4 as a white solid. ((3*R*,4*R*,4a*S*,6*S*,8*S*,8a*R*,9*S*)-6-hydroxy-8a-methyloctahydro-4*H*-4,6-epoxy-3,8-methanochromene-4,9-diyl)bis(phenylmethanone) (4)

White solid (72.7 mg) in 90% isolated yield; $[\alpha]_D^{20} = -75.6$ (c = 0.6, DCM, 95% ee); **m.p.** = 195.0-196.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 7.6 Hz, 2H), 7.92 (d, J = 7.5 Hz, 2H), 7.57 – 7.49 (m, 2H), 7.45 (q, J = 17.2, 7.8 Hz, 4H), 4.32 (d, J = 4.2 Hz, 1H), 3.46 (d, J = 10.4 Hz, 1H), 3.42 – 3.35 (m, 1H), 3.33 – 3.24 (m, 2H), 2.93 (s, 1H), 2.86 (t, J = 3.7 Hz, 1H), 2.21 – 2.06 (m, 1H), 1.99 – 1.85 (m, 2H), 1.73 – 1.66 (m, 1H), 1.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.9, 196.2, 136.8, 133.4, 132.9, 130.4, 128.8, 128.4, 127.9, 108.2, 87.8, 72.5, 59.2, 46.7, 46.2, 41.7, 38.4, 38.4, 37.4, 23.3; **HRMS** (ESI):

 $m/z [M + Na]^+$ calcd for $[C_{25}H_{24}NaO_5]^+$: 427.1516, found: 427.1523; **HPLC**: Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1 mL/min, $\lambda = 254$ nm, $t_{major} = 12.72$ min and $t_{minor} = 14.57$ min.

Synthesis of $5^{2.3}$: Compound **3a** (80.8 mg, 0.2 mmol, 1 eq.), Et₃SiH (232 mg, 2 mmol, 10 eq.) and BF₃ •Et₂O (197.4 mg, 1.4 mmol, 7 eq) were add to the DCM (2 mL), and the mixture was stirred at room temperature for 3h. Upon completion as shown by TLC, the reaction mixture was washed with water (1 mL) and extracted with CH₂Cl₂ (3 × 1 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography with petroleum ether/ethyl acetate (4:1) to provide the product **5** as a light yellow solid.

(3a*R*,5a*R*,9a*S*,9b*R*)-9b-benzoyl-2-hydroxy-5a-methyl-2-phenyl-2,3,3a,9,9a,9b-hexahydro-4*H*-furo[3,2-c]chromen-8(5a*H*)-one (5a)

Light yellow solid (71.4 mg) in 92% isolated yield; $[\alpha]_D^{20} = -60.2$ (c = 0.6, DCM, 95% ee); **m.p.** = 156.8-158.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 – 8.18 (m, 2H), 7.58 – 7.51 (m, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.26 (m, 2H), 7.24 – 7.19 (m, 1H), 7.16 (d, *J* = 7.5 Hz, 2H), 6.69 (dd, *J* = 10.4, 1.6 Hz, 1H), 6.18 (d, *J* = 10.4 Hz, 1H), 4.78 – 4.70 (m, 1H), 3.77 – 3.61 (m, 1H), 3.32 – 3.17 (m, 1H), 3.00 – 2.88 (m, 1H), 2.85 – 2.77 (m, 2H), 2.76 – 2.69 (m, 1H), 2.31 – 2.22 (m, 1H), 1.59 – 1.49 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 205.7, 196.5, 153.6, 141.9, 136.6, 133.4, 130.9, 129.9, 128.9, 128.2, 127.1, 125.1, 93.9, 78.3, 77.4, 72.3, 63.1, 44.8, 41.6, 38.1, 34.2, 27.2; HRMS (ESI): m/z [M + Na]⁺ calcd for [C₂₅H₂₄NaO₄]⁺: 411.1567, found: 411.1569; **HPLC**: Daicel Chiralpak IF, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1 mL/min, $\lambda = 254$ nm, t_{major} = 10.69 min and t_{minor} = 8.33 min.

References

- H. Xu, Y.-X. Tan, P.-P. Xie, R. Ding, Q. Liao, J.-W. Zhang, Q.-H. Li, Y.-H. Wang, X. Hong, G.-Q. Lin and P. Tian, Rhodium(III)-Catalyzed Asymmetric Reductive Cyclization of Cyclohexadienone-Containing 1,6-Dienes via an Anti-Michael/Michael Cascade Process, ACS Catal., 2021, 11, 8015–8022.
- H. Yan, C. Zhang, J. J. Han, S. S. Du, Y. Z. Hua, M. C. Wang, G. J. Mei and S. K. Jia, Zinc-Catalyzed Asymmetric Cascade Michael/Acyl Transfer Reaction between α-Hydroxy Aryl Ketones and Enynones, Org. Lett., 2023, 25, 1918–1923.
- H.-G. Cheng, L.-Q. Lu, T. Wang, Q.-Q. Yang, X.-P. Liu, Y. Li, Q.-H. Deng, J.-R. Chen and W.-J. Xiao. Highly Enantioselective Friedel-Crafts Alkylation/N-hemi-acetalization Cascade Reactionwith Indoles. *Angew. Chem., Int. Ed.* 2013, *52*, 3250–3254.

NMR Spectra of compounds

¹H NMR (400 MHz, CDCl₃)

(1) 200 (200) (

¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹**H NMR** (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

5.0

6.5

2.0

-208.08 -197.58 -196.07 -128.07 -128.07 -128.07 -128.08 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -111.68 -112.58 -123.58 -55.58 -55.5

2.0 1.5 8.5 7.5 7.0 6.0 5. 5 5.0 4.5 4.0 fl (ppm) 3. 5 3.0 2. 5 8.0 6.5 1.0 -0.5 0.5 0.0

¹³C NMR (101 MHz, CDCl₃)

7.0

6.5

5.5

5.0

4.5

31

1.0

0.5

0.0

¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

A 400 - 400

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

HPLC spectra of compound

++ + ‡ **‡ ⊕ 0**

Integration	Result Calculat	on Result	TimeTable															
No.	Retention	Time	Peak	Area		Peak H	eight		PeakArea	a(%)		Peak	Width	ı				
1	22.85			93488	38		799	9		50.16%	6			5.862	BB			
2	36.25			92895	50		524	1		49.84%	6		1	0.068	BB			
Total				1,863,83	38		13,24	0	1	100.00%	6							
	0.14 -																	
lage(UV)	0.12								22.70									
>	0.10								Â.									
	0.08																	
	0.06								$ \rangle$									
	0.04								$ \rangle$									
	0.02								$ \rangle$									
	0.00									\					9			
	-0.02	~ .	\sim												ġ	_		
	-0.04																	
	0 2	4	6 8	10 1	2 14	4 16	18	20	22 24	26	28	30	32	34	36	38	40	42 44 Time()
↔ ++ \$	* * + 0																	
Integration	Result Calcula	tion Result	t TimeTable															
No.	Retention	Time	Pea	k Area		PeakH	leight		PeakAre	a(%)		Peal	k Widt	h				
	1 22.70			74374	30		662	78		95.00	%			6.414	BB			
:	2 36.16			3915	87		25	49		5.00	%			7.107	BB			
Total				7,829,0	17		68,8	27		100.009	%							
11																		

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	PeakArea	Peak Height	Peak Area(%)	Peak Width	
	1 21.21	3770250	34383	99.79%	6.785	BB
1 1	2 29.70	7891	230	0.21%	4.846	BB
Total		3,778,141	34,613	100.00%		

Integration I	Result	Calculation Result	TimeTable															
No.	R	etention Time	PeakA	\rea	Pe	ak Height		PeakAre	ea(%)		Peak W	idth						
1	24.08			923110		8	543		49.79%	5		4.862	BB					
2	34.38			930961		5	984		50.21%	6		7.623	BB					
Total				1,854,071		14,	527		100.00%	5								
tage(µV)	0.12						23.76											
\$	0.06																	
	0.04																	
	0.02																	
	0.00 - :						1											
	-0.02																	
	-0.04 -						1			5								
	-0.06 -				_)			34							_	
	-0.08 -																	
	0	2 4 6	8 10	12 14	16 18	20 22	24	26 28	30 32	34	36 3	8 40	42	44	46	48	50 Tim	52 ne(Mi

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
1	23.76	8919551	74753	99.08%	8.298	BB
2	34.51	82960	557	0.92%	7.006	BB
Total		9,002,511	75,310	100.00%		

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 Time(Mi

++++ ‡ + 0

Integration F	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
	34.35	459611	2777	50.01%	10.872	BB
2	52.51	459387	1774	49.99%	12.959	BB
Total		918,998	4,551	100.00%		

++ ++ ‡ **+** 0

Integration Result Calculation Result TimeTable									
No.	Retention Time	Peak Area	Peak Height	PeakArea(%)	Peak Width				
1	34.01	3546867	20548	96.64%	9.287	BB			
2	2 52.52	123508	614	3.36%	7.851	BB			
Total		3,670,375	21,162	100.00%					

↔	++	Ŧ	Ŧ	Ŧ	0	
---	----	---	---	---	---	--

Integration	Integration Result Calculation Result TimeTable									
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width					
1	17.97	1355377	18720	49.41%	5.637	BB				
2	25.10	1387917	15065	50.59%	6.562	BB				
Total		2,743,294	33,785	100.00%						

Integratio	on Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
	1 17.18	4860296	67099	99.48%	6.659	BB
	2 24.40	25417	472	0.52%	2.497	BB
Total		4,885,713	67,571	100.00%		
1						

↔ ++ ‡ **‡ ⊕ 0**

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
1	16.83	3387618	49515	50.02%	3.81	BB
2	24.18	3385007	37750	49.98%	4.553	BB
Total		6,772,625	87,265	100.00%		
	0.20					
S	0.18					
d)ege	0.16 -					
Volt	0.14 -			6.64		
	0.12 -			Ń		
	0.10			(\		
	0.08			Λ		
	0.06					
	0.04 -					
	0.02					

0.00

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
1	16.64	4842584	72700	99.01%	4.483	BB
2	24.00	48539	693	0.99%	3.018	BB
Total		4,891,123	73,393	100.00%		

24.00

++ ++ ‡ **+** •

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
1	25.54	2474525	21938	50.52%	5.693	BB
2	44.41	2423446	11975	49.48%	12.28	BB
Total		4,897,971	33,913	100.00%		

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	PeakArea(%)	Peak Width	
	1 25.51	41038	431	3.94%	5.188	BB
:	2 44.50	999988	4903	96.06%	9.912	BB
Total		1,041,026	5,334	100.00%		
Total		1,041,026	5,334	100.00%		

++ + ‡ **+** 0

	Integration I	Result Calculation Result	TimeTable				
ſ	No.	Retention Time	PeakArea	Peak Height	Peak Area(%)	Peak Width	
	1	17.38	178562	1900	10.11%	3.712	BB
I	2	24.93	172102	1301	9.74%	6.609	BB
I	3	43.34	694717	3242	39.34%	6.239	BV
I	4	48.29	720703	2952	40.81%	7.597	VB
I	Total		1 766 084	9.395	100.00%		

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
1	42.09	3585041	15310	93.01%	8.452	BV
2	2 47.13	269536	2073	6.99%	8.211	VB
Total		3,854,577	17,383	100.00%		

↔ **++ ‡ ‡ +** 0

	Integration I	Result Calculation Result	TimeTable				
I	No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
I	1	15.82	751120	22255	19.71%	1.538	BB
I	2	17.58	1064072	18903	27.92%	1.876	BV
I	3	19.38	878289	19752	23.05%	2.636	VB
I	4	28.67	1117370	12056	29.32%	4.839	BB
I	Total		3,810,851	72,966	100.00%		
l							

1	integration	Calculation mesuit						
I	No.	Retention Time	Peak Area	Peak Height	PeakArea(%)	Peak Width		
	1	16.53	4595493	95561	99.54%	3.752	BB	
	2	28.72	21249	269	0.46%	4.03	BB	
I	Total		4,616,742	95,830	100.00%			
1								

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	PeakArea	Peak Height	Peak Area(%)	Peak Width	
1	33.39	4967977	39974	50.04%	8.519	BV
2	40.95	4960137	31993	49.96%	10.559	VB
Total		9,928,114	71,967	100.00%		

+++ + + + • •

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
1	33.42	6207675	50617	95.47%	8.419	BB
2	2 41.71	294881	2028	4.53%	6.151	BB
Total		6,502,556	52,645	100.00%		
Total		0,502,550	52,045	100.0070		

++++++++0

Integration Result Calculation Result TimeTable

Integration	nesult Calculation Result	limeladie				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
1	11.40	5471569	182270	95.05%	2.982	BB
2	15.70	284659	7007	4.95%	1.717	BB
Total		5,756,228	189,277	100.00%		

I	Integration F	Result	Calculation Result	TimeTable				
I	No.	R	etention Time	PeakArea	Peak Height	Peak Area(%)	Peak Width	
I	1	30.42	2	8916	6110 59677	49.65%	11.329	BB
I	2	54.13	3	9041	1585 32121	50.35%	15.371	BB
I	Total			17,957,	,695 91,798	100.00%		
I								
l	I							

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
	30.08	5104903	35842	94.96%	10.897	BB
2	2 53.48	271136	1065	5.04%	11.724	BB
Total		5,376,039	36,907	100.00%		

+++ + + + + •

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	PeakArea	Peak Height	Peak Area(%)	Peak Width	
1	33.43	1379564	9178	51.43%	5.238	BB
2	2 60.17	1302907	4128	48.57%	14.482	BB
Total		2,682,471	13,306	100.00%		

Integration result Interable								
l	No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width		į
l	1	33.35	4481812	26324	99.67%	11.019	BB	
l	2	60.89	14743	168	0.33%	10.839	BB	
l	Total		4,496,555	26,492	100.00%			
L								

++ ++ ‡ **+** 0

	Integration	Result Calculation Result	TimeTable				
[No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
	1	20.96	2607654	29411	50.85%	4.207	BB
	2	2 37.78	2520378	16241	49.15%	9.283	BB
ľ	Total		5,128,032	45,652	100.00%		

+++ + + + • •

Integration	n Result	Calculation Result	TimeTable				
No.	R	etention Time	PeakArea	Peak Height	Peak Area(%)	Peak Width	
	1 20.58	3	8272723	95646	97.82%	7.228	BB
	2 37.41	l i i i i i i i i i i i i i i i i i i i	184538	1253	2.18%	5.133	BB
Total			8,457,261	96,899	100.00%		
1							

++ ++	• ‡	*	+	0	
-------	-----	---	---	---	--

	Integration I	Result Calculation Result	TimeTable				
	No.	Retention Time	PeakArea	Peak Height	Peak Area(%)	Peak Width	
	1	25.88	1418474	12652	50.81%	4.528	BB
	2	35.81	1373029	8010	49.19%	10.15	BB
	Total		2,791,503	20,662	100.00%		
I							

	Integration	Result Calculation Result	TimeTable				
	No.	Retention Time	PeakArea	Peak Height	Peak Area(%)	Peak Width	
	1	26.06	11999120	104173	94.29%	6.609	BB
	2	36.18	726037	4910	5.71%	6.486	BB
	Total		12,725,157	109,083	100.00%		
I							

+++ + + + 0

Integratio	on Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	PeakArea(%)	Peak Width	
	1 18.81	1930483	50475	50.25%	3.402	BB
	2 27.06	1911402	32898	49.75%	4.49	BB
Total		3,841,885	83,373	100.00%		
1						

Integration	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	PeakArea(%)	Peak Width	
1	19.12	67496	2018	2.58%	1.137	BB
2	26.60	2551169	13741	97.42%	7.825	BB
Total		2,618,665	15,759	100.00%		

++ ++ ‡ **+** 0

Integrati	on Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
	1 22.41	7332759	62327	96.68%	7.5	BB
	2 32.28	251991	1233	3.32%	8.418	BB
Total		7,584,750	63,560	100.00%		
1						

+++ **‡ ‡ ⊕** 0

Integration I	Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	PeakArea(%)	Peak Width	
1	14.37	2577507	57911	51.26%	1.791	BB
2	18.49	2450924	41639	48.74%	4.279	BB
Total		5.028.431	99,550	100.00%		

No. Retention Time Peak Area Peak Height Peak Area(%) Peak Width 1 14.35 2.392 BB 7737642 -185744 99.56% 2 19.39 34514 694 0.44% 2.386 BB Total 7,772,156 186,438 100.00%

Integration F	Result Calculation Result	TimeTable				
No.	Retention Time	PeakArea	Peak Height	PeakArea(%)	Peak Width	
1	25.01	844409	5139	50.20%	6.437	BB
2	34.55	837834	3682	49.80%	10.478	BB
Total		1.682.243	8.821	100.00%		

Integratio	Integration Result Calculation Result TimeTable								
No.	Retention Time	PeakArea	Peak Height	Peak Area(%)	Peak Width				
	1 24.86	2629718	13933	97.22%	10.193	BV			
	2 34.66	75301	425	2.78%	5.724	VB			
Total		2,705,019	14,358	100.00%					
4									

3u

↔ ++ ± ± •	₽	0
------------	----------	---

Integration	Integration Result Calculation Result TimeTable								
No.	Retention Time	PeakArea	Peak Height	PeakArea(%)	Peak Width				
	1 11.17	1142206	19669	10.43%	2.946	BB			
1	2 14.28	4139630	57408	37.81%	3.906	BB			
:	3 18.63	1381675	14889	12.62%	2.881	BV			
4	4 21.51	4285366	37171	39.14%	6.564	VB			
Total		10,948,877	129,137	100.00%					

	-	+	•	- AL	•
Π.	TT	+	+	Ŧ.	v

Integration	n Result Calculation Result	TimeTable				
No.	Retention Time	Peak Area	Peak Height	PeakArea(%)	Peak Width	
	1 11.40	337699	5063	0.83%	2.847	BB
:	2 14.63	38292082	478750	94.11%	4.433	BB
	3 19.35	1115207	12364	2.74%	2.893	BV
4	4 21.85	943246	8580	2.32%	4.947	VB
Total		40,688,234	504,757	100.00%		

	Integration	Result Calculation Result	TimeTable				
	No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width	
	1	14.32	653699	9470	49.43%	3.641	BB
	2	21.34	668888	6914	50.57%	5.866	BB
	Total		1,322,587	16,384	100.00%		
I	I						

Integration Hesult Calculation Result TimeTable							
No.	Retention Time	Peak Area	Peak Height	PeakArea(%)	Peak Width		
1	13.76	3291295	47266	99.04%	5.251	BB	
2	21.30	31803	450	0.96%	3.253	BB	
Total		3,323,098	47,716	100.00%			

++ ++ ‡ **⊕ 0**

Integration	Result	Calculation Result	TimeTable				
No.	R	etention Time	PeakArea	Peak Height	PeakArea(%)	Peak Width	
1	12.83		1858084	54132	50.07%	1.95	BV
2	14.43		1853213	45178	49.93%	2.08	VB
Total			3,711,297	99,310	100.00%		
	1						
	0.4 -				N		
5	·]				12.7		
					Å		
>	0.5						
	1				11		
	0.2 -						
	1						
	1						
	0.1 -						
	1						
	- 1					4.57	
	0.0 -						
	1						
					1 12	14 16	18 20 22
	0	2	4 0	0 1	12	14 10	Time(Min)
++ ++ :	t t	4 0					
	-	••••					

Integration Result Calculation Result TimeTable							
No.	Retention Time	Peak Area	Peak Height	Peak Area(%)	Peak Width		
1	12.72	6002971	168155	97.36%	2.141	BV	
2	14.57	162961	4134	2.64%	1.489	VB	
Total		6,165,932	172,289	100.00%			

Integration F	Result Calculat	tion Result	TimeTable											
No.	Retention	Time	Peak	Area	Peak	Height	Pea	ak Area(%)	F	Peak Width				
1	8.32			3826591		254471	1	50.409	6	0.81	7 BB			
2	10.72			3766324		168538	3	49.609	6	2.05	2 BB			
Total				7,592,915		423,009	9	100.009	6					
	1													
<u>इ</u>										8				
lage(0.3 -									,e				
	1													
	-													
	1													
										(1				
'	0.1 -										l			
											1			
	1							ŝ						
	0.0 -			~~~									—	
	0 1	1	2 3	4	5	6	7	8	9	10	11	12	13	14
++ ++ ±	± 4 n												Time(M	in)
	+ + •	1	[]											
Integration F	Hesult Calculat	tion Result	TimeTable											
No.	Retention	Lime	Peak A	rea	Peak H	Height	Peak	Area(%)	Pea	ak Width				

No. Retention Tin	ne PeakArea	Peak Height	PeakArea(%)	Peak Width	
1 8.33	77785	5586	2.46%	0.528	BB
2 10.69	3087864	144169	97.54%	1.839	BB
Total	3,165,649	149,755	100.00%		

Single-crystal X-ray diffraction of 3n (CCDC: 2234463)

X-ray analysis was carried out using the single crystal which was grown in Hexane/CHCl₃.

The instrumentation used for the crystal measurement is Oxford Gemini E X-ray single-crystal diffractometer (ellipsoid contour at 30% probability level).

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 230102lu_lgpz291191_0m

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 230102lu_lgpz291191_0m

Bond precision:	C-C = 0.0031 A	Wavelength:	=1.34139
Cell:	a=9.1413(5) alpha=90	b=12.3151(7) beta=92.512(2)	c=11.0137(6) gamma=90
Temperature:	193 K		-
	Calculated	Reported	
Volume	1238.69(12)	1238.69(1)	2)
Space group	P 21	P 1 21 1	
Hall group	P 2yb	P 2yb	
Moiety formula	C31 H28 O5	C31 H28 O	5
Sum formula	C31 H28 O5	C31 H28 O	5
Mr	480.53	480.53	
Dx,g cm-3	1.288	1.288	
Z	2	2	
Mu (mm-1)	0.445	0.445	
F000	508.0	508.0	
F000'	509.18		
h,k,lmax	11,15,14	11,15,14	
Nref	5631[2947]	5470	
Tmin,Tmax	0.944,0.956	0.677,0.7	52
Tmin'	0.944		
Correction metho AbsCorr = MULTI-	d= # Reported T L SCAN	imits: Tmin=0.677 Tm	ax=0.752
Data completenes	s= 1.86/0.97	Theta(max) = 60.365	5
R(reflections)=	0.0332(4996)		wR2(reflections); 0 0825(5470)
S = 1.058	Npar= 3	327	0.0020(01/0)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.		
Alert level C PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF	19 6	Report Note
 Alert level G AbsMU01_ALERT_1_G Calculation of _expt1_absorpt_correction_mu not performed for this radiation type. PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms PLAT791_ALERT_4_G Model has Chirality at C15 (Sohnke SpGr) PLAT791_ALERT_4_G Model has Chirality at C16 (Sohnke SpGr) PLAT791_ALERT_4_G Model has Chirality at C24 (Sohnke SpGr) PLAT791_ALERT_4_G Model has Chirality at C29 (Sohnke SpGr) PLAT791_ALERT_4_G Model has Chirality at C29 (Sohnke SpGr) PLAT50_ALERT_4_G Check Flack Parameter Exact Value 0.00 with s.u. PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by 	1 R S S R 0.06 36 0 4	Report Verify Verify Verify Check Note Info Check
<pre>0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or or 10 ALERT level G = General information/check it is not something unexp 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing 1 ALERT type 2 Indicator that the structure model may be wrong or det 2 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check</pre>	versigh pected g data ficient	it

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Single-crystal X-ray diffraction of 3u (CCDC: 2246355)

X-ray analysis was carried out using the single crystal which was grown in Hexane/CHCl₃.

The instrumentation used for the crystal measurement is Oxford Gemini E X-ray single-crystal diffractometer (ellipsoid contour at 30% probability level).

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 20230206

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 20230206

Bond precision:	C-C = 0.0057 A	Wavelength:	=1.54184
Cell:	a=11.5324(2) alpha=90	b=11.5324(2) beta=90	c=14.9982(3) gamma=120
Temperature:	293 K		y
	Calculated	Reported	
Volume	1727.47(7)	1727.46(8)
Space group	P 31	P 31	
Hall group	P 31	P 31	
Moiety formula	C28 H30 O5	C28 H30 O	5
Sum formula	C28 H30 O5	C28 H30 O	5
Mr	446.52	446.52	
Dx,g cm-3	1.288	1.288	
Z	3	3	
Mu (mm-1)	0.705	0.705	
F000	714.0	714.0	
F000'	716.18		
h,k,lmax	14,14,18	14,13,18	
Nref	4454[2227]	4078	
Tmin,Tmax	0.903,0.932	0.951,1.0	00
Tmin'	0.893		
Correction metho AbsCorr = MULTI-	od= # Reported T L: SCAN	imits: Tmin=0.951 Tm	ax=1.000
Data completenes	s= 1.83/0.92	Theta(max) = 70.942	2
R(reflections)=	0.0465(3850)		wR2(reflections): 0.1280(4078)
S = 1.043	Npar= 3	00	0.1200(40/0)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test. Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) 7.36 Note PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.0057 Ang. Alert level G PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 1 Report 293 Check PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature (K) 293 Check PLAT791_ALERT_4_G Model has Chirality at C10 (Sohnke SpGr) PLAT791_ALERT_4_G Model has Chirality at C11 (Sohnke SpGr) R Verify S Verify PLAT791_ALERT_4_G Model has Chirality at C12 (Sohnke SpGr) PLAT791_ALERT_4_G Model has Chirality at C13 (Sohnke SpGr) S Verify R Verify PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 19 Note PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 4.3 Low PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 6 Info PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by 2 Check

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Single-crystal X-ray diffraction of rac-4 (CCDC: 2281199)

X-ray analysis was carried out using the single crystal which was grown in Hexane/CHCl₃.

The instrumentation used for the crystal measurement is Oxford Gemini E X-ray single-crystal diffractometer (ellipsoid contour at 30% probability level).

X-ray of *rac*-4 CCDC (2281199)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 202307177_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 202307177_auto

Bond precision:	C-C = 0.0033 A	Wavelength=1.54184		
Cell:	a=8.0964(6) alpha=116.586(7)	b=11.2963(8) of beta=95.901(6) of beta=95.900(6)	c=12.0978(8) gamma=91.924(6)	
Temperature:	293 K			
	Calculated	Reported		
Volume	980.27(14)	980.27(13))	
Space group	P -1	P -1		
Hall group	-P 1	-P 1		
Moiety formula	C25 H24 O5	C25 H24 O	5	
Sum formula	C25 H24 O5	C25 H24 O	5	
Mr	404.44	404.44		
Dx,g cm-3	1.370	1.370		
Z	2	2		
Mu (mm-1)	0.772	0.772		
F000	428.0	428.0		
F000'	429.35			
h,k,lmax	9,13,14	9,13,14		
Nref	3513	3509		
Tmin, Tmax	0.912,0.933	0.931,1.00	00	
Tmin'	0.912			
Correction meth AbsCorr = MULTI	od= # Reported T Li: -SCAN	mits: Tmin=0.931 Tma	ax=1.000	
Data completene	ss= 0.999	Theta(max) = 67.022	2	
R(reflections)=	0.0477(2771)		wR2(reflections)= 0.1287(3509)	
S = 1.037	Npar= 27	13		

```
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
```

Alert level C PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 2.538 Check PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L- 0.597 5 Report Alert level G PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 1 Report PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) 293 Check PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O1 293 Check 107.7 Degree PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 69% Note 2.0 Low PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 6 Info 0 ALERT level A - Most likely a serious problem - resolve or explain 0 ALERT level B - A potentially serious problem, consider carefully 2 ALERT level C - Check. Ensure it is not caused by an omission or oversight 7 ALERT level ${\mbox{\bf G}}$ - General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Single-crystal X-ray diffraction of rac-5 (CCDC: 2266697)

X-ray analysis was carried out using the single crystal which was grown in Hexane/CHCl₃.

The instrumentation used for the crystal measurement is Oxford Gemini E X-ray single-crystal diffractometer (ellipsoid contour at 30% probability level).

X-ray of *rac*-5 CCDC (2266697)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 20230356

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 20230356

Bond precision:	C-C = 0.0046 A	A Wavelength=1.54184			
Cell:	a=8.5167(2) alpha=90	b=14.0635(4) beta=90	c=17.0011(5) gamma=90		
Temperature:	293 K				
	Calculated	Reported			
Volume	2036.30(10)	2036.30(10	0)		
Space group	P 21 21 21	P 21 21 21	1		
Hall group	P 2ac 2ab	P 2ac 2ab			
Moiety formula	C25 H24 O4	C25 H24 O4	C25 H24 O4		
Sum formula	C25 H24 O4	C25 H24 O	C25 H24 O4		
Mr	388.44	388.44			
Dx,g cm-3	1.267	1.267			
Z	4	4			
Mu (mm-1)	0.683	0.683			
F000	824.0	824.0			
F000′	826.50				
h,k,lmax	10,17,20	10,17,20			
Nref	3891[2229]	3872			
Tmin,Tmax	0.914,0.940	0.911,1.00	00		
Tmin'	0.903				
Correction metho AbsCorr = MULTI-	d= # Reported T Li SCAN	mits: Tmin=0.911 Tma	ax=1.000		
Data completenes	s= 1.74/1.00	Theta(max) = 70.457	7		
R(reflections)=	0.0417(3468)		wR2(reflections)		
S = 1.047	Npar= 26	53	0.1132 (30/2)		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

```
Alert level C
STRVA01_ALERT_4_C Flack test results are ambiguous.
From the CIF: _refine_ls_abs_structure_Flack 0.410
From the CIF: _refine_ls_abs_structure_Flack_su 0.150
PLAT230_ALERT_2_C Hirshfeld Test Diff for C10 --C11 . 5.5 s.u.
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ..... 0.00463 Ang.
Alert level G
```

PLAT199_ALERT_1_G Reported _cell_measurement_temperatu	ure	. (K)	293	Check
PLAT200_ALERT_1_G Reporteddiffrn_ambient_temperatu	ure	. (K)	293	Check
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for	or 02		107.4	Degree
PLAT791_ALERT_4_G Model has Chirality at C2	(Sohnke	SpGr)	S	Verify
PLAT791_ALERT_4_G Model has Chirality at C3	(Sohnke	SpGr)	R	Verify
PLAT791_ALERT_4_G Model has Chirality at C4	(Sohnke	SpGr)	R	Verify
PLAT791_ALERT_4_G Model has Chirality at C5	(Sohnke	SpGr)	S	Verify
PLAT791_ALERT_4_G Model has Chirality at C7	(Sohnke	SpGr)	R	Verify
PLAT912_ALERT_4_G Missing # of FCF Reflections Above &	STh/L=	0.600	5	Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Resid	dual Den	sity.	2	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 10 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check