Supplementary Information

A Practical Approach for Oligopeptide Synthesis via Synergistic Photoredox, Cobaloxime, and Organophosphorus Triple Catalysis

Junqi Su, ${ }^{a}$ Jia-Nan Mo, ${ }^{a}$ Guofeng Zhang, ${ }^{a}$ Ziyu Jiang, ${ }^{a}$ and Jiannan Zhao ${ }^{\text {a, * }}$
${ }^{\text {as School of Chemistry, Dalian University of Technology, Dalian 116024, People's }}$ Republic of China.

* To whom correspondence should be addressed:

Email: jnzhao@dlut.edu.cn

1. General Information S2
2. Reaction Optimization S5
2.1 Reaction setup. S5
2.2 General procedure S7
2.3 Optimization details S8
2.4 Comparative experiments S13
2.5 Characterization data S14
3. Dipeptide Synthesis S16
3.1 General procedure S16
3.2 Characterization data S16
4. Gram-scale Synthesis in Continuous-flow S27
4.1 Flow reactor setup S27
4.2 General procedure S28
4.3 General procedure for the deprotection of the Cbz-group S28
4.4 General procedure for the deprotection of the Boc-group S29
4.5 General procedure for hydrolysis of methyl esters S29
4.6 General procedure for multigram synthesis S29
4.7 Characterization data S30
5. Peptide fragment condensation S34
5.1 Synthesis of proglyuprol S34
5.2 Synthesis of LAGV in batch S35
5.3 Synthesis of LAGV in continuous-flow S36
5.4 Synthesis of leu-enkephalin S37
5.5 Synthesis of ('Bu)-fanlizhicyclopeptide B S38
5.6 Characterization data S41
6. Solid phase peptide synthesis (SPPS) of PAR2 S45
7. Control experiments S48
7.1 Radical quenching experiment S48
7.2 Light ON/OFF experiments 448
7.3 Detection of hydrogen S49
7.4 Amidation promoted by hydrosilanes S51
7.5 Reduction of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ to PPh_{3} S55
8. References S57
9. Copy of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra 558

1. General Information

All reactions were performed in dry solvents under a N_{2} atmosphere and anhydrous conditions. Acetonitrile (MeCN) was freshly distilled over CaH_{2} prior to use. All other reagents were used as received from commercial sources. Pd / C was 10% palladium on carbon (wetted with ca. 55% water). Reactions were monitored through thin layer chromatography (TLC) on $0.25-\mathrm{mm}$ silica gel plates and visualized with UV light (254 nm) and w.t. 10% phosphomolybdic acid in ethanol solution. Flash column chromatography (FCC) was performed using silica gel. NMR spectra were recorded using Bruker Magnet System 400 Ascend instruments, calibrated to $\mathrm{CD}(\mathrm{H}) \mathrm{Cl}_{3}$, DMSO$d_{6}, \mathrm{CD}_{3} \mathrm{OD}$ as the internal reference (7.26, 2.50, 3.31 and $77.0,39.5,49.0 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively). ${ }^{1} \mathrm{H}$ NMR spectral data are reported in terms of chemical shift (δ, ppm), multiplicity, coupling constant (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR spectral data are reported in terms of chemical shift (δ, ppm). The following abbreviations indicate the multiplicities: s, singlet. d, doublet. t, triplet. q, quartet. m, multiplet. High-resolution mass spectra were obtained using Thermo Fisher Scientific Q Exactive Plus mass spectrometer with electrospray ionization (ESI) probe operating in positive ion mode or Thermo Fisher Scientific Exactive GC high-resolution orbitrap GC mass using electron impact. Gas chromatography (GC) was performed on a Techcomp GC 7900 instrument. High Performance Liquid Chromatography were obtained from SHIMADZU LC-2030 Plus. The photocatalysts $\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}{ }^{1}$ and the cobaloximes $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}^{2}$ were prepared according to previous reports.

The abbreviations and structures for all amino acids in the manuscript were shown below:

entry	abbreviation	amino acid	structure
1	Gly	glycine	
2	Ala	L-alanine	
3	Val	L-valine	
4	Leu	L-leucine	
5	1 l	L-isoleucine	
6	Phe	L-phenylalanine	
7	Pro	L-proline	
8	Cys	L-cysteine	
9	Met	L-methionine	
10	Ser	L-serine	
11	Thr	L-threonine	
12	Tyr	L-tyrosine	
13	Lys	L-lysine	

14	Arg	L-arginine	
15	His	L-histidine	
16	Trp	L-tryptophan	
17	Asp	L-aspartic acid	
18	Glu	L-glutamic acid	
19	Asn	L-asparagine	
20	Gln	L-glutamine	
21	Phg	L-phenylglycine	
22	Orn	L-ornithine	
23	β-Ala	β-alanine	
24	Aib	2-aminoisobutyric	
25	$\mathrm{A}_{\text {c5c }}$	1-aminocyclopentane-1-carboxylic acid	

2. Reaction Optimization

2.1 Reaction setup

All the reactions were performed with an RLH-18 octet photocatalytic parallel reaction system (Figure S1), which was purchased from Beijing Roger tech Ltd. The reaction system was equipped with eight 456 nm 10 W blue light LEDs (Figure S2) and placed on a magnetic hotplate stirrer (DLAB MS-H-Pro ${ }^{A}$) to keep the reaction temperature at $65{ }^{\circ} \mathrm{C}$

Figure S1. Integrated photoreactor and associated equipment

RLH-18 10WLED Test report

Product Mark
Model: 1-455nm(456.7)@10W Temperature: $20^{\circ} \mathrm{C}$
Tester: Wu

Manufacture: Beijing Rogertech Ltd
Humidity: 65\%
Test Date: 2022-06-21,15:34:31

Parameter							
Name	Value	Name	Value	Name	Value	Name	Value
$\operatorname{ESuv}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	0.0000	CIE u,v	0.1839,0.0693	CIE1931 Y	130873.648		
Euvc(mW/cm)	0.0000	CIE $\mathrm{u}^{\prime}, \mathrm{v}^{\prime}$	0.1839,0.1039	CIE1931 Z	2949318.500		
Euvb (mW/cm ${ }^{\text {a }}$	0.0000	SDCM	100.00	TLCI-2012	1		
Euva(mW/cm)	0.0000	Ra	-63.7	Integral Time(ms)	0.1		
$\operatorname{Euv}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	0.00	$\mathrm{Ee}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	194.23262	Peak Signal	53258		
$\mathrm{Eb}\left(\mathrm{mW} / \mathrm{cm} \mathrm{m}^{2}\right)$	190.91	S/P	20.108	Dark Signal	2045		
$\mathrm{Eg}\left(\mathrm{mW} / \mathrm{cm}^{\text {2 }}\right.$)	1.67	Dominant(nm)	461.30	Compensate level	2878		
$\operatorname{Er}\left(\mathrm{mW} / \mathrm{cm}^{\text { }}\right.$)	0.00	Purity(\%)	98.5				
Eir(mW/cm²)	0.00	HalfWidth(nm)	25.2				
E(1x)	89386.70	Peak(nm)	456.7				
Candle E(fc)	8304.23	Center(nm)	457.4				
CCT(K)	100000	Centroid(nm)	458.5				
Duv	-0.05186	Color Ratio(RGB)	0.0,12.1,87.9				
CIE x, y	0.1446,0.0363	CIE1931 X	520893.188				

Spectrogram

Instrument Status
Type: OHSP-350UV
Integral Time: 0.077 ms

SN: 0
VPeak: 53258

Scan Range: 230-850nm VDark: 2045

Figure S2. RLH-18 10W LED Test Report

2.2 General procedure

$\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})^{+}$

A
cobaloxime

To an oven-dried reaction tube equipped with a stir bar was added Cbz-L-Val-OH (0.2 $\mathrm{mmol}, 1.0$ equiv.), L-Ala- $\mathrm{OMe} \cdot \mathrm{HCl}$ ($0.3 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{PPh}_{3}(0.06 \mathrm{mmol}, 30 \mathrm{~mol} \%$), $\operatorname{lnBr}_{3}(2 \mathrm{~mol} \%),\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right) 2(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$ and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5$ $\mathrm{mol} \%$). The tube was sealed and placed under nitrogen before MeCN (2 mL), TMDS ($0.6 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($0.3 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65{ }^{\circ} \mathrm{C}$ for 12 h . Upon complete consumption of the starting material, the reaction mixture was concentrated and purified through column chromatography to afford the desired peptide product.

2.3 Optimization details

Table S1. Screening of cobaloxime catalysts

CoIII-A; $\left.\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Cl} ; \mathrm{Co}(\mathrm{dmgH})(\mathrm{dmgH})_{2}\right) \mathrm{Cl}_{2}$
Co ${ }^{\text {III }}-\mathbf{B} ; \mathrm{R}_{1}=\mathrm{Cl} ; \mathrm{R}_{2}=\mathrm{Py} ; \mathrm{Co}(\mathrm{dmgH})_{2} \mathrm{PyCl}$
Co ${ }^{\text {III }}-\mathbf{C} ; \mathrm{R}_{1}=\mathrm{Cl} ; \mathrm{R}_{2}=4-\mathrm{OMePy} ; \mathrm{Co}(\mathrm{dmgH})_{2}(4-\mathrm{OMePy}) \mathrm{Cl}$
CoIII-D; $\mathrm{R}_{1}=\mathrm{Cl} ; \mathrm{R}_{2}=4-\mathrm{NMe}_{2} \mathrm{Py} ; \mathrm{Co}(\mathrm{dmgH})_{2}\left(4-\mathrm{NMe}_{2} \mathrm{Py}\right) \mathrm{Cl}$
CoIII-E; $\mathrm{R}_{1}=\mathrm{Cl} ; \mathrm{R}_{2}=4-\mathrm{CNPy} ; \mathrm{Co}(\mathrm{dmgH})_{2}(4-\mathrm{CNPy}) \mathrm{Cl}$
Co ${ }^{\text {III }}-\mathrm{F} ; \mathrm{R}_{1}=\mathrm{Cl} ; \mathrm{R}_{2}=4-\mathrm{COMePy} ; \mathrm{Co}(\mathrm{dmgH})_{2}(4-\mathrm{COMePy}) \mathrm{Cl}$
Co ${ }^{\text {IIII }}-\mathbf{G} ; \mathrm{R}_{1}=\mathrm{Cl} ; \mathrm{R}_{2}=4-\mathrm{COOMePy} ; \mathrm{Co}(\mathrm{dmgH})_{2}(4-\mathrm{COOMePy}) \mathrm{Cl}$
Co ${ }^{\text {III }}-\mathrm{H} ; \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Py} ; \mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH} \mathrm{H}_{2}\right) \mathrm{Py}_{2}$

entry	cobaloxime catalyst	yield $(\%)^{a}$
1	A	49
2	B	43
3	C	42
4	D	42
5	E	40
6	F	45
7	\mathbf{G}	38
8	H	46
9	I	trace

${ }^{a}$ Yields of isolated products.

Table S2. Screening of hydrosilanes

entry	$[\mathrm{Si-H}]$	yield(\%)
1	PhSiH_{3}	49
2^{b}	PhSiH_{3}	55
3^{c}	PhSiH_{3}	39
4	$\mathrm{Ph}_{2} \mathrm{SiH}_{2}$	35
5	$\mathrm{Ph}_{3} \mathrm{SiH}^{2}$	30
6^{d}	$(\mathrm{EtO})_{2} \mathrm{MeSiH}$	22
7^{b}	$(\mathrm{EtO})_{3} \mathrm{SiH}$	44
8^{b}	$\mathrm{Et}_{3} \mathrm{SiH}$	60
9^{d}	PMHS^{2}	TMDS
10	TMDS	25
11^{b}	TMDS	46
12^{c}		77

${ }^{a}$ Yields of isolated products. ${ }^{b} \operatorname{lnBr}_{3}$ ($2 \mathrm{~mol} \%$) was added. ${ }^{\circ} \mathrm{Ti}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{4}$ ($10 \mathrm{~mol} \%$) was

Table S3. Screening of additives

entry	[ln.]	yield(\%) ${ }^{\text {a }}$
1	InCl_{3}	38
2	Inl_{3}	63
3	$\mathrm{In}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	37
4	$\ln (\mathrm{OTf})_{3}$	36
5	$\ln (\mathrm{acac})_{3}$	35
6	$\ln \mathrm{Ac}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	37
7	$\mathrm{In}\left(\mathrm{NO}_{3}\right)_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$	32
8	InBr_{3}	77
9	InBr_{3}	66
10	InBr_{3}	71
11	InBr_{3}	65

${ }^{a}$ Yields of isolated products. ${ }^{b} \mathrm{InBr}_{3}$ ($1 \mathrm{~mol} \%$) was added. ${ }^{9} \mathrm{InBr}_{3}$ ($5 \mathrm{~mol} \%$) was added. ${ }^{d} \mathrm{InBr}_{3}$ (10 mol\%) was added.

Table S4. Screening of bases

${ }^{a}$ Yields of isolated products.
Table S5. Screening of temperature

${ }^{a}$ Yields of isolated products.
Table S6. Screening of solvent

entry	solvent	yield(\%) ${ }^{a}$
1	DCE	62
2	THF	trace
3	1,4-dioxane	N.D.
4	DMF	N.D.

5	DMSO	N.P.
6	MeCN	77
7^{b}	MeCN	65
8^{c}	MeCN	81
9^{d}	MeCN	71

${ }^{a}$ Yields of isolated products. ${ }^{b} \mathrm{MeCN}(0.05 \mathrm{M}) .{ }^{c} \mathrm{MeCN}(0.1 \mathrm{M}) .{ }^{d} \mathrm{MeCN}(0.2 \mathrm{M})$.
Table S7. Screening of protecting groups

entry	R	yield(\%) ${ }^{a}$
1	Bzl	81
2	'Bu	83
3	Et	77
4	Me	86

${ }^{a}$ Yields of isolated products.
Meanwhile, a series of unprotected amino acids were investigated. As shown in Figure S3, the reaction with unprotected tyrosine (Tyr) and arginine (Arg) led to a complicated mixture, and the yields of the target dipeptides were significantly reduced.

Figure S3. The reactions with unprotected amino acids

Table S8. Screening of phosphines

P-1
1
P-2
P.

P-3

entry	\mathbf{P}.	yield(\%) ${ }^{a}$
1	PPh_{3}	86
2	$\mathrm{Ph}_{3} \mathrm{P}=\mathbf{O}$	53
3	$\mathbf{P - 1}$	57
4	$\mathbf{P - 2}$	45
5	$\mathbf{P - 3}$	trace

${ }^{a}$ Yields of isolated products.

Table S9. Screening of photocatalysts

${ }^{a}$ Yields of isolated products. ${ }^{b}$ Irradiated by green LED lamps.
Table S10. Studying of nucleophiles

entry
${ }^{a}$ Yields of isolated products.

2.4 Comparative experiments

In our previous work, we reported a photocatalytic strategy for the formation of acyloxyphosphonium ions that enabled direct amidation. Hence, comparative experiments were conducted in Figure S4. The yield of the reaction between sterically
hindered Cbz-Val-OH and H-Ala-OMe•HCI improved from 41% to 86% with the triple catalytic system, indicating that the current process was more efficient.

Figure S4. Comparative experiments

2.5 Characterization data

Cbz-Val-Ala-OMe

White solid, m.p.: $154-157^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.20$ - 3.97 (m, 1H), 3.73 (s, 3H), $2.21-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-0.79(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.1,171.0,156.4,136.2,128.5,128.1,128.0,67.0,60.1,52.4,48.0,31.3$, 19.0, 18.0, 17.8. HRMS-ESI: calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 337.17580$, found 337.17426 .

Cbz-Val-Ala-OEt

White solid, m.p.: $162-163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-4.92$ (m, 2H), $4.64-4.44$ (m, 1H), 4.33 $-3.96(\mathrm{~m}, 3 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94$ (d, J $=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,171.2,156.5,136.3,128.4,128.0$, 127.9, 66.8, 61.3, 60.1, 48.0, 31.4, 19.1, 18.0, 17.9, 14.0. HRMS-ESI: calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 351.19145$, found 351.19000.

Cbz-Val-Ala-OBzI

White solid, m.p.: $153-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.13(\mathrm{~m}, 10 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-4.89(\mathrm{~m}, 4 \mathrm{H}), 4.62(\mathrm{p}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 172.6,171.2,156.5,136.3,135.3,128.6,128.5,128.4$, 128.2, 128.1, 127.9, 67.1, 66.9, 60.1, 48.0, 31.4, 19.1, 18.0. HRMS-ESI: calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 413.20710$, found 413.20516 .

Cbz-Val-Ala-OBu

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.15(\mathrm{~m}, 5 \mathrm{H})$, 7.03 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-$ $4.87(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{p}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.01(\mathrm{~m}, 1 \mathrm{H})$, $2.20-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.98 (d, $J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.9,171.0,156.5,136.4,128.4,128.0,127.9,81.7,66.8,60.1$, 48.6, 31.4, 27.9, 19.2, 18.2, 17.9. HRMS-ESI: calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]{ }^{+}\right) \mathrm{m} / \mathrm{z}$ 379.22275, found 379.22106.

benzyl ((benzyloxy)carbonyl)-L-valinate

Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.04(\mathrm{~m}, 10 \mathrm{H})$, $5.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-4.97(\mathrm{~m}, 4 \mathrm{H}), 4.36(\mathrm{dd}, \mathrm{J}=8.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-1.98(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84$ (d, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,156.3$, 136.3, 135.3, 128.6, 128.5, 128.5, 128.4, 128.2, 128.1, 77.4, 77.3, 77.1, 76.8, 67.0, 59.0, 31.3, 19.0, 17.4. HRMS-ESI: calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 342.16998$, found 342.16962.

S-(p-tolyl) (S)-2-(((benzyloxy)carbonyl)amino)-3-methylbutanethioate

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.29$ (m, $5 \mathrm{H}), 7.29-7.09(\mathrm{~m}, 4 \mathrm{H}), 5.28$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (s, $2 \mathrm{H}), 4.59-4.21(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.18(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.1,156.2,139.9,136.1,134.5,130.1,128.6,128.3,128.1,123.4,67.3$, 65.6, 31.2, 21.3, 19.4, 16.8. HRMS-ESI: calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{SNa}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 380.12909 , found 380.12903 .

benzyl (S)-(3-methyl-1-(1-methyl-2,6-dioxocyclohexyl)-1-oxobutan-2-yl) carbamate

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.22(\mathrm{~m}, 5 \mathrm{H})$, 5.25 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.13 ($\mathrm{s}, 2 \mathrm{H}$), $4.45-4.21$ (m, 1H), 2.72 - 2.15 (m, 5H), 2.12 - 1.87 (m, 2H), 1.66 (s, 3H), 1.07 (d, J = $8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

б 199.0, 169.0, 163.8, 156.2, 136.0, 128.6, 128.3, 128.2, 125.1, 67.3. 59.2, 36.9, 30.9, 28.4, 20.8, 19.2, 17.4, 8.4. HRMS-ESI: calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}^{+}\left([\mathrm{M} \mathrm{+} \mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 382.16249, found 382.16196.

3. Dipeptide Synthesis

3.1 General procedure

To an oven-dried reaction tube equipped with a stir bar was added protected amino acid ($0.5 \mathrm{mmol}, 1.0$ equiv.), amino acid ester hydrochloride ($0.75 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{PPh}_{3}(0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%), \mathrm{InBr}_{3}(2 \mathrm{~mol} \%),\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right)_{2}(\mathrm{dtbbpy})^{2} \mathrm{PF}_{6}$ ($1 \mathrm{~mol} \%$) and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$. The tube was sealed and placed under nitrogen before $\mathrm{MeCN}(5 \mathrm{~mL})$, TMDS ($1.5 \mathrm{mmol}, 3.0$ equiv.) and 2,4,6-collidine ($0.75 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65^{\circ} \mathrm{C}$ for 12 to 20 h . Upon complete consumption of the starting material, the reaction mixture was concentrated and purified through column chromatography to afford the desired dipeptide product.

3.2 Characterization data

Cbz-Val-Gly-OMe

White solid, m.p.: $154-158{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.57-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.10-3.85(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.27-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.77(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,170.1,156.5,136.2$, 128.5, 128.1, 127.9, 67.0, 60.2, 52.2, 41.0, 31.1, 19.1, 17.8. HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 323.16015, found 323.15857.

Cbz-Val-Val-OMe

White solid, m.p.: $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}$, 1H), $4.37-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.71$ (s, 3H), $2.29-1.92(\mathrm{~m}, 2 \mathrm{H})$, $1.18-0.55(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3$, 171.6, 156.5, 136.4, 128.4, 128.0, 127.8, 66.9, 60.2, 57.1, 52.0, 31.2, 31.0, 19.1, 18.9, 18.0, 17.8. HRMS-ESI: calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 365.20710$, found 365.20552.

Cbz-Val-Phe-OMe

White solid, m.p.: $144-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $7.62-7.27$ (m, 5H), $7.27-7.16$ (m, 3H), 7.08 (d, J= 4.0 $\mathrm{Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.29-4.98$ (m, 2H), 4.89 (dd, $J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-$ 3.94 (m, 1H), 3.67 (s, 3H), $3.27-2.87$ (m, 2H), 2.22-1.93 (m, 1H), 1.14-0.61 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 171.7, 171.1, 156.3, 136.3, 135.7, 129.2, 128.6, 128.5, 128.1, 128.0, 127.1, 67.0, 60.2, 53.2, 52.3, 37.9, 31.2, 19.1, 17.8. HRMS-ESI: calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 413.20710$, found 413.20530 .

Cbz-Val-Leu-OMe

Light yellow solid, m.p.: $101-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.51-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.27-4.97$ (m, 2H), 4.72 - 4.48 (m, 1H), $4.22-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.23-1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.95-0.74(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 173.2, 171.2, 156.4, 136.3, 128.5, 128.1, 127.9, 66.9, 60.1, 52.2, 50.7, 41.2, 31.4, 24.8, 22.7, 21.8, 19.0, 17.9. HRMS-ESI: calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 379.22275, found 379.22109.

Cbz-Val-Ile-OMe

12

White solid, m.p.: $120-122^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 7.52 - 7.15 (m, 5H), 6.92 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (d, J = $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-4.95$ (m, 2H), 4.59 (dd, $J=8.0,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.19-1.99(\mathrm{~m}, 1 \mathrm{H})$, $1.96-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.09(\mathrm{~m}$, 1H), $1.05-0.69(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,171.4,156.4,136.3$, 128.4, 128.0, 127.8, 66.9, 60.1, 56.4, 52.0, 37.6, 31.3, 25.1, 19.1, 17.9, 15.4, 11.5. HRMS-ESI: calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 379.22275$, found 379.22107.

Cbz-Gly-Ala-OMe

13

Light yellow solid, m.p.: $89-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.56-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ $(\mathrm{s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{p}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,169.0,156.7,136.2,128.5$, 128.1, 128.0, 67.0, 52.4, 48.0, 44.3, 17.9. HRMS-ESI: calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}([\mathrm{M}+\mathrm{H}]$ $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 295.12885$, found 295.12753.

Cbz-Ala-Ala-OMe

14

White solid, m.p.: $90-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.45-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{p}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,172.2,156.0,136.2$, 128.5, 128.1, 127.9, 66.9, 52.4, 50.3, 48.0, 18.8, 18.0. HRMS-ESI: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 309.14450$, found 309.14284.

Cbz-Phe-Ala-OMe

15

White solid, m.p.: $128-131^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.54-7.03(\mathrm{~m}, 10 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.37(\mathrm{~m}, 2 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.15-2.93(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,170.8,156.0,136.3$, 136.2, 129.3, 128.6, 128.5, 128.1, 127.9, 127.0, 67.0, 56.0, 52.4, 48.1, 38.6, 18.1. HRMS-ESI: calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 385.17580$, found 385.17407.

Cbz-Leu-Ala-OMe

16

White solid, m.p.: $93-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.45-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{p}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.58$ $-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-0.75(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,172.0,156.2$, 136.2, 128.5, 128.1, 128.0, 66.9, 53.3, 52.4, 48.0, 41.6, 24.6, 22.9, 21.9, 18.0. HRMSESI: calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 351.19145$, found 351.18976.

Cbz-Ile-Ala-OMe

17

White solid, m.p.: $119-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.15$ $(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.64$ $-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.08(\mathrm{~m}$, $1 \mathrm{H}), 1.02-0.67(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.1,171.3,156.4,136.3$,
128.4, 128.0, 127.9, 66.9, 59.4, 52.3, 47.9, 37.6, 24.7, 17.8, 15.2, 11.2. HRMS-ESI: calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 351.19145, found 351.19052.

Cbz-Val-Tyr(${ }^{\text {(Bu) }}$)-OMe

White solid, m.p.: $116-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.45-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, 6.87 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.79 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.29-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 2H), 2.17-1.95 (m, 1H), $1.30(\mathrm{~s}, 9 \mathrm{H}), 1.02-0.69(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,171.2$, 156.4, 154.4, 136.4, 130.6, 129.6, 128.4, 128.0, 127.9, 124.1, 78.2, 66.9, 60.2, 53.4, 52.1, 37.4, 31.2, 28.8, 19.0, 17.9. HRMS-ESI: calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 485.26461 , found 485.26261.

Cbz-Val-Ser($\left.{ }^{(} \mathrm{Bu}\right)$-OMe

19

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.17$ (m, 5H), 6.70 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-$ 4.96 (m, 2H), 4.81 - 4.61 (m, 1H), $4.24-4.00$ (m, 1H), 3.81 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=8.0,4.0$ Hz, 1H), 2.22 - 2.06 (m, 1H), 1.12 (s, 9H), $1.02-0.75$ (m, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 171.0, 170.6, 156.3, 136.3, 128.4, 128.0, 127.9, 73.4, 66.9, 61.7, 60.0, 52.8, 52.3, 31.6, 27.2, 19.0, 17.6. HRMS-ESI: calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 409.23331$, found 409.23149.

Cbz-Val-Thr($\left.{ }^{(} \mathrm{Bu}\right)$-OMe

20

Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\overline{\mathrm{M}} 7.45$ - 7.23 $(\mathrm{m}, 5 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22-5.01$ (m, 2H), 4.49 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-$ 4.07 (m, 2H), 3.68 (s, 3H), 2.22 (dd, J = 12.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.16 (d, $J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, 3H), 0.95 (d, J = $4.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 171.4, 170.9, 156.2, 136.3, 128.5, 128.1, 128.0, 74.0, 67.2, 66.9, 60.2, 57.8, 52.1, 31.1, 28.2, 28.2, 21.0, 19.2, 17.4. HRMS-ESI: calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 423.24896 , found 423.24698 .

Cbz-Val-Asp(OMe)-OMe

White solid, m.p.: $135-137^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-6.94(\mathrm{~m}, 6 \mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-$ 4.98 (m, 2H), $4.98-4.73$ (m, 1H), 4.16 (dd, J = 8.0, 4.0 Hz , 1 H), $3.89-3.42$ (m, 6H), 2.99 (dd, $J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (dd, $J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-1.94$ (m, 1H), 1.19 0.66 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,171.3$, 171.0, 156.4, 136.3, 128.4, 128.0, 127.9, 66.8, 60.0, 52.7,
52.0, 48.3, 35.9, 31.5, 19.0, 17.7. HRMS-ESI: calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 395.18128 , found 395.17965 .

Cbz-Val-Glu(OMe)-OMe

22

White solid, m.p.: $124-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-4.95$ (m, 2H), $4.70-4.50$ (m, 1H), 4.12 (dd, J = 8.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90-3.45$ (m, 6H), $2.54-2.28$ (m, 2H), 2.27-2.14 (m Hz, 1H), 2.14-2.04 (m, 1H), 2.04 - $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.76(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) (173.2, 172.0, 171.5, 156.4, 136.3, 128.4, 128.1, 127.9, 66.9, 60.1, 52.4, 51.8, 51.6, 31.3, 30.0, 26.9, 19.0, 17.8. HRMS-ESI: calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 409.19693$, found 409.19496.

Cbz-Tyr('Bu)-Ala-OMe

23

White solid, m.p.: $115-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.46-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.02(\mathrm{~m}, 2 \mathrm{H})$, $6.96-6.81$ (m, 2H), 6.65 (d, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.58 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.61-4.32(\mathrm{~m}$, 2 H), 3.69 (s, 3H), 3.01 (d, J=8.0 Hz, 2H), 1.45-1.18 (m, 12H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,170.6$, 156.0, 154.3, 136.2, 131.1, 129.8, 128.5, 128.1, 128.0, 124.2, $78.3,67.0,56.0,52.4,48.1,37.9,28.8,18.1$. HRMS-ESI: calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 457.23331$, found 457.23108 .

Cbz-Ser('Bu)-Ala-OMe

24

White oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.09(\mathrm{~m}, 5 \mathrm{H}), 5.86(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-$ 4.97 (m, 2H), 4.57 (p, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (s, 1H), 3.79 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ (d, J=8.0 Hz, 3H), $1.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 172.9, 169.9, 156.0, 136.2, 128.4, 128.1, 128.0, 74.1, 66.9, 61.7, 54.3, 52.3, 48.1, 27.2, 18.3. HRMS-ESI: calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 381.20201, found 381.20036.

Cbz-Thr($\left.{ }^{(} \mathrm{Bu}\right)$-Ala-OMe

25

White oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1H), $7.46-7.18$ (m, 5H), 5.99 (d, J = $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-$ $4.99(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{p}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-3.99(\mathrm{~m}, 2 \mathrm{H})$, 3.73 (s, 3H), 1.41 (d, J = $8.0 \mathrm{~Hz}, 3 \mathrm{H}$), $1.36-0.87$ (m, 12H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,169.0,156.0,136.3$, $128.5,128.0,127.9,75.3,66.7,58.5,52.2,48.2,28.1,18.2$,
16.7. HRMS-ESI: calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 395.21766$, found 395.21660 .

Cbz-Asp(OBzl)-Ala-OMe

26

White solid, m.p.: $127-129{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 7.77-7.14(\mathrm{~m}, 10 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-4.87(\mathrm{~m}, 4 \mathrm{H}), 4.75-4.57(\mathrm{~m}, 1 \mathrm{H})$, $4.57-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.04$ (dd, $J=16.0,4.0$ Hz, 1H), 2.75 (dd, $J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=4.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,171.6,170.0$, 156.0, 136.0, 135.3, 128.6, 128.6, 128.4, 128.3, 128.2, 67.3, 66.9, 52.4, 50.9, 48.3, 36.4, 18.0. HRMS-ESI: calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 443.18128$, found 443.17947.

Cbz-Glu(OBzl)-Ala-OMe

27

White solid, m.p.: $127-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.17$ (m, 10H), 7.09 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, ~ J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-4.90(\mathrm{~m}, 4 \mathrm{H}), 4.63-4.46(\mathrm{~m}, 1 \mathrm{H})$, 4.37 (dd, $J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.40$ (m, 2H), $2.28-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.1,173.0$, $171.0,156.2,136.2,135.7,128.6,128.5,128.3,128.2,128.1,128.0,67.0,66.5,53.8$, 52.4, 48.1, 30.2, 28.2, 17.8. HRMS-ESI: calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 457.19693, found 457.19484.

Fmoc-Asn(Trt)-Ala-OMe

28

White solid, m.p.: $207-209{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.01(\mathrm{~m}, 18 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.20(\mathrm{~m}, 3 \mathrm{H})$, $4.13(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{dd}, J=16.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.65 (dd, $J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28$ (d, $J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,171.1$, $170.6,156.3,144.3,143.9,143.7,141.3,141.3,128.8$, 128.0, 127.8, 127.1, 127.1, 125.3, 120.0, 70.9, 67.3, 52.5, 51.3, 48.5, 47.1, 38.5, 17.6. HRMS-ESI: calcd for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 682.29116, found 682.29069.

Fmoc-GIn(Trt)-Ala-OMe

29

White solid, m.p.: $141-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25-6.92(\mathrm{~m}, 18 \mathrm{H}), 6.10(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.24(\mathrm{~m}, 2 \mathrm{H})$, $4.23-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.26(\mathrm{~m}, 2 \mathrm{H})$, $2.15-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.1,172.1,171.3,156.2,144.6$, 143.9, 143.8, 141.3, 141.3, 128.7, 128.0, 127.7, 127.1, 127.1, 125.2, 120.0, 70.6, 67.0, 53.6, 52.4, 48.2, 47.1, 33.2, 29.6, 17.4. HRMS-ESI:
calcd for $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 696.30681$, found 696.30354 .

Cbz-Lys(Cbz)-Ala-OMe

30

White solid, m.p.: $145-148^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $7.59-7.18$ (m, 10H), 7.09 (d, J = 8.0 Hz, 1H), 5.89 (d, J $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.22-4.91(\mathrm{~m}, 4 \mathrm{H})$, 4.52 (p, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.33-4.12$ (m, 1H), 3.65 ($\mathrm{s}, 3 \mathrm{H}$), 3.15 (d, J = $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.56$ (m, 2H), $1.55-1.41$ (m, 2H), $1.41-1.19(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 173.2, 171.7, 156.7, 156.3, 136.6, 136.2, 128.5, 128.4, 128.1, 128.1, 128.0, 128.0, 66.9, 66.5, 54.4, 52.4, 48.0, 40.3, 32.2, 29.2, 22.0, 17.7. HRMS-ESI: calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 500.23913$, found 500.23712.

Boc-His(Trt)-Ala-OMe

Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (s, 1H), $7.34-7.23$ (m, 9H), $7.19-7.02$ (m, 6H), 6.67 (s, 1H), $6.50(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.30$ (m, 2H), 3.65 (s, 3H), $3.18-3.00$ (m, 1H), 2.94 (dd, J = $16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,171.3,155.7,142.3$, 138.5, 136.7, 129.7, 128.0, 128.0, 119.5, 79.6, 75.2, 54.4, 52.2, 48.0, 30.2, 28.3, 18.3. HRMS-ESI: calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 583.29150 , found 583.28876.

Cbz-Trp-Ala-OMe

32

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56$ (s, 1H), 7.59 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40-7.18$ (m, 6H), 7.13 (t, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-4.88(\mathrm{~m}$, 2H), $4.67-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{p}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (s, 3H), 3.26 (dd, $J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, $J=16.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.19 (d, $J=4.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ס 173.0, 171.3, 156.2, 136.3, 128.5, 128.2, 128.0, 127.5, 123.6, 122.0, 119.5, 118.7, 111.4, 109.9, 67.0, 55.5, 52.4, 48.2, 28.6, 18.0. HRMS-ESI: calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 424.18670$, found 424.18558.

Cbz-Val-Lys(Cbz)-OMe

33

White solid, m.p.: $122-126^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.64-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 1H), $6.02-5.51$ (m, 2H), $5.22-4.88$ (m, 4H), $4.64-$ $4.38(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.33$ - 2.91 (m, 2H), $2.16-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.53$ (m, 2H), $1.51-1.37$ (m, 2H), $1.33-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.93$ (d, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,172.0,156.8,156.7,136.5,136.2,128.5,128.5,128.4$, 128.1, 128.1, 67.1, 66.7, 59.9, 52.3, 40.3, 31.5, 31.4, 29.3, 22.5, 19.1, 17.5, 14.1. HRMS-ESI: calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 528.27043$, found 528.26819.

Cbz-Val-His(Trt)-OMe

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.59(\mathrm{~m}, 2 \mathrm{H})$, 7.50 (s, 1H), $7.42-7.29$ (m, 9H), $7.27-7.19$ (m, 4H), 7.18 -6.96 (m, 6H), 6.66 (s, 1H), 5.94 (d, J=12.0 Hz, 1H), 5.19
$-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.89-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}=8.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.07$ (m, 1H), 0.98 (d, J = $4.0 \mathrm{~Hz}, 3 \mathrm{H}$), 0.89 (d, J = $8.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,171.2,156.3,143.2$, 141.7, 138.0, 136.4, 135.3, 129.6, 128.4, 128.3, 128.2, 128.2, 127.9, 127.8, 126.2, 124.2, 120.0, 119.1, 110.1, 75.9, 66.7, 59.9, 52.6, 52.2, 31.4, 29.3, 19.1, 17.5. HRMSESI: calcd for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 645.30715$, found 645.30408 .

Cbz-Val-Trp-OMe

35

White solid, m.p.: $152-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 4 \mathrm{H})$, $7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}$, 1H), 6.95 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.76$ (m, 1H), 5.59 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=$ $12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (dd, $J=$ $8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (s, 3H), $3.39-3.06$ (m, 2H), 2.16 $1.97(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.60(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,171.7,156.6$, 136.2, 136.1, 128.5, 128.1, 128.1, 127.3, 123.4, 122.1, 119.5, 118.3, 111.4, 109.1, 67.0, 59.8, 52.8, 52.4, 31.6, 27.6, 19.1, 17.5. HRMS-ESI: calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ $\mathrm{m} / \mathrm{z} 452.21800$, found 452.21585 .

Boc-Arg(Cbz)2-Ala-OMe

36

White solid, m.p.: $105-108^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 9.63-9.07(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.16(\mathrm{~m}, 10 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.21$ (m, 2H), $5.21-5.05$ (m, 2H), 4.45 (p, J = 8.0 Hz , $1 \mathrm{H}), 4.29$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.07 (dd, $J=12.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.97-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.86$

- 1.57 (m, 4H), $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.9, 171.7, 163.6, 160.8, 155.8, 155.6, 136.6, 134.6, 128.8, 128.8, 128.4, 128.3, 127.9, 127.8, 79.7, 68.9, 66.9, 53.6, 52.3, 48.0, 44.0, 28.8, 28.3, 24.6, 17.6. HRMSESI: calcd for $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{9}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 628.29770, found 628.29673 .

Boc-Pro-Ala-OMe

37a

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.52$ (s, 1H), 4.38 $4.05(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.47-1.71$ ($\mathrm{m}, 4 \mathrm{H}$), 1.44 (s, 9H), 1.37 ($\mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,172.1,155.6,80.3,60.8,59.7,52.3$, 47.9, 47.0, 30.9, 28.2, 24.4, 23.6, 18.1. HRMS-ESI: calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 301.17580, found 301.17441.

Cbz-Pro-Ala-OMe

37b

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.23(\mathrm{~m}, 5 \mathrm{H})$, 7.20 (s, 0.5 H), 6.54 (s, 0.5H), 5.16 (s, 2H), $4.68-4.43$ (m, $1 \mathrm{H}), 4.41-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.62-3.25$ (m, 2H), $2.44-1.73(m, 4 H), 1.44-1.06(m, 3 H) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,171.3,155.9,136.4,128.4,128.0$, 127.8, 67.2, 60.3, 52.3, 48.1, 47.5, 46.9, 31.0, 28.4, 24.5, 23.6, 18.0. HRMS-ESI: calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 335.16015$, found 335.15856.

Fmoc-Pro-Ala-OMe

37c

White oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.66-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.22$ $(\mathrm{m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 0.6 \mathrm{H}), 6.53(\mathrm{~s}, 0.4 \mathrm{H}), 4.68-4.48(\mathrm{~m}, 1 \mathrm{H})$, $4.47-4.04(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.28(\mathrm{~m}, 5 \mathrm{H}), 2.44-1.73$ (m, $4 \mathrm{H}), 1.54-1.17(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.2, 171.3, 156.0, 143.8, 141.3, 127.7, 127.0, 125.1, 125.0, 120.0, 67.7, 60.8, 60.3, $52.3,48.2,47.5,47.2,47.0,31.2,28.5,24.6,23.5,18.5,18.1$. HRMS-ESI: calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 423.19145$, found 423.19193.

Cbz-Val-Cys(Bzl)-OMe

White solid, m.p.: $174-177^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $7.74-6.92$ (m, 10H), 6.56 (d, J = $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.89-4.66(\mathrm{~m}, 1 \mathrm{H})$, $4.19-3.92$ (m, 1H), $3.89-3.41$ (m, 5H), 2.87 (d, J = 4.0 $\mathrm{Hz}, 2 \mathrm{H}), 2.24-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.10-0.71$ (m, 6H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,170.9,156.3,137.6,136.2,128.9,128.6,128.5,128.2$, 128.0, 127.3, 67.1, 60.1, 52.6, 51.6, 36.6, 33.1, 31.2, 19.1, 17.6. HRMS-ESI: calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 459.19482$, found 459.19269.

Cbz-Val-Met-OMe

Light yellow solid, m.p.: $122-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47-7.18(\mathrm{~m}, 6 \mathrm{H}), 5.83(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.24-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{dd}, \mathrm{J}=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-$ $4.07(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.07$ (m, 2H), 2.07-2.01 (m, 3H), 2.01-1.87 (m, 1H), 1.06 $0.84(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,171.7,156.5,136.2,128.5,128.1$,
127.9, 67.0, 60.3, 52.4, 51.5, 31.3, 29.9, 19.1, 18.0, 15.3. HRMS-ESI: calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 397.17917, found 397.17749.

Cbz-Cys(Bzl)-Ala-OMe

40

White solid, m.p.: $138-140^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.13(\mathrm{~m}, 10 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{p}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.18(\mathrm{~m}$, 1 H), $3.86-3.50(\mathrm{~m}, 5 \mathrm{H}), 2.87$ (dd, $J=12.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dd, $J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.38 (d, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,169.9,155.9,137.9$, 136.1, 129.0, 128.6, 128.5, 128.2, 128.1, 127.2, 67.2, 54.1, 52.5, 48.3, 36.6, 33.9, 18.2. HRMS-ESI: calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 431.16352$, found 431.16162.

Cbz-Met-Ala-OMe

Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.20$ (m, 5H), 7.11 (d, J = $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.95 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.22-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.36(\mathrm{~m}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.00(\mathrm{~m}, 4 \mathrm{H})$, $1.99-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,171.1,156.1,136.2,128.5,128.1$, 128.0, 66.9, 53.6, 52.4, 48.0, 32.0, 29.8, 17.8, 15.1. HRMS-ESI: calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 369.14787, found 369.14649.

Cbz-Aib-Ala-OMe

42

Light yellow solid, m.p.: $67-70^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.54-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64$ (s, 1H), 5.08 (s, 2H), $4.74-4.29$ (m, 1H), 3.70 (s, 3H), 1.84 - 1.43 (m, 6H), 1.34 (d, J = $4.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 174.0, 173.4, 155.1, 136.3, 128.5, 128.1, 128.0, 66.6, 56.8, 52.3, 48.2, 25.6, 25.1, 18.0. HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$([M $\left.+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 323.16015$, found 323.15987 .

Cbz-Ac 5 c-Ala-OMe

43

White solid, m.p.: $103-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $7.59-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}$, $2 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.06-$ $1.85(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.09(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,173.5,155.5,136.3$, 128.5, 128.2, 128.1, 67.2, 66.9, 52.3, 48.3, 37.2, 36.6, 24.1, 18.1. HRMS-ESI: calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 349.17580, found 349.17597.

Cbz-Phg-Ala-OMe

White solid, m.p.: $179-181^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-6.98(\mathrm{~m}, 10 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.63-4.41(\mathrm{~m}, 1 \mathrm{H})$, 3.64 (s, 3H), 1.37 (d, J = $8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 172.8,169.4,155.7,137.6,136.2,129.0,128.5$, 128.5, 128.1, 128.0, 127.3, 67.0, 58.6, 52.4, 48.4, 18.1. HRMS-ESI: calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 371.16015$, found 371.15925.

Fmoc-Orn(Cbz)-Ala-OMe

45

White solid, m.p.: $148-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.13$ (m, 9H), 5.91 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.55-$ $5.18(\mathrm{~m}, 1 \mathrm{H}), 5.17-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.02(\mathrm{~m}, 5 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.42-2.90(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.45(\mathrm{~m}, 4 \mathrm{H})$, $1.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,171.9,157.1,156.4,143.9,143.7,141.3,136.5,128.5,128.1,128.0,127.7$, 127.1, 125.1, 120.0, 67.1, 66.7, 53.4, 52.3, 48.0, 47.1, 39.7, 30.3, 25.9, 17.7. HRMSESI: calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 574.25478$, found 574.25383 .

Cbz- β-Ala-His(Trt)-OMe

Light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-$ 7.17 (m, 16H), $7.16-6.97(\mathrm{~m}, 6 \mathrm{H}), 6.73-6.38(\mathrm{~m}$, 2H), 5.01 (s, 2H), $4.87-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.28$ (m, 5H), 3.16-2.93(m, 2H), 2.56-2.29 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,171.4,156.5,142.2$, 138.9, 136.9, 136.3, 129.7, 128.4, 128.1, 127.8,
127.7, 119.6, $75.3,66.2,52.8,52.1,37.6,36.6,29.4$. HRMS-ESI: calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{5}{ }^{+}$ $\left([M+H]^{+}\right) m / z 617.27585$, found 617.27503.

4. Gram-scale Synthesis in Continuous-flow

4.1 Flow reactor setup.

The outline diagram of the assembled flow photoreactor was shown in Figure S5. The flow photoreactor was mainly consisted of a peristaltic pump (RBT100-15L), an RLH18 octet photocatalytic parallel reaction system with eight 10W blue LEDs, and a cylindrical coil continuous-flow reaction system (RLR-18CF, Figure S6), which were purchased from Beijing Roger tech Ltd. FEP tubing (1 mm inner diameter) was selected, and the calculated residence volume of the tubing was about 12 mL . The continuous-flow reaction system was placed on a magnetic hotplate stirrer (DLAB MS-$\mathrm{H}-\mathrm{Pro}^{\mathrm{A}}$) to keep the reaction temperature at $60^{\circ} \mathrm{C}$.

Figure S5. Picture of the Flow Photoreactor

Figure S6. Pictures of the cylindrical coil

4.2 General procedure

A 200 mL reaction bottle equipped with a PTFE valve was charged with protected amino acid ($4.0 \mathrm{mmol}, 1.0$ equiv.), amino acid ester hydrochloride ($4.8 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PPh}_{3}(1.2 \mathrm{mmol}, 30 \mathrm{~mol} \%), \mathrm{InBr}_{3}(2 \mathrm{~mol} \%),\left[\mathrm{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1$ $\mathrm{mol} \%)$ and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$. The bottle was evacuated and purged with nitrogen three times. The valve was closed after MeCN (32 mL), DMF (8 mL), TMDS ($12.0 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($6.0 \mathrm{mmol}, 1.5$ equiv.) were added under nitrogen. The mixture solution was sonicated for 15 min , then pumped via peristatic pump to pass through the flow photoredox system with a flow rate of $0.25 \mathrm{~mL} / \mathrm{min}$ at $60^{\circ} \mathrm{C}$. The outlet solution was collected, concentrated, and purified through column chromatography to afford the desired dipeptide product.

4.3 General procedure for the deprotection of the Cbz-group

The Cbz-group protected peptide in absolute methanol (0.1 M) was performed in the presence of Pd / C (w.t. 15%) at room temperature. The reaction was allowed to stir in an atmosphere of hydrogen (balloon, 1 atm) overnight, then the mixture was filtrated over celite, and the organic solvent was evaporated to afford desired product without further purification. And the crude product was used directly for the next step.

4.4 General procedure for the deprotection of the Boc-group

The Boc-group protected peptide was dissolved in a minimal amount of EtOAc at $0^{\circ} \mathrm{C}$. The $\mathrm{HCl} / \mathrm{EA}$ solution (0.5 M) was added to the flask slowly and the reaction was stirred at $0^{\circ} \mathrm{C}$. Upon complete consumption of the starting material, the reaction mixture was concentrated, and the crude was diluted with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was then adjusted to $\mathrm{pH} \approx 8$ with saturated NaHCO_{3} solution and extracted with EtOAc. The organic solvent was dried over sodium sulfate and concentrated to afford the desired product without further purification. And the crude product was used directly for the next step.

4.5 General procedure for hydrolysis of methyl esters

To a solution of the peptide methyl ester in THF (0.25 M) was added 0.25 N NaOH (1.05 equiv.). Upon complete consumption of the starting material, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was washed with EtOAc. The aqueous layer was then adjusted to $\mathrm{pH} \approx 2$ with 1 N HCl and extracted with EtOAc twice. The combined extracts were dried over sodium sulfate and concentrated to afford the desired product without further purification. And the crude product was used directly for the next step.

4.6 General procedure for multigram synthesis

A 200 mL reaction bottle equipped with a PTFE valve was charged with Cbz-L-Lys(Cbz)-OH ($10.0 \mathrm{mmol}, 1.0$ equiv.), L-Glu(OBzl)-OBzl $\cdot \mathrm{HCl}(12 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PPh}_{3}(3.0 \mathrm{mmol}, 30 \mathrm{~mol} \%), \operatorname{lnBr}_{3}(2 \mathrm{~mol} \%),\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$ ($1 \mathrm{~mol} \%$) and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}$ ($5 \mathrm{~mol} \%$). The bottle was evacuated and purged with nitrogen three times. The valve was closed after MeCN (80 mL), DMF (20 mL), TMDS (30.0 $\mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($15 \mathrm{mmol}, 1.5$ equiv.) were added under nitrogen. The mixture solution was sonicated for 15 min , then pumped via peristatic pump to pass through the flow photoredox system with a flow rate of $0.25 \mathrm{~mL} / \mathrm{min}$ at $60^{\circ} \mathrm{C}$. The outlet solution was collected and concentrated. The crude solid was dissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by precipitation with petroleum ether, then filtered and washed with petroleum ether to afford crude product. The filtrate was collected
and concentrated, then recrystallized with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and petroleum ether for another time. The crude product was combined and washed with MeOH and petroleum ether, then dried with vacuum-oven to afford Cbz-Lys(Cbz)-Glu(OBzl)-OBzl as a white solid (5.17 $\mathrm{g}, 71 \%$ yield).

4.7 Characterization data

Cbz-Pro-Gly-OMe

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-6.77(\mathrm{~m}, 6 \mathrm{H})$, $5.54-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.21-3.79(\mathrm{~m}, 2 \mathrm{H})$, $3.79-2.97(\mathrm{~m}, 5 \mathrm{H}), 2.47-1.56(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 172.9,172.4,170.1,155.7,154.8,136.4,128.3$, 127.9, 127.6, 67.0, 60.4, 52.0, 47.3, 46.9, 41.0, 31.1, 29.0, 24.3, 23.4. HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 321.14450$, found 321.14406.

Cbz-Leu-Ala-OMe

48

White solid, m.p.: $93-95^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.45-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-4.99$ (m, 2H), 4.56 (p, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42-4.13$ (m, 1H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.58$ $-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-0.75(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,172.0,156.2,136.2,128.5,128.1,128.0,66.9$, $53.3,52.4,48.0,41.6,24.6,22.9,21.9,18.0$. HRMS-ESI: calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}([\mathrm{M}+$ $H]^{+}$) m/z 351.19145, found 351.18976.

Cbz-Tyr(Bzl)-Gly-OMe

White solid, m.p.: $127-129^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91-7.22(\mathrm{~m}, 10 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.60(\mathrm{~m}, 1 \mathrm{H})$, 5.62 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.31-4.83$ (m, 4H), 4.68 - $4.33(\mathrm{~m}, 1 \mathrm{H}), 4.13-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.25-2.80(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,170.0,157.8,156.1,136.9$, 136.1, 130.4, 128.6, 128.5, 128.2, 128.0, 127.5, 115.0, 69.9, 67.0, 56.1, 52.3, 41.1, 37.6. HRMS-ESI: calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 477.20201$, found 477.19985.

Cbz-Ala-Gly-OMe

50

White solid, m.p.: $98-101^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б $7.56-7.01$ (m, 6H), 6.06 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-4.87$ (m, 2H), $4.53-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.67$ (s, $3 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 173.3, 170.3, 156.1, 136.2, 128.5, 128.1, 127.9, 66.8, 52.2, 50.4, 41.0, 18.5. HRMS-ESI: calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 295.12885$,
found 295.12819.

Cbz-Gly-Val-OMe

51

White solid, m.p.: $143-146^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-5.89$ (m, 1H), $5.44-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.54$ (dd, $J=8.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (d, J = $4.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.69 (s, 3H), $2.31-1.90$ (m, 1H), $1.25-0.47(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4$, 169.4, 156.7, 136.3, 128.5, 128.1, 128.0, 67.0, 57.2, 52.2, 44.3, 31.1, 18.9, 17.7. HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 323.16015$, found 323.15988.

Cbz-Phe-Leu-OMe

52

White solid, m.p.: $108-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.66-6.94(\mathrm{~m}, 10 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.62 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.33$ (m, 2H), 3.67 (s, 3H), $3.21-2.82(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.32$ (m, 3H), 1.04-0.59 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 172.9, 170.9, 156.0, 136.4, 136.2, 129.4, 128.5, 128.5, 128.1, 127.9, 126.9, $67.0,56.0,52.2,50.8,41.3,38.5,24.7,22.7,21.9$. HRMS-ESI: calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 427.22275$, found 427.22095 .

Cbz-Ile-Tyr(${ }^{\text {Bu }}$)-OMe

White solid, m.p.: $110-111^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.11-6.63(\mathrm{~m}, 5 \mathrm{H}), 5.78$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.83$ (dd, J $=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}$, 3H), 3.02 (d, J= $6.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.90-1.73$ (m, 1H), 1.60 $-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.97$ $-0.68(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8$, 171.2, 156.3, 154.4, 136.4, 130.6, 129.6, 128.4, 128.0, 127.9, 124.1, 66.9, 59.5, 53.4, 52.1, 37.5, 37.3, 28.8, 24.7, 15.2, 11.3. HRMS-ESI: calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ $\mathrm{m} / \mathrm{z} 499.28026$, found 499.28068.

Boc-Cys(Bzl)-Gly-OBzl

54

White solid, m.p.: $75-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-6.96(\mathrm{~m}, 11 \mathrm{H}), 5.59(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}$, 2 H), 4.39 (s, 1H), 4.15-3.89 (m, 2H), 3.79-3.58 (m, 2H), $2.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.3,169.5,155.6,138.0,135.2,129.1,128.6$, 128.6, 128.5, 128.4, 127.2, 80.3, 67.2, 53.6, 41.4, 36.4, 33.8, 28.3. HRMS-ESI: calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 459.19482$, found 459.19263.

Noopept

55

White solid, m.p.: $90-93^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.09(\mathrm{~m}, 5 \mathrm{H}), 4.72$ $-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.81(\mathrm{~m}$, 2 H), $3.78-3.37$ (m, 4H), $2.43-1.69$ (m, 4H), $1.41-$ $1.04(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5$, 171.7, 171.2, 171.0, 169.6, 169.6, 134.3, 134.2, 129.0, 128.6, 128.5, 126.9, 126.8, 61.3, 61.2, 61.1, 59.7, 47.6, 47.0, 41.8, 41.6, 41.2, 41.0, 32.0, 27.6, 24.8, 22.5, 14.1, 14.0. HRMS-ESI: calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 319.16523$, found 319.16382.

Methyl
 (S)-3-(4-(benzyloxy)phenyl)-2-((S)-1-pentanoylpyrrolidine-2carboxamido)propanoate

56

Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (d, $J=8.0$ $\mathrm{Hz}, 0.8 \mathrm{H}$), $7.47-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.14-$ 4.91 (m, 2H), 4.91 - 4.65 (m, 1H), $4.63-4.17$ (m, 1H), $3.90-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.51-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.17-2.80$ (m, 2H), $2.40-1.49$ (m, 8H), $1.43-1.13$ (m, 4H), 1.03 $-0.66(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3$, 173.2, 171.9, 171.8, 171.5, 171.0, 157.9, 157.6, 137.0, 136.8, 130.2, 129.9, 128.5, 128.5, 128.1, 127.9, 127.4, 115.0, 114.5, 69.8, 69.8, 61.2, 59.3, 53.3, 52.9, 52.4, 52.2, $47.2,46.6,37.0,36.5,34.5,34.3,31.8,31.6,31.5,27.0,24.8,24.4,24.3,22.5,22.2$, 14.0, 14.0. HRMS-ESI: calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 481.26970$, found 481.26864.

Dilept

56'

White solid, m.p.: $115-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.24(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.72-7.83(\mathrm{~m}$, 1H), 7.00 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.82-6.43$ (m, 2H), 4.64 - 4.11 (m, 2H), $3.89-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.48-3.20(\mathrm{~m}, 2 \mathrm{H})$, $3.12-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-1.56$ (m, 5H), $1.56-1.35$ (m, 2H), $1.36-1.02$ (m, 4H), 0.97 $-0.68(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 172.4$, 172.4, 172.3, 171.5, 171.5, 156.5, 156.4, 130.4, 130.3, 127.7, 127.4, 115.4, 115.3, 59.9, 59.2, 54.3, 53.8, 52.3, 52.1, 47.1, 46.7, 36.3, 35.8, 34.0, 33.6, 32.0, 31.4, 31.4, 29.2, 24.5, 24.3, 22.5, 14.3. HRMS-ESI: calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 391.22275$, found 391.22096 .

Cbz-Lys(Cbz)-Glu(OBzl)-OBzl

White solid, m.p.: $124-127{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-6.93(\mathrm{~m}, 20 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 1H), $5.59-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.22-4.87(\mathrm{~m}$, $8 \mathrm{H}), 4.69-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.10(\mathrm{~m}$,
$1 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 2.45-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82$ $-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.18(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б 172.6, 172.3, 171.6, 156.7, 156.4, 136.7, 136.3, 135.7, 135.2, 128.6, 128.6, 128.5, $128.5,128.3,128.3,128.1,128.0,67.3,66.9,66.5,54.6,51.8,40.3,32.2,30.2,29.2$, 26.8, 22.2. HRMS-ESI: calcd for $\mathrm{C}_{41} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{9}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 724.32286$, found 724.32260

Vilon

57'

White solid, m.p.: $194-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.24-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.10-2.79$ (m, 2H), $2.35-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.73$ (m, $4 \mathrm{H}), 1.73-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.18(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 182.0,178.1,169.4$, 55.4, 52.9, 38.9, 33.9, 30.3, 28.0, 26.2, 20.9.

HRMS-ESI: calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 276.15540, found 276.15411.

5. Peptide fragment condensation

5.1 Synthesis of proglyuprol

To an oven-dried reaction tube equipped with a stir bar was added Cbz-Pro-Gly-OH ($1.0 \mathrm{mmol}, 1.0$ equiv.), L-Pro-OBzl $\cdot \mathrm{HCl}\left(1.5 \mathrm{mmol}, 1.5\right.$ equiv.), $\mathrm{PPh}_{3}(0.3 \mathrm{mmol}, 30$ $\mathrm{mol} \%), \quad \operatorname{lnBr}_{3} \quad(2 \mathrm{~mol} \%), \quad\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}_{2}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6} \quad(1 \quad \mathrm{~mol} \%) \quad$ and $\mathrm{Co}(\mathrm{dmgH})(\mathrm{dmgH})_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$. The tube was sealed and placed under nitrogen before $\mathrm{MeCN}(10 \mathrm{~mL})$, TMDS ($3.0 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($1.5 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65{ }^{\circ} \mathrm{C}$ for 16 h . Upon complete consumption of the starting material, the reaction mixture was concentrated and purified through column chromatography to afford Cbz-Pro-Gly-Pro-OBzl 58 as colorless oil ($414.6 \mathrm{mg}, 84 \%$ yield).

Cbz-Pro-Gly-Pro-OBzl ($394.8 \mathrm{mg}, 0.8 \mathrm{mmol}, 1.0$ equiv.) in absolute methanol (8 mL) was performed in the presence of $\mathrm{Pd} / \mathrm{C}(107.7 \mathrm{mg})$ at room temperature. The reaction was allowed to stir in an atmosphere of hydrogen (balloon, 1 atm) overnight, then the mixture was filtrated over celite, and the organic solvent was evaporated to afford proglyuprol 58' as a colorless oil ($213.3 \mathrm{mg}, 99 \%$ yield).

5.2 Synthesis of LAGV in batch

To an oven-dried reaction tube equipped with a stir bar was added Cbz-Leu-Ala-OH ($0.8 \mathrm{mmol}, 1.0$ equiv.), H-Gly-Val-OMe ($0.8 \mathrm{mmol}, 1.0$ equiv.), PPh_{3} ($0.24 \mathrm{mmol}, 30$ $\mathrm{mol} \%), \quad \operatorname{lnBr}_{3} \quad(2 \mathrm{~mol} \%), \quad\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}_{2}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6} \quad(1 \quad \mathrm{~mol} \%)$ and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$. The tube was sealed and placed under nitrogen before MeCN (8 mL), TMDS ($2.4 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($1.2 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65{ }^{\circ} \mathrm{C}$ for 12 h . Upon complete consumption of the starting material, the reaction mixture was concentrated and purified through column chromatography to afford Cbz-Leu-Ala-Gly-Val-OMe 59 as a white solid ($324.2 \mathrm{mg}, 80 \%$ yield).

To a solution of Cbz-Leu-Ala-Gly-Val-OMe ($324.2 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.0$ equiv.) in THF $(2.5 \mathrm{~mL})$ was added 0.25 N NaOH ($0.67 \mathrm{mmol}, 1.05$ equiv.). The mixture was stirred for 30 min at room temperature. Upon complete consumption of the starting material, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer washed with EtOAc. The aqueous layer was then adjusted to $\mathrm{pH} \approx 2$ with 1 N HCl and extracted with EtOAc twice. The combined extracts were dried over sodium sulfate and concentrated to afford Cbz-Leu-Ala-Gly-Val-OH without further purified (308.9 mg , 98% yield).
Cbz-Leu-Ala-Gly-Val-OH ($308.9 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.0$ equiv.) in absolute methanol (6 mL) was performed in the presence of $\mathrm{Pd} / \mathrm{C}(84.2 \mathrm{mg})$ at room temperature. The reaction was allowed to stir in an atmosphere of hydrogen (balloon, 1 atm) overnight, then the mixture was filtrated over celite, and washed with water. The aqueous solution was dried with vacuum-oven to afford LAGV 59' as a white solid ($222.5 \mathrm{mg}, 99 \%$ yield).

5.3 Synthesis of LAGV in continuous-flow

A 200 mL reaction bottle equipped with a PTFE valve was charged with protected amino acid ($3.6 \mathrm{mmol}, 1.0$ equiv.), amino acid ester hydrochloride ($3.6 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{PPh}_{3}(1.08 \mathrm{mmol}, 30 \mathrm{~mol} \%), \operatorname{lnBr}_{3}(2 \mathrm{~mol} \%),\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1$ $\mathrm{mol} \%$) and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$. The bottle was evacuated and purged with nitrogen three times. The valve was closed after MeCN (28.8 mL), DMF (7.2 mL), TMDS ($10.8 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($5.4 \mathrm{mmol}, 1.5$ equiv.) were added under nitrogen. The mixture was sonicated for 15 min , then pumped via a peristatic pump to pass through the flow photoredox system with a flow rate of $0.25 \mathrm{~mL} / \mathrm{min}$ at $60{ }^{\circ} \mathrm{C}$. The outlet solution was collected, concentrated and purified through column chromatography to afford Cbz-Leu-Ala-Gly-Val-OMe 59 as a white solid ($1.5320 \mathrm{~g}, 84 \%$ yield).

To a solution of Cbz-Leu-Ala-Gly-Val-OMe ($1.5320 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.0$ equiv.) in THF $(12.0 \mathrm{~mL})$ was added $0.25 \mathrm{~N} \mathrm{NaOH}(3.15 \mathrm{mmol}, 1.05$ equiv.). The mixture was stirred for 30 min at room temperature. Upon complete consumption of the starting material, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was washed with EtOAc. The aqueous layer was then adjusted to $\mathrm{pH} \approx 2$ with 1 N HCl and extracted with EtOAc twice. The combined extracts were dried over sodium sulfate and concentrated to afford Cbz-Leu-Ala-Gly-Val-OH without further purified ($1.4482 \mathrm{~g}, 98 \%$ yield).
Cbz-Leu-Ala-Gly-Val-OH ($1.4482 \mathrm{~g}, 2.94 \mathrm{mmol}, 1.0$ equiv.) in absolute methanol (30 mL) was performed in the presence of $\mathrm{Pd} / \mathrm{C}(395.0 \mathrm{mg})$ at room temperature. The reaction was allowed to stir in an atmosphere of hydrogen (balloon, 1 atm) overnight, then the mixture was filtrated over celite, and washed with water. The aqueous solution was dried with vacuum-oven to afford LAGV 59' as a white solid ($1.0431 \mathrm{~g}, 99 \%$ yield).

5.4 Synthesis of leu-enkephalin

To an oven-dried reaction tube equipped with a stir bar was added Cbz-Gly-OH (1.0 $\mathrm{mmol}, 1.0$ equiv.), H-Phe-Leu-OMe ($1.5 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{PPh}_{3}(0.3 \mathrm{mmol}, 30 \mathrm{~mol} \%)$, $\operatorname{lnBr}_{3}(2 \mathrm{~mol} \%)$, $\left[\mathrm{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$ ($1 \mathrm{~mol} \%$) and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5$ $\mathrm{mol} \%$). The tube was sealed and placed under nitrogen before MeCN (10 mL), TMDS ($3.0 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($1.5 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65{ }^{\circ} \mathrm{C}$ for 16 h . Upon complete consumption of the starting material, the reaction mixture was concentrated and purified through column chromatography to afford Cbz-Gly-Phe-Leu-OMe 60 as a white solid ($406.2 \mathrm{mg}, 84 \%$ yield).

Cbz-Gly-Phe-Leu-OMe ($406.2 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0$ equiv.) in absolute methanol (8.5 mL) was performed in the presence of $\mathrm{Pd} / \mathrm{C}(110.8 \mathrm{mg})$ at room temperature. The reaction was allowed to stir in an atmosphere of hydrogen (balloon, 1 atm) overnight, then the mixture was filtrated over celite, and the organic solvent was evaporated to afford H-Gly-Phe-Leu-OMe 60' as a white solid without further purified ($290.6 \mathrm{mg}, 99 \%$ yield).

To an oven-dried reaction tube equipped with a stir bar was added Cbz-Tyr(Bzl)-Gly-

OH ($0.8 \mathrm{mmol}, 1.0$ equiv.), H-Gly-Phe-Leu-OMe ($0.8 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{PPh}_{3}(0.24$ $\mathrm{mmol}, 30 \mathrm{~mol} \%), \mathrm{InBr}_{3}(2 \mathrm{~mol} \%), \quad\left[\mathrm{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$ and $\mathrm{Co}(\mathrm{dmgH})(\mathrm{dmgH})_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$. The tube was sealed and placed under nitrogen before $\mathrm{MeCN}(8 \mathrm{~mL})$, TMDS ($2.4 \mathrm{mmol}, 3.0$ equiv.) and 2,4,6-collidine ($1.2 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65{ }^{\circ} \mathrm{C}$ for 20 h . Upon complete consumption of the starting material, the reaction mixture was concentrated and purified through column chromatography to afford Cbz-Tyr(Bzl)-Gly-Gly-Phe-Leu-OMe 61 as a white solid ($533.5 \mathrm{mg}, 84 \%$ yield).

To a solution of Cbz-Tyr(Bzl)-Gly-Gly-Phe-Leu-OMe ($476.4 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.0$ equiv.) in methanol (45 mL) was added $2 \mathrm{M} \mathrm{NaOH}(9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 30 min . Upon complete consumption of the starting material, the reaction mixture was neutralized with 2 N HCl to $\mathrm{pH} \approx 7.0$ and evaporated to remove methanol. The residue was acidified with 2 N HCl to $\mathrm{pH} \approx 1.0$. The precipitates were collected by filtration to afford Cbz-Tyr-Gly-Gly-Phe-Leu-OH as a white solid without further purified ($406.3 \mathrm{mg}, 98 \%$ yield).
Cbz-Tyr-Gly-Gly-Phe-Leu-OH ($406.3 \mathrm{mg}, 0.59 \mathrm{mmol}, 1.0$ equiv.) in absolute methanol $(6.0 \mathrm{~mL})$ was performed in the presence of $\mathrm{Pd} / \mathrm{C}(110.8 \mathrm{mg})$ at room temperature. The reaction was allowed to stir in an atmosphere of hydrogen (balloon, 1 atm) overnight, then the mixture was filtrated over celite, and the organic solvent was evaporated to afford leu-enkephalin 61' as a white solid ($324.5 \mathrm{mg}, 99 \%$ yield).

5.5 Synthesis of ('Bu)-fanlizhicyclopeptide B

50', Cbz-Ala-Gly-OH
$\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$
$\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$
$\xrightarrow[\operatorname{lnBr}_{3}(2 \mathrm{~mol} \%), \text { TMDS (3.0 equiv) }]{30 \mathrm{~mol} \% \mathrm{PPh}_{3}}$
2,4,6-collidine (1.5 equiv)
MeCN (0.1 M), blue LEDs, $65{ }^{\circ} \mathrm{C}$

62, Cbz-Ala-Gly-Pro-OMe 86% yield, >19:1 d.r.

H-Pro-OMe • HCl
To an oven-dried reaction tube equipped with a stir bar was added Cbz-Ala-Gly-OH ($1.0 \mathrm{mmol}, 1.0$ equiv.), $L-\mathrm{Pro}-\mathrm{OMe} \cdot \mathrm{HCl}$ ($1.5 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{PPh}_{3}(0.3 \mathrm{mmol}, 30$ $\left.\mathrm{mol} \%), \quad \operatorname{lnBr}_{3} \quad(2 \mathrm{~mol} \%), \quad\left[\operatorname{lr}\left(\mathrm{dFF}_{\left(\mathrm{CF}_{3}\right)}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6} \quad(1 \quad \mathrm{~mol} \%) \quad$ and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$. The tube was sealed and placed under nitrogen before $\mathrm{MeCN}(10 \mathrm{~mL})$, TMDS ($3.0 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($1.5 \mathrm{mmol}, 1.5$
equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65{ }^{\circ} \mathrm{C}$ for 16 h . Upon complete consumption of the starting material, the reaction mixture was concentrated and purified through column chromatography to afford Cbz-Ala-Gly-Pro-OMe 62 as a white oil ($336.6 \mathrm{mg}, 86 \%$ yield).

To a solution of Cbz-Ala-Gly-Pro-OMe ($336.6 \mathrm{mg}, 0.86 \mathrm{mmol}, 1.0$ equiv.) in THF (3.5 mL) was added $0.25 \mathrm{~N} \mathrm{NaOH}(0.90 \mathrm{mmol}, 1.05$ equiv.). The mixture was stirred for 30 min at room temperature. Upon complete consumption of the starting material, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was washed with EtOAc. The aqueous layer was then adjusted to $\mathrm{pH} \approx 2$ with 1 N HCl and extracted with EtOAc twice. The combined extracts were dried over sodium sulfate and concentrated to afford Cbz-Ala-Gly-Pro-OH 62' as a white solid without further purified ($295.4 \mathrm{mg}, 91 \%$ yield).

To an oven-dried reaction tube equipped with a stir bar was added Cbz-Ala-Gly-Pro$\mathrm{OH}\left(0.75 \mathrm{mmol}, 1.0\right.$ equiv.), $\mathrm{H}-\mathrm{Ile}-\mathrm{Tyr}\left({ }^{(} \mathrm{Bu}\right)-\mathrm{OMe}\left(1.125 \mathrm{mmol}, 1.5\right.$ equiv.), $\mathrm{PPh}_{3}(0.225$ $\mathrm{mmol}, 30 \mathrm{~mol} \%), \mathrm{InBr}_{3}$ (2 mol\%), $\left[\mathrm{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{pppy}_{2}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$ and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}$ ($5 \mathrm{~mol} \%$). The tube was sealed and placed under nitrogen before $\mathrm{MeCN}(7.5 \mathrm{~mL})$, TMDS ($2.25 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine (1.125 mmol , 1.5 equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65{ }^{\circ} \mathrm{C}$ for 24 h . Upon complete consumption of the starting material, the reaction mixture was concentrated and purified through column chromatography to afford Cbz-Ala-Gly-Pro-Ile-Tyr('Bu)-OMe 63 as a white solid ($499.5 \mathrm{mg}, 92 \%$ yield).

To a solution of Cbz-Ala-Gly-Pro-lle-Tyr('Bu)-OMe ($499.5 \mathrm{mg}, 0.69 \mathrm{mmol}, 1.0$ equiv.) in THF (2.8 mL) was added 0.25 N NaOH ($0.73 \mathrm{mmol}, 1.05$ equiv.). The mixture was stirred for 30 min at room temperature. Upon complete consumption of the starting material, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer washed with EtOAc. The aqueous layer was then adjusted to $\mathrm{pH} \approx 2$ with 1 N HCl and extracted with EtOAc twice. The combined extracts were dried over sodium sulfate and concentrated to afford Cbz-Ala-Gly-Pro-Ile-Tyr($\left.{ }^{(}{ }^{(B u}\right)-\mathrm{OH}$ as a white solid without further purified ($450.6 \mathrm{mg}, 92 \%$ yield).
Cbz-Ala-Gly-Pro-lle-Tyr('Bu)-OH ($450.6 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.0$ equiv.) in absolute methanol (6.3 mL) was performed in the presence of $\mathrm{Pd} / \mathrm{C}(122.9 \mathrm{mg}$) at room temperature. The reaction was allowed to stir in an atmosphere of hydrogen (balloon, 1 atm) overnight, then the mixture was filtrated over celite, and the organic solvent was evaporated to afford H-Ala-Gly-Pro-Ile-Tyr('Bu)-OH 63' as a white solid without further purified ($359.1 \mathrm{mg}, 99 \%$ yield).

Table S10. Optimization of cyclic peptide synthesis

entry ${ }^{\text {a }}$	solvent	concentration (M)	yield(\%) ${ }^{\text {b }}$
1	MeCN	0.1	15
2	MeCN	0.05	15
3	MeCN	0.03	19
4	MeCN/DMF (4:1)	0.03	39
5	MeCN/DMA (4:1)	0.03	33
6	MeCN/DMSO (4:1)	0.03	13
$7^{\text {c }}$	MeCN/DMF (4:1)	0.03	25
8^{d}	MeCN/DMF (4:1)	0.03	36

${ }^{a} \mathrm{H}$-Ala-Gly-Pro-Ile-Tyr(${ }^{\text {'Bu) }}$-OH 63' ($0.2 \mathrm{mmol}, 1.0$ equiv.). ${ }^{b}$ Yields of isolated products. ${ }^{c}\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(2 \mathrm{~mol} \%)$ and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(10 \mathrm{~mol} \%) .{ }^{d} \mathrm{PPh}_{3}$ ($50 \mathrm{~mol} \%$). ${ }^{e} \mathrm{HOBt}$ ($0.2 \mathrm{mmol}, 1.0$ equiv.) was added.

To an oven-dried reaction tube equipped with a stir bar was added H-Ala-Gly-Pro-lle$\mathrm{Tyr}\left({ }^{(\mathrm{Bu}}\right)-\mathrm{OH}$ ($0.2 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{PPh}_{3}(0.06 \mathrm{mmol}, 30 \mathrm{~mol} \%), \mathrm{InBr}_{3}(2 \mathrm{~mol} \%)$, $\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$ and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$. The tube was sealed and placed under nitrogen before $\mathrm{MeCN}(4.8 \mathrm{~mL})$, DMF (1.2 mL), TMDS ($0.6 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($0.3 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was concentrated and purified through column chromatography to afford ('Bu)-fanlizhicyclopeptide B 64 as a white solid ($43.1 \mathrm{mg}, 39 \%$ yield).

5.6 Characterization data

Cbz-Pro-Gly-Pro-OBzl

58

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-6.62(\mathrm{~m}$, $11 \mathrm{H}), 5.34-4.90(\mathrm{~m}, 4 \mathrm{H}), 4.78-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.24-3.65$ $(\mathrm{m}, 2 \mathrm{H}), 3.63-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.33-1.63(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,171.4,166.6,155.4,136.4$, $135.4,128.5,128.3,128.2,128.1,127.8,127.6,66.9,66.6$, $60.6,58.7,46.8,45.7,41.8,31.1,28.7,24.3,21.9$. HRMS-ESI: calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 494.22856, found 494.22822.

Proglyuprol

58'

Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.55-4.29(\mathrm{~m}$, 2H), $4.23-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.37(\mathrm{~m}, 4 \mathrm{H}), 2.59-1.71$ (m, 8H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 176.2, 169.3, 167.4, 60.5, 59.7, 46.2, 41.6, 31.4, 29.9, 24.4, 23.8, 22.2. HRMSESI: calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 270.14483$, found 270.14443 .

Cbz-Leu-Ala-Gly-Val-OMe

59

White solid, m.p.: $129-131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.57(\mathrm{~m}, 2 \mathrm{H})$, 7.44 (d, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 5 \mathrm{H})$, $5.96(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-4.94(\mathrm{~m}, 2 \mathrm{H})$, $4.85-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.51(\mathrm{~m}, 1 \mathrm{H})$, $4.50-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.24-3.98(\mathrm{~m}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-$ $0.70(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,172.5,172.3,168.9,156.4,136.3$, 128.5, 128.1, 127.9, 66.9, 57.3, 53.5, 52.1, 48.9, 43.1, 42.1, 31.2, 24.6, 22.9, 22.0,
18.9, 17.9. HRMS-ESI: calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{7}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 507.28133$, found 507.28172.

LAGV

59'

White solid, m.p.: $143-145^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.34-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.12-$ $3.99(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.69$ (m, 1H), $3.34(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 1 \mathrm{H})$, $1.83-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.16$ $-0.97(\mathrm{~m}, 6 \mathrm{H}), 0.97-0.84(\mathrm{~m} \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.8,173.5$, 173.4, 169.7, 59.3, 51.6, 49.7, 42.3, 40.1, 30.8, 24.0, 21.8, 21.0, 18.7, 17.4, 16.2. HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{5}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 359.22890$, found 359.22902.

Cbz-Gly-Phe-Leu-OMe

60

White solid, m.p.: $114-117^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.26(\mathrm{~m}$, $5 \mathrm{H}), 7.25-7.00(\mathrm{~m}, 6 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H})$, $4.95-4.78$ (m Hz, 1H), $4.63-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.86$ (d, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.18-2.82(\mathrm{~m}, 2 \mathrm{H})$, $1.69-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.03-0.62(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,171.0,169.3,156.7,136.4,136.3,129.4,128.5,128.4$, 128.1, 128.0, 126.8, 67.0, 54.3, 52.2, 50.9, 44.2, 41.1, 38.6, 24.7, 22.6, 21.9. HRMSESI: calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 484.24421$, found 484.24340.

Cbz-Tyr(Bzl)-Gly-Gly-Phe-Leu-OMe

61

White solid, m.p.: 102 $105{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.57$ - 7.32 (m, 5H), 7.31 - 7.15 (m, 10H), 7.12 (d, J= $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $5.10-$ $4.93(\mathrm{~m}, 4 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.97-$ $3.71(\mathrm{~m}, 4 \mathrm{H}), 3.97-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.23-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.75-$ $1.48(\mathrm{~m}, 3 \mathrm{H}), 1.02-0.72(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) ठ 173.5, 172.9, 172.0, 170.7, 169.8, 157.7, 157.1, 137.3, 136.9, 136.7, 130.0, 129.2, 129.0, 128.1, 128.0, 128.0, 127.6, 127.4, 127.3, 127.1, 126.3, 114.5, 69.5, 66.3, 56.9, 54.4, 51.3, 50.8, 42.5, 41.9, 39.9, 37.4, 36.5, 24.4, 21.9, 20.5. HRMS-ESI: calcd for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~N}_{5} \mathrm{O}_{9}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ $\mathrm{m} / \mathrm{z} 794.37595$, found 794.37262.

Leu-enkephalin

White solid, m.p.: 148 $151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.39-7.11(\mathrm{~m}, 5 \mathrm{H})$, $7.10-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.77-$ $6.58(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.60(\mathrm{~m}$, $1 \mathrm{H}), 4.56-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.46$
$-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.20(\mathrm{dt}, \mathrm{J}=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dt}, \mathrm{J}=12.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.06-0.73(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.0,174.6,172.4,172.1,170.1,159.0,155.9,137.1,130.1$, 128.9, 128.9, 128.0, 128.0, 127.6, 126.3, 126.3, 114.8, 54.6, 51.0, 43.3, 42.0, 40.3, 37.1, 36.9, 24.5, 22.0, 20.5. HRMS-ESI: calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 556.27658 , found 556.27601 .

Cbz-Ala-Gly-Pro-OMe

62

White oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-6.86$ (m, $6 \mathrm{H}), 6.17-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.24-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.62-$ $4.43(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.19-3.76(\mathrm{~m}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.30-1.71(\mathrm{~m}, 4 \mathrm{H})$, $1.51-1.19(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6$, 172.2, 166.9, 155.9, 136.4, 128.4, 128.0, 66.7, 58.8, 52.3, 50.5, 45.9, 41.8, 28.9, 24.5, 18.8. HRMS-ESI: calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 392.18161$, found 392.18082 .

Cbz-Ala-Gly-Pro-Ile-Tyr(${ }^{\text {}}{ }^{(B u)}$-OMe

White solid, m.p.: $189-191^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.00 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22-4.97$ (m, 2H), 4.77 (dd, $J=12.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.31-3.90(\mathrm{~m}, 3 \mathrm{H})$, $3.74-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.52-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 1 \mathrm{H})$, 1.36 (d, J=8.0 Hz, 3H), $1.33-1.24$ (m, 9H), 1.12 $1.01(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.72(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\overline{172.8}, 171.8,171.3,170.8,167.8,156.0,154.4,136.3,130.6,129.7,128.5$, 128.1, 128.0, 124.2, 78.4, 66.9, 60.2, 57.9, 53.4, 52.1, 50.3, 46.6, 42.1, 37.2, 36.7, 28.8, 28.7, 24.8, 24.7, 19.1, 15.3, 11.2. HRMS-ESI: calcd for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{9}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ $\mathrm{m} / \mathrm{z} 724.39160$, found 724.39071 .
('Bu)-fanlizhicyclopeptide B

64

White solid, m.p.: $224-226{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21$ (s, 1H), 7.83 (s, 1H), 7.57 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.72$ (s, 1H), $4.47-4.27$ (m, 2H), $4.26-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.66-$ $3.55(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.00(\mathrm{~m}$, 3H), $2.37-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 1 \mathrm{H})$, $2.05-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.49-$ $1.39(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$, $1.06-0.97(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.97(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,172.3$, 172.2, 172.1, 168.5, 154.2, 131.6, 129.9, 124.2, 78.3, 62.6, 58.9, 56.9, 49.7, 47.0, 42.2, 36.6, 35.9, 29.7, 28.9, 25.2, 25.1, 15.9, 15.4, 10.9. HRMS-ESI: calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{+}$ $\left([M+H]^{+}\right) m / z 558.32861$, found 558.32790.

6. Solid phase peptide synthesis (SPPS) of PAR2

Incorporating the First Amino Acid on the Solid Support

2-Chlorotrityl Chloride resin (330 mg) with a loading of $0.8-1.5 \mathrm{mmol} / \mathrm{g}$ was placed in an oven-dried reaction tube. The resin was swollen in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 30 min , then filtered, and added to a solution of Fmoc-L-Val-OH ($169.7 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv.), N, N-diisopropylethylamine (DIPEA, $129.3 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1: 1, \mathrm{v} / \mathrm{v}, 5 \mathrm{~mL})$. The loading reaction was stirring for 2 h at room temperature. Then, the resin was filtered and washed with DMF $(3 \times 5.0 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5.0 \mathrm{~mL})$.

Removing Fmoc-Protection

A solution of 20% piperidine in DMF (5 mL) was added to the tube with Fmoc-Val-resin and stirred for 30 min . The reaction progress was monitored by ninhydrin ethanolic solution. Then, the resin was filtered and washed with DMF ($3 \times 5.0 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 5.0 \mathrm{~mL})$.

Peptide Elongation

To an oven-dried reaction tube equipped with a stir bar was added Fmoc amino acid ($0.5 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{PPh}_{3}\left(0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%\right.$), lnBr_{3} ($2 \mathrm{~mol} \%$), $\left[\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%), \mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$ and the resin. The tube was sealed and placed under nitrogen before MeCN (5 mL), TMDS (1.5 mmol , 3.0 equiv.) and $2,4,6$-collidine ($0.75 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65^{\circ} \mathrm{C}$ for 12 h . The reaction progress was monitored by ninhydrin ethanolic solution. Then, the resin was filtered and washed with DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Resin Cleavage

Cleavage was then performed with 2.0 mL of a freshly prepared TFA/TIS $/ \mathrm{H}_{2} \mathrm{O}$ (95:2.5:2.5, v/v/v) solution for 2 h . The resin was then filtered and washed with pure TFA ($3 \times 1 \mathrm{~mL}$). The collected TFA solution was evaporated, and the residue was washed by petroleum ether $(4 \times 5.0 \mathrm{~mL})$ to afford crude product as a beige solid. The precipitate then was dissolved in MeOH for HPLC/MS analysis.

HPLC Analysis

HPLC analysis was performed using Shim-pack GIST C18 $5 \mu \mathrm{~m}$ analytical column, 4.6
I.D. $\times 150 \mathrm{~mm}, 215 \mathrm{~nm}$ UV detection. The mobile phase consisted of DDI water with $0.1 \%(\mathrm{v} / \mathrm{v})$ HPLC grade formic acid (solvent A), and HPLC grade acetonitrile (solvent B). Isocratic elution with 40% solvent B at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ over 15 min gave the target peptide, $\mathrm{t}_{\mathrm{R}}=7.8 \mathrm{~min}$. $\mathrm{HRMS}-\mathrm{ESI}$: calcd for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{~N}_{7} \mathrm{O}_{8}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 616.40284, found: 616.40217, calcd for ($[\mathrm{M}+2 \mathrm{H}]^{2+}$) m/z 308.70505, found: 308.70486.
mV

Peak	RetTime (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{~s}\right)$	Heigth $(\mu \mathrm{V})$	Area \%
1	2.729	4381	467	0.463
2	5.690	66717	5289	7.056
3	7.806	874447	52340	92.481

20220923_ESIMS_Sulunqi_S4\#12 RT: 0.13 AV: 1 SB: $20.05-0.07$ NL: 3.00 E 8

Further purification

The crude product was dissolved in MeOH and THF, followed by precipitation with petroleum ether, then filtered and washed with petroleum ether to afford desired peptide as an off-white solid. The product was dissolved in MeOH for HPLC/MS
analysis.
mV

7. Control experiments

7.1 Radical quenching experiment

Radical quenching experiment was performed as indicated in the following. Upon addition of TEMPO (1.0 equiv.) into the reaction mixture, the coupling was completely inhibited. This result indicated the radical nature of this transformation.

Procedure: To an oven-dried reaction tube equipped with a stir bar was added Cbz-L-Val-OH ($0.2 \mathrm{mmol}, 1.0$ equiv.), $L-\mathrm{Ala}-\mathrm{OMe} \cdot \mathrm{HCl}(0.3 \mathrm{mmol}, 1.5$ equiv.), $2,2,6,6-$ tetramethylpiperidinooxy (TEMPO, $0.2 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{PPh}_{3}(0.06 \mathrm{mmol}, 30 \mathrm{~mol} \%$), $\mathrm{InBr}_{3}(2 \mathrm{~mol} \%),\left[\mathrm{rr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$ and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5$ $\mathrm{mol} \%$). The tube was sealed and placed under nitrogen before $\mathrm{MeCN}(2 \mathrm{~mL})$, TMDS ($0.6 \mathrm{mmol}, 3.0$ equiv.) and $2,4,6$-collidine ($0.3 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65^{\circ} \mathrm{C}$ for 12 h . No desired dipeptide product was detected.

7.2 Light ON/OFF experiments

To examine the impact of light, we conducted experiments under alternating periods of irradiation and darkness. This resulted in an interruption of the reaction progress in the absence of light and recuperation of reactivity on further illumination, which allowed precise temporal control over the entire reaction period. These results demonstrated that light is a necessary component of the reaction.

Figure S7. Light on/off expriments

7.3 Detection of hydrogen

In order to verify the evolution of H_{2} during the reaction, the gas phase in the headspace of the reaction vessel was analyzed by gas chromatography after reaction for 12 h . As shown in figure $\mathrm{S} 8,0.48 \mathrm{mmol}_{\mathrm{H}}^{2}$ was detected by GC analysis using pure helium as an internal standard (Table S11 and Eq. S1). The control experiments (Table S 12) indicated that a maximum amount of H_{2} was detected under standard conditions. Only 0.04 mmol H_{2} was detected in the absence of TMDS and InBr_{3} (Table S12, entry 6). These results demonstrated that H_{2} was generated from both $\mathrm{Co}^{\text {III }}-\mathrm{H}$ and TMDS (Table S12). ${ }^{4}$

According to the general procedure (section S2.2), Cbz-L-Val-OH ($0.2 \mathrm{mmol}, 1.0$ equiv.), L-Ala-OMe•HCl ($0.3 \mathrm{mmol}, 1.5$ equiv.), PPh_{3} ($0.06 \mathrm{mmol}, 30 \mathrm{~mol} \%$), InBr_{3} (2 $\mathrm{mol} \%)$, $\left[\mathrm{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(1 \mathrm{~mol} \%)$ and $\mathrm{Co}(\mathrm{dmgH})\left(\mathrm{dmgH}_{2}\right) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$
were added to an oven-dried reaction tube equipped with a stir bar. The tube was sealed and placed under nitrogen before MeCN (2 mL), TMDS ($0.6 \mathrm{mmol}, 3.0$ equiv.) and 2,4,6-collidine ($0.3 \mathrm{mmol}, 1.5$ equiv.) were added. Then the system was stirred under the irradiation of blue LED lamps at $65^{\circ} \mathrm{C}$ for 12 h . Then 5 mL helium was injected into the reaction tube and spread evenly for five minutes. $100 \mu \mathrm{~L}$ mixture gas from the reaction tube was injected into the gas chromatography, and hydrogen was detected in 0.48 mmol . Then the reaction mixture was concentrated and purified through column chromatography to afford dipeptide 6 in 86% yield.

7.3.1 Data analysis

Figure S8. Monitoring of H_{2} by GC.

Table S11. Data of GC

Entry	RetTime (min)	Heigth $(\mu \mathrm{V})$	Area
1	0.4760	261163	1889000
2	0.7773	909639	8293107

The conversion between the area and the amount of H_{2} was calculated by equation S1. ${ }^{5}$
$n_{H_{2}}=\frac{\frac{A_{H_{2}}}{A_{H e}} \cdot f \cdot V_{H e}}{V_{m}}$
$n_{H_{2}}$, The amount of H_{2}, mmol
$A_{H_{2}}$, The measured peak area of H_{2},
$A_{H e}$, The measured peak area of He ,
$V_{H e}$, The volume of injected He, mL
$f=0.5392$, Response factor, ${ }^{3}$
$V_{m}=24.5 \mathrm{~mL} \cdot \mathrm{mmol}^{-1}$, molar volume ($298.15 \mathrm{~K}, 101.325 \mathrm{kPa}$).

7.3.2 Control experiments

Table S12. Detection of H_{2}

Entry	Variation from standard conditions	amount of $\mathrm{H}_{2}(\mathrm{mmol})^{a}$
1	none	0.48
2	without PPh_{3}	0.40
3	without $\mathrm{PC} \cdot \mathrm{PF}_{6}$	0.43
4	without cobaloxime A	0.42
5	without light	0.38
6	without TMDS and InBr_{3}	0.04

${ }^{2}$ Determined by GC using pure He as an internal standard.

7.4 Amidation promoted by hydrosilanes

In view of the fact that hydrosilanes have been reported as coupling agents for amide bond formation, ${ }^{6}$ we also examined the posibility of TMDS-promoted amidation. As shown in Table S13 and Figure S9, both the control experiments and NMR analysis indicated that TMDS was not a suitable coupling reagent for the amidation.

7.4.1 Control experiments

In the presence of 3.0 equiv. of $\mathrm{PhSiH}_{3}, \mathrm{Cbz}-\mathrm{Gly}-\mathrm{OH}$ coupled with glycine methyl ester to afford the desired dipeptide in 43% yield (Table S13, entry 1). ${ }^{7}$ However, sterically hindered $\mathrm{Cbz}-\mathrm{Val}-\mathrm{OH}$ and H -Ala-OMe were not compatible with the conditions, only trace amount of the desired dipeptide was formed (Table S13, entry 2). These results were consistent with Charette's study. ${ }^{8}$ In contrast, no product was detected when TMDS was utilized instead of PhSiH_{3} (entry 3-6).

Table S13. The coupling of amino acids with [Si-H]

	- OH 0 equiv.) $\cdot \cdot \mathrm{HCl}$ uiv.)			
entry	AA_{1}	AA_{2}	[Si-H]	Yield ${ }^{\text {a }}$
1	Gly	Gly	PhSiH_{3}	43\%
2	Val	Ala	PhSiH_{3}	trace
3	Gly	Gly	TMDS	N.R.
4	Val	Ala	TMDS	N.R.
$5^{\text {b }}$	Gly	Gly	TMDS	N.R.
$6^{\text {b }}$	Val	Ala	TMDS	N.R.

${ }^{2}$ Yields of isolated products. ${ }^{\natural} \mathrm{InBr}_{3}$ (2 mol\%) was added.

7.4.2 NMR analysis

Related studies by Denton ${ }^{9}$ and Arora ${ }^{3 b}$ have demonstrated that phenylsilylester is the key intermediate for the hydrosilane-promoted amidation. To probe the mechanism, several control experiments and ${ }^{19} \mathrm{~F}$ NMR spectroscopic were conducted to identify the silylester intermediate.
Firstly, we tried to detect the proposed silylester intermediates through the PhSiH_{3} promoted amidation (Figure S9). As shown in Figure S9b, when 4-fluorobenzoic acid $66\left({ }^{19} \mathrm{~F} \delta-108.3 \mathrm{ppm}\right)$ and benzylamine 67 were mixed in MeCN at $65^{\circ} \mathrm{C}$, the expected ammonium carboxylate was formed at $\delta-112.7 \mathrm{ppm}$. After addition of PhSiH_{3} to the mixture for 5 h , we detected the formation of the desired amide 68 ($\delta-111.4 \mathrm{ppm}$). Furthermore, other new multiple signals were appeared at $\delta-106$ to -108 ppm , which were assigned to the silylester intermediates. When water (0.1% TFA) was added to the reaction, the multiple signals quickly hydrolyzed back into the ammonium carboxylate and the reaction gave the product 68 in 44% yield within 12 h .
 (a)

Figure S9. Evolution of the ${ }^{19} \mathrm{~F}$ NMR spectra during the reaction (chemcail shift was calibrated by hexafluorobenzene at $\delta-164.9 \mathrm{ppm}$). (a) 4-fluorobenzoic acid 66, (b) a mixture of 4-fluorobenzoic acid 66 and benzylamine 67, (c) after addition of PhSiH_{3} for 5 h , and (d) after quenching with water (0.1% TFA).

Then TMDS and InBr_{3} were utilized to repeat above studies. As shown in Figure S10c, when TMDS and InBr_{3} were added to the mixture of 4 -fluorobenzoic acid and benzylamine, no other signals appeared in the ${ }^{19} \mathrm{~F}$ NMR spectrum, indicating that the silylester intermediates and products were not formed.

Figure S10. Evolution of the ${ }^{19} \mathrm{~F}$ NMR spectra during the reaction (chemcail shift was calibrated by hexafluorobenzene at $\delta-164.9 \mathrm{ppm}$). (a) 4-fluorobenzoic acid 66, (b) a mixture of 4-fluorobenzoic acid 66 and benzylamine 67, (c) after addition of TMDS and InBr_{3} for 5 h , and (4) after quenching with water (0.1% TFA).

N-benzyl-4-fluorobenzamide

$$
\begin{aligned}
& \text { White solid, m.p.: } 146-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \\
& \mathbf{\delta} 7.98-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.15-6.99(\mathrm{~m}, \\
& 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}(100 \\
& \left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2(\mathrm{~d}, J=31.0 \mathrm{~Hz}), 163.6,138.1,130.6 \\
& (\mathrm{~d}, J=3.0 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 128.9,128.0,127.8,
\end{aligned}
$$ 115.7 (d, $J=22.0 \mathrm{~Hz}), 44.3 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-111.2. HRMS-ESI: calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NOF}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 230.09757$, found 230.09735 .

7.5 Reduction of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ to PPh_{3}

As shown in Figure S11, several control experiments were conducted to confirm the reduction of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$. Initially, a mixture of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}, \mathrm{TMDS}, \mathrm{InBr}_{3}$ and $2,4,6$-collidine was irradiated by blue LEDs at $65^{\circ} \mathrm{C}$. After 12 h , only one signal at $\delta-27.65 \mathrm{ppm}$ was detected by ${ }^{31} \mathrm{P}$ NMR analysis of the mixture, which corresponds to $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ (Figure S11a). Similar results were obtained, when PC•PF ${ }_{6}$ or cobaloxime \mathbf{A} was added to the reaction mixture (Figure S11b and c). However, when PC•PF ${ }_{6}$ and cobaloxime A were added to the reaction at the same time, a new signal appeared at $\delta-5.11 \mathrm{ppm}$ (Figure S11d), which was assigned to PPh_{3}. The formation of PPh_{3} was also confirmed by GCMS analysis (Figure S12), indicating that $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ could be reducted to PPh_{3} in our condition. Further study to confirm the photoredox and cobaloxime promoted $\mathrm{P}^{I I \prime} / \mathrm{P}^{\mathrm{V}}=\mathrm{O}$ catalysis is currently underway in our laboratory.

$$
\begin{aligned}
& \text { (a): None } \\
& \text { (b): } 1 \mathrm{~mol} \% \text { PC. } \mathrm{PF}_{6} \\
& \text { (c): } 5 \mathrm{~mol} \% \mathbf{A} \text {. }
\end{aligned}
$$

(a)

Figure S11. The ${ }^{31} \mathrm{P}$ NMR spectra for the reduction of $\mathrm{Ph} 3 \mathrm{P}=\mathrm{O}$ to PPh_{3} (chemcail shift was calibrated by triphenyl phosphite at $\delta-127.7 \mathrm{ppm}$).

Figure S12. The GCMS spectra for the detection of PPh_{3}.

8. References

[1] M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712-5719.
[2] X.-Y. Huang, R. Ding, Z.-Y. Mo, Y.-L. Xu, H.-T. Tang, H.-S. Wang, Y.-Y. Chen, Y.-M. Pan, Org. Lett. 2018, 20, 4819-4823.
[3] J. Su, J.-N. Mo, X. Chen, A. Umanzor, Z. Zhang, K. N. Houk, J. Zhao. Angew. Chem. Int. Ed. 2022, 61, e202112668.
[4] a) T. Coumbe, N. J. Lawrence, F. Muhammad. Tetrahedron Lett. 1994, 35, 625-628.
b) Handoko, N. R. Panigrahi, P. S. Arora, J. Am. Chem. Soc. 2022, 144, 3637-3643.
[5] L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma. Nature 2017, 544, 80-83.
[6] J. J. Davies, D. C. Braddock, P. D. Lickiss, Org. Biomol. Chem. 2021, 19, 67466760.
[7] E. Morisset, A. Chardon, J. Rouden, J. Blanchet, Eur. J. Org. Chem. 2020, 388392.
[8] M. Sayes, A. B. Charette, Green Chem. 2017, 19, 5060-5064.
[9] a) K. G. Andrews, R. Faizova, R. M. Denton, Nat. Commu. 2017, 8, 15913. b) E. L. Stoll, T. Tongue, K. G. Andrews, D. Valette, D. J. Hirst, R. M. Denton, Chem. Sci. 2020, 11, 9494-9500.
9. Copy of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

PC- 362 a
PC. 362 a
III

PC- 362 a
PC 362 a
13C

PC- -362 c
PC 362 c
13 C

䦡要
呲 蛤䁲

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	－10

			¢	N	品哭品品品～

PC－ 356 d
PC． 35 Fid 13 C
品 莡 品 品 品 品 品 品

PC- 356 b
PC. 35 b b$)$
13 C

PC- -356 c
PC. $3 \overline{\mathrm{~F}} \mathrm{C}, \quad$ III

$\begin{array}{ll}\text { PC- } 355 \mathrm{c} \\ \text { PC } & \\ \text { 35ice } & 13 \mathrm{C}\end{array}$

PC. -358 a
PC. 358 1II

도여웅
PC- 358 Ba
PC $358 \quad 13 \mathrm{C}$

PC- -357 b
PC $357 \mathrm{~b}, 13 \mathrm{C}$

15

| PC- -355 c |
| :--- | :--- |
| PC. 355 c |

PC- -355 c C 13 C
PC $355 \mathrm{c}-13 \mathrm{C}$

16

pc- $-430-13 \mathrm{C}$
pe $-130-13 \mathrm{C}$

PC- 360 c
PC 360 c

PC- -360 c
PC 360 c 13 C

$\begin{array}{ll}\text { PC- } 360 \mathrm{an} \\ \text { PC } 360 \text { a } & \\ \text { 13C }\end{array}$

20
PC- 360 b
PC $360 \mathrm{~b} \quad 13 \mathrm{C}$

20

1210	200	190	180	170	160	150	140	130	120	110	100	10
10												

PC- 363 C
PC. 363 c III

$\mathrm{Pc}-363 \mathrm{c}$
363 c

[^0]

23

$\begin{array}{ll}\text { PC }-359 \mathrm{C} \\ \text { PC } 359 \mathrm{c} & \\ & 13 \mathrm{C}\end{array}$

23

PC. -359 a
PC 359

온욱 룩

코국ㄱ묵믄

25

PC- 359 b
PC. $359 \mathrm{~b}, 13 \mathrm{C}$

25

PC--367b
PC 367 b
13 C

PC- 366 C C 130
PC 36 C . 13 C

32

PC- -365 b 13C
PC. $365 \mathrm{~b}, 13 \mathrm{C}$

32

[^1]

PC-366d
PC-366d 130

PC.-365d
PC. $365 d$ II

37a

PC- 361 a
PC. 361 i
13C
器号

37a

37c
PC- 361 c
PC. $361 \mathrm{c} \quad 13 \mathrm{C}$

PC－-358 b
PC 358 b
III

曋突置

PC- -357 d
PC 35 d d II

PC-434-13C
PC- $434-13 \mathrm{C}$

PC- $424-\mathrm{A}-13 \mathrm{C}$
$\mathrm{PC} .121 \mathrm{~A}-13 \mathrm{C}$

PC- -355 c
PC. $355 \mathrm{c}, \quad$ III

$\mathrm{PC}-412-13 \mathrm{C}$
PC .41213 C

㗊 ⿹ㅜㄴ훅 咢

50

$\mathrm{PC}-411-13 \mathrm{C}$
$\mathrm{PC} .111-13 \mathrm{C}$

PC-421-13C
PC $121-13 \mathrm{C}$

[^2]
PC-398-13C
PC-398-13C

55

[^3]

56

[^4]
$\mathrm{SY}-206-13 \mathrm{C}$
SY 20613 C

56

$\mathrm{SY}-212$-shui
SY 212 shui

$\iiint \sqrt{\int}$

SY-299
SY 211
踊咢

sy-262
sy 262

59

[^5]
SY－230
SY 230
品品帯志

59＇

[^6]

60

PC-422-13C
PC $12213 C$

61

61'

$\square \quad$
$\stackrel{1}{3}$

20220804-27
SY $241-13 \mathrm{C}$
20220804-27
$\mathrm{SY} 241-13 \mathrm{C}$

61'

[^7] $\stackrel{\text { N }}{\text { N }}$

62

$\mathrm{PC}-423-3$
$\mathrm{PC}-123$

63

$\mathrm{sy}-259-100 \mathrm{M}$
sy 259 Dop

PC446C-13C
PC446C-13C

$\stackrel{?}{7}$

68

[^0]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & \\ (\mathrm{ppan})\end{array}$

[^1]:

[^2]: $\begin{array}{llllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

[^3]:

[^4]: 55

 | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^5]: $\begin{array}{llllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

[^6]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

[^7]: $\begin{array}{lllllllllllll}1210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppag})\end{array}$

