Supporting Information

Direct enantioselective α-alkylation of secondary acyclic amines with ketones by combining photocatalysis and lipase catalytic promiscuity
Chao-Jiu Long, ${ }^{\ddagger 1}$ Hong-Ping Pu, ${ }^{\ddagger 1}$ Yan-Hong He ${ }^{* 1}$ and Zhi Guan*1
${ }^{1}$ Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
Emails: heyh@swu.edu.cn (for Y.-H. He); guanzhi@swu.edu.cn (for Z. Guan)
*These authors contributed equally to this work.

Table of Contents

1. General information S1
2. General procedure for the photoenzyme-catalyzed enantioselective α-alkylation of secondary acyclic amines with ketones S2
3. Preparation of substrates $\mathbf{1}$ S3
4. General procedure for preparing racemic products as chiral HPLC controls S4
5. Optimization details S5
6. Enzymatic assay of natural activity of PPL S9
7. Stern-Volmer luminescence quenching experiments S10
8. Cyclic voltammetry studies S11
9. Unsuccessful substrates S12
10. Characterization data of the products S12
11. Comparison of dr determined by HPLC and ${ }^{1} \mathrm{HNMR}$ analysis of mixture S27
12. References S37
13. NMR spectra S38
14. HRMS spectra S64
15. Chiral HPLC spectra S69

1. General information

Lipase from porcine pancreas (PPL) - Type II [lyophilized powder, L3126-25G, Lot \# SLCJ9303, 33\% protein (Biuret), 39 units/mg protein (one unit will hydrolyze 1.0 microequivalent of fatty acid from Triacetin in 1 h at pH 7.4 at $37{ }^{\circ} \mathrm{C}$), with a molecular weight of $\left.50-52 \mathrm{kDa}\right],{ }^{[1]}$ protease from Streptomyces griseus (SGP) - Type XIV [lyophilized powder, P5147-1G, Lot \# SLBD9380V, 5.2 units/mg solid (one unit will hydrolyze casein to produce color equivalent to 1.0 $\mu \mathrm{mol}$ of Tyrosine per minute at pH 7.5 at $37{ }^{\circ} \mathrm{C}$)], lipase from wheat germ (WGL) - Type I [lyophilized powder, L3001-5G, Lot \# SLCF4529, 8 units/mg solid (one unit will hydrolyze 1.0 microequivalent of fatty acid from a triglyceride in 1 h at pH 7.4 at $37^{\circ} \mathrm{C}$), with a molecular weight of $141-145 \mathrm{kDa}$ (determined by gel chromatography)], ${ }^{[2]}$ acylase I from Aspergillus melleus (AMA) [lyophilized powder, 01818-25G, Lot \# 1348941V, 0.58 units/mg solid (one unit corresponds to the amount of enzyme which hydrolyzes $1.0 \mu \mathrm{~mol} N$-acetyl-L-methionine per minute at pH 8.0 at 37 ${ }^{\circ} \mathrm{C}$)], lysozyme chicken egg white (CEWL) (lyophilized powder, 6971-10G-F, Lot \# BCBJ2814V, 102375 units/mg solid), papain carica papaya (CPP) [lyophilized powder, 76220-25G, Lot \# BCBD3116V, 3.6 units/mg solid (one unit corresponds to the amount of enzyme which hydrolyzes $1.0 \mu \mathrm{~mol} N$-benzoyl- L-arginine ethyl ester (BAEE, fluka No. 12880) per minute at pH 6.2 at $25^{\circ} \mathrm{C}$)], lipase A Candida antarctica immobilized on immobead 150, recombinant Aspergillus oryzae (CALA) [lyophilized powder, 41658-10G, Lot \# BCBC1259V, 1624 units/g (one unit corresponds to the amount of enzyme which liberates 1.0μ mol butyric acid per minute at pH 10.0 at $40^{\circ} \mathrm{C}$, tributyrin, fluka No. 91010, as substrate)], lipase B Candida antarctica immobilized on immobead 150, recombinant yeast (CALB) [lyophilized powder, 52583-10G, Lot \# BCBB5644, 3766 units/g solid (one unit corresponds to the amount of enzyme which liberates $1.0 \mu \mathrm{~mol}$ butyric acid per minute at pH 7.5 at $40^{\circ} \mathrm{C}$, tributyrin, fluka No. 91010 , as substrate)], and amyloglucosidase aspergillus niger (ANA) [lyophilized powder, 10115-1G-F, Lot \# BCBF3497V, 62.4 units/g solid (one unit corresponds to the amount of enzyme which liberates $1.0 \mu \mathrm{~mol}$ of glucose per minute at pH 4.8 at $60^{\circ} \mathrm{C}$, starch acc. to Zulkowsky, cat. No. 85642, as substrate)] were purchased from Sigma-Aldrich, Shanghai, China. Nuclease P1 from Penicillium citrinum (EC 3.1.30.1, lyophilized powder, 5 units/mg solid. The activity was measured in terms of the amount of acid-soluble nucleotides produced by RNA hydrolysis which is catalyzed by nuclease P1. One unit of enzyme activity was
defined as the amount of enzyme that produced an increase in the optical density of 1.0 in 1 min at 260 nm) was purchased from Nanning Pangbo Biological Engineering Co. Ltd., Nanning, China.

Unless otherwise noted, all chemicals and reagents were purchased from commercial suppliers and were used without further purification. All glassware was oven-dried at $120{ }^{\circ} \mathrm{C}$. All photoreactions were conducted in single neck round bottom flask unless otherwise noted. The light source was a 9 W blue LED lamp (450 nm , placed approximately 5 cm from the reaction flask) without any filters. All reactions were monitored by thin-layer chromatography (TLC) with GF 254 silica gel pre-coated plates (0.25 mm , Qingdao Haiyang chemical industry Co. Ltd., Qingdao, China) using UV light and vanillic aldehyde as visualizing agents. Flash chromatography was performed using silica gel (200-300 mesh) at increased pressure. NMR spectra were recorded on Bruker AVANCE III (400 MHz) and Bruker AVANCE DMX600 (600 MHz) spectrometers. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were referenced to TMS (0.00 ppm) or residual undeuterated solvent signals (7.26 ppm for ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}, 77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C} \mathrm{NMR}$ in CDCl_{3}) respectively. ${ }^{19} \mathrm{~F}$ NMR data were calibrated using CFCl_{3} as an external reference (0.0 ppm). Data for NMR are reported as follows: chemical shift (ppm), integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{br}=$ broad and $\mathrm{m}=$ multiplet $)$, and coupling constant (Hz). High-resolution mass spectra (HRMS) were acquired on Bruker Impact II TOF mass spectrometer using ESI ionization sources. The diastereomeric ratio (dr) and enantiomeric excess (ee) of products were determined by chiral HPLC analysis carried out on a Shimadzu LC-20A instrument using Chiralpak AD-H, Chiralpak OD-H, Chiralpak AS-H and Chiralpak OJ-H (0.46 cm $\Phi \times 25 \mathrm{~cm}, 5 \mu \mathrm{~m}$, Daicel Chiral Technologies CO., LTD.). Cyclic voltammograms were obtained on a CHI 700E potentiostat (CH Instruments, Inc.).

2. General procedure for the photoenzyme-catalyzed enantioselective α alkylation of secondary acyclic amines with ketones

To a 10 mL round-bottom flask equipped with a magnetic stirring bar was added $\mathbf{1}(0.3 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Ru}(\mathrm{bpy}))_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, and DMF (dried over $3 \AA$ molecular sieves, 2.7 mL). The mixture was irradiated with a 9 W blue LED lamp under the air atmosphere at room temperature. After full conversion of $\mathbf{1}$ as monitored by TLC, the light was turned off. Ketone [$\mathbf{2}$ ($1.5 \mathrm{mmol}, 5.0$ equiv) or 4 ($3.0 \mathrm{mmol}, 10.0$ equiv), as indicated], $\mathrm{PPL}(150 \mathrm{mg}, 1930 \mathrm{U}, 0.33 \mathrm{~mol} \%$) and deionized water $(0.3 \mathrm{~mL})$ were added, then the mixture was stirred without light. The reaction was monitored by TLC. After completion of the reaction, the mixture was diluted with 20 mLEtOAc and filtered. The filtrate was washed with brine $(10 \mathrm{~mL} \times 2)$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was collected and concentrated in vacuum to remove the solvent. The residue was purified by flash column chromatography on silica gel using petroleum ether/EtOAc (v/v, 20:1 to 5:1) as eluent to obtain the corresponding product $\mathbf{3}$ or $\mathbf{5}$.

3. Preparation of substrates 1

The following substrates $\mathbf{1}$ were purchased from commercial sources (Figure S1).

1a
CAS No.103-32-2

1 g
CAS No. 3526-43-0

1m

1n

10

Figure S1. Substrates 1 purchased from commercial sources.
The other substrates $\mathbf{1}$ were synthesized according to literature (Figure S2).

1b

$1 f$

1c

1h

1d

$1 i$

1e

1j

1k

11

Figure S2. Substrates 1 synthesized according to the literature.

General procedure ${ }^{[3]}$

A 100 mL round-bottomed flask equipped with a magnetic stirring bar was charged with $\mathbf{6}$ (5.0 mmol, 1.0 equiv), 7 ($7.5 \mathrm{mmol}, 1.5$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{MeCN}(70$ $\mathrm{mL})$. The reaction mixture was vigorously stirred at room temperature. The reaction was monitored by TLC. Upon completion, the reaction mixture was filtered by Celite and washed with EtOAc. The filtrate was collected and concentrated in vacuum to remove the solvent. The residue was directly submitted to flash column chromatography on silica gel using petroleum ether/EtOAc (300:1 to 20:1) to obtain the corresponding compound 1 .

4. General procedure for preparing racemic products as chiral HPLC controls ${ }^{[3]}$

A round-bottomed flask equipped with a magnetic stirring bar was charged with $\mathbf{8}(0.3 \mathrm{mmol}, 1.0$ equiv), $\mathbf{7}$ ($0.3 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2}$ or 4 ($1.5 \mathrm{mmol}, 5.0$ equiv), $\mathrm{Hf}(\mathrm{OTf})_{4}(1.2 \mathrm{mg}, 0.0015 \mathrm{mmol}, 0.5$ $\mathrm{mol} \%)$ and DMSO $(3.0 \mathrm{~mL})$. The reaction mixture was stirred at room temperature and monitored by TLC. After completion of the reaction, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to the reaction to dissolve the residue. The crude product was purified by preparative thin layer chromatography (silica gel, petroleum ether/EtOAc $=5: 1$ to $1: 1$) to give the desired racemic product $(\boldsymbol{R a c} \mathbf{- 3}$ or $\boldsymbol{R a c} \boldsymbol{- 5})$.

5. Optimization details

Table S1. Screening of enzymes. ${ }^{[a]}$

			\%) 3a	
Entry	Enzyme	Yield [\%] ${ }^{\text {b] }}$	$\mathrm{dr}[\text { syn/anti }]^{[\mathrm{c}]}$	er $\left[\operatorname{syn}(\text { anti) }]^{[c]}\right.$
1	Lipase from porcine pancreas	21	73/27	78/22 (56/44)
2	Protease from streptomyces griseus	18	82/18	78/22 (56/44)
3	Lipase from wheat germ	6	44/56	53/47 (52/48)
4	Acylase I from aspergillus melleus	10	53/47	67/33 (50/50)
5	Lysozyme chicken egg white	22	32/68	50/50 (50/50)
6	Papain carica papaya	12	54/46	58/42 (50/50)
7	Lipase A candida Antarctica	10	38/62	51/49 (51/49)
8	Lipase B candida Antarctica	10	36/64	50/50 (50/50)
9	Nuclease P1	15	38/62	54/46 (51/49)
10	Amyloglucosidase aspergillus niger	8	47/53	59/41 (50/50)

[a] Reaction conditions: 1a ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}$ ($467 \mu \mathrm{~L}, 4.5 \mathrm{mmol}, 15.0$ equiv), $\mathrm{Ru}(\mathrm{bpy}))_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, enzyme $(50 \mathrm{mg})$ and deionized water $(0.3 \mathrm{~mL})$ in DMF (dried over $3 \AA$ molecular sieves, 2.7 mL) irradiated with 9 W blue LEDs under air at room temperature. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak OJ-H column.

Table S2. Screening of addition procedures. ${ }^{[a]}$

	 1a			
Entry	Method ${ }^{[b]}$	Yield [\%] ${ }^{\text {[c] }}$	dr $\left[\right.$ syn/anti] ${ }^{[d]}$	er $\left[\operatorname{syn}(\text { anti) }]^{[d]}\right.$
1	A	21	73/27	78/22 (56/44)
2	B	14	71/29	77/23 (53/47)

[a] Reaction conditions: 1a ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}(467 \mu \mathrm{~L}, 4.5 \mathrm{mmol}, 15.0$ equiv), $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, $\mathrm{PPL}(50 \mathrm{mg}, 644 \mathrm{U}, 0.11 \mathrm{~mol} \%)$ and deionized water (0.3 mL) in DMF (dried over $3 \AA$ molecular sieves, 2.7 mL) irradiated with 9 W blue LEDs under air at room temperature. [b] Method A: all components were added at one time and irradiation; Method B: 2a and PPL were added after the photo-oxidation process was completed, and then the mixture was stirred without light; Method C: 2a, PPL and deionized water were added after the photo-oxidation process was completed, and then the mixture was stirred without light. [c] Isolated yield. [d] Determined by HPLC analysis using a chiralpak OJ-H column.

Table S3. Screening the amount of PPL. ${ }^{[a]}$

Entry	PPL		Yield [\%] ${ }^{[\mathrm{b}]}$	dr $[\text { syn/anti }]^{[\mathrm{c}]}$	er $\left[\operatorname{syn}(\text { anti) }]^{[\mathrm{c}]}\right.$
	[mg]	[mol\%]			
1	25	0.06	45	60/40	70/30 (55/45)
2	50	0.11	59	74/26	78/22 (59/41)
3	100	0.22	67	76/24	77/23 (59/41)
4	150	0.33	78	77/23	79/21 (57/43)
5	200	0.44	76	75/25	77/23 (58/42)
6	300	0.66	73	75/25	76/24 (59/41)

[a] Reaction conditions: $\mathbf{1 a}$ ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Ru}(b p y)_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}$, $2 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves, 2.7 mL) irradiated with 9 W blue LEDs under air at room temperature. After full conversion of $\mathbf{1 a}$, the light was turned off. $\mathbf{2 a}$ ($467 \mu \mathrm{~L}, 4.5 \mathrm{mmol}$, 15.0 equiv), PPL and deionized water (0.3 mL) were added. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak OJ-H column.

Table S4. Screening of solvents. ${ }^{[a]}$

Entry	Solvent	Yield [\%] ${ }^{\text {[b] }}$	dr [syn/anti] ${ }^{[\mathrm{c}]}$	er $\left[\operatorname{syn}(\text { anti) }]^{[c]}\right.$
1	DMF	78	77/23	79/21 (57/43)
2	MeCN	ND ${ }^{[d]}$	-	-
3	EtOH	27	75/25	76/24 (58/42)
4	IPA	20	78/22	77/23 (56/44)
5	DCM	NR ${ }^{[\mathrm{e}]}$	-	-
6	THF	$\mathrm{NR}^{[\mathrm{e}]}$	-	-

[a] Reaction conditions: $\mathbf{1 a}(55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv $)$ and $\mathrm{Ru}(\mathrm{bpy}))_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}$, $2 \mathrm{~mol} \%$) in solvent (dried over molecular sieves, 2.7 mL) irradiated with 9 W blue LEDs under air at room temperature. After full conversion of 1a, the light was turned off. 2a ($467 \mu \mathrm{~L}, 4.5 \mathrm{mmol}$, 15.0 equiv), $\operatorname{PPL}(150 \mathrm{mg}, 1930 \mathrm{U}, 0.33 \mathrm{~mol} \%)$ and deionized water $(0.3 \mathrm{~mL})$ were added. $[\mathrm{b}]$ Isolated yield. [c] Determined by HPLC analysis using a chiralpak OJ-H column. [d] Not detected. [e] No reaction.

Table S5. Water content screening. ${ }^{[a]}$

2a

1a

III

3a

	Water	DMF/ $\mathrm{H}_{2} \mathrm{O}$	Water content	Yield Entry	dr $[\mathrm{mL}]$	$[\mathrm{v} / \mathrm{v}]$

4	0.45	$6 / 1$	14.28	67	$75 / 25$	$76 / 24(55 / 45)$
5	0.90	$3 / 1$	25.00	69	$71 / 29$	$73 / 27(53 / 47)$

[a] Reaction conditions: $\mathbf{1 a}$ ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}$, $2 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves, 2.7 mL) irradiated with 9 W blue LEDs under air at room temperature. After full conversion of 1a, the light was turned off. $\mathbf{2 a}(467 \mu \mathrm{~L}, 4.5 \mathrm{mmol}$, 15.0 equiv), PPL ($150 \mathrm{mg}, 1930 \mathrm{U}, 0.33 \mathrm{~mol} \%$) and deionized water were added. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak OJ-H column.

Table S6. Screening the amount of cyclohexanone (2a). ${ }^{[a]}$

	1a III 3a			
Entry	2a [equiv]	Yield [\%] ${ }^{[b]}$	dr [syn/anti] ${ }^{[\text {c] }]}$	er [syn (anti) $]^{[c]}$
1	2.5	65	73/27	77/23 (58/42)
2	5.0	78	75/25	79/21 (59/41)
3	10.0	75	75/25	78/22 (53/47)
4	15.0	78	77/23	79/21 (57/43)
5	20.0	71	77/23	78/22 (59/41)
6	25.0	67	75/25	77/23 (55/45)

[a] Reaction conditions: $\mathbf{1 a}\left(55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}$, $2 \mathrm{~mol} \%$) in DMF (dried over 3Å molecular sieves, 2.7 mL) irradiated with 9 W blue LEDs under air at room temperature. After full conversion of 1a, the light was turned off. 2a, PPL (150 mg, 1930 $\mathrm{U}, 0.33 \mathrm{~mol} \%)$ and deionized water $(0.3 \mathrm{~mL})$ were added. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak OJ-H column.

Table S7. Screening the amount of hydroxyacetone (4a). ${ }^{[a]}$

Entry	$\mathbf{4 a}$ [equiv]	Yield [\%] ${ }^{[b]}$	dr [anti/syn] ${ }^{[\mathrm{c}]}$	er [anti (syn) $]^{[\mathrm{c}]}$
1	5.0	66	73/27	85/15 (59/41)
2	10.0	81	76/24	88/12 (62/38)
3	15.0	81	75/25	88/12 (60/40)
4	20.0	79	76/24	88/12 (60/40)
5	25.0	75	78/22	87/13 (63/37)

[a] Reaction conditions: $1 \mathbf{1 a}$ ($55 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 0.006 \mathrm{mmol}$, $2 \mathrm{~mol} \%$) in DMF (dried over $3 \AA$ molecular sieves, 2.7 mL) irradiated with 9 W blue LEDs under air at room temperature. After full conversion of 1a, the light was turned off. 4a, PPL (150 mg, 1930 $\mathrm{U}, 0.33 \mathrm{~mol} \%)$ and deionized water $(0.3 \mathrm{~mL})$ were added. [b] Isolated yield. [c] Determined by HPLC analysis using a chiralpak AD-H column.

6. Enzymatic assay of natural activity of PPL

The natural activity of PPL was determined according to the procedure described in literature. ${ }^{[3]}$ The results showed that the native activity of PPL was significantly decreased after denatured and inhibitor pretreatment. Therefore, the natural active center of PPL might be essential for the catalytic activity.

Table S8. The natural activity of denatured and inhibitor-pretreated PPL.

Entry	Pretreatment of PPL	Natural activity of PPL [U/mg protein $]^{[a]}$
1	PPL	39
2	High-temperature-pretreated $\mathrm{PPL}^{[b]}$	5
3	$\mathrm{GuHCl}-$ pretreated $\mathrm{PPL}^{[c]}$	6
4	PMSF-pretreated PPL ${ }^{[d]}$	6
5	DEPC-pretreated PPL ${ }^{[\text {e] }}$	8
6	DCC-pretreated $\mathrm{PPL}^{[f]}$	10

[a] One unit will hydrolyze 1.0 microequivalent of fatty acid from Triacetin in 1 h at pH 7.4 at 37 ${ }^{\circ} \mathrm{C} .33 \%$ protein (Biuret)。[b] PPL $(150 \mathrm{mg}, 1930 \mathrm{U})$ in deionized water $(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 3 days, then the water was removed under reduced pressure. [c] PPL ($150 \mathrm{mg}, 1930 \mathrm{U}$) and $\mathrm{GuHCl}(1.74 \mathrm{~g}, 18.0 \mathrm{mmol})$ in deionized water $(3.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 10 h , the water was removed by lyophilization. [d] PPL ($150 \mathrm{mg}, 1930 \mathrm{U}$) and PMSF ($314 \mathrm{mg}, 1.8 \mathrm{mmol}$) in THF $(3.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 10 h , then THF was removed under reduced pressure. [e] PPL (150 $\mathrm{mg}, 1930 \mathrm{U})$ and DEPC ($145 \mathrm{mg}, 0.90 \mathrm{mmol})$ in phosphate buffer $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{pH}=8.0\right.$, 3.0 mL) was stirred at $37^{\circ} \mathrm{C}$ for 2 h , then water was removed by lyophilization. [f] PPL (150 mg , 1930 U) and DCC ($620 \mathrm{mg}, 3.0 \mathrm{mmol}$) in deionized water (3.0 mL) was stirred at $30{ }^{\circ} \mathrm{C}$ for 2 h , then water was removed by lyophilization.

7. Stern-Volmer luminescence quenching experiments

The measurements were performed using a 0.05 mM solution of $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in DMF with varying concentration of a quencher. The samples were excited at 450 nm and emission intensity was recorded at 622 nm . The results showed that 1a could significantly quench the excited state of Ru^{2+} (Figure S3, Figure S 4).

Figure S3. Fluorescence quenching of $0.05 \mathrm{mM} \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (in DMF) by increasing
concentration of $\mathbf{1 a}$.

Figure S4. Stern-Volmer plots of fluorescence quenching $0.05 \mathrm{mM} \mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (in DMF) by $1 \mathbf{1 a}$.

8. Cyclic voltammetry studies

The cyclic voltammetry experiments were performed in a three-electrode undivided cell, and were recorded with a CHI 700E potentiostat (CH Instruments, Inc.) at room temperature in MeCN (15 $\mathrm{mL}) \cdot n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.05 \mathrm{M})$ was used as the supporting electrolyte, and the concentration of the tested compound was 2.0 mM . The scan rate was $100 \mathrm{mV} / \mathrm{s}$. The potential ranges investigated for oxidations were 0 to $+2.0 \mathrm{~V} v s$. SCE (saturated aqueous KCl). CV plotting convention is IUPAC.

Working electrode: The working electrode is a 3 mm diameter glassy carbon working electrode. Polished with $0.05 \mu \mathrm{~m}$ aluminum oxide and then sonicated in distilled water and ethanol before measurements.

Reference electrode: The reference electrode is SCE (saturated aqueous KCl) that was washed with water and ethanol before measurements.

Counter electrode: The counter electrode is a platinum wire that was polished with $0.05 \mu \mathrm{~m}$ aluminum oxide and then sonicated in distilled water and ethanol before measurements.

Figure S5. Cyclic voltammograms of background and $\mathbf{1 a}(2 \mathrm{mM})$ in an electrolyte of n-Bu4 NPF_{6} $(0.05 \mathrm{mM})$ in MeCN from 0 to +2.0 V . The onset potential for the oxidation of $\mathbf{1 a}$ is around +0.69 V and the E_{ox} is approximately +1.08 V .

9. Unsuccessful substrates

Figure S6. Unsuccessful substrates.

10. Characterization data of the products

(S)-2-((S)-Phenyl(phenylamino)methyl)cyclohexan-1-one (3a) $)^{[3]}$

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 38 h). 65 mg , 78% yield, white solid. Diastereomeric ratio (dr): 75:25. Enantiomeric ratio (er): 79:21 (syn), 59:41 (anti). $\boldsymbol{R}_{\boldsymbol{f}}=0.35$ (Petroleum ether/EtOAc, v/v, 5:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}$,
$2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.57-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.80$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.33$ $-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 0.75 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1.25 \mathrm{H}), 1.71-1.54$ (m, 3H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 212.7,211.2,147.5,147.2,141.7,141.6,129.1,129.0$, $128.5,128.4,127.5,127.3,127.2,127.0,117.7,117.6,114.1,113.7,58.1,57.5,57.4,56.6,42.4$, 41.8, 31.3, 28.7, 27.8, 27.0, 24.8, 23.7. HPLC: Daicel Chiralpak OJ-H, hexane/isopropanol $=80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 27.549 min (syn major enantiomer), 21.125 min (syn minor enantiomer), 18.291 min (anti major enantiomer), 12.999 min (anti minor enantiomer).

(S)-2-((S)-(4-Nitrophenyl)(phenylamino)methyl)cyclohexan-1-one (3b) ${ }^{[4]}$

Followed the general procedure (Irradiation was conducted for 14 h , followed by the enzymecatalyzed reaction for 36 h). $68 \mathrm{mg}, 70 \%$ yield, yellow oil. Diastereomeric ratio (dr): 82:18. Enantiomeric ratio (er): 79:21 (syn), 63:37 (anti). $\boldsymbol{R}_{\boldsymbol{f}}=0.40$ (Petroleum ether/EtOAc, v/v, 3:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.53$ $(\mathrm{m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.70-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $0.82 H), 4.84-4.43(\mathrm{~m}, 1.18 \mathrm{H}), 2.89-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.11$ $-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta 211.6$, $210.5,149.9,149.6,147.2,147.1,146.7 \times 2(146.74,146.69), 129.3,129.2,128.6,128.3,123.6 \times 2$ (123.64, 123.60), 118.4, 118.2, 114.1, 113.6, 57.9, 57.3, 57.0, 56.2, $42.4 \times 2(42.42,42.37), 32.0$, 29.2, 27.7, 27.0, 24.9, 24.5. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 16.266 min (syn major enantiomer), 12.402 min (syn minor enantiomer), 14.366 min (anti major enantiomer), 10.040 min (anti minor enantiomer).

(S)-2-((S)-(4-Fluorophenyl)(phenylamino)methyl)cyclohexan-1-one (3c) ${ }^{[5]}$

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 36 h). $71 \mathrm{mg}, 80 \%$ yield, yellow oil. Diastereomeric ratio (dr): 59:41.

Enantiomeric ratio (er): 74:26 (syn), 54:46 (anti). $\boldsymbol{R}_{\boldsymbol{f}}=0.40$ (Petroleum ether/EtOAc, v/v, 3:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}$, $2 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.49(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 0.59 \mathrm{H})$, $4.60(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 0.41 \mathrm{H}), 2.83-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.08-$ $1.91(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 212.2$, $211.2,161.9 \times 2[161.91(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 161.86(\mathrm{~d}, J=245.2 \mathrm{~Hz})], 147.2,147.0,137.4,137.2(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 129.1,129.0,128.8(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 117.9,117.8,115.3(\mathrm{~d}, J=$ $21.3 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 114.1,113.8,57.6,57.4,57.0,56.5,42.4,41.9,31.4,29.0,27.8$, 27.0, 24.8, 23.9. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($565 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-115.61,-115.9$. HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 298.1602$, Found: 298.1599; Calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNNaO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 320.1421, Found: 320.1421. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: $12.195 \mathrm{~min}(\operatorname{syn}$ major enantiomer), $9.106 \mathrm{~min}(\operatorname{syn}$ minor enantiomer), 10.032 min (anti major enantiomer), 7.802 min (anti minor enantiomer).

(S)-2-((S)-(4-Chlorophenyl)(phenylamino)methyl)cyclohexan-1-one (3d) ${ }^{[5]}$

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 36 h). 67 mg , 71% yield, yellow oil. Diastereomeric ratio (dr): 68:32. Enantiomeric ratio (er): 77:23 (syn), 56:44 (anti). $\boldsymbol{R}_{\boldsymbol{f}}=0.30$ (Petroleum ether/EtOAc, v/v, 3:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}$, $3 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.48(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 0.68 \mathrm{H})$, $4.59(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 0.32 \mathrm{H}), 4.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.80-2.75(\mathrm{~m}, 0.68 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 0.32 \mathrm{H}), 2.44-$ $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 212.1,211.0,147.1,147.0,140.4,140.0,132.8,132.7,129.1 \times 2$ (129.11, 129.06), 129.0, 128.7, 128.6, 128.5, 118.0, 117.8, 114.1, 113.7, 57.6, 57.3, 57.1, 56.4, 42.4, 42.0, 31.4, 29.0, 27.8, 27.0, 24.9, 24.0. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol = 95:5, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 16.850 min (syn major enantiomer), 12.786 min (syn minor enantiomer), 13.784 min (anti major enantiomer), 10.609 min (anti minor enantiomer).

(S)-2-((S)-(4-Bromophenyl)(phenylamino)methyl)cyclohexan-1-one (3e) ${ }^{[5]}$

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 36 h). $79 \mathrm{mg}, 74 \%$ yield, yellow oil. Diastereomeric ratio (dr): 77:23. Enantiomeric ratio (er): 79:21 (syn), 59:41 (anti). $\boldsymbol{R}_{\boldsymbol{f}}=0.35$ (Petroleum ether/EtOAc, v/v, 3:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.46-7.42(\mathrm{~m}, 1.77 \mathrm{H}), 7.36-7.32$ $(\mathrm{m}, 0.23 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 0.77 \mathrm{H}), 4.61(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 0.23 \mathrm{H}), 2.87-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 212.2,211.0,147.1,147.0,140.6,140.1,131.6,131.5,129.4,129.1 \times$ 3 (129.14, 129.12, 129.07), 121.0, 120.8, $118.0 \times 2(118.02,117.98), 114.1,113.8,57.2,57.1,56.4$, 56.3, 42.4, 42.0, 31.5, 29.0, 27.8, 27.0, 24.9, 24.0. HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrNO}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 358.0801$, Found: 358.0800. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol = 95:5, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 18.493 min (syn major enantiomer), 14.385 min (syn minor enantiomer), 15.282 min (anti major enantiomer), 12.267 min (anti minor enantiomer).

(S)-2-((S)-(4-Acetylphenyl)(phenylamino)methyl)cyclohexan-1-one (3f)

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 36 h). $64 \mathrm{mg}, 66 \%$ yield, yellow oil. Diastereomeric ratio (dr): 82:18. Enantiomeric ratio (er): 81:19 (syn), 55:45 (anti). $\boldsymbol{R}_{\boldsymbol{f}}=0.30$ (Petroleum ether/EtOAc, v/v, 3:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.37$ $(\mathrm{m}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47-6.42(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $0.88 \mathrm{H}), 4.70-4.35(\mathrm{~m}, 1.12 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.20$ $(\mathrm{m}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right): ~ \delta 211.0,209.8,146.6,146.4,146.1,146.0,135.2 \times 2(135.24,135.20), 128.2,128.1,127.6$, $127.5,126.9,126.6,117.1,116.9,113.1,112.6,57.0,56.4,56.2,55.3,41.4,41.1,30.7,28.0,26.8$,
26.0, 25.5, 25.0, 23.9, 23.1. HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 322.1802$, Found: 322.1801; Calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 344.1621 , Found: 344.1622. HPLC: Daicel Chiralpak OD-H, hexane/isopropanol $=80: 20$, flow rate $0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 41.069 min (syn major enantiomer), 69.795 min (syn minor enantiomer), 44.412 min (anti major enantiomer), 39.701 min (anti minor enantiomer).

(S)-2-((S)-(4-Methoxyphenyl)(phenylamino)methyl)cyclohexan-1-one (3g) $)^{[6]}$

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 38 h). $62 \mathrm{mg}, 67 \%$ yield, yellow oil. Diastereomeric ratio (dr): 70:30. Enantiomeric ratio (er): 76:24 (syn), 61:39 (anti). $\boldsymbol{R}_{f}=0.40$ (Petroleum ether/EtOAc, v/v, 5:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.09 \quad-7.02$ $(\mathrm{m}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $0.70 \mathrm{H}), 4.58(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 0.30 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.34-$ $2.25(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 5 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 212.8,211.5,158.8,158.6,147.5,147.2,133.6,133.5,129.0 \times 2(129.03,128.99), 128.6$, $128.3,117.6,114.4,114.1,113.9 \times 2(113.93,113.87), 113.8,57.6 \times 2(57.61,57.56), 57.0,56.6$, $55.2 \times 2(55.20,55.18), 42.4,41.7,31.1,29.0,27.8,27.0,24.8,23.6$. HPLC: Daicel Chiralpak ASH , hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: $20.391 \mathrm{~min}($ syn major enantiomer), 14.239 min (syn minor enantiomer), 10.020 min (anti major enantiomer), 16.801 \min (anti minor enantiomer).

(S)-2-((S)-(Phenylamino)(p-tolyl)methyl)cyclohexan-1-one (3h) ${ }^{[6]}$

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 35 h). 56 mg , 64% yield, yellow oil. Diastereomeric ratio (dr): 63:37. Enantiomeric ratio (er): 79:21 (syn), 63:37 (anti). $\boldsymbol{R}_{f}=0.50$ (Petroleum ether/EtOAc, v/v, 5:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.01(\mathrm{~m}$,
$4 \mathrm{H}), 6.66-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 0.63 \mathrm{H}), 4.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $0.37 \mathrm{H}), 2.80-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}$, 2H), 1.71 - $1.56(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 212.9,211.4,147.6,147.3,138.6,138.5$, $136.7,136.5,129.2,129.1 \times 2(129.08,129.05), 129.0,127.4,127.2,117.6 \times 2(117.63,117.55)$, 114.1, 113.8, 57.8, 57.5, 57.1, 56.6, 42.4, 41.7, 31.2, 28.8, 27.9, 27.0, 24.8, 23.6, 21.4, 21.0. HPLC: Daicel Chiralpak OJ-H, hexane/isopropanol = 97:03, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 37.645 min (syn major enantiomer), 33.056 min (syn minor enantiomer), 27.180 min (anti major enantiomer), 20.670 min (anti minor enantiomer).

(S)-2-((S)-(Phenylamino)(m-tolyl)methyl)cyclohexan-1-one (3i) ${ }^{[7]}$

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 35 h). $55 \mathrm{mg}, 62 \%$ yield, yellow oil. Diastereomeric ratio (dr): 71:29. Enantiomeric ratio (er): 77:23 (syn), 57:43 (anti). $\boldsymbol{R}_{\boldsymbol{f}}=0.40$ (Petroleum ether/EtOAc, v/v, 5:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.03(\mathrm{~m}$, 2H), $7.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 0.71 \mathrm{H})$, $4.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.29 \mathrm{H}), 2.81-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 212.9,211.3,147.6$, $147.2,141.7 \times 2(141.74,141.66), 138.1,138.0,129.1,129.0,128.3,128.2,128.1,128.0,127.9$, $127.8,124.6,124.5,117.6 \times 2(117.64,117.59), 114.1,113.7,58.2,57.5,57.2,56.7,42.4,41.7$, 31.3, 28.6, 27.9, 27.0, 25.0, 24.8, 23.6, 21.6. HPLC: Daicel Chiralpak OJ-H, hexane/isopropanol = 97:03, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 36.776 min (syn major enantiomer), 32.200 \min (syn minor enantiomer), 23.964 min (anti major enantiomer), 19.814 min (anti minor enantiomer).

(S)-2-((S)-Naphthalen-2-yl(phenylamino)methyl)cyclohexan-1-one (3j) ${ }^{[8]}$

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 38 h). $63 \mathrm{mg}, 64 \%$ yield, yellow oil. Diastereomeric ratio (dr): 78:22. Enantiomeric ratio (er): 83:17 (syn), 59:41 (anti). $\boldsymbol{R}_{f}=0.40$ (Petroleum ether/EtOAc, v/v, 5:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.83-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.55(\mathrm{~m}, 3 \mathrm{H}), 4.96(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 0.78 \mathrm{H})$, $4.79(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 0.22 \mathrm{H}), 2.91-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $1.83(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta 212.6$, $211.2,147.6,147.3,139.3,139.2,133.4,133.3,132.9,132.8,129.1,129.0,128.4,128.1,128.0 \times 2$ $(128.00,127.91), 127.7,127.6,126.4 \times 2(126.42,126.35), 126.1,126.0,125.8,125.7,125.6,125.2$, $117.8,117.7,114.2,113.8,58.4,57.6,57.5,56.6,42.4,41.8,31.3,28.8,27.8,27.0,24.8,23.7$. HPLC: Daicel Chiralpak AS-H, hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 19.775 min (syn major enantiomer), 12.736 min (syn minor enantiomer), 7.440 min (anti major enantiomer), 14.469 min (anti minor enantiomer).

(S)-2-((S)-(4-Nitrophenyl)(m-tolylamino)methyl)cyclohexan-1-one (3k) ${ }^{[9]}$

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 38 h). 71 mg , 70% yield, white solid. Diastereomeric ratio (dr): 87:13. Enantiomeric ratio (er): 82:18 (syn), 64:36 (anti). $\boldsymbol{R}_{\boldsymbol{f}}=0.40$ (Petroleum ether/EtOAc, v/v, 5:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.26 \mathrm{H}), 8.14$ (d, $J=8.4 \mathrm{~Hz}, 1.74 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1.74 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 0.26 \mathrm{H}), 6.96(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53-6.47(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 0.87 \mathrm{H}), 4.71(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 0.13 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 1 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 211.6,210.5,150.0,149.7,147.1,146.7,139.1,139.0,129.1,129.0,128.6,128.2$, $126.6,123.6 \times 2(123.63,123.58), 123.4,119.4,119.1,115.0,114.5,111.0,110.5,57.8,57.3,56.8$, 56.2, 42.4, 42.3, 31.9, 29.2, 27.0, 25.9, 24.9, 24.8, 24.5, 21.5. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=85: 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: $20.875 \mathrm{~min}($ syn
major enantiomer), 16.896 min (syn minor enantiomer), 15.288 min (anti major enantiomer), 13.003 \min (anti minor enantiomer).

(S)-2,2-Dimethyl-4-((R)-phenyl(phenylamino)methyl)-1,3-dioxan-5-one (31)

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 40 h). $73 \mathrm{mg}, 78 \%$ yield, white solid. Diastereomeric ratio (dr): 93:7. Enantiomeric ratio (er): 79:21 (syn), 74:26 (anti). $\boldsymbol{R}_{\boldsymbol{f}}=0.20$ (Petroleum ether/EtOAc, v/v, 5:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.10(\mathrm{~s}, 0.93 \mathrm{H}), 5.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.07 \mathrm{H}), 4.98-4.60(\mathrm{~m}, 1.07 \mathrm{H}), 4.49(\mathrm{~s}, 0.93 \mathrm{H}), 4.41(\mathrm{~d}, J$ $=23.0 \mathrm{~Hz}, 0.07 \mathrm{H}), 4.26(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 0.93 \mathrm{H}), 4.05(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 0.93 \mathrm{H}), 3.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $0.07 \mathrm{H}), 1.52(\mathrm{~s}, 2.79 \mathrm{H}), 1.45(\mathrm{~s}, 0.21 \mathrm{H}), 1.42(\mathrm{~s}, 0.21 \mathrm{H}), 1.32(\mathrm{~s}, 2.79 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 5 1 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 206.9 \times 2(206.91,206.86), 146.9,146.4,139.74,137.9,129.2 \times 2(129.21,129.15)$, $128.8,128.4,128.0,127.6,127.4,127.1,118.3,118.0,114.3,114.1,100.8,100.7,79.4,77.8,67.4$, 67.1, 57.1, 56.3, 24.9, 24.6, 23.4, 22.9. HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 312.1594, Found: 312.1593; Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 334.1414$, Found: 334.1412; Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{KNO}_{3}\left([\mathrm{M}+\mathrm{K}]^{+}\right): 350.1153$, Found: 350.1151. HPLC: Daicel Chiralpak OJH, hexane/isopropanol $=80: 20$, flow rate $0.75 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: $11.489 \mathrm{~min}($ syn major enantiomer), 15.486 min (syn minor enantiomer), 13.604 min (anti major enantiomer), 7.094 \min (anti minor enantiomer).

(3R,4R)-3-Hydroxy-4-phenyl-4-(phenylamino)butan-2-one (5a) ${ }^{[10]}$
Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 40 h). $62 \mathrm{mg}, 81 \%$ yield, yellow oil. Diastereomeric ratio (dr): 76:24. Enantiomeric ratio (er): 88:12 (anti), 62:38 (syn). $\boldsymbol{R}_{\boldsymbol{f}}=0.25$ (Petroleum ether/EtOAc, v/v, 5:1). ${ }^{\mathbf{1}} \mathbf{H}$

NMR (600 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 7.38-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.70-$ $6.64(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1.52 \mathrm{H}), 6.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.48 \mathrm{H}), 4.95(\mathrm{~s}, 0.24 \mathrm{H}), 4.85(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 0.76 \mathrm{H}), 4.66(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 0.76 \mathrm{H}), 4.42(\mathrm{~s}, 0.24 \mathrm{H}), 3.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 0.72 \mathrm{H}), 2.13$ ($\mathrm{s}, 2.28 \mathrm{H}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.4,207.3,146.4,146.2,139.3,137.3,129.3,129.2$, $128.7,128.6,128.1,127.6,127,4,127.0,118.3,118.2,114.1,113.9,80.8,79.9,59.6,58.4,26.8$, 25.2. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=80: 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm , retention time: 15.333 min (anti major enantiomer), 15.046 min (anti minor enantiomer), 19.149 min (syn major enantiomer), 12.700 min (syn minor enantiomer).

(3R,4R)-3-Hydroxy-4-(4-nitrophenyl)-4-(phenylamino)butan-2-one (5b) ${ }^{[11]}$
Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 28 h). $62 \mathrm{mg}, 69 \%$ yield, yellow oil. Diastereomeric ratio (dr): 86:14. Enantiomeric ratio (er): 87:13 (anti), 65:35 (syn). $\boldsymbol{R}_{f}=0.20$ (Petroleum ether/EtOAc, v/v, 5:1). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 8.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.28 \mathrm{H}), 8.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1.72 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 0.28 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1.72 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1.72 \mathrm{H}), 6.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.28 \mathrm{H}), 5.08(\mathrm{~s}, 0.14 \mathrm{H}), 4.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 0.86 \mathrm{H}), 4.84$ (br s, 0.86 H$), 4.73(\mathrm{~s}, 0.86 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 0.14 \mathrm{H}), 4.45(\mathrm{~s}, 0.14 \mathrm{H}), 3.53(\mathrm{~s}, 0.86 \mathrm{H}), 2.36(\mathrm{~s}, 0.42 \mathrm{H})$, $2.25(\mathrm{~s}, 2.58 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 206.3,206.2,147.8,147.6,147.1,145.5,145.3$, $145.0,129.4 \times 2(129.45,129.40), 128.5,128.0,123.9,123.7,118.9 \times 2(118.92,118.90), 114.0$, 113.8, 80.0, 79.6, 59.2, 58.0, 26.6, 24.9. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=$ 90:10, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 34.336 min (anti major enantiomer), 23.332 min (anti minor enantiomer), 42.833 min (syn major enantiomer), 36.393 min (syn minor enantiomer).

(3R,4R)-4-(4-Bromophenyl)-3-hydroxy-4-(phenylamino)butan-2-one (5c)

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 28 h). $73 \mathrm{mg}, 73 \%$ yield, yellow oil. Diastereomeric ratio (dr): 82:18. Enantiomeric ratio (er): 88:12 (anti), 61:39 (syn). $\boldsymbol{R}_{f}=0.25$ (Petroleum ether/EtOAc, v/v, 5:1). ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$: $\delta 7.46-7.44(\mathrm{~m}, 0.36 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1.64 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 0.36 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1.64 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.54(\mathrm{~m}, 1.64 \mathrm{H}), 6.52$ - $6.48(\mathrm{~m}, 0.36 \mathrm{H}), 4.92(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 0.18 \mathrm{H}), 4.81(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 0.82 \mathrm{H}), 4.64(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $0.82 \mathrm{H}), 4.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.18 \mathrm{H}), 2.30(\mathrm{~s}, 0.54 \mathrm{H}), 2.17(\mathrm{~s}, 2.46 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ $\delta 207.0,206.9,146.0,145.7,138.4,136.4,131.8 \times 2(131.84,131.77), 129.3 \times 2(129.33,129.30)$, $129.2,128.8,122.1,121.6,118.5 \times 2(118.51,118.47), 114.0,113.8,80.4,79.7,59.0,57.8,26.7$, 25.1. HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 334.0437$, Found: 334.0436. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 16.871 min (anti major enantiomer), 11.811 min (anti minor enantiomer), 17.868 min (syn major enantiomer), 11.988 min (syn minor enantiomer).

(3R,4R)-4-(4-Acetylphenyl)-3-hydroxy-4-(phenylamino)butan-2-one (5d)
Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 28 h). $66 \mathrm{mg}, 74 \%$ yield, yellow oil. Diastereomeric ratio (dr): 85:15. Enantiomeric ratio (er): 88:12 (anti), 60:40 (syn). $\boldsymbol{R}_{f}=0.20\left(\right.$ Petroleum ether/EtOAc, v/v, 5:1). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.30 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1.70 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 0.30 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1.70 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1.70 \mathrm{H}), 6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.30 \mathrm{H}), 5.03(\mathrm{~s}, 0.15 \mathrm{H}), 4.91(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 0.85 \mathrm{H}), 4.70(\mathrm{~s}$, $0.85 \mathrm{H}), 4.45(\mathrm{~s}, 0.15 \mathrm{H}), 3.90(\mathrm{~s}, 0.15 \mathrm{H}), 3.59(\mathrm{~s}, 0.85 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 0.45 \mathrm{H}), 2.19$ ($\mathrm{s}, 2.55 \mathrm{H}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.0,206.8,197.6,197.5,146.0,145.8,145.0,142.9$, $136.9,136.6,129.3 \times 2(129.33,129.29), 128.8,128.6,127.8,127.3,118.6,118.5,114.0,113.8$, 80.3, 79.7, 59.4, 58.2, 26.7, $26.5 \times 2(26.51,26.48), 25.1$. HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 298.1438$, Found: 298.1437. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=$ 90:10, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 32.234 min (anti major enantiomer),
$27.494 \min$ (anti minor enantiomer), 44.333 min (syn major enantiomer), 29.170 min (syn minor enantiomer).

(3R,4R)-3-Hydroxy-4-(phenylamino)-4-(p-tolyl)butan-2-one (5e)
Followed the general procedure (Irradiation was conducted for 18 h , followed by the enzymecatalyzed reaction for 30 h). $67 \mathrm{mg}, 83 \%$ yield, yellow oil. Diastereomeric ratio (dr): 77:23. Enantiomeric ratio (er): 82:18 (anti), 57:43 (syn). $\boldsymbol{R}_{\boldsymbol{f}}=0.30$ (Petroleum ether/EtOAc, v/v, 3:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.46 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1.54 \mathrm{H}), 7.13-7.03$ $(\mathrm{m}, 4 \mathrm{H}), 6.68-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.50(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 0.23 \mathrm{H}), 4.80(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.77 \mathrm{H}), 4.61$ $(\mathrm{d}, J=2.7 \mathrm{~Hz}, 0.77 \mathrm{H}), 4.37(\mathrm{~s}, 0.23 \mathrm{H}), 3.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 0.69 \mathrm{H}), 2.27-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{~s}$, $2.31 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.6,207.5,146.5,146.4,137.8,137.3,136.3,134.2$, $129.5,129.4,129.3,129.2,127.3,126.9,118.2,118.1,114.1,113.9,80.9,79.9,59.3,58.2,26.8$, 25.3, 21.1, 21.1. HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 270.1489$, Found: 270.1492; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 292.1308, Found: 292.1312. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 14.132 min (anti major enantiomer), 11.548 min (anti minor enantiomer), 16.947 min (syn major enantiomer), 10.399 min (syn minor enantiomer).

(3R,4R)-3-Hydroxy-4-(phenylamino)-4-(m-tolyl)butan-2-one (5f)
Followed the general procedure (Irradiation was conducted for 18 h , followed by the enzymecatalyzed reaction for 30 h). $57 \mathrm{mg}, 71 \%$ yield, yellow oil. Diastereomeric ratio (dr): 73:27. Enantiomeric ratio (er): 82:18 (anti), 52:48 (syn). $\boldsymbol{R}_{\boldsymbol{f}}=0.30$ (Petroleum ether/EtOAc, v/v, 3:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$: $\delta 7.24-6.98(\mathrm{~m}, 6 \mathrm{H}), 6.77-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.64-6.48(\mathrm{~m}, 2 \mathrm{H}), 4.90$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 0.27 \mathrm{H}), 4.79(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 0.73 \mathrm{H}), 4.62(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 0.73 \mathrm{H}), 4.39(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $0.27 \mathrm{H}), 4.30-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 3.81 \mathrm{H}), 2.10(\mathrm{~s}, 2.19 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta 207.6,207.2,146.5,146.3,139.3,138.3 \times 2(138.34,138.28), 137.3,129.3,129.2,129.0,128.6$, S22
$128.5,128.0,127.6,124.5,124.0,120.9,118.2,118.1,114.0,113.8,80.9,79.9,59.6,58.3,26.8$, 25.3, 21.6, 21.5. HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 270.1489$, Found: 270.1487; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$292.1308, Found: 292.1314. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 10.920 min (anti major enantiomer), 12.158 min (anti minor enantiomer), 13.166 min (syn major enantiomer), 8.649 min (syn minor enantiomer).

(3R,4R)-3-Hydroxy-4-(phenylamino)-4-(o-tolyl)butan-2-one (5g)
Followed the general procedure (Irradiation was conducted for 18 h , followed by the enzymecatalyzed reaction for 31 h). $72 \mathrm{mg}, 89 \%$ yield, yellow oil. Diastereomeric ratio (dr): 89:11. Enantiomeric ratio (er): 89:11 (anti), 57:43 (syn). $\boldsymbol{R}_{f}=0.30$ (Petroleum ether/EtOAc, v/v, 3:1). ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3} : $\delta 7.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 0.89 \mathrm{H}), 7.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 0.11 \mathrm{H}), 7.20-7.01$ $(\mathrm{m}, 5 \mathrm{H}), 6.72-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.50(\mathrm{~m}, 1.78 \mathrm{H}), 6.45-6.41(\mathrm{~m}, 0.22 \mathrm{H}), 5.14(\mathrm{~s}, 0.11 \mathrm{H}), 4.98$ (dd, $J=4.6,2.1 \mathrm{~Hz}, 0.89 \mathrm{H}), 4.55(\mathrm{dd}, J=4.5,2.2 \mathrm{~Hz}, 0.89 \mathrm{H}), 4.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.11 \mathrm{H}), 3.77(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 0.33 \mathrm{H}), 2.45(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2.67 \mathrm{H}), 2.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.33 \mathrm{H}), 1.92(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 2.67 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 209.6,207.7,146.6,146.1,136.9,136.2,135.8$, $134.5,131.1,130.8,129.3 \times 2(129.33,129.29), 127.9,127.6,126.9,126.8,126.6,126.5,118.5$, 118.1, 114.0, 113.8, 78.6, 78.3, 56.6, 54.5, 27.7, 25.3, 19.5, 19.3. HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 270.1489$, Found: 270.1486; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 292.1308, Found: 292.1308. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol = 97:3, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 26.786 min (anti major enantiomer), 29.598 min (anti minor enantiomer), 52.100 min (syn major enantiomer), 20.597 min (syn minor enantiomer).

(3R,4R)-3-Hydroxy-4-(naphthalen-2-yl)-4-(phenylamino)butan-2-one (5h)
Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 28 h). $63 \mathrm{mg}, 69 \%$ yield, yellow oil. Diastereomeric ratio (dr): 81:19.

Enantiomeric ratio (er): 87:13 (anti), 59:41 (syn). $\boldsymbol{R}_{\boldsymbol{f}}=0.65$ (Petroleum ether/EtOAc, v/v, 5:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.83-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 0.19 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2.81 \mathrm{H})$, $7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.62(\mathrm{~m}, 1.62 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.38 \mathrm{H}), 5.11$ $(\mathrm{s}, 0.19 \mathrm{H}), 5.01(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 0.81 \mathrm{H}), 4.73(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 0.81 \mathrm{H}), 4.51(\mathrm{~s}, 0.19 \mathrm{H}), 2.32(\mathrm{~s}, 0.57 \mathrm{H})$, $2.15(\mathrm{~s}, 2.43 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (151 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 207.2 \times 2(207.22,207.20), 146.4,146.2,136.9$, $134.9,133.4,133.2 \times 2(133.21,133.20), 133.1,129.3,129.2,128.6 \times 2(128.63,128.56), 128.0$, $127.9,127.7 \times 2(127.709,127.707), 126.6,126.3,126.2 \times 2(126.23,126.16), 126.0 \times 2(126.04$, 125.98), 125.1, 124.8, 118.4, 118.3, 114.1, 114.0, 80.8, 80.0, 59.9, 58.6, 26.8, 25.3. HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 306.1489$, Found: 306.1493; Calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 328.1308$, Found: 328.1309. HPLC: Daicel Chiralpak OD-H, hexane/isopropanol $=$ 90:10, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 18.516 min (anti major enantiomer), 65.165 min (anti minor enantiomer), 29.210 min (syn major enantiomer), 32.480 min (syn minor enantiomer).

(3R,4R)-3-Hydroxy-4-((4-methoxyphenyl)amino)-4-phenylbutan-2-one (5i) ${ }^{[12]}$
Followed the general procedure (Irradiation was conducted for 18 h , followed by the enzymecatalyzed reaction for 30 h). $47 \mathrm{mg}, 55 \%$ yield, yellow oil. Diastereomeric ratio (dr): 75:25. Enantiomeric ratio (er): 83:17 (anti), 58:42 (syn). $\boldsymbol{R}_{\boldsymbol{f}}=0.25$ (Petroleum ether/EtOAc, v/v, 3:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.35-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.73-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.47(\mathrm{~m}, 2 \mathrm{H}), 4.87$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.77(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.64(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.40(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $0.25 \mathrm{H}), 4.29-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2.25 \mathrm{H}), 3.66(\mathrm{~s}, 0.75 \mathrm{H}), 2.14(\mathrm{~s}, 0.75 \mathrm{H}) 2.10(\mathrm{~s}, 2.25 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 207.6,207.5,158.5,152.7,140.4,140.2,137.4,136.5,128.7 \times 2$ (128.74, 128.68), 128.6, 128.1, 127.4, 127.0, 122.2, 115.7, 114.8, 114.4, 80.8, 79.8, 60.6, 59.3, 55.6, 55.5, 26.8, 25.3. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=90: 10$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 23.893 min (anti major enantiomer), 20.623 min (anti minor enantiomer), 30.311 min (syn major enantiomer), 18.439 min (syn minor enantiomer).

(3R,4R)-3-Hydroxy-4-((2-methoxyphenyl)amino)-4-phenylbutan-2-one (5j)
Followed the general procedure (Irradiation was conducted for 18 h , followed by the enzymecatalyzed reaction for 40 h). $40 \mathrm{mg}, 47 \%$ yield, yellow oil. Diastereomeric ratio (dr): 75:25. Enantiomeric ratio (er): 80:20 (anti), 53:47 (syn). $\boldsymbol{R}_{\boldsymbol{f}}=0.25$ (Petroleum ether/EtOAc, v/v, 3:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$: $\delta 7.37-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.78-6.60(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}$, $0.75 \mathrm{H}), 6.40(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 0.25 \mathrm{H}), 5.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.87(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.71(\mathrm{~s}, 0.75 \mathrm{H}), 4.46(\mathrm{~s}, 0.25 \mathrm{H}), 3.88(\mathrm{~s}, 2.25 \mathrm{H}), 3.86(\mathrm{~s}, 0.75 \mathrm{H}), 2.32(\mathrm{~s}, 0.75 \mathrm{H})$, $2.16(\mathrm{~s}, 2.25 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 207.4,207.3,147.3,147.2,139.3,137.3,136.2$, $136.0,128.7,128.6,128.1,127.6,127.4,126.9,121.0 \times 2(121.05,121.02), 117.5,117.4,111.4 \times 2$ $(111.41,111.38), 109.7 \times 2(109.74,109.67), 80.9,80.0,59.5,58.3,55.5 \times 2(55.54,55.53), 26.9$, 25.3. HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 286.1438, Found: 286.1435; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 308.1257, Found: 308.1256. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=95: 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 24.265 min (anti major enantiomer), 21.883 min (anti minor enantiomer), 20.269 min (syn major enantiomer), 16.807 $\min (s y n$ minor enantiomer).

(3R,4R)-3-Hydroxy-4-(naphthalen-2-ylamino)-4-phenylbutan-2-one (5k)
Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 28 h). $63 \mathrm{mg}, 69 \%$ yield, yellow oil. Diastereomeric ratio (dr): 74:26. Enantiomeric ratio (er): 86:14 (anti), 51:49 (syn). $\boldsymbol{R}_{f}=0.70$ (Petroleum ether/EtOAc, v/v, 5:1). ${ }^{1} \mathbf{H}$ NMR (600 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.66$ $(\mathrm{m}, 1 \mathrm{H}), 5.10-4.46(\mathrm{~m}, 3 \mathrm{H}), 3.83-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.16(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right): \delta 207.1 \times 2(207.14,207.12), 144.0,143.8,137.0,134.9,129.1 \times 2(129.13,129.09), 128.8$, $128.7,128.6,128.2,127.9,127.7,127.6,127.4,126.9,126.8,126.3 \times 2(126.33,126.30), 126.0 \times 2$
(126.04, 126.00), 122.4, 122.0, 118.3, 118.0, 114.1, 113.8, 106.7, 106.5, 80.7, 79.8, 59.6, 58.4, 26.8, 25.2. HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 328.1308$, Found: 328.1309. HPLC: Daicel Chiralpak AS-H, hexane/isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 36.680 min (anti major enantiomer), 24.209 min (anti minor enantiomer), 33.739 min (syn major enantiomer), 38.521 min (syn minor enantiomer).

(3R,4R)-3-Methoxy-4-phenyl-4-(phenylamino)butan-2-one (51)
Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 36 h). 66 mg , 82% yield, white solid. Diastereomeric ratio (dr): 83:17. Enantiomeric ratio (er): 84:16 (anti), 69:31 (syn). $\boldsymbol{R}_{\boldsymbol{f}}=0.30$ (Petroleum ether/EtOAc, v/v, 5:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1.68 \mathrm{H})$, $6.52(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 0.32 \mathrm{H}), 4.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 0.32 \mathrm{H}), 4.68(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.84 \mathrm{H}), 4.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.92(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.84 \mathrm{H}), 3.83(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.32 \mathrm{H}), 3.36(\mathrm{~s}, 2.52 \mathrm{H}), 3.28(\mathrm{~s}, 0.48 \mathrm{H}), 2.15(\mathrm{~s}$, $0.48 \mathrm{H}), 1.82(\mathrm{~s}, 2.52 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 210.5,209.9,146.5,146.2,139.8,138.6$, $129.2,129.1,128.5 \times 2(128.53,128.48), 127.8 \times 2(127.83,127.78), 127.5,127.0,118.2,117.9$, 114.1, 113.8, 90.6, 89.8, 59.6, 59.4, 59.2, 58.7, 27.2, 26.5. HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 270.1489$, Found: 270.1489; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 292.1308$, Found: 292.1307; Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{KNO}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right): 308.1047$, Found: 308.1047. HPLC: Daicel Chiralpak AD-H, hexane/isopropanol $=97: 3$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 41.968 min (anti major enantiomer), 27.972 min (anti minor enantiomer), 26.171 min (syn major enantiomer), $20.844 \min$ (syn minor enantiomer).

(3R,4R)-3-(Benzyloxy)-4-phenyl-4-(phenylamino)butan-2-one (5m)

Followed the general procedure (Irradiation was conducted for 12 h , followed by the enzymecatalyzed reaction for 40 h). $66 \mathrm{mg}, 64 \%$ yield, yellow oil. Diastereomeric ratio (dr): 85:15.

Enantiomeric ratio (er): 83:17 (anti), 65:35 (syn). $\boldsymbol{R}_{f}=0.45$ (Petroleum ether/EtOAc, v/v, 5:1). Mixture of two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.36-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.23(\mathrm{~m}$, $1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.69$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 0.85 \mathrm{H}), 4.63-4.36(\mathrm{~m}, 2.15 \mathrm{H}), 4.34(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 0.85 \mathrm{H}), 4.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $0.15 \mathrm{H}), 4.09(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.85 \mathrm{H}), 4.06(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0,15 \mathrm{H}), 2.18(\mathrm{~s}, 0.45 \mathrm{H}), 1.87(\mathrm{~s}, 2.55 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 210.5,209.5,146.4,146.2,139.7,138.7,137.0,136.8,129.3$, $129.2,128.8,128.6 \times 2(128.62,128.55), 128.5,128.2,128.1,128.0 \times 2(128.02,127.95), 127.9$, $127.8,127.5,127.1,118.1,117.9,114.0,113.8,88.0,87.3,73.8,73.6,59.3,58.9,27.5,26.6$. HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$346.1802, Found: 346.1799; Calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NNaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 368.1621$, Found: 368.1619; Calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{KNO}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 384,1360, Found: 384.1359. HPLC: Daicel Chiralpak OD-H, hexane/isopropanol = 99:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 26.702 min (anti major enantiomer), 43.411 min (anti minor enantiomer), 22.056 min (syn major enantiomer), 37.099 min (syn minor enantiomer).

11. Comparison of dr determined by HPLC and ${ }^{\mathbf{1}} \mathbf{H N M R}$ analysis of mixture.

Table S9. Comparison of dr determined by HPLC and ${ }^{1} \mathrm{HNMR}$ analysis of the mixture.

Entry	Product	dr of isolated products determined by HPLC analysis	dr of crude reaction mixtures determined by ${ }^{1}$ HNMR analysis
1	$\mathbf{3 a}$	$75 / 25$ (syn/anti)	$75 / 25$ (syn/anti)
2	$\mathbf{3 j}$	$78 / 22$ (syn/anti)	$79 / 21$ (syn/anti)
3	$\mathbf{3 1}$	$93 / 7$ (syn/anti)	$90 / 10$ (syn/anti)
4	$\mathbf{5 a}$	$76 / 24$ (anti/syn)	$76 / 24$ (anti/syn)
5	$\mathbf{5 l}$	$83 / 17$ (anti/syn)	$83 / 17$ (anti/syn)
6	$\mathbf{5 m}$	$85 / 15$ (anti/syn)	$85 / 15$ (anti/syn)

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 a}$

mV

No．	Retention Time	Area	Height	Concentration
1	11.771	8401948	369500	32.159
2	16． 103	8477829	225903	32.450
3	18.354	4537721	119703	17.369
4	24.601	4708447	64951	18.022
总计		26125945	780058	

HPLC spectrum of $\mathbf{3 a}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	12.999	7337657	267309	10.459
2	18.291	10543487	222899	15.029
3	21.125	10767896	209409	15.349
4	27.549	41505024	422224	59.163
总计		70154064	1121840	

${ }^{1} \mathrm{H}$ NMR Spectrum（ 400 MHz ，DMSO－d_{6} ）of 3a（Crude reaction mixture）

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 j}$

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	7.411	7041227	451410	34.538
2	12.701	3174983	89458	15.574
3	14.315	6962883	135562	34.154
4	20.016	3207544	49717	15.734
总计		20386636	726147	

HPLC spectrum of $\mathbf{3 j}$

mV

No.	Retention Time	Area	Height	Concentration
1	7.440	6673589	435276	12.860
2	12.736	6873230	182312	13.244
3	14. 469	4709979	88754	9.076
4	19.775	33639277	417749	64.820
总计		51896075	1124091	

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) of $\mathbf{3 j}$ (Crude reaction mixture)

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 1}$

mV

No．	Retention Time	Area	Height	Concentration
1	7.073	930394	61685	9.062
2	11． 362	4075009	146518	39.689
3	13.407	1282763	37804	12.494
4	15.170	3979225	81840	38.756
总计		10267391	327846	

HPLC spectrum of $\mathbf{3 1}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	7.094	107527	4310	1.688
2	11.489	4688244	164680	73.578
3	13.604	314134	8025	4.930
4	15.486	1261912	23912	19.805
总计		6371818	200927	

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz , DMSO- d_{6}) of $\mathbf{3 1}$ (Crude reaction mixture)

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 a}$

HPLC spectrum of $\mathbf{5 a}$
mV

No.	Retention Time	Area	Height	Concentration
1	12.700	3286250	150384	9. 168
2	15.046	3321781	292288	9. 267
3	15.333	23804952	887767	66.410
4	19. 149	5432206	194962	15.155
总计		35845189	1525401	

${ }^{1} \mathrm{H}$ NMR Spectrum $(400 \mathrm{MHz}$, DMSO-d6) of $\mathbf{5 a}$ (Crude reaction mixture)

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 1}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	19.889	14964440	192101	38.343
2	24.995	15951513	182189	40.872
3	25.813	4056313	68333	10.393
4	41.656	4055674	41684	10.392
总计		39027940	484306	

HPLC spectrum of $\mathbf{5 1}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	20.844	4933836	88521	5.228
2	26.171	10902284	150815	11.552
3	27.972	12578698	212517	13.328
4	41.968	65962502	548951	69.892
总计		94377320	1000804	

${ }^{1} \mathrm{H}$ NMR Spectrum（ 400 MHz ，DMSO－d_{6} ）of $\mathbf{5 1}$（Crude reaction mixture）

HPLC spectrum of $\boldsymbol{R a c} \boldsymbol{- 5 m}$

mV

检测器A 280 nm

No．	Retention Time	Area	Height	Concentration
1	22.539	2978868	47938	45.566
2	28.723	368617	6082	5.638
3	38.530	2804840	33615	42.904
4	45.595	385221	4148	5.892
总计		6537546	91782	

HPLC spectrum of $\mathbf{5 m}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	22.056	2977804	50010	9.545
2	26.702	22084297	339942	70.792
3	37.099	1617680	22730	5.186
4	43.411	4516347	51753	14.477
总计		31196128	464435	

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}\right.$, DMSO－$\left.d_{6}\right)$ of $\mathbf{5 m}$（Crude reaction mixture）

5m

（Crude reaction mixure） $\mathrm{dr}=85 / 15$

12. References

[1] A. A. Mendes, P. C. Oliveira and H. F. de Castro, Properties and biotechnological applications of porcine pancreatic lipase, J. Mol. Catal. B: Enzym., 2012, 78, 119-134.
[2] C.-J. Long, H. Cao, B.-K. Zhao, Y.-F. Tan, Y.-H. He, C.-S. Huang and Z. Guan, Merging the non-natural catalytic activity of lipase and electrosynthesis: Asymmetric oxidative crosscoupling of secondary amines with ketones, Angew. Chem. Int. Ed., 2022, 61, e202203666.
[3] C.-J. Long, H.-P. Pu, Y.-N. Zhao, Y.-H. He and Zhi Guan, Cooperative photocatalysis and $L-$ $/ D$-proline catalysis enabled enantioselective oxidative cross-dehydrogenative coupling of benzylic secondary acyclic amines with ketones, Org. Chem. Front., 2023, 10, 2177-2185.
[4] H. Yang and R. G. Carter, Enantioselective Mannich reactions with the practical proline mimetic N-(p-dodecylphenyl-sulfonyl)-2-pyrrolidinecarboxamide, J. Org. Chem., 2009, 74, 2246-2249.
[5] X. Zheng, Y.-B. Qian and Y. Wang, 2-Pyrrolidinecarboxylic acid ionic liquid as a highly efficient organocatalyst for the asymmetric one-pot Mannich reaction. Eur. J. Org. Chem., 2010, 2010, 515-522.
[6] J. S. Yadav, B. V. S. Reddy, K. S. Shankar, K. Premalatha and T. Swamy, Iodine/EtOH: A novel and versatile catalyst for the synthesis of β-amino ketones via three component reaction, Lett. Org. Chem., 2008, 5, 353-359.
[7] T. Ollevier, E. Nadeau and A.-A. Guay-Begin, Direct-type catalytic three-component Mannich reaction in aqueous media, Tetrahedron Lett., 2006, 47, 8351-8354.
[8] A. Pettignano, L. Bernardi, M. Fochi, L. Geraci, M. Robitzer, N. Tanchoux and F. Quignard, Alginic acid aerogel: a heterogeneous Brønsted acid promoter for the direct Mannich reaction, New J. Chem., 2015, 39, 4222-4226.
[9] M. Samet, B. Eftekhari-Sis, M. M. Hashemi and F. Farmad, Stereoselective synthesis of β amino ketones via direct Mannich-type reaction catalyzed with $\mathrm{SO}_{4}{ }^{2-} / \mathrm{TiO}_{2}$ and $\mathrm{SO}_{4}{ }^{2-} /$ nano TiO_{2}, Synthetic Commun., 2009, 39, 4441-4453.
[10] C. Ayats, A. H. Henseler, E. Dibello and M. A. Pericas, Continuous flow enantioselective threecomponent anti-Mannich reactions catalyzed by a polymer-supported threonine derivative, ACS Catal., 2014, 4, 3027-3033.
[11] C. Wu, X. Fu, X. Ma, S. Li and C. Li, Threonine-surfactant organocatalysts for the highly diastereo- and enantioselective direct anti-Mannich reactions of hydroxyacetone, Tetrahedron Lett., 2010, 51, 5775-5777.
[12] S. S. V. Ramasastry, H. Zhang, F. Tanaka and C. F. Barbas, Direct catalytic asymmetric synthesis of anti-1,2-amino alcohols and syn-1,2-diols through organocatalytic anti-Mannich and syn-aldol reactions, J. Am. Chem. Soc., 2007, 129, 288-289.

13. NMR spectra

${ }^{1} \mathrm{H}$ NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3a

3a
$\mathrm{dr}=75 / 25$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 a}$

3a

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 b}$

${ }^{13}$ C NMR Spectrum（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of 3b
211.5948
210.5024

かったO

3b

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}-10$ f1（ppm）
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 c}$

3c
$d r=59 / 41$

${ }^{13}$ C NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 c}$

$210200190180170160150140130120110100 \quad 90$ f1 (ppm)
${ }^{19} \mathrm{~F}$ NMR Spectrum ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3c

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 d}$

3d
$\mathrm{dr}=68 / 32$

${ }^{13} \mathrm{C}$ NMR Spectrum (151 MHz, CDCl_{3}) of 3d

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of $\mathbf{3 e}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 e}$

$21020019018017016015014013012011010090 \quad 80$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR Spectrum (151 MHz, CDCl_{3}) of $\mathbf{3 f}$

210200190180170160150140130120110100 f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 g}$

${ }^{13} \mathrm{C}$ NMR Spectrum (151 MHz, CDCl_{3}) of $\mathbf{3 g}$
$\begin{array}{ll}\dot{\infty} & m \\ + \\ \infty & n \\ \cdots & \vdots \\ \underset{\sim}{~} \\ \vdots\end{array}$

$3 g$
$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of $\mathbf{3 h}$

 f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of $\mathbf{3 i}$

$\begin{aligned} & \pm \\ & \underset{\sim}{o} \\ & \stackrel{\rightharpoonup}{c} \\ & \underset{\sim}{c} \\ & \underset{\sim}{N} \end{aligned}$	 	

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 j}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 k}$

> 3k
> $\mathrm{dr}=87 / 13$

${ }^{13}$ C NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 k}$

3k

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ -10\end{array}$
f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 31

${ }^{13} \mathrm{C}$ NMR Spectrum (151 MHz, CDCl_{3}) of $\mathbf{3 I}$

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 1 & 10 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 a}$

${ }^{13} \mathrm{C}^{\text {NMR }}$ Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 a}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}-10$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 b}$

${ }^{13} \mathrm{C}$ NMR Spectrum (151 MHz, CDCl_{3}) of $\mathbf{5 b}$

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 c}$

${ }^{13}$ C NMR Spectrum (101 MHz, CDCl_{3}) of $\mathbf{5 c}$

5 c

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 d}$

5d
minor diastereoisomer

${ }^{13} \mathrm{C}$ NMR Spectrum (151 MHz, CDCl_{3}) of $\mathbf{5 d}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 e}$

${ }^{13}$ C NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 e}$

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | f1 (ppm)

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 f}$

${ }^{13} \mathrm{C}$ NMR Spectrum (101 MHz, CDCl_{3}) of $\mathbf{5 f}$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 g}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 g}$

$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} 0$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 h}$

$\mathbf{5 h}$
$\mathrm{dr}=81 / 19$

major diastereoisomer

${ }^{13}$ C NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 h}$

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 1 & 10 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 i}$

$5 i$
$\mathrm{dr}=82 / 18$

${ }^{13}$ C NMR Spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 i}$

$210200190180170160150140130120110100 \quad 90$
f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 j}$

${ }^{13}$ C NMR Spectrum (101 MHz, CDCl_{3}) of $\mathbf{5 j}$

$$
\left.\begin{array}{rl}
210 & 200190 \\
180 & 170 \\
160 & 150 \\
140 & 130 \\
120 & 110100 \\
\text { f1 } & 10 \\
(\mathrm{ppm})
\end{array}\right)
$$

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 k}$

${ }^{13}$ C NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 k}$

5k

> 210200190180170160150140130120110100 f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 I}$

${ }^{13}$ C NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 I}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{fl} & -10\end{array}$ f1 (ppm)
${ }^{1} \mathrm{H}$ NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 m}$

${ }^{13} \mathrm{C}$ NMR Spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 m}$
210.5476
209.5398
146.4378
146.1931
139.7128
138.7327
136.9791
136.8085
129.2862
129.1842
128.7779
128.6222
128.5528
128.4871
128.1920
128.1051
128.0198
127.9521
127.8939
127.8420
127.4788
127.1230
118.1134
117.9081
113.9707
113.8292

[^0]
5m

$210200190180170160150140130120110100 \quad 90$ f1 (ppm)

14. HRMS spectra

HRMS spectrum of $\mathbf{3 c}$

HRMS spectrum of $\mathbf{3 e}$

HRMS spectrum of $\mathbf{3 f}$

HRMS spectrum of $\mathbf{3 1}$

HRMS spectrum of $\mathbf{5 c}$

HRMS spectrum of $\mathbf{5 d}$

HRMS spectrum of $\mathbf{5 e}$

HRMS spectrum of $\mathbf{5 f}$

HRMS spectrum of $\mathbf{5 g}$

HRMS spectrum of $\mathbf{5 h}$

HRMS spectrum of $\mathbf{5 j}$

HRMS spectrum of $\mathbf{5 k}$

HRMS spectrum of $\mathbf{5 I}$

HRMS spectrum of $\mathbf{5 m}$

15．Chiral HPLC spectra

HPLC spectrum of Rac－3a
mV

No．	Retention Time	Area	Height	Concentration
1	11.771	8401948	369500	32.159
2	16． 103	8477829	225903	32.450
3	18.354	4537721	119703	17.369
4	24.601	4708447	64951	18.022
总计		26125945	780058	

HPLC spectrum of $\mathbf{3 a}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	12.999	7337657	267309	10.459
2	18.291	10543487	222899	15.029
3	21.125	10767896	209409	15.349
4	27.549	41505024	422224	59.163
总计		70154064	1121840	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 b}$

HPLC spectrum of $\mathbf{3 b}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	10.040	2056816	128437	6.619
2	12.402	5241282	268788	16.866
3	14.366	3455178	152264	11.119
4	16.266	20322177	763878	65.396
总计		31075454	1313366	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 c}$

mV

检测器A $254 n \mathrm{~nm}$

No．	Retention Time	Area	Height	Concentration
1	7.604	280373	34190	4.179
2	7.776	1811267	142502	27.000
3	9.084	1383542	94831	20.624
4	9.993	1784639	114448	26.603
5	11.578	112226	7174	1.673
6	12.140	1336255	72366	19.919
总计		6708302	465511	

HPLC spectrum of $\mathbf{3 c}$

mV

No．	Retention Time	Area	Height	Concentration
1	7.802	2424324	189361	18.868
2	9． 106	1995104	138497	15.528
3	10.032	2796311	178809	21.763
4	12.195	5632940	298008	43.841
总计		12848679	804675	

HPLC spectrum of Rac－3d

mV

No．	Retention Time	Area	Height	Concentration
1	11.290	10219101	436522	33.419
2	13.615	5021262	226846	16.421
3	14.562	10247714	421225	33.513
4	18.056	5090554	174252	16.647
总计		30578630	1258844	

HPLC spectrum of 3d

mV

No．	Retention Time	Area	Height	Concentration
1	10.609	139585	6544	14.247
2	12． 786	149161	7061	15． 224
3	13.784	177710	7917	18.138
4	16.850	513323	18278	52.392
总计		979779	39799	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 e}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	10.855	5174394	283360	34.348
2	13.039	2311429	100682	15.344
3	13.870	5237335	208840	34.766
4	17.031	2341312	80859	15.542
总计		15064470	673742	

HPLC spectrum of $\mathbf{3 e}$
mV

No．	Retention Time	Area	Height	Concentration
1	12． 267	448103	22000	9.044
2	14.385	745161	30789	15.039
3	15.282	644081	27057	12.999
4	17.787	261235	10714	5．272
5	18.493	2856139	97955	57.645
总计		4954720	188515	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 f}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	45.005	24943724	310632	31.419
2	47.820	12593381	163332	15.862
3	49.610	27976848	332930	35.239
4	75.597	13877059	103380	17.479
总计		79391012	910274	

HPLC spectrum of $\mathbf{3 f}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	39.701	11283540	203211	8.278
2	41.069	90262111	862853	66.218
3	44.412	13843645	145509	10.156
4	69.795	20920632	146263	15.348
总计		136309928	1357835	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 g}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	10.035	6156271	112267	36.147
2	14.353	2286088	56027	13.423
3	16.928	6374914	124744	37.431
4	20.774	2213762	26358	12.998
总计		17031035	319396	

HPLC spectrum of $\mathbf{3 g}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	10.020	2504211	42921	18.354
2	14.239	2282660	57398	16.730
3	16.801	1611812	35055	11.813
4	17.796	67690	2535	0.496
5	20.391	7177755	85651	52.607
总计		13644129	223560	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 h}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	20.278	5203384	86160	35.523
2	26.228	5223969	39351	35.664
3	31.967	2072592	16818	14.150
4	36.817	2147841	13794	14.663
总计		14647785	156123	

HPLC spectrum of $\mathbf{3 h}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	20.670	5010358	59029	13.844
2	27.180	8389637	59648	23.181
3	33.056	4792032	38279	13.241
4	37.645	17999987	102168	49.735
总计		36192014	259124	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 i}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	19.798	7619599	135272	33.378
2	23.929	7719446	53200	33.816
3	32.608	3659992	28943	16.033
4	38.108	3828955	20332	16.773
总计		22827993	237747	

HPLC spectrum of $\mathbf{3 i}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	19.814	8164927	141931	12.399
2	23.964	10776949	65402	16.366
3	32.200	10870028	88142	16.507
4	36.776	36039267	180395	54.728
总计		65851170	475869	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 3 j}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	7.411	7041227	451410	34.538
2	12.701	3174983	89458	15.574
3	14.315	6962883	135562	34.154
4	20.016	3207544	49717	15.734
总计		20386636	726147	

HPLC spectrum of $\mathbf{3 j}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	7.440	6673589	435276	12.860
2	12.736	6873230	182312	13.244
3	14.469	4709979	88754	9.076
4	19.775	33639277	417749	64.820
总计		51896075	1124091	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{c} \mathbf{3 k}$

mV

检测器A 254 nm
检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	12.959	6950659	345330	28.600
2	15.251	7104414	285743	29.233
3	16.829	5108399	197532	21.020
4	20.769	5139547	156686	21.148
总计		24303020	985291	

HPLC spectrum of $\mathbf{3 k}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	13.003	2863369	128951	4.651
2	15.288	5133690	203728	8.339
3	16.896	9600775	350388	15.595
4	20.875	43965660	1133141	71.415
总计		61563495	1816209	

HPLC spectrum of $\boldsymbol{R a c}$－ $\mathbf{3 1}$

mV

No．	Retention Time	Area	Height	Concentration
1	7.073	930394	61685	9.062
2	11． 362	4075009	146518	39.689
3	13.407	1282763	37804	12.494
4	15.170	3979225	81840	38.756
总计		10267391	327846	

HPLC spectrum of $\mathbf{3 1}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	7.094	107527	4310	1.688
2	11.489	4688244	164680	73.578
3	13.604	314134	8025	4.930
4	15.486	1261912	23912	19.805
总计		6371818	200927	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 a}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.194	7862006	278694	38.609
2	13.426	2306976	91127	11.329
3	13.706	2297040	88878	11.280
4	17.481	7897257	242491	38.782
总计		20363280	701189	

HPLC spectrum of $\mathbf{5 a}$
mV

No．	Retention Time	Area	Height	Concentration
1	12.700	3286250	150384	9． 168
2	15.046	3321781	292288	9． 267
3	15.333	23804952	887767	66.410
4	19． 149	5432206	194962	15.155
总计		35845189	1525401	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 b}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	23.250	5267929	111467	20.264
2	34.214	5084154	86527	19.558
3	35.972	7798818	113178	30.000
4	42.511	7845021	106238	30.178
总计		25995922	417410	

HPLC spectrum of 5b
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	23.332	417157	8578	11.180
2	34.336	2775526	44951	74.388
3	36.393	187890	2930	5.036
4	42.833	350559	4756	9.396
总计		3731133	61216	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 c}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	12.802	280186	18428	11.843
2	13.125	908395	46635	38.397
3	18.262	316875	11799	13.394
4	19.316	860332	30155	36.366
总计		2365789	107016	

HPLC spectrum of $\mathbf{5 c}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	11.811	467075	18360	9.676
2	11.988	336468	16808	6.971
3	16.871	3509661	111902	72.709
4	17.868	513784	15877	10.644
总计		4826988	162946	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 d}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	27.451	5700298	108932	14.110
2	28.998	14428942	247659	35.715
3	32.262	5991123	99733	14.830
4	44.094	14279308	183364	35.345
总计		40399671	639688	

HPLC spectrum of $\mathbf{5 d}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	27.494	724939	13640	10.468
2	29.170	400903	6532	5.789
3	32.234	5182683	85781	74.837
4	44.333	616806	7865	8.907
总计		6925331	113818	

HPLC spectrum of Rac－5e

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	10.395	6024852	275607	38.392
2	11.565	1752950	76376	11.170
3	14.351	1807648	65745	11.519
4	16.932	6107622	197380	38.919
总计		15693072	615108	

HPLC spectrum of $\mathbf{5 e}$
mV

No．	Retention Time	Area	Height	Concentration
1	10.399	668201	30209	9.907
2	11.548	904780	37853	13.415
3	14.312	4292621	151437	63.647
4	16.947	878811	28214	13.030
总计		6744412	247713	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 f}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	8.664	2883667	150303	35.815
2	10.989	1293166	54041	16.061
3	12.226	1067432	46558	13.257
4	13.246	2807398	110116	34.867
总计		8051663	361017	

HPLC spectrum of $\mathbf{5 f}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	8.649	619022	31186	13.139
2	10.920	2807193	119273	59.584
3	12.158	619659	26658	13.153
4	13.166	665414	26790	14.124
总计		4711288	203906	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 g}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	23.433	3954003	91210	38.018
2	29.560	1260561	20162	12.120
3	32.522	1251063	18579	12.029
4	54.173	3934666	41593	37.832
总计		10400293	171544	

HPLC spectrum of $\mathbf{5 g}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	20.597	218361	3913	4.792
2	26.786	3577902	48665	78.519
3	29.598	474389	6178	10.411
4	52.100	286083	2838	6.278
总计		4556735	61594	

HPLC spectrum of $\boldsymbol{R a c} \boldsymbol{- 5 h}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	18.850	2763008	47487	15.946
2	29.168	5662053	57853	32.676
3	32.583	6119214	66760	35.314
4	65.806	2783492	15755	16.064
总计		17327767	187855	

HPLC spectrum of $\mathbf{5 h}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	18.516	7026587	128585	70.899
2	29.210	1098278	10980	11.082
3	32.480	759106	8248	7.659
4	65.165	1026764	5942	10.360
总计		9910736	153755	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 i}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	18.534	1481358	41644	41.600
2	20.747	302512	8109	8.495
3	24.089	300793	7249	8.447
4	30.508	1476304	29109	41.458
总计		3560966	86111	

HPLC spectrum of $\mathbf{5 i}$
mV

No．	Retention Time	Area	Height	Concentration
1	18.439	510187	14251	10.405
2	20.623	629108	16874	12.831
3	23.893	3063393	73071	62.478
4	30.311	700480	13786	14． 286
总计		4903167	117982	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 j}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	16.721	9027205	297289	31.588
2	20.078	9402798	236550	32.903
3	21.719	5146899	83155	18.010
4	24.113	5000699	100772	17.499
总计		28577600	717765	

HPLC spectrum of $\mathbf{5 j}$
mV

No．	Retention Time	Area	Height	Concentration
1	16.807	325903	10623	11.887
2	20．269	365215	9584	13.321
3	21.883	404512	6744	14.754
4	24.265	1646094	33990	60.039
总计		2741724	60942	

HPLC spectrum of $\boldsymbol{R a c} \mathbf{- 5 k}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	22.977	748920	7842	11.816
2	32.110	2291920	17164	36.162
3	35.529	724891	7542	11.437
4	37.658	2572219	19965	40.584
总计		6337951	52513	

HPLC spectrum of $\mathbf{5 k}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	24.209	489971	4577	10.824
2	33.739	590441	4847	13.044
3	36.680	2874182	24634	63.495
4	38.521	572019	7058	12.637
总计		4526614	41116	

HPLC spectrum of $\boldsymbol{R a c}-\mathbf{5 l}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	19.889	14964440	192101	38.343
2	24.995	15951513	182189	40.872
3	25.813	4056313	68333	10.393
4	41.656	4055674	41684	10.392
总计		39027940	484306	

HPLC spectrum of $\mathbf{5 1}$

mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	20.844	4933836	88521	5.228
2	26.171	10902284	150815	11.552
3	27.972	12578698	212517	13.328
4	41.968	65962502	548951	69.892
总计		94377320	1000804	

HPLC spectrum of Rac－5m

mV

检测器A 280 nm

No．	Retention Time	Area	Height	Concentration
1	22.539	2978868	47938	45.566
2	28.723	368617	6082	5.638
3	38.530	2804840	33615	42.904
4	45.595	385221	4148	5.892
总计		6537546	91782	

HPLC spectrum of $\mathbf{5 m}$
mV

检测器A 254 nm

No．	Retention Time	Area	Height	Concentration
1	22.056	2977804	50010	9.545
2	26.702	22084297	339942	70.792
3	37.099	1617680	22730	5.186
4	43.411	4516347	51753	14.477
总计		31196128	464435	

[^0]:

