Supporting Information

Phosphine-catalyzed asymmetric *aza*-Morita-Baylis-Hillman reaction of endocyclic ketimines and activated alkenes

Yue Lu,^{a#} Fangfang Zhu,^{a#} Xinyu Liu,^a and De Wang*,^{a,b,c}

^a Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China.

^b State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191,

China.

^c Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.

wangde@ouc.edu.cn

Table of Contents

1. General information	S2
2. Screening of reaction conditions	S 3
3. Experimental procedure and characterization data	S5
4. Synthetic applications	S66
5. References	S78
6. X-ray data of compounds 3aa and 3te	S79
7. NMR Spectra	S82
8. Tertiary amine catalyzed the reaction	S152

<u>1. General Information</u>

¹H (400 MHz) and ¹³C NMR (100 MHz or 125 MHz) spectra were recorded on JEOL (400 MHz) or Agilent (500 MHz) [7.26 ppm for ¹H NMR, 77.00 ppm for ¹³C NMR as internal references when CDCl₃ used]. High-resolution mass spectra were recorded by ESI method. The used organic solvents were dried by standard methods if it was necessary. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer-341 MC digital polarimeter; $[\alpha]_D$ values are given in unit of 10 deg⁻¹ cm² g⁻¹. Chiral HPLC was performed on a SHIMADZU LC-20AT LC System with chiral columns [Chiralpak AD-H, OD-H, IB-H and IF-H columns 4.6*250 mm, (Daicel Chemical Ind., Ltd.)]. Commercially obtained reagents were used without further purification. All these reactions were monitored by TLC with silica-gel-coated plates. Flash column chromatography was carried out by using silica gel at increased pressure.

All the racemic products were carried out with tertiary phosphine (PMePh₂, 20 mol%) or tertiary amine (DABCO, 20 mol%) as catalyst in ethyl acetate at room temperature.

2. Screening of reaction conditions

° A	LB: ado	20 (10 mol%) d. (20 mol%)		/ ////	
Ph N	+ MVK	sol., T	→ L X N N Ph C	5 [_]	PPh ₂
1a	2a		3a		LB20 CF ₃
Entry	Sol.	T [°C]	add.	Yield [%]	ee [%]
1	toluene	25	None	99	75
2	DCM	25	None	27	79
3	MeCN	25	None	79	81
4	fluorobenzene	25	None	trace	-
5	o-xylene	25	None	99	79
6	Et ₂ O	25	None	74	87
7	MTBE	25	None	71	80
8	THF	25	None	24	88
9	EtOAc	25	None	99	88
10	CH ₃ CO ₂ ^t Bu	25	None	99	83
11	CH ₃ CO ₂ CH ₃	25	None	81	87
12	HCO ₂ Me	25	None	44	43
13	HCO ₂ Et	25	None	trace	-
14	CO(OCH ₃) ₂	25	None	99	85
15	EtOAc	25	PhOH	99	81
16	EtOAc	25	2-chlorophenol	99	55
17	EtOAc	25	PhCOOH	trace	-
18	EtOAc	25	MeOH	99	86
19	EtOAc	25	H ₂ O	99	83
20	EtOAc	25	4Å MS	99	87
21	EtOAc	10	None	99	87
22	EtOAc	0	None	99	88
23	EtOAc	-10	None	82	69

Table S1. Optimization of the reaction conditions ^{a-c}

[a] All reactions were run with **1a** (0.05 mmol), **2a** (0.075 mmol) and **LB20** (10 mol%) under argon atmosphere in solvents (1.0 ml) at indicated temperature for 6 h. [b] Isolated yields. [c] ee values were determined by stationary chiral HPLC.

Table S2. The screening of chiral phosphines ^{a-c}

[a] All reactions were run with **1a** (0.05 mmol), **2a** (0.075 mmol) and **LB** (10 mol%) under nitrogen atmosphere in EtOAc (1.0 ml) at room temperature for 6h. [b] Isolated yields. [c] ee values were determined by stationary chiral HPLC.

3. Experimental procedure and characterization data

General procedure (*I*) for the synthesis of C2-substituted-*3H*-indol-3-one (1a-1x). Method A:

Compounds 1 were prepared according to the modified procedure of literature.^[1] General Procedure I:

Method A: Indole derivatives (**A**) (1.0 equiv.), aryl boronic acid (**B**) (1.3 equiv.) and $Pd(OAc)_2$ (0.1 equiv.) were added to an oven dried Schlenck flask. AcOH was added by syringe and resulting solution was degassed twice and refilled with O₂. The reaction mixture was stirred for 8 hrs at room temperature. Then AcOH was recovered by distillation under reduced pressure, and the residue was dissolved in DCM, washed with aqueous NaHCO₃. The organic layer was dried over anhydrous Na₂SO₄. After removal

of the solvent, the product (C) was purified by flash chromatography on silica gel.

Irradiation of a methanol solution of 2-arylindoles (C, 1.0 equiv.) in the presence of methylene blue (MB, 0.1 equiv.) and pyridine (1 M) was carried out with a lighting operated at 180 V at 20 °C under oxygen bubbling. After complete disappearance of the starting 2-arylindoles (TLC monitoring), the reaction mixture was concentrated in vacuo, diluted with ether and washed with water. The ether layer was dried over anhydrous Na_2SO_4 , evaporated to dryness and heated at 100 °C under reduced pressure for 1 h. The product 1 was purified by flash chromatography on silica gel (Compounds 1a-i were prepared by method A).

Method B: Reactions were performed in a dry Schlenck flask equipped with a magnetic stirring bar under N_2 . Aniline derivatives (**D**) (1.0 equiv.), KO^{*t*}Bu (3.0 equiv.), and bathophenanthroline (0.2 equiv.) were added to the Schlenck tube. A solution of ketone (**E**) (2.0 equiv.) was added through a syringe and the reaction mixture was stirred at 60 °C for 8 hrs. After the solution was cooled to room temperature, the reaction was quenched with water. The organic layer was extracted with ethyl acetate and the combineg layer was concentrated under reduced pressure. The product (**F**) was purified by flash chromatography on silica gel. Then the procedure for the preparation of **1** followed method A from compound **F** (Compounds **1k-n**, **1p-r**, **1t-v** and **1x** were prepared by method B).

Method C: A solution of I_2 (1.0 equiv.) in DMF was dropped into a solution of **F** (1.0 equiv.) and KOH (2.5 equiv.) in DMF at room temperature and stirred for 2 hrs. The mixture was then purged with air, silica was added and the mixture heated to 120 °C. Upon cooling, water was added and the mixture extracted with ethyl acetate. The organic extracts were combined, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. Purification by flash chromatography on silica get eluting with petroleum ether/ethyl acetate to give product **1** (Compounds **10** and **1w** were prepared by method C).

Method D: Reactions were performed in a dry Schlenck flask equipped with a magnetic stirring bar under N₂. Compound F (1.0 equiv.), CuI (0.2 equiv.) were added to the Schlenck flask, DMSO was added as solvent, then pyridine (2.0 equiv.) was

added through a syringe, the resulting solution was degassed twice and refilled with O₂. The reaction mixture was stirred for 12 hours at room temperature, water was added and the mixture extracted with ethyl acetate. The organic extracts were combined, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum. The crude materials were purified by flash chromatography on silica gel eluting with petroleum ether/ethyl acetate to give product **1** (Compounds **1j** and **1s** were prepared by method D). Compounds **1a-1i**, **1m-1n** and **1p-1v** were known compounds. The spectra data were correspondence with the literature data.^[1]

2-(3,5-bis(trifluoromethyl)phenyl)-3H-indol-3-one (1j)

Compound **1j** (175 mg, 73% yield) was obtained as a red solid following the *general procedure I* (Method D) from **F** (0.70 mmol, 240 mg), CuI (0.14 mmol, 26.7 mg), pyridine (1.4 mmol, 110.6 mg, 110 μL) in DMSO.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.73 (s, 2H), 8.36 (s, 1H), 7.70-7.63 (m, 2H), 7.55 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 191.0, 159.2, 158.1, 136.9, 132.6, 130.8 (q, J = 33.1 Hz), 129.4, 128.7, 124.9, 124.7, 123.1, 123.0 (q, J = 271.4 Hz), 122.5; ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -61.5 (s); **HRMS** Calcd. for C₁₆H₈ONF₆⁺ [M+H]⁺: 344.0505, found: 344.0500; **M.p.**: 102-104 °C.

4-(3-oxo-3H-indol-2-yl)benzonitrile (1k)

Compound **1k** (206 mg, 34% yield) was obtained as a red solid following the *general* procedure I (Method B) from F (2.65 mmol, 578 mg), MB (0.265 mmol, 84.8 mg),

pyridine (2.5 mL) in MeOH.

¹**H NMR** (400 MHz, CDCl₃) δ 8.49 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.60-7.56 (m, 2H), 7.45 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 192.4, 159.6, 159.0, 137.0, 134.0, 132.4, 129.4, 129.3, 125.0, 122.8, 122.6, 118.3, 115.1; **HRMS** Calcd. for C₁₅H₉ON₂⁺ [M+H]⁺: 233.0709, found: 233.0703; **M.p.**: 179-181 °C.

2-(pyridin-4-yl)-3H-indol-3-one (11)

Compound **11** (51.1 mg, 12% yield) was obtained as a red solid following the *general procedure I* (Method B) from **F** (2 mmol, 388 mg), MB (0.2 mmol, 64 mg), pyridine (2 mL) in MeOH.

¹**H NMR** (400 MHz, CDCl₃) δ 8.78 (d, J = 4.8 Hz, 2H), 8.19 (dd, J = 4.8, 1.6 Hz, 2H), 7.61-7.57 (m, 2H), 7.49-7.47 (m, 1H), 7.36-7.32 (m, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 192.1, 159.8, 158.9, 150.5, 137.0, 136.9, 129.5, 125.0, 122.9, 122.8, 122.3; **HRMS** Calcd. for C₁₃H₉ON₂⁺ [M+H]⁺: 209.0715, found: 209.0706; **M.p.**: 138-140 °C.

2-(benzo[d][1,3]dioxol-5-yl)-3H-indol-3-one (10).

Compound **10** (106 mg, 37% yield) was obtained as a red solid following the *general* procedure I (Method C) from **F** (1.14 mmol, 270 mg), KOH (2.85 mmol, 160 mg), I₂ (1.14 mmol, 290 mg) and sillica gel (570 mg) in DMF.

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.85 (d, *J* = 1.6 Hz, 1H), 7.53-7.50 (m, 2H), 7.37-7.34 (m, 1H), 7.24-7.20 (m, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.05 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.8, 160.7, 159.5, 151.4, 148.3, 136.8, 127.8,

125.6, 124.7, 124.3, 123.2, 121.6, 108.7, 108.4, 101.7; **HRMS** Calcd. for C₁₅H₁₀NO₃⁺ [M+H]⁺: 252.0655, found: 252.0653; **M.p.**: 141-143 °C.

6-Methyl-2-(naphthalen-2-yl)-3*H*-indol-3-one (1w).

Compound **1w** (64.9 mg, 20% yield) was obtained as a red solid following the *general* procedure I (Method C) from **F** (1.2 mmol, 308 mg), KOH (3 mmol, 168 mg), I_2 (1.2 mmol, 305 mg) and sillica gel (600 mg) in DMF.

¹**H NMR** (400 MHz, CDCl₃) δ 9.03 (s, 1H), 8.37 (dd, J = 8.8, 1.6 Hz, 1H), 8.00 (d, J = 7.6 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.60-7.52 (m, 2H), 7.48 (d, J = 7.2 Hz, 1H), 7.25 (s, 1H), 7.06 (d, J = 7.2 Hz, 1H), 2.45 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.2, 161.5, 160.4, 148.6, 135.0, 133.0, 131.3, 129.6, 128.7, 128.5, 128.2, 127.8, 127.6, 126.6, 124.8, 124.7, 123.0, 121.0, 22.4; **HRMS** Calcd. for C₁₉H₁₄ON⁺ [M+H]⁺: 272.1075, found: 272.1077; **M.p.**: 163-165 °C.

4-(5-Bromo-1*H*-indol-2-yl)benzonitrile (1x)

Compound 1x (185.7 mg, 40% yield) was obtained as a red solid following the *general* procedure I (Method B) from F (1.5 mmol, 443 mg), MB (0.15 mmol, 48 mg) and pyridine (1.5 mL) in MeOH.

¹**H NMR** (400 MHz, CDCl₃) δ 8.49 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H), 7.71 (td, J = 8.0, 2.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 191.4, 159.3, 157.7, 139.3, 133.6, 132.5, 129.5, 128.2, 124.2, 124.0, 122.9, 118.2, 115.4; **HRMS** Calcd. for C₁₅H₈N₂OBr⁺ [M+H]⁺: 310.9815, found: 310.9807; **M.p.**: 259-261 °C.

Structures of compounds 2

Compounds **2a-2c** and **2e-2h** are commercially available, using directly without any purification. Compound **2d** (PVK) was prepared according to literature. ^[2]

General procedure (II) for the synthesis of chiral phosphines.

LBa-f, isothiocyanate and isocyanate was prepared according to the reported literature.^[3,4]LB1-11, LB13-14, LB17-18, LB20 and LB25 were known compounds.^[5] **Procedure (II):** To a solution of LBa-f (1.0 eq) in DCM under N₂ atmosphere was added isothiocyanate or isocyanate (1.2 eq), and the reaction mixture was stirred at room temperature for 24 hrs. Solvent was then removed under reduced pressure, and the residue was directly subjected to column chromatographic separation on silica gel (hexane/ethyl acetate = 15:1 to 10:1) to afford chiral phosphines (LB12, LB15-16, LB19, LB21-24, LB26-33) as white solid.

(S)-1-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)-3-isopropylthiourea (LB12)

LB12

Compound LB12 (70 mg, 94% yield) was obtained as a white solid following the *general procedure II* from LBa (0.2 mmol, 54.2 mg) and 2-isothiocyanatopropane (0.24 mmol, 24 mg, 26 μ L) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47-7.41 (m, 4H), 7.35-7.31 (m, 6H), 5.75 (brs, 1H), 4.28 (brs, 1H), 3.79 (brs, 1H), 2.42 (dd, J = 14.0, 4.8Hz, 1H), 2.33-2.28 (m, 1H), 2.19-2.10 (m, 1H), 1.09 (dd, J = 6.4, 1.6 Hz, 6H), 0.91 (t, J = 6.4Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 179.8, 138.2 (d, J = 11.8 Hz), 132.8 (d, J = 19.2 Hz), 132.6 (d, J = 18.9Hz), 128.74, 128.66, 128.50 (d, J = 6.8 Hz), 128.47 (d, J = 6.9 Hz), 99.8, 57.6, 45.4, 32.0 (d, J = 8.9 Hz), 31.2 (d, J = 12.1 Hz), 22.4 (d, J = 9.6 Hz), 18.7, 18.0, 14.0; ³¹**P NMR** (160 MHz, CDCl₃) δ -23.7; **HRMS** Calcd. for C₂₁H₃₀N₂PS⁺ [M+H]⁺: 373.1862, found: 373.1854; **M.p.**: 105-106 °C; $[\alpha]^{20}_{D} = +2.0$ (c 0.05, CH₂Cl₂).

(S)-1-(2-chlorophenyl)-3-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)thiourea (LB15)

Compound LB15 (83.1 mg, 94% yield) was obtained as a white solid following the *general procedure II* from LBa (0.2 mmol, 54.2 mg) and 1-chloro-2-isothiocyanatobenzene (0.24 mmol, 40.7 mg, 31 μ L) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (brs, 1H), 7.49-7.41 (m, 5H), 7.34-7.17 (m, 9H), 6.06 (brs, 1H), 4.60 (brs, 1H), 2.43-2.31 (m, 2H), 2.16 (h, J = 6.4 Hz, 1H), 0.87 (dd, J = 11.2, 6.8 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 180.1, 138.0 (d, J = 11.9 Hz), 133.4, 132.8 (d, J = 4.8 Hz), 132.6 (d, J = 4.8 Hz), 130.6, 129.7, 128.7, 128.5, 128.4, 128.3, 127.8 (d, J = 11.1 Hz), 126.8, 58.5 (d, J = 14.3 Hz), 31.54 (d, J = 8.4 Hz), 31.49 (d, J = 14.7 Hz), 18.7, 17.9; ³¹**P NMR** (160 MHz, CDCl₃) δ -24.2; **HRMS** Calcd. for $C_{24}H_{27}ClN_2PS^+$ [M+H]⁺: 441.1327, found: 441.1319; **M.p.**: 43-45 °C; [α]²⁰_D = +63.6 (c 0.11, CH₂Cl₂). (S)-1-(3-chlorophenyl)-3-(1-(diphenylphosphaneyl)-3-methylbutan-2-yl)thiourea (LB16)

LB16

Compound LB16 (88 mg, 91% yield) was obtained as a white solid following the *general procedure II* from LBa (0.22 mmol, 59.6 mg) and 1-chloro-3-isothiocyanatobenzene (0.24 mmol, 40.7 mg, 32 μ L) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (brs, 1H) 7.47-7.40 (m, 4H), 7.32-7.29 (m, 6H), 7.24-7.22 (m, 1H), 7.18-7.16 (m, 1H), 7.13-7.11 (m, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.12 (brs, 1H), 4.59 (brs, 1H), 2.47-2.42 (m, 1H), 2.27 (dd, J = 11.4, 8.4 Hz, 1H), 2.13 (h, J = 6.4Hz, 1H), 0.88 (dd, J = 9.2, 6.8 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 179.7, 138.1 (d, J = 11.5 Hz), 137.9 (d, J = 12.2 Hz), 137.4, 135.4, 132.9 (d, J = 6.9 Hz), 132.7 (d, J = 7.0 Hz), 130.8, 128.8, 128.5 (d, J = 6.8 Hz), 126.7, 124.7, 122.6, 58.6 (d, J = 13.9 Hz), 31.8 (d, J = 8.4 Hz), 31.0 (d, J = 14.5 Hz), 18.7, 18.2; ³¹**P NMR** (160 MHz, CDCl₃) δ -24.2; **HRMS** Calcd. for C₂₄H₂₇ClN₂PS⁺ [M+H]⁺: 441.1327, found: 441.1332; **M.p.**: 50-52 °C; [a]²⁰_D = +52.0 (c 0.10, CH₂Cl₂).

(S)-1-(3,5-dimethylphenyl)-3-(1-(diphenylphosphaneyl)-3-methylbutan-2yl)thiourea (LB19)

Compound LB19 (90.0 mg, 90% yield) was obtained as a white solid following the *general procedure II* from LBa (0.23 mmol, 62.3 mg) and 1-isothiocyanato-3,5-dimethylbenzene (0.24 mmol, 39.2 mg, 39 μ L) stirred for 24 hours.

¹H NMR (400 MHz, CDCl₃) δ 8.22 (brs, 1H) 7.50-7.44 (4H, m, ArH), 7.34-7.29 (m,

6H), 6.88 (s, 1H), 6.73 (s, 2H), 6.15 (d, J = 8.0 Hz, 1H), 4.60 (brs, 1H), 2.44 (dd, J = 14.4, 5.6 Hz, 1H), 2.28 (s, 6H), 2.15 (h, J = 6.4 Hz, 1H), 0.87 (dd, J = 16.4, 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 179.8, 139.8, 138.2 (d, J = 11.9 Hz), 135.7, 132.8 (d, J = 19.3 Hz), 132.7 (d, J = 19.1 Hz), 128.6, 128.42, 128.36, 122.6, 58.3 (d, J = 14.5 Hz), 31.6 (d, J = 8.6 Hz), 31.2 (d, J = 14.6 Hz), 21.1, 18.8, 17.9; ³¹P NMR (160 MHz, CDCl₃) δ -24.3; **M.p.**: 117-118 °C; **HRMS** Calcd. for C₂₆H₃₂N₂PS⁺[M+H]⁺: 435.2018, found: 435.2013; [α]²⁰_D = +72.5 (c 0.04, CH₂Cl₂).

(S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(1-(diphenylphosphaneyl)-3-

methylbutan-2-yl)urea (LB21)

LB21

Compound LB21 (36.0 mg, 40% yield) was obtained as a white solid following the *general procedure II* from LBa (0.17 mmol, 46.4 mg) and 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene (0.24 mmol, 61.2 mg, 41 μ L) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (s, 2H), 7.41-7.38 (m, 5H), 7.30-7.25 (m, 6H), 5.18 (d, J = 8.8 Hz, 1H), 3.85 (brs, 1H), 2.36 (d, J = 12.8 Hz, 1H), 2.16 (t, J = 12.8 Hz, 1H), 1.95-1.89 (m, 1H), 0.87-0.84 (m, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 154.8, 140.4, 138.0 (d, J = 10.8 Hz), 137.7 (d, J = 11.7 Hz), 132.7 (q, J = 8.6 Hz), 132.6 (d, J = 8.6 Hz), 132.0 (d, J = 33.0 Hz), 131.5, 128.9 (d, J = 13.5 Hz), 128.6 (d, J = 7.0 Hz), 123.1 (q, J = 271.5 Hz), 118.5, 115.6, 53.4 (d, J = 14.3 Hz), 32.7 (d, J = 7.9 Hz), 32.2 (d, J = 12.9 Hz), 18.9, 17.5; ³¹**P NMR** (160 MHz, CDCl₃) δ -22.7; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.0; **M.p.**: 189-191 °C; **HRMS** Calcd. for C₂₆H₂₆ON₂F₆P⁺ [M+H]⁺: 527.1681, found: 527.1676; [α]²⁰_D = -10.0 (c 0.05, CH₂Cl₂).

(S)-1-(3,5-di-tert-butylphenyl)-3-(1-(diphenylphosphaneyl)-3-methylbutan-2yl)thiourea (LB22)

Compound LB22 (214.8 mg, 83% yield) was obtained as a white solid following the *general procedure II* from LBa (0.5 mmol, 136 mg) and 1,3-di-*tert*-butyl-5-isothiocyanatobenzene (0.6 mmol, 148 mg) stirred for 24 hours.

¹**H** NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.53-7.44 (m, 4H), 7.34-7.28 (m, 7H), 7.09 (s, 2H), 6.17 (d, J = 8.4 Hz, 1H), 4.60 (brs, 1H), 2.36 (d, J = 6.4 Hz, 2H), 2.21-2.12 (m, 1H), 1.32 (s, 18 H), 0.87 (dd, J = 21.6, 6.4 Hz, 6H); ¹³**C** NMR (100 MHz, CDCl₃) δ 179.6, 152.7, 138.3 (d, J = 12.6 Hz), 137.8 (d, J = 11.5 Hz), 135.4, 132.7 (d, J = 19.2 Hz), 132.6 (d, J = 19.1 Hz), 128.4 (d, J = 5.6 Hz), 128.3 (d, J = 4.2 Hz), 128.2 (d, J = 4.1 Hz), 120.8, 119.2, 57.7 (d, J = 14.6 Hz), 34.8, 31.4 (d, J = 14.5 Hz), 31.2, 18.9,17.5; ³¹**P** NMR (160 MHz, CDCl₃) δ -24.6; HRMS Calcd. for C₃₂H₄₄N₂PS⁺ [M+H]⁺: 519.2968, found: 519.2965; **M.p.**: 60-62 °C; [α]²⁰_D = +52.7 (c 0.11, CH₂Cl₂).

(S)-1-([1,1'-biphenyl]-4-yl)-3-(1-(diphenylphosphaneyl)-3-methylbutan-2yl)thiourea (LB23)

Compound LB23 (131.2 mg, 82% yield) was obtained as a white solid following the *general procedure II* from LBa (0.33 mmol, 71.2 mg) and 4-isothiocyanato-1,1'- biphenyl (0.39 mmol, 83.6 mg) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 4H), 7.51-7.45 (m, 6H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.36-7.31 (m, 6H), 7.17 (d, *J* = 8.4 Hz, 2H), 6.13 (d, *J* = 8.4 Hz, 1H), 4.65 (brs, 1H), 2.46 (dd, *J* = 14.4, 5.6 Hz, 1H), 2.32 (dd, *J* = 14.4, 8.0 Hz, 1H), 2.22-2.14 (m, 1H), 0.90 (dd, *J* = 14.8, 8.0 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃)

δ 179.9, 139.7 (d, J = 11.7 Hz), 138.2 (d, J = 12.3 Hz), 135.1, 132.9 (d, J = 8.1 Hz), 132.7 (d, J = 8.1 Hz), 128.9, 128.73, 128.68, 128.51, 128.47, 128.44, 128.40, 127.6, 126.9, 125.1, 58.5 (d, J = 14.3 Hz), 31.7 (d, J = 8.6 Hz), 31.1 (d, J = 14.4 Hz), 18.8, 18.1; ³¹P NMR (160 MHz, CDCl₃) δ -24.2; HRMS Calcd. for C₃₀H₃₂N₂SP⁺ [M+H]⁺: 483.2018, found: 483.2003; **M.p.**: 60-62 °C; $[\alpha]^{20}_{D} = +103.0$ (c 0.10, CH₂Cl₂).

(S)-1-([1,1':4',1''-terphenyl]-4-yl)-3-(1-(diphenylphosphaneyl)-3-methylbutan-2yl)thiourea (LB24)

Compound LB24 (207 mg, 81% yield) was obtained as a white solid following the *general procedure II* from LBa (0.46 mmol, 127 mg) and 4-isothiocyanato-1,1':4',1"-terphenyl (0.55 mmol, 158 mg) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.73-7.63 (m, 8H), 7.52-7.47 (m, 6H), 7.40 (d, J = 7.6 Hz, 1H), 7.37-7.31 (m, 6H), 7.20 (d, J = 8.4 Hz, 2H), 6.15 (d, J = 8.4 Hz, 1H), 4.67 (s, 1H), 2.48 (dd, J = 14.4, 4.0 Hz, 1H), 2.34 (dd, J = 14.4, 8.0 Hz, 1H), 2.24-2.16 (m, 1H), 0.92 (dd, J = 14.0, 6.8 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 179.9, 140.5, 140.4, 139.1, 138.6, 138.2 (d, J = 9.3 Hz), 135.2, 132.9 (d, J = 8.5 Hz), 132.7 (d, J = 8.4 Hz), 128.8, 128.7 (d, J = 4.8 Hz), 128.5 (d, J = 3.7 Hz), 128.43 (d, J = 3.8 Hz), 128.37, 127.9, 127.6, 127.4, 127.2, 126.9, 126.1, 125.1 (d, J = 0.8 Hz), 58.5 (d, J = 14.3 Hz), 31.8 (d, J = 9.2 Hz), 31.2 (d, J = 14.8 Hz), 18.8, 18.1; ³¹**P NMR** (160 MHz, CDCl₃) δ -24.1; **HRMS** Calcd. for C₃₆H₃₆N₂PS⁺ [M+H]⁺: 559.2331, found: 559.2317; **M.p.**: 136-138 °C; [α]²⁰_D = +118.0 (c 0.10, CH₂Cl₂).

(S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(1-(diphenylphosphaneyl)propan-2yl)thiourea (LB26)

Compound **LB26** (130 mg, 51% yield) was obtained as a white solid following the *general procedure II* from **LBb** (0.5 mmol, 122 mg) and 1-isothiocyanato-3,5bis(trifluoromethyl)benzene (0.6 mmol, 162 mg, 110 µL) stirred for 24 hours. ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, J = 7.2 Hz, 3H), 7.48-7.39 (m, 4H), 7.34-7.30 (m, 6H), 6.18 (brs, 1H), 4.65 (brs, 1H), 2.53 (dd, J = 14.0, 6.0 Hz, 1H), 2.41 (dd, J = 14.0, 6.4 Hz, 1H), 1.38 (d, J = 6.4 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 178.9, 139.0, 137.2 (d, J = 9.8 Hz), 137.1 (d, J = 9.6 Hz), 132.7 (d, J = 4.6 Hz), 132.5 (d, J = 4.6 Hz), 128.9, 128.57 (d, J = 7.0 Hz), 128.55 (d, J = 7.0 Hz), 123.4, 122.7 (q, J = 217.3 Hz), 118.8, 49.3 (d, J = 14.8 Hz), 35.8 (d, J = 12.4 Hz), 21.6 (d, J = 8.6 Hz); ³¹**P NMR** (160 MHz, CDCl₃) δ -24.9; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.8; **HRMS** Calcd. for C₂₄H₂₂F₆N₂PS⁺[M+H]⁺: 515.1140, found: 515.1129; **M.p.**: 106-108 °C; [α]²⁰_D = +24.8 (c 0.20, CH₂Cl₂).

(S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(1-(diphenylphosphaneyl)butan-2yl)thiourea (LB27)

Compound LB27 (69.5 mg, 40% yield) was obtained as a white solid following the *general procedure II* from LBc (0.33 mmol, 85 mg) and 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene (0.4 mmol, 108 mg, 73 μ L) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (brs, 1H), 7.67 (d, J = 10.4 Hz, 3H), 7.46-7.39 (m, 4H), 7.31-7.30 (m, 6H), 6.25 (brs, 1H), 4.62 (brs, 1H), 2.60 (d, J = 12.4 Hz, 1H), 2.37 (dd, J = 14.4, 7.2 Hz, 1H), 1.82-1.66 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 179.6, 138.8, 137.6, 137.3, 132.73 (d, J = 19.0 Hz), 132.69 (d, J = 19.0

Hz), 129.0, 128.6 (d, J = 6.9 Hz), 123.6, 122.8 (q, J = 271.8 Hz), 119.11 (d, J = 3.5 Hz), 119.05 (d, J = 3.8 Hz), 55.0 (d, J = 13.6 Hz), 33.2, 28.4, 10.2; ³¹P NMR (160 MHz, CDCl₃) δ -25.2 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9 (s); HRMS Calcd. for $C_{25}H_{24}F_6N_2PS^+$ [M+H]⁺: 529.1307, found: 529.1302; M.p.: 133-135 °C; $[\alpha]^{20}_D = +7.5$ (c 0.04, CH₂Cl₂).

(*R*)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(3-(diphenylphosphaneyl)-1,1diphenylpropan-2-yl)thiourea (LB28)

Compound LB28 (183.4 mg, 64% yield) was obtained as a white solid following the *general procedure II* from LBe (0.43 mmol, 171 mg) and 1-isothiocyanato-3,5-bis(trifluoromethyl)benzene (0.52 mmol, 141 mg, 95 μ L) stirred for 24 hours.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (brs, 1H), 7.65 (s, 1H), 7.49-7.45 (m, 2H), 7.37-7.29 (m, 9H), 7.25-7.15 (m, 9H), 7.05 (s, 2H), 5.80 (brs, 2H), 4.60 (d, *J* = 7.6 Hz, 1H), 2.99 (d, *J* = 10.0 Hz, 1H), 2.12 (d, *J* = 14.8 Hz, 1H); ¹³**C** NMR (125 MHz, CDCl₃) δ 179.2, 141.0 (d, *J* = 18.6 Hz), 138.1 (d, *J* = 9.6 Hz), 137.7, 136.9 (d, *J* = 11.3 Hz), 133.1 (d, *J* = 19.9 Hz), 132.8 (d, *J* = 32.9 Hz), 132.2 (d, *J* = 18.3 Hz), 129.1, 128.9 (d, *J* = 9.8 Hz), 128.6 (d, *J* = 7.3 Hz), 128.5, 128.4 (d, *J* = 6.8 Hz), 128.3, 127.9, 127.1, 127.0, 123.9 (d, *J* = 2.9 Hz), 122.6 (q, *J* = 271.9 Hz), 119.4 (d, *J* = 6.6 Hz), 56.1 (d, *J* = 73.9 Hz), 31.6, 22.6; ³¹**P** NMR (160 MHz, CDCl₃) δ -27.7; ¹⁹**F** NMR (376 MHz, CDCl₃) δ -62.6; **M.p.**: 79-81 °C; **HRMS** Calcd. for C₃₆H₃₀F₆N₂SP⁺ [M+H]⁺: 667.1766, found: 667.1749; [α]²⁰_D = -58.0 (c 0.05, CH₂Cl₂).

(S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-(1-(diphenylphosphaneyl)-4methylpentan-2-yl)thiourea (LB29)

Compound **LB29** (173.2 mg, 62% yield) was obtained as a white solid following the *general procedure II* from **LBd** (0.5 mmol, 143 mg) and 1-isothiocyanato-3,5bis(trifluoromethyl)benzene (0.6 mmol, 163 mg, 110 µL) stirred for 24 hours. ¹**H NMR** (400 MHz, CDCl₃) δ 8.95 (brs, 1H), 7.69 (d, J = 10.4 Hz, 3H), 7.50-7.42 (m, 4H), 7.34-7.31 (m, 6H), 6.41 (brs, 1H), 4.85 (brs, 1H), 2.68 (s, 1H), 2.40 (dd, J = 14.0, 6.0 Hz, 1H), 1.62 (brs, 3H), 0.91-0.87 (m, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 179.3, 138.8, 137.6 (d, J = 10.2 Hz), 132.9, 132.7, 132.5, 129.0, 128.9, 128.6, 128.5, 123.4, 122.8 (q, J = 271.6 Hz), 118.9, 51.9 (d, J = 12.9 Hz), 44.6 (d, J = 8.9 Hz), 34.1, 25.1, 22.4; ³¹**P NMR** (160 MHz, CDCl₃) δ -25.4; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.9; **M.p.**: 145-146 °C; **HRMS** Calcd. for C₂₇H₂₈F₆N₂SP⁺ [M+H]⁺: 557.1610, found: 557.1616; [α]²⁰_D = -2.50 (c 0.20, CH₂Cl₂).

(S)-1-([1,1'-biphenyl]-4-yl)-3-(1-(diphenylphosphaneyl)-4-methylpentan-2yl)thiourea (LB30)

Compound **LB30** (109 mg, 88% yield) was obtained as a white solid following the *general procedure II* from **LBd** (0.25 mmol, 71 mg) and 4-isothiocyanato-1,1'-biphenyl (0.3 mmol, 63.3 mg) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (brs, 1H), 7.59 (d, J = 7.6 Hz, 4H), 7.53-7.44 (m, 6H), 7.40-7.29 (m, 7H), 7.14 (d, J = 8.4 Hz, 2H), 6.10 (brs, 1H), 4.87 (brs, 1H), 2.59 (dd, J = 14.4, 6.4 Hz, 1H), 2.42 (dd, J = 14.0, 6.0 Hz, 1H), 1.62-1.53 (m, 3H), 0.88 (d, J = 4.4 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 179.3, 139.7 (d, J = 16.6 Hz), 138.3 (d, J = 11.1 Hz), 138.0 (d, J = 11.5 Hz), 135.1, 133.0 (d, J = 19.3 Hz), 132.6 (d, J = 12.4 Hz, 6H); ¹³C

19.0 Hz), 128.8, 128.7, 128.6, 128.49, 128.45, 128.41, 128.38, 127.6, 126.9, 125.1, 52.1 (d, J = 14.3 Hz), 44.5 (d, J = 9.4 Hz), 34.4 (d, J = 14.5 Hz), 25.1, 22.7, 22.4; ³¹P NMR (160 MHz, CDCl₃) δ -24.9; **M.p.**: 55-57 °C; **HRMS** Calcd. for C₃₁H₃₄N₂SP⁺ [M+H]⁺: 497.2175, found: 497.2163; [α]²⁰_D = +75.0 (c 0.20, CH₂Cl₂).

(S)-1-(3',5'-dimethoxy-[1,1'-biphenyl]-4-yl)-3-(1-(diphenylphosphaneyl)-4methylpentan-2-yl)thiourea (LB31)

Compound LB31 (189.8 mg, 68% yield) was obtained as a white solid following the *general procedure II* from LBd (0.5 mmol, 143 mg) and 4'-isothiocyanato-3,5dimethoxy-1,1'-biphenyl (0.6 mmol, 163 mg) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.58-7.43 (m, 6H), 7.38-7.27 (m, 6H), 7.15 (d, J = 8.4 Hz, 2H), 6.72 (d, J = 2.0 Hz, 2H), 6.50 (t, J = 2.0 Hz, 1H), 6.14 (brs, 1H), 6.88 (brs, 1H), 3.85 (s, 6H), 2.59 (dd, J = 14.4, 6.4 Hz, 1H), 2.42 (dd, J = 14.0, 4.8 Hz, 1H), 1.63-1.54 (m, 3H), 0.88 (d, J = 6.0 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 179.4, 161.1, 142.0, 139.6, 138.3 (d, J = 11.7 Hz), 138.1 (d, J = 11.2 Hz), 135.3, 133.0 (d, J = 19.5 Hz), 132.6 (d, J = 19.1 Hz), 128.8, 128.6, 128.5 (d, J = 3.6 Hz), 128.4 (d, J = 3.3 Hz), 125.0, 105.3, 99.5, 55.4, 52.2 (d, J = 14.1 Hz), 44.5 (d, J = 9.5 Hz), 34.4 (d, J = 14.6 Hz), 25.1, 22.7, 22.5; ³¹**P NMR** (160 MHz, CDCl₃) δ -24.9; **M.p.**: 57-59 °C; **HRMS** Calcd. for C₃₃H₃₈N₂O₂SP⁺[M+H]⁺: 557.2386, found: 557.2381; [α]²⁰_D = +82.0 (c 0.05, CH₂Cl₂).

(*S*)-1-(3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-3-(1-(diphenylphosphaneyl)-4-methylpentan-2-yl)thiourea (LB32)

Compound LB32 (195.4 mg, 62% yield) was obtained as a white solid following the *general procedure II* from LBd (0.5 mmol, 143 mg) and 4'-isothiocyanato-3,5-bis(trifluoromethyl)-1,1'-biphenyl (0.6 mmol, 208 mg) stirred for 24 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (s, 2H), 7.88 (s, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.51-7.43 (m, 4H), 7.35-7.29 (m, 6H), 7.21 (d, J = 8.4 Hz, 2H), 6.07 (brs, 1H), 4.84 (brs, 1H), 2.61 (dd, J = 14.0, 6.0 Hz, 1H), 2.38 (dd, J = 14.4, 5.6 Hz, 1H), 1.58-1.53 (m, 3H), 0.87 (dd, J = 6.0, 3.6 Hz, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 179.4, 142.0, 138.2 (d, J = 9.8 Hz), 138.0 (d, J = 11.0 Hz), 136.8, 136.3, 133.0 (d, J = 19.4 Hz), 132.6 (d, J = 18.9 Hz), 132.3 (d, J = 33.1 Hz), 131.9, 128.9 (d, J = 10.3 Hz), 128.7 (d, J = 16.1 Hz), 128.54, 128.51 (d, J = 5.4 Hz), 127.0 (d, J = 2.9 Hz), 125.1, 123.2 (q, J = 271.4 Hz), 121.2, 52.4 (d, J = 14.5 Hz), 44.6 (d, J = 9.4 Hz), 34.4 (d, J = 14.0 Hz), 25.2, 22.6, 22.5; ³¹**P NMR** (160 MHz, CDCl₃) δ -25.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.7; **M.p.**: 138-139 °C; **HRMS** Calcd. for C₃₃H₃₂F₆N₂SP⁺[M+H]⁺: 633.1928, found: 633.1932; [α]²⁰_D = +88.0 (c 0.10, CH₂Cl₂).

(*R*)-1-(3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-3-(1-(diphenylphosphaneyl)-4-methylpentan-2-yl)thiourea (LB33)

Compound LB33 (229 mg, 73% yield) was obtained as a white solid following the *general procedure II* from LBf (0.5 mmol, 143 mg) and 4'-isothiocyanato-3,5-bis(trifluoromethyl)-1,1'-biphenyl (0.6 mmol, 208 mg) stirred for 24 hours.

¹**H** NMR (400 MHz, CDCl₃) δ 8.30 (brs, 1H), 7.99 (s, 2H), 7.88 (s, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.52-7.43 (m, 4H), 7.34-7.31 (m, 6H), 7.24 (d, J = 8.0 Hz, 2H), 6.15 (brs,

1H), 4.86 (brs, 1H), 2.62 (dd, J = 14.0, 5.6 Hz, 1H), 2.39 (dd, J = 14.4, 6.0 Hz, 1H), 1.56 (d, J = 6.8 Hz, 2H), 1.27 (s, 1H), 0.89-0.86 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 142.0 138.2 (d, J = 10.8 Hz), 138.0 (d, J = 10.9 Hz), 137.0, 136.1, 133.0 (d, J = 19.3 Hz), 132.6 (d, J = 18.9 Hz), 132.3 (q, J = 33.2 Hz), 131.8, 128.9, 128.7, 128.6 (d, J = 4.6 Hz), 128.5 (d, J = 4.5 Hz), 127.0, 125.0, 123.2 (q, J = 271.4 Hz), 121.1, 52.2 (d, J = 14.0 Hz), 44.6 (d, J = 9.1 Hz), 34.4 (d, J = 13.7 Hz), 25.2, 22.6, 22.5; ³¹P NMR (160 MHz, CDCl₃) δ -25.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7; M.p.: 136-138 °C; HRMS Calcd. for C₃₃H₃₂F₆N₂SP⁺[M+H]⁺: 633.1928, found: 633.1926; [α]²⁰_D = -47.0 (c 0.10, CH₂Cl₂).

General procedure (*III*) for the synthesis of C2-quaternary indolin-3-ones (3aa-3xe).

Procedure (III): To a solution of compound **1** (0.1 mmol, 1.0 equiv.) and chiral phosphine **LB32** (0.01 mmol, 0.1 equiv.) in ethyl acetate (2.0 mL) was added compound **2** (0.15 mmol, 1.5 equiv.) under nitrogen atmosphere at room temperature. TLC monitor until the compound **1** consumed after six hours. The reaction mixture was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography (silica gel, PE/EtOAc: 15/1 to 10/1, $R_f = 0.2-0.3$) to afford the corresponding product **3**.

(S)-2-(3-oxobut-1-en-2-yl)-2-phenylindolin-3-one (3aa)

Compound **3aa** (26.3 mg, 95% yield) was obtained as a yellow solid following the *general procedure III* from **1a** (0.1 mmol, 20.7 mg) and **2a** (0.15 mmol, 10.5 mg, 12.5 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 1H), 7.50-7.42 (m, 3H), 7.32-7.29 (m, 2H), 7.25-7.21 (m, 1H), 6.92-6.90 (m, 1H), 6.79 (t, *J* = 7.6 Hz, 1H), 6.41-6.40 (m, 2H), 6.26 (brs, 1H), 2.36 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 200.1, 198.5, 159.6, 145.4, 137.9, 137.8, 128.58, 128.55, 127.6, 125.4, 125.2, 118.7, 118.4, 111.6, 72.6, 27.1; **HRMS** Calcd. for C₁₈H₁₆NO₂⁺ [M+H]⁺: 278.1187, found: 278.1186; **M.p.**: 158-160 °C.

 $[\alpha]^{20}_{D} = -677.0$ (c 0.10, CH₂Cl₂) for 90% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 29.862 \text{ min}, t_{major} = 26.359 \text{ min}.$

Racemic Sample of 3aa

mV

Chromatogram

Peak Table

???A 2301	nm			
Peak#	Ret. Time	Area	Height	Area%
1	25.759	14981922	334691	50.354
2	29.008	14771524	276099	49.646
Total		29753446	610789	100.000

Enantiomeric Sample of 3aa

(S)-2-(3-oxopent-1-en-2-yl)-2-phenylindolin-3-one (3ab)

Compound **3ab** (27.4 mg, 94% yield) was obtained as a yellow solid following the *general procedure III* from **1a** (0.1 mmol, 20.7 mg) and **2b** (0.15 mmol, 12.6 mg, 14.8 μL) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (d, J = 7.6 Hz, 1H), 7.50-7.42 (m, 3H), 7.31-7.27 (m, 2H), 7.25-7.21 (m, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.78 (t, J = 7.6 Hz, 1H), 6.38 (s, 1H), 6.34 (s, 1H), 6.27 (brs, 1H), 2.85-2.64 (m, 2H), 1.02 (t, J = 7.2Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 202.8, 198.5, 159.6, 145.1, 138.0, 137.8, 128.6, 127.6, 127.2, 125.4, 124.8, 118.7, 118.5, 111.7, 72.9, 32.1, 8.0; **HRMS** Calcd. for C₁₉H₁₈NO₂⁺ [M+H]⁺: 292.1332, found: 292.1331; **M.p.**: 131-133 °C.

 $[\alpha]^{20}_{D} = -328.0$ (c 0.10, CH₂Cl₂) for 90% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 26.566 \text{ min}, t_{major} = 31.697 \text{ min}.$

Racemic Sample of 3ab

Enantiomeric Sample of 3ab

mV

-			-		
D	00	<u>ا ما</u>	L'a	h	0
1	ua.	<u> </u>	ra	U.	

???A 2301	nm			
Peak#	Ret. Time	Area	Height	Area%
1	26.566	9595773	226576	4.884
2	31.697	186864092	2641594	95.116
Total		196459865	2868170	100.000

(S)-2-(3-oxohex-1-en-2-yl)-2-phenylindolin-3-one (3ac)

3ac

Compound 3ac (27.4 mg, 90% yield) was obtained as a yellow solid following the

general procedure III from 1a (0.1 mmol, 20.7 mg) and 2c (0.15 mmol, 14.7 mg, 17.5 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, J = 8.0 Hz, 1H), 7.50-7.42 (m, 3H), 7.31-7.27 (m, 2H), 7.24-7.21 (m, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.78 (t, J = 7.6 Hz, 1H), 6.37 (s, 1H), 6.34 (s, 1H), 6.29 (brs, 1H), 2.74-2.61 (m, 2H), 1.56 (h, J = 7.6 Hz, 2H), 0.85 (t, J = 7.6 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 202.5, 198.5, 159.6, 145.4, 138.0, 137.8, 128.5, 127.6, 127.2, 125.4, 125.2, 118.7, 118.5, 111.7, 72.9, 40.8, 17.6, 13.6; **HRMS** Calcd. for C₂₀H₂₀NO₂⁺ [M+H]⁺: 306.1489, found: 306.1487; **M.p.**: 42-44 °C. $[\alpha]^{20}_{\text{D}} = -828.0$ (c 0.05, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IF-H column, Hexane/^{*i*}PrOH = 95/5, 0.2 mL/min, 230 nm, t_{minor} = 99.826 min, t_{major} = 93.696 min.

Racemic Sample of 3ac

???A 230r	hm	20. 20 20 20 20 20 20 20 20 20 20 20 20 20	2 No. 1997	
Peak#	Ret. Time	Area	Height	Area%
1	94.125	62565488	507630	49.923
2	98.524	62759228	409320	50.077
Total		125324716	916950	100.000

Enantiomeric Sample of 3ac

(S)-2-(3-oxo-3-phenylprop-1-en-2-yl)-2-phenylindolin-3-one (3ad)

Compound **3ad** (17.1 mg, 50% yield) was obtained as a yellow solid following the *general procedure III* from **1a** (0.1 mmol, 20.7 mg) and **2d** (0.15 mmol, 19.8 mg, 19.4 μ L) stirred for 8 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.92 (m, 2H), 7.68 (d, J = 7.6 Hz, 1H), 7.61-7.55 (m, 2H), 7.52-7.46 (m, 4H), 7.41-7.34 (m, 4H), 7.29 (d, J = 4.0 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 6.96-6.92 (m, 1H), 5.25 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 198.2, 190.5, 160.1, 145.5, 138.0, 137.9, 137.3, 133.1, 129.1, 128.7, 128.6, 128.5, 126.2, 125.73, 125.66, 120.1, 119.1, 112.6, 73.1; **M.p.**: 125-127 °C; **HRMS** Calcd. for C₂₃H₁₈NO₂⁺ [M+H]⁺: 340.1343, found: 340.1336.

 $[\alpha]^{20}_{D}$ = -4.2 (c 0.13, CH₂Cl₂) for 3% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 23.500 min, t_{major} = 42.696 min.

Racemic Sample of 3ad

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	23.540	12010462	252321	50.021
2	42.167	12000235	165221	49.979
Total	Sand Science 1995 Factor	24010697	417542	100.000

Enantiomeric Sample of 3ad

Peak#	Ret. Time	Area	Height	Area%
1	23.500	5335510	118611	48.289
2	42.696	5713498	81574	51.711
Total		11049008	200185	100.000

(S)-2-(3-oxo-2-phenylindolin-2-yl)acrylaldehyde (3ae)

Compound **3ae** (24.7 mg, 94% yield) was obtained as a yellow solid following the *general procedure III* from **1a** (0.1 mmol, 20.7 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 3 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.58 (d, *J* = 8.8 Hz, 1H), 7.51-7.43 (m, 3H), 7.33-7.24 (m, 3H), 6.93 (d, *J* = 6.4 Hz, 2H), 6.81 (t, *J* = 8.0 Hz, 1H), 6.39 (s, 1H), 6.16(brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.9, 194.4, 159.8, 146.0, 137.9, 137.1, 136.9, 128.6, 127.9, 125.5, 125.4, 119.0, 118.2, 111.7, 71.0; **M.p.**: 154-156 °C; **HRMS** Calcd. for C₁₇H₁₄NO₂⁺ [M+H]⁺: 264.1019, found: 264.1012.

 $[\alpha]^{20}_{D} = -439.0$ (c 0.20, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 34.447 \text{ min}, t_{major} = 32.086 \text{ min}.$

Enantiomeric Sample of 3ae

Peak Table

???A 2301	nm			
Peak#	Ret. Time	Area	Height	Area%
1	32.086	43136270	897638	96.964
2	34.447	1350434	32516	3.036
Total		44486704	930154	100.000

(S)-2-(3-oxo-2-(p-tolyl)indolin-2-yl)acrylaldehyde (3be)

3be

000 1 000

mV

Compound **3be** (18.5 mg, 67% yield) was obtained as a yellow solid following the *general procedure III* from **1b** (0.1 mmol, 22.1 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.80 (t, J = 7.6 Hz, 1H), 6.38 (s, 1H), 6.13 (brs, 1H), 2.29 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 198.1, 194.5, 159.8, 146.1, 137.9, 137.7, 137.0, 133.9, 129.4, 125.5, 125.3, 118.9, 118.2, 111.7, 70.9, 21.0; **HRMS** Calcd. for C₁₈H₁₆NO₂⁺ [M+H]⁺: 278.1176, found: 278.1176; **M.p.**: 119-121 °C.

 $[\alpha]^{20}_{D} = -1160.0$ (c 0.04, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 36.846$ min, $t_{major} = 29.235$ min.

Racemic Sample of 3be

Peak Table

222 A 230m		I cun Iu		
Peak#	Ret. Time	Area	Height	Area%
1	28.755	61250538	1133543	50.823
2	35.229	59267686	923784	49.177
Total		120518224	2057327	100.000

Enantiomeric Sample of 3be

mV

Peak Table

???A 230n	m			
Peak#	Ret. Time	Area	Height	Area%
1	29.235	98575696	1717296	97.055
2	36.846	2991589	53068	2.945
Total		101567284	1770364	100.000

(S)-2-(2-(4-fluorophenyl)-3-oxoindolin-2-yl)acrylaldehyde (3ce)

Compound **3ce** (26.3 mg, 94% yield) was obtained as a yellow solid following the *general procedure III* from **1c** (0.1 mmol, 22.5 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.45-7.41 (m, 2H), 6.99 (t, J = 8.4 Hz, 2H), 6.93-6.90 (m, 2H), 6.82 (t, J = 7.6 Hz, 1H), 6.39 (s, 1H), 6.15 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.8, 194.4, 162.5 (d, J = 245.5 Hz), 159.7, 145.9, 138.1, 137.3, 132.7 (d, J = 2.9 Hz), 127.3 (d, J = 8.1 Hz), 125.5, 119.2, 118.1, 115.5 (d, J = 21.6 Hz), 111.8, 70.5; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.7 (s); **HRMS** Calcd. for C₁₇H₁₃NO₂F⁺ [M+H]⁺: 282.0925, found: 282.0922; **M.p.**: 118-120 °C.

 $[\alpha]^{20}_{D}$ = -480.0 (c 0.04, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 38.129 min, t_{major} = 30.637 min.

Racemic Sample of 3ce

mV

2224 220

Chromatogram

Peak Table

111A 2301	1111			
Peak#	Ret. Time	Area	Height	Area%
1	31.081	22480732	451120	50.747
2	37.833	21818893	372721	49.253
Total		44299625	823841	100.000

Enantiomeric Sample of 3ce

Chromatogram

(S)-2-(2-(4-chlorophenyl)-3-oxoindolin-2-yl)acrylaldehyde (3de)

Compound **3de** (25.9 mg, 87% yield) was obtained as a yellow solid following the *general procedure III* from **1d** (0.1 mmol, 24.1 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.4 Hz, 1H), 6.89 (s, 1H), 6.82 (t, J = 7.6 Hz, 1H), 6.40 (s, 1H), 6.12 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.5, 194.4, 159.7, 145.7, 138.1, 137.4, 135.6, 133.9, 128.8, 127.0, 125.6, 119.3, 118.1, 111.8, 70.5; **HRMS** Calcd. for C₁₇H₁₃NO₂Cl⁺ [M+H]⁺: 298.0629, found: 298.0627; **M.p.**: 145-148 °C.

 $[\alpha]^{20}_{D} = -1043.6$ (c 0.07, CH₂Cl₂) for 90% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 41.556 min, t_{major} = 34.505 min.

Racemic Sample of 3de

mV

000 4 0 00

mV

Peak Table

???A 230nm							
Peak#	Ret. Time	Area	Height	Area%			
1	35.816	31503862	488140	50.117			
2	42.524	31357187	438212	49.883			
Total		62861050	926352	100.000			

Enantiomeric Sample of 3de

Chromatogram

Peak Table

???A 230nm							
Peak#	Ret. Time	Area	Height	Area%			
1	34.505	44077070	676629	94.770			
2	41.556	2432440	41619	5.230			
Total		46509509	718247	100.000			

(S)-2-(2-(4-bromophenyl)-3-oxoindolin-2-yl)acrylaldehyde (3ee)

Compound **3ee** (23 mg, 67% yield) was obtained as a yellow solid following the *general* procedure III from **1e** (0.1 mmol, 28.4 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.33 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.4 Hz, 1H), 6.89 (s, 1H), 6.83 (t, J = 7.6 Hz, 1H), 6.40 (s, 1H), 6.12 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.4, 194.3, 159.7, 145.7, 138.2, 137.4, 136.2, 131.7, 127.3, 125.6, 122.2, 119.3, 118.1, 111.9, 70.6; **HRMS** Calcd. for C₁₇H₁₃NO₂Br⁺ [M+H]⁺: 342.0124, found: 342.0123; **M.p.**: 115-117 °C.

 $[\alpha]^{20}_{D} = -815.0$ (c 0.04, CH₂Cl₂) for 91% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 44.565 \text{ min}, t_{major} = 36.272 \text{ min}.$

Racemic Sample of 3ee

mV

000 + 000

Chromatogram

(((A 230nm							
Peak#	Ret. Time	Area	Height	Area%			
1	36.841	28218864	430560	50.544			
2	44.080	27611359	370127	49.456			
Total		55830222	800687	100.000			

Enantiomeric Sample of 3ee

Chromatogram

(S)-2-(2-(3-bromophenyl)-3-oxoindolin-2-yl)acrylaldehyde (3fe)

Compound **3fe** (25.6 mg, 75% yield) was obtained as a yellow solid following the *general procedure III* from **1f** (0.1 mmol, 28.4 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.59 (d, J = 9.2 Hz, 2H), 7.51 (t, J = 8.0 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.18 (t, J = 8.0 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.90 (s, 1H), 6.83 (t, J = 7.6 Hz, 1H), 6.41 (s, 1H), 6.14 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.2, 194.3, 159.7, 145.6, 139.4, 138.2, 137.6, 131.0, 130.1, 128.5, 125.6, 124.3, 122.8, 119.3, 118.0, 111.9, 70.5; **HRMS** Calcd. for C₁₇H₁₃NO₂Br⁺ [M+H]⁺: 342.0124, found: 342.0123; **M.p.**: 142-144 °C.

 $[\alpha]^{20}_{D} = -777.5$ (c 0.04, CH₂Cl₂) for 90% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 39.394$ min, $t_{major} = 33.075$ min.

mV
Racemic Sample of 3fe

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	33.454	61875702	1015651	50.869
2	38.570	59761028	860719	49.131
Total		121636729	1876369	100.000

Enantiomeric Sample of 3fe

mV

Chromatogram

???A 230n	m	Peak Tal	ble	
Peak#	Ret. Time	Area	Height	Area%
1	33.075	180244203	2715744	95.117
2	39.394	9252187	150420	4.883
Total		189496389	2866164	100.000

Compound 3ge (13.7 mg, 40% yield) was obtained as a yellow solid following the

general procedure III from 1g (0.1 mmol, 28.4 mg) and 2e (0.15 mmol, 8.4 mg, 10 µL) stirred for 36 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.64 (s, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.32-7.27 (m, 2H), 7.19-7.16 (m, 1H), 6.89-6.84 (m, 2H), 6.40 (d, J = 12.0 Hz, 2H), 6.25 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 198.0, 193.1, 159.9, 145.5, 137.72, 137.67, 136.3, 135.2, 130.5, 129.8, 127.5, 125.0, 123.0, 120.2, 119.4, 112.5, 73.5; **M.p.:** 169-171 °C; **HRMS** Calcd. for C₁₇H₁₃BrNO₂⁺[M+H]⁺: 342.0124, found: 342.0132.

 $[\alpha]^{20}_{D} = -1.82$ (c 0.11, CH₂Cl₂) for 11% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 91.515$ min, $t_{major} = 43.878$ min.

Racemic Sample of 3ge

Peak Table

???A 2301	nm			13
Peak#	Ret. Time	Area	Height	Area%
1	40.596	8914589	135499	49.592
2	79.696	9061226	71103	50.408
Total		17975815	206601	100.000

Enantiomeric Sample of 3ge

Chromatogram

Peak#	Ret. Time	Area	Height	Area%
1	43.878	4806142	60920	55.263
2	91.515	3890761	26238	44.737
Total		8696903	87159	100.000

(S)-2-(3-oxo-2-(o-tolyl)indolin-2-yl)acrylaldehyde (3he)

Compound **3he** (11.9 mg, 43% yield) was obtained as a yellow solid following the *general procedure III* from **1h** (0.1 mmol, 22.1 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.70 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.51-7.47 (m, 1H), 7.21-7.17 (m, 1H), 7.13 (t, J = 4.0 Hz, 3H), 6.88-6.83 (m, 2H), 6.62 (s, 1H), 6.41 (s, 1H), 6.03 (brs, 1H), 2.18 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 199.2, 194.4, 159.3, 145.9, 137.8, 137.6, 136.9, 135.3, 132.5, 128.5, 128.3, 125.9, 125.0, 119.8, 119.2, 112.3, 21.0; **M.p.**: 125-127 °C; **HRMS** Calcd. for C₁₈H₁₆NO₂⁺ [M+H]⁺: 278.1176, found: 278.1180.

 $[\alpha]^{20}_{D}$ = -15.0 (c 0.04, CH₂Cl₂) for 9% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 76.915 min, t_{major} = 38.117 min.

mV

Racemic Sample of 3he

Chromatogram

Peak Table

Chromatogram

Area%

49.754

50.246 100.000

???A 230n	m	I cuit Iu	
Peak#	Ret. Time	Area	Height
1	39.155	43479462	579871
2	80.489	43909926	281827
Total		87389388	861697

Enantiomeric Sample of 3he

		Peak Ta	ble	
???A 230r	ım			
Peak#	Ret. Time	Area	Height	Area%
1	38.117	11654307	165168	54.696
2	76.915	9653024	76959	45.304
Total		21307330	242127	100.000

(S)-2-(3-oxo-2-(4-(trifluoromethyl)phenyl)indolin-2-yl)acrylaldehyde (3ie)

Compound **3ie** (26.9 mg, 81% yield) was obtained as a yellow solid following the *general procedure III* from **1i** (0.1 mmol, 27.5 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.61-7.51 (m, 6H), 6.97-6.93 (m, 2H), 6.85 (t, J = 7.6 Hz, 1H), 6.44 (s, 1H), 6.16 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.1, 194.3, 159.7, 145.7, 141.1, 138.3, 137.6, 130.1 (q, J = 32.2 Hz), 126.0, 125.6 (q, J = 3.7 Hz), 124.0 (q, J = 270.9 Hz), 119.5, 118.0, 111.9, 99.9, 70.8; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.5 (s); **HRMS** Calcd. for C₁₈H₁₃NO₂F₃⁺ [M+H]⁺: 332.0893, found: 332.0887; **M.p.**: 115-117 °C.

 $[\alpha]^{20}_{D} = -555.0$ (c 0.05, CH₂Cl₂) for 87% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 34.681 \text{ min}, t_{major} = 27.444 \text{ min}.$

Chromatogram

Racemic Sample of 3ie

mV

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	28.149	29387205	621245	49.968
2	34.799	29425233	521001	50.032
Total		58812438	1142246	100.000

Enantiomeric Sample of 3ie

17 3 K/s ↓0 K/s

3672197

100.000

(S)-2-(2-(3,5-bis(trifluoromethyl)phenyl)-3-oxoindolin-2-yl)acrylaldehyde (3je)

202113011

Total

Compound **3je** (25.6 mg, 64% yield) was obtained as a yellow solid following the *general procedure III* from **1j** (0.1 mmol, 34.3 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.96 (s, 2H), 7.79 (s, 1H), 7.62-7.54 (m, 2H), 7.01 (d, J = 8.0 Hz, 1H), 6.95 (s, 1H), 6.90 (t, J = 7.6 Hz, 1H), 6.49 (s, 1H), 6.14 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.3, 194.2, 159.7, 145.3, 140.1, 138.6, 138.3, 131.8 (q, J = 33.3 Hz), 126.1 (q, J = 3.5 Hz), 125.6, 123.2 (q, J = 271.4 Hz), 122.0 (q, J = 3.7 Hz), 120.0, 117.9, 112.4, 70.4; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.5 (s); **HRMS** Calcd. for C₁₉H₁₂NO₂F₆⁺ [M+H]⁺: 400.0767, found: 400.0756; **M.p.**: 162-164 °C.

 $[\alpha]^{20}_{D}$ = -780.0 (c 0.04, CH₂Cl₂) for 88% ee; Enantiomeric excess was determined by

HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 19.957 \text{ min}, t_{major} = 13.945 \text{ min}.$

Racemic Sample of 3je

mV

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	13.994	23052224	1049306	50.221
2	19.938	22848925	746126	49.779
Total	a na seconda da seconda	45901148	1795432	100.000

Enantiomeric Sample of 3je

Chromatogram

mV

min

Peak Table

???A 230r	nm	46. (23.337726)		
Peak#	Ret. Time	Area	Height	Area%
1	13.945	43154932	1886348	93.972
2	19.957	2768208	105255	6.028
Total		45923140	1991602	100.000

(S)-4-(3-oxo-2-(3-oxoprop-1-en-2-yl)indolin-2-yl)benzonitrile

(**3ke**)

Compound **3ke** (20.1 mg, 70% yield) was obtained as a yellow solid following the *general procedure III* from **1k** (0.1 mmol, 23.2 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.61-7.51 (m, 6H), 6.98-6.84 (m, 3H), 6.45 (s, 1H), 6.14 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.6, 194.2, 159.7, 145.5, 142.5, 138.4, 137.8, 132.3, 126.4, 125.6, 119.7, 118.6, 117.9, 112.1, 111.7, 70.8; **HRMS** Calcd. for C₁₈H₁₃N₂O₂⁺ [M+H]⁺: 289.0972, found: 289.0964; **M.p.**: 98-100 °C. $[\alpha]^{20}_{D} = -737.5$ (c 0.40, CH₂Cl₂) for 87% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 110.507 min, t_{major} = 96.747 min.

Racemic Sample of 3ke

Chromatogram

		Peak Ta	ble	
???A 230n	im			
Peak#	Ret. Time	Area	Height	Area%
1	96.960	39105651	175787	50.762
2	107.303	37931383	145267	49.238
Total		77037034	321054	100.000

Enantiomeric Sample of 3ke

Chromatogram

(S)-2-(3-oxo-2-(pyridin-4-yl)indolin-2-yl)acrylaldehyde (3le)

Compound **3le** (16.5 mg, 63% yield) was obtained as a yellow solid following the *general procedure III* from **1l** (0.1 mmol, 20.8 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.53 (s, 1H), 8.54 (d, *J* = 5.6 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 6.8 Hz, 1H), 7.39 (d, *J* = 6.4 Hz, 2H), 6.97-6.94 (m, 2H), 6.85 (t, *J* = 7.6 Hz, 1H), 6.45 (s, 1H), 6.13 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.4, 194.1, 159.8, 150.0, 146.4, 145.4, 138.4, 137.7, 125.6, 120.6, 119.6, 118.0, 112.0, 70.4; **HRMS** Calcd. for C₁₆H₁₃N₂O₂⁺ [M+H]⁺: 265.0977, found: 265.0972; **M.p.**: 114-115 °C.

 $[\alpha]^{20}_{D} = -676.4$ (c 0.18, CH₂Cl₂) for 97% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IB-H column, Hexane/^{*i*}PrOH = 80/20, 0.5 mL/min, 230 nm, $t_{minor} = 51.126 \text{ min}, t_{major} = 54.844 \text{ min}.$

Racemic Sample of 3le

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	48.436	11591436	66381	50.455
2	54.842	11382473	57802	49.545
Total		22973909	124183	100.000

Enantiomeric Sample of 3le

Chromatogram

Peak Table

		I WORL IN		
???A 23	0nm			
Peak#	Ret. Time	Area	Height	Area%
	1 51.126	335033	2614	1.549
	2 54.844	21300933	98756	98.451
Tot	al	21635966	101370	100.000

(S)-2-(3-oxo-2-(thiophen-2-yl)indolin-2-yl)acrylaldehyde (3me)

3me

Compound **3me** (16.8 mg, 62% yield) was obtained as a yellow solid following the *general procedure III* from **1m** (0.1 mmol, 21.3 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.56 (s, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 5.2 Hz, 1H), 7.03 (d, J = 3.2 Hz, 1H), 6.97-6.90 (m, 3H), 6.85 (t, J = 7.6 Hz, 1H), 6.36 (s, 1H), 6.29 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.9, 194.1, 159.5, 145.8, 141.9, 138.0, 137.2, 127.6, 125.6, 125.3, 124.8, 119.5, 118.1, 112.0, 69.0; **HRMS** Calcd. for C₁₅H₁₂NO₂S⁺ [M+H]⁺: 270.0589, found: 270.0583; **M.p.**: 130-132 °C.

 $[\alpha]^{20}_{D} = -468.0$ (c 0.05, CH₂Cl₂) for 92% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 50.817 \text{ min}, t_{major} = 43.986 \text{ min}.$

Racemic Sample of 3me

222 A 220mm

Chromatogram

-			
Peg	1	a	ale
I Ca	Λ.	1 au	JIC

Peak#	Ret. Time	Area	Height	Area%
1	43.799	31010242	418694	50.628
2	50.103	30240986	363885	49.372
Total	A CONTRACTOR	61251228	782579	100.000

Enantiomeric Sample of 3me

Chromatogram

(S)-2-(2-(naphthalen-2-yl)-3-oxoindolin-2-yl)acrylaldehyde (3ne)

Compound **3ne** (19.0 mg, 61% yield) was obtained as a yellow solid following the *general procedure III* from **1n** (0.1 mmol, 25.7 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.91 (s, 1H), 7.80-7.79 (m, 3H), 7.61-7.51 (m, 3H), 7.45-7.44 (m, 2H), 6.99 (s, 2H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.46 (s, 1H), 6.27 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.9, 194.4, 159.8, 145.9, 138.0, 137.4, 134.3, 133.2, 132.9, 128.5, 128.1, 127.5, 126.16, 126.15, 125.6, 124.6, 123.3, 119.1, 118.3, 111.8, 71.1; **HRMS** Calcd. for C₂₁H₁₆NO₂⁺[M+H]⁺: 314.1176, found: 314.1174; **M.p.**: 84-86 °C.

 $[\alpha]^{20}_{D} = -423.5$ (c 0.04, CH₂Cl₂) for 95% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 64.359$ min, $t_{major} = 52.177$ min.

Racemic Sample of 3ne

Peak Table

???A 230r	nm	i cuit iu		
Peak#	Ret. Time	Area	Height	Area%
1	57.273	11733615	74393	49.669
2	67.848	11889943	91996	50.331
Total		23623558	166389	100.000

Enantiomeric Sample of 3ne

Chromatogram

Peak Table

???A 2301	nm			N. M. MARINA
Peak#	Ret. Time	Area	Height	Area%
1	52,177	137329473	920716	97.486
2	64.359	3540876	34149	2.514
Total		140870349	954865	100.000

(S)-2-(2-(benzo[d][1,3]dioxol-5-yl)-3-oxoindolin-2-yl)acrylaldehyde (3oe)

Compound **30e** (26.4 mg, 86% yield) was obtained as a yellow solid following the *general procedure III* from **10** (0.1 mmol, 25.1 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹H NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 6.92-6.87 (m, 4H), 6.81 (t, J = 7.2 Hz, 1H), 6.74 (d, J = 7.2 Hz, 1H), 6.37 (s, 1H), 6.11 (brs, 1H), 5.91 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 194.5, 159.6, 148.0, 147.4, 145.9, 138.0, 137.2, 130.7, 125.5, 119.0, 118.8, 118.1, 111.7, 108.3, 106.2, 101.2, 70.7; HRMS Calcd. for C₁₈H₁₄NO₄⁺[M+H]⁺: 308.0917, found: 308.0909; M.p.: 147-149 °C.

 $[\alpha]^{20}_{D}$ = -812.5 (c 0.04, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 66.796 min, t_{major} = 72.289 min.

Racemic Sample of 3oe

mV

Chromatogram

???A 230r	nm	Peak Ta	ble	
Peak#	Ret. Time	Area	Height	Area%
1	66.979	12483628	101163	49.771
2	74.138	12598719	88995	50.229
Total		25082347	190158	100.000

Enantiomeric Sample of 3oe

(S)-2-(3-oxobut-1-en-2-yl)-2-(1-tosyl-1H-indol-3-yl)indolin-3-one (3pe)

Compound **3pe** (19.2 mg, 42% yield) was obtained as a yellow solid following the *general procedure III* from **1p** (0.1 mmol, 40 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 8 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.60 (s, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.0 Hz, 1H), 7.56 (s, 1H), 7.55-7.48 (m, 2H), 7.25-7.23 (m, 1H), 7.21 (s, 1H), 7.19 (s, 1H), 7.15-7.11 (m, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.87 (t, J = 8.0 Hz, 1H), 6.78 (s, 1H), 6.42 (s, 1H), 5.99 (brs, 1H), 2.33 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.7, 193.7, 159.6, 145.1, 144.9, 138.1, 137.9, 135.7, 134.7, 129.9, 127.8, 126.8, 125.4, 125.1, 124.9, 123.3, 121.4, 119.44, 119.36, 119.0, 113.7, 112.2, 67.9, 21.6; **M.p.**: 123-125 °C; **HRMS** Calcd. for C₂₆H₂₁N₂O₄S⁺ [M+H]⁺: 457.1228, found: 457.1224.

 $[\alpha]^{20}_{D} = -362.5$ (c 0.04, CH₂Cl₂) for 88% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IF-H column, Hexane/^{*i*}PrOH = 80/20, 0.5 mL/min, 230 nm, $t_{minor} = 58.202 \text{ min}, t_{major} = 70.844 \text{ min}.$

Racemic Sample of 3pe

Enantiomeric Sample of 3pe

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	58.202	2540345	13211	5.778
2	70.844	41423853	189985	94.222
Total		43964199	203196	100.000

(S)-2-(5-bromo-3-oxo-2-phenylindolin-2-yl)acrylaldehyde (3qe)

Compound **3qe** (30.7 mg, 90% yield) was obtained as a yellow solid following the *general procedure III* from **1q** (0.1 mmol, 28.4 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.68 (s, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.41 (d, J = 7.2 Hz, 2H), 7.34-7.27 (m, 3H), 6.88 (s, 1H), 6.84 (d, J = 8.8 Hz, 1H), 6.41 (s, 1H), 6.20 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.6, 194.2, 158.2, 145.7, 140.4, 137.3, 136.3, 128.8, 128.1, 127.9, 125.3, 119.8, 113.3, 111.0, 71.6; **HRMS** Calcd. for C₁₇H₁₃NO₂Br⁺ [M+H]⁺: 342.0124, found: 342.0123; **M.p.**: 179-181 °C. $[\alpha]^{20}_{\rm D} = -576.0$ (c 0.05, CH₂Cl₂) for 92% ee; Enantiomeric excess was determined by

HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 38.327 \text{ min}, t_{major} = 41.696 \text{ min}.$

Racemic Sample of 3qe

mV

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	38.184	29664294	470192	49.931
2	42.145	29746868	397140	50.069
Total		59411162	867332	100.000

Enantiomeric Sample of 3qe

(S)-2-(4-chloro-3-oxo-2-phenylindolin-2-yl)acrylaldehyde (3re)

3re

Compound **3re** (18.8 mg, 63% yield) was obtained as a yellow solid following the *general procedure III* from **1r** (0.1 mmol, 24.1 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.44 (d, J = 7.2 Hz, 2H), 7.38-7.27 (m, 4H), 6.98 (s, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 7.6 Hz, 1H) 6.42 (s, 1H), 6.31 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 195.0, 194.4, 160.9, 145.7, 138.0, 137.5, 136.5, 133.3, 128.7, 128.1, 125.4, 120.0, 114.8, 109.9, 71.2; **HRMS** Calcd. for C₁₇H₁₃NO₂Cl⁺[M+H]⁺: 298.0629, found: 298.0623; **M.p.**: 118-120 °C.

 $[\alpha]^{20}_{D}$ = -1185.0 (c 0.04, CH₂Cl₂) for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 55.244 min, t_{major} = 43.204 min.

Racemic Sample of 3re

Chromatogram

222A 230m	m	Peak Ta	ble	
Peak#	Ret. Time	Area	Height	Area%
1	43.498	21429594	305188	50.097
2	54.286	21346986	212915	49.903
Total		42776580	518104	100.000

Enantiomeric Sample of 3re

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	43.204	38009900	494960	96.723
2	55.244	1287867	14216	3.277
Total	in the second seco	39297767	509176	100.000

(S)-2-(6-fluoro-3-oxo-2-phenylindolin-2-yl)acrylaldehyde (3se)

mV

mV

Compound **3se** (27.3 mg, 97% yield) was obtained as a yellow solid following the *general procedure III* from **1s** (0.1 mmol, 22.5 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.57 (dd, J = 8.4, 5.6 Hz, 1H), 7.43-7.40 (m, 2H), 7.34-7.24 (m, 3H), 6.94 (s, 1H), 6.58-6.49 (m, 2H), 6.41 (s, 1H), 6.33 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 195.9, 194.3, 169.9 (d, J = 255.3 Hz), 161.2 (d, J = 14.3 Hz), 145.8, 137.2, 136.6, 128.7, 128.1, 127.9 (d, J = 12.6 Hz), 125.3, 114.8 (d, J = 0.9 Hz), 107.9 (d, J = 24.8 Hz), 98.0 (d, J = 26.0 Hz), 71.6; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -98.1 (s); **M.p.:** 125-127 °C; **HRMS** Calcd. for C₁₇H₁₁FNO₂⁻ [M-H]⁻: 280.0774, found: 280.0783.

 $[\alpha]^{20}_{D} = -692.8$ (c 0.91, CH₂Cl₂) for 90% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/ⁱPrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 31.656 \text{ min}, t_{major} = 40.417 \text{ min}.$

Racemic Sample of 3se

Peak Table

((A250IIII						
Peak#	Ret. Time	Area	Height	Area%		
1	31.236	55772458	944060	49.837		
2	40.759	56138381	802853	50.163		
Total		111910839	1746913	100.000		

Enantiomeric Sample of 3se

222 1 220

Chromatogram

(S)-2-(5-methoxy-3-oxo-2-phenylindolin-2-yl)acrylaldehyde (3te)

Compound **3te** (19.7 mg, 67% yield) was obtained as a yellow solid following the *general procedure III* from **1t** (0.1 mmol, 23.7 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.33-7.24 (m, 3H), 7.20-7.17 (m, 1H), 7.00 (s, 1H), 6.91-6.88 (m, 2H), 6.39 (s, 1H), 5.88 (brs, 1H), 3.75 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 198.2, 194.3, 155.7, 153.4, 146.3, 137.1, 137.0, 128.7, 127.9, 125.4, 118.3, 113.3, 105.0, 72.0, 55.7; **HRMS** Calcd. for C₁₈H₁₆NO₃⁺[M+H]⁺: 294.1125, found: 294.1117; **M.p.**: 169-170 °C.

 $[\alpha]^{20}_{D} = -940.0$ (c 0.04, CH₂Cl₂) for 85% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm, $t_{minor} = 78.973$ min, $t_{major} = 82.414$ min.

57

Racemic Sample of 3te

mV

Peak Table

		I VUIL IN	010	
???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	77.473	8935858	68207	49.053
2	82.003	9280727	64949	50.947
Total		18216585	133156	100.000

Enantiomeric Sample of 3te

Chromatogram

Peak Table

nm			
Ret. Time	Area	Height	Area%
78.973	282591	2606	7.376
82.414	3548487	23950	92.624
	3831078	26556	100.000
	nm Ret. Time 78.973 82.414	nm Ret. Time Area 78.973 282591 82.414 3548487 3831078	nm Ret. Time Area Height 78.973 282591 2606 82.414 3548487 23950 3831078 26556

(S)-2-(6-methyl-3-oxo-2-phenylindolin-2-yl)acrylaldehyde (3ue)

mV

Compound **3ue** (21.0 mg, 76% yield) was obtained as a yellow solid following the *general procedure III* from **1u** (0.1 mmol, 22.1 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H** NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.45 (dd, J = 17.2, 8.0 Hz, 3H), 7.32-7.23 (m, 3H), 6.93 (s, 1H), 6.73 (s, 1H), 6.64 (d, J = 8.0 Hz, 1H), 6.38 (s, 1H), 6.10 (brs, 1H), 2.37 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 197.1, 194.5, 160.2, 149.8, 146.1, 137.13, 137.10, 128.6, 127.8, 125.3, 125.2, 120.9, 115.9, 111.7, 71.2, 22.5; HRMS Calcd. for C₁₈H₁₆NO₂⁺ [M+H]⁺: 278.1176, found: 278.1167; **M.p.**: 141-143 °C. $[\alpha]^{20}_{D} = -1070.0$ (c 0.05, CH₂Cl₂) for 92% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IF-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm, t_{minor} = 35.014 min, t_{major} = 48.313 min.

Racemic Sample of 3ue

mV

Chromatogram

D	1			1 1	
μ	69	1		h	e
1	Ca	Γ.	ıa	U.	

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	34.766	29983951	513831	49.745
2	49.179	30291608	359694	50.255
Total		60275559	873525	100.000

Enantiomeric Sample of 3ue

(S)-2-(5-methyl-3-oxo-2-phenylindolin-2-yl)acrylaldehyde (3ve)

Compound **3ve** (24.5 mg, 88% yield) was obtained as a yellow solid following the *general procedure III* from **1v** (0.1 mmol, 22.1 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.43 (d, *J* = 7.6 Hz, 2H), 7.37 (s, 1H), 7.34-7.28 (m, 3H), 7.25-7.23 (m, 1H), 6.89 (s, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 6.37 (s, 1H), 5.98 (brs, 1H), 2.28 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 198.0, 194.3, 158.3, 146.3, 139.4, 137.2, 136.9, 128.6, 127.8, 125.5, 124.8, 118.4, 111.7, 71.4, 20.5; **M.p.**: 141-143 °C; **HRMS** Calcd. for C₁₈H₁₆NO₂⁺ [M+H]⁺: 278.1176, found: 278.1174. [α]²⁰_D = -1461.0 (c 0.05, CH₂Cl₂) for 95% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IF-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 33.131 min, t_{maior} = 29.494 min.

Racemic Sample of 3ve

Peak Table

			T COULT TO	010	
?	??A 230r	nm			
	Peak#	Ret. Time	Area	Height	Area%
	1	30.048	5299058	107213	50.556
	2	33.403	5182471	98645	49.444
	Total	an article familie and a second	10481529	205858	100.000

Enantiomeric Sample of 3ve

(S)-2-(6-methyl-2-(naphthalen-2-yl)-3-oxoindolin-2-yl)acrylaldehyde (3we)

Compound **3we** (15.0 mg, 46% yield) was obtained as a yellow solid following the *general procedure III* from **1w** (0.1 mmol, 27.1 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.89 (s, 1H), 7.79 (d, J = 8.0 Hz, 3H), 7.55-7.42 (m, 4H), 6.99 (s, 1H), 6.79 (s, 1H), 6.66 (d, J = 8.0 Hz, 1H), 6.45 (s, 1H), 6.19 (brs, 1H), 2.40 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.1, 194.5, 160.3, 149.9, 146.1, 137.4, 134.6, 133.2, 132.9, 128.5, 128.1, 127.5, 126.11, 126.08, 125.3, 124.5, 123.3, 121.0, 116.1, 111.8, 71.3, 22.6; **HRMS** Calcd. for C₂₂H₁₈NO₂⁺ [M+H]⁺: 328.1332, found: 328.1326; **M.p.**: 75-77 °C.

 $[\alpha]^{20}_{D}$ = -836.0 (c 0.05, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 57.515 min, t_{major} = 50.001 min.

Racemic Sample of 3we

mV

Peak Table

	???A 230r	ım			
	Peak#	Ret. Time	Area	Height	Area%
	1	51.274	44619768	357370	49.521
	2	56.297	45483131	313900	50.479
2	Total		90102899	671269	100.000

Enantiomeric Sample of 3we

Chromatogram

(S)-4-(5-bromo-3-oxo-2-(3-oxoprop-1-en-2-yl)indolin-2-yl)benzonitrile (3xe)

Compound **3xe** (26.1 mg, 71% yield) was obtained as a yellow solid following the *general procedure III* from **1x** (0.1 mmol, 30.9 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.69 (s, 1H), 7.59 (dd, J = 18.8, 8.8 Hz, 5H), 6.88 (t, J = 4.8 Hz, 2H), 6.47 (s, 1H), 6.17 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 195.3, 194.0, 158.2, 145.1, 141.8, 140.9, 137.9, 132.4, 128.0, 126.4, 119.5, 118.5, 113.7, 112.0, 111.7, 71.4; **M.p.**: 88-90 °C; **HRMS** Calcd. for C₁₈H₁₀N₂O₂Br⁻ [M-H]⁻: 364.9931, found: 364.9938.

 $[\alpha]^{20}_{D} = -652.5$ (c 0.04, CH₂Cl₂) for 78% ee; Enantiomeric excess was determined by HPLC with a Chiralcel IF-H column, Hexane/^{*i*}PrOH = 80/20, 0.5 mL/min, 230 nm, $t_{minor} = 34.686 \text{ min}, t_{major} = 28.998 \text{ min}.$

Racemic Sample of 3xe

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	29.334	15777285	221386	50.496
2	34.532	15467267	135228	49.504
Total		31244552	356614	100.000

Enantiomeric Sample of 3xe

Chromatogram

Peak Table

???A 230	nm			
Peak#	Ret. Time	Area	Height	Area%
1	28.998	29823111	412678	89.231
2	34.686	3599423	35718	10.769
Total		33422534	448396	100.000

(R)-2-(3-oxo-2-phenylindolin-2-yl)acrylaldehyde (3ae')

mV

mV

Procedure (IIIa): To a solution of compound **1a** (0.1 mmol, 1.0 equiv., 20.7 mg) and chiral phosphine **LB33** (0.01 mmol, 0.1 equiv., 6.3 mg) in ethyl acetate (2.0 mL) was added compound **2e** (0.15 mmol, 1.5 equiv., 10 μ L) under nitrogen atmosphere at room temperature. TLC monitor until the compound **1a** was consumed after three hours. The reaction mixture was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography (silica gel, PE/EtOAc: 15/1 to 10/1, R_f = 0.2-0.3) to afford the corresponding product **3ae'**.

Compound **3ae'** (24.7 mg, 94% yield) was obtained as a yellow solid following the *general procedure IIIa* from **1a** (0.1 mmol, 20.7 mg) and **2e** (0.15 mmol, 8.4 mg, 10 μ L) stirred for 6 hours.

¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.51-7.42 (m, 3H), 7.31-7.24 (m, 3H), 6.93-6.91 (m, 2H), 6.81 (t, J = 7.2 Hz, 1H), 6.40 (s, 1H), 6.17 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.9, 194.4, 159.8, 146.0, 137.9, 137.1, 136.9, 128.6, 127.9, 125.5, 125.4, 119.0, 118.2, 111.7, 71.0; **M.p.**: 155-157 °C. $[\alpha]^{20}{}_{D} = +904.0$ (c 0.05, CH₂Cl₂) for -95% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 32.868 min, t_{major} = 37.239 min.

Racemic Sample of 3ae'

Chromatogram

??? <mark>A 23</mark> 0r	nm	Peak Ta	ble	
Peak#	Ret. Time	Area	Height	Area%
1	32.219	17886753	359635	50.162
2	35.515	17770952	316523	49.838
Total		35657705	676158	100.000

Enantiomeric Sample of 3ae'

???A 2301	nm	Peak Ta	ble	
Peak#	Ret. Time	Area	Height	Area%
1	32.868	941969	21972	2.669
2	37.239	34354114	539141	97.331
Total	a sina konstanta anta. S	35296083	561113	100.000

4. Synthetic applications

a) Scale-up experiments for the synthesis of 3aa and 3ae

The scale up experiment was followed the general *procedure III*. To a solution of compound **1a** (1.0 mmol for **3aa**, 5.0 mmol for **3ae**, 1.0 equiv.) and chiral phosphine **LB32** (5 mol%) in ethyl acetate was added compound **2a** or **2e** (1.5 equiv.) under nitrogen atmosphere at room temperature. TLC monitor until the compound **1a** consumed after six hours. The reaction mixture was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography (silica gel, PE/EtOAc: 20/1 to 15/1, $R_f = 0.3$) to afford the corresponding product **3aa** (0.21 g, 76% yield, 90% ee) and **3ae** (0.971 g, 74% yield, 94% ee) as yellow solid.

b) Synthesis of N-Boc product 3ae

Procedure (IV): To a solution of **3ae** (1 mmol, 263 mg) and DMAP (3.3 mmol, 720 mg) in MeCN was added (Boc)₂O (2.2 mmol, 489 mg) under nitrogen, then the reaction mixture was stirred at room temperature for 20 hrs. After conversion, the solvent was removed in vacuum and extracted twice with EtOAc and water, the organic layers were dried over anhydrous Na_2SO_4 and purified by column chromatography (Petroleum ether/EtOAc: 30/1 to 20/1) to afford the product **4** in 75% yield with 94% ee.

tert-Butyl (S)-3-oxo-2-(3-oxoprop-1-en-2-yl)-2-phenylindoline-1-carboxylate (4) Compound 4 (272.9 mg, 75% yield) was obtained as yellow solid following the procedure IV from **3ae** (1 mmol, 263 mg), DMAP (3.3 mmol, 720 mg) and (Boc)₂O (2.2 mmol, 489 mg) stirred for 20 hrs. ¹H NMR (400 MHz, CDCl₃) δ 9.56 (s, 1H), 8.27 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 7.6 Hz, 2H), 7.36-7.30 (m, 3H), 7.13 (t, J = 7.6 Hz, 1H), 6.58 (d, J = 17.2 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 191.6, 152.3, 150.7, 149.1, 141.4, 136.6, 133.6, 128.3, 128.2, 127.3, 124.4, 123.4, 122.7, 117.1, 83.0, 74.1, 28.1; HRMS Calcd. for C₂₂H₂₁NO₄Na⁺[M+Na]⁺: 386.1368, found: 386.1372; M.p.: 49-51 °C. [α]²⁰_D = -103.0 (c 0.10, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by

 $[\alpha]^{20}{}_{D} = -103.0$ (c 0.10, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, $t_{minor} = 22.596 \text{ min}, t_{major} = 14.894 \text{ min}.$

Chromatogram

Racemic Sample of 4

Peak#	Ret. Time	Area	Height	Area%
1	14.779	99981535	3784934	49.518
2	21.776	101927515	2214040	50.482
Total		201909050	5998974	100.000

Enantiomeric Sample of 4

c) Preparation of compound 5

Procedure (V): Compound **3ae** was dissolved in ethanol, and then 5% Pd/CaCO₃ was added. The mixture was stirred overnight under a hydrogen balloon at room temperature. Then the mixture was filtered through a Celite pad and the solvent removed in vacuum, the residue obtained was purified by column chromatography (petroleum ether/EtOAc: 20/1 to 15/1) to afford the product **5** in 91% yield with 91% ee/94% ee and 43/57 dr.

Note: Compound 5 were inseparable diastereoisomers.

2-((*R*)-3-oxo-2-phenylindolin-2-yl)propanal (5)

Compound **5** (48.1 mg, 91% yield, diastereomers, 43:57 dr) were obtained as yellow solid following the *procedure V* from **3ae** (0.2 mmol, 52.6 mg) and 5% Pd/CaCO₃ (0.1 mmol, 41.3 mg) stirred for 24 hrs. ¹H NMR (400 MHz, CDCl₃, diastereomers) δ 9.61 (s, 1H), 9.48 (s, 1H), 7.60-7.57 (m, 3H), 7.53-7.51 (m, 3H), 7.49-7.45 (m, 2H), 7.36-7.29 (m, 5H), 7.25-7.22 (m, 1H), 6.98-6.93 (m, 2H), 6.84 (t, *J* = 7.6 Hz, 1H), 6.78 (t, *J*

= 7.6 Hz, 1H), 5.70 (brs, 1H), 5.39 (brs, 1H), 3.83 (q, J = 7.2 Hz, 1H), 3.59 (q, J = 7.2 Hz, 1H), 1.05 (s, 3H), 1.04 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃, diastereomers) δ 202.9, 201.1, 200.2, 200.0, 160.9, 160.0, 137.8, 137.68, 137.65, 136.7, 129.0, 128.8, 128.0, 127.9, 125.43, 125.35, 125.29, 125.25, 119.9, 119.8, 119.0, 112.1, 111.5, 72.6, 71.6, 53.8, 52.5, 9.1, 8.8; **HRMS** Calcd. for C₁₇H₁₆NO₂⁺ [M+H]⁺: 266.1176, found: 266.1183; **M.p.**: 167-169 °C.

 $[\alpha]^{20}_{D} = -364.0$ (c 0.05, CH₂Cl₂) for 91% and 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/PrOH = 95/5, 0.5 mL/min, 230 nm, $t_{minor} = 65.593$ min, $t_{major} = 57.335$ min and $t_{minor} = 104.012$ min, $t_{major} = 73.380$ min.

Racemic Sample of 5

Enantiomeric Sample of 5

Chromatogram

		I Cak Ia	luic	
???A 2301	nm		1.	
Peak#	Ret. Time	Area	Height	Area%
1	57.335	24756013	353621	40.710
2	65.593	1218707	14592	2.004
3	73.380	33815178	346068	55.608
4	104.012	1020382	8861	1.678
Total		60810281	723141	100.000

Dool Tabla

d) Luche reduction

Procedure (VI): A solution of NaBH₄ and CeCl₃ in anhydrous THF was cooled to 0 °C under nitrogen atmosphere, the solution of **3ae** in anhydrous THF was added dropwised while maintained temperature at 0 °C for full conversion. The mixture was then quenched with saturated NH₄Cl solution and extracted twice with EtOAc, the organic layers were combined and dried over anhydrous Na₂SO₄. The residue obtained was purified by column chromatography (Petroleum ether/EtOAc: 8/1) to afford the product **6** in 93% yield with 94% ee.

(S)-2-(3-hydroxyprop-1-en-2-yl)-2-phenylindolin-3-one (6)

Compound **6** (24.7 mg, 93% yield) were obtained as yellow solid following the *procedure VI* from **3ae** (0.1 mmol, 26.3 mg), NaBH₄ (0.11 mmol, 4.2 mg) and CeCl₃ (0.1 mmol, 24.6 mg) stirred for 18 hrs. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.48 (t, J = 8.0 Hz, 1H), 7.36-7.29 (m, 3H), 6.94 (d, J = 8.0 Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 5.80 (brs, 1H), 5.40 (d, J = 10.8 Hz, 2H), 4.21 (d, J = 12.8 Hz, 1H), 4.15 (d, J = 12.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 200.0,

160.0, 145.7, 138.4, 137.6, 128.7, 127.9, 126.5, 125.4, 119.8, 119.3, 116.7, 112.6, 75.1, 65.2; **HRMS** Calcd. for C₁₇H₁₆NO₂⁺[M+H]⁺: 266.1176, found: 266.1182; **M.p.**: 47-49 °C.

 $[\alpha]^{20}_{D}$ = -199.5 (c 0.21, CH₂Cl₂) for 94% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 80/20, 0.5 mL/min, 230 nm, t_{minor} = 14.368 min, t_{major} = 12.197 min.

Racemic Sample of 6

mV $500 - \frac{1}{10.0} + \frac{1}{12.5} + \frac{1}{15.0} + \frac{1}{17.5} + \frac{1}{17.5} + \frac{1}{10.0} + \frac{1}{12.5} + \frac{1}{15.0} + \frac{1}{17.5} + \frac{1}{10.0} + \frac{1}{1$

Chromatogram

Peak Table

???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	12.190	13515518	693656	50.720
2	14.243	13131542	547227	49.280
Total		26647060	1240883	100.000

Enantiomeric Sample of 6

		Peak Ta	ble	
???A 230r	nm			
Peak#	Ret. Time	Area	Height	Area%
1	12.197	18015067	929766	97.115
2	14.368	535253	27587	2.885
Total		18550320	957353	100.000
e) Tsuji-Wilkinson Decarbonylation

Procedure (VII): The compound **4a** (0.1 mmol, 1 equiv.) in dry toluene (2 mL) was vigorously purged with nitrogen for 30 min. In an inert atmosphere box, the reaction mixture was added Rh(PPh₃)₃Cl (0.1 mmol, 1 equiv.) and then heated at 120 °C for 20 hrs. The reaction mixture was cooled to room temperature and quenched with H₂O, Then the mixture was diluted with EtOAc, filtered through a Celite pad and the solvent was extracted twice with EtOAc, the organic layers were combined and dried over anhydrous Na₂SO₄. The residue obtained was purified by column chromatography (petroleum ether/EtOAc: 40/1 to 30/1) to afford the product **7** in 73% yield with 88% ee.

tert-Butyl (R)-3-oxo-2-phenyl-2-vinylindoline-1-carboxylate (7)

Compound 7 (24.6 mg, 73% yield) were obtained as yellow solid following the *procedure VII* from **4a** (0.1 mmol, 36.3 mg) and Rh(PPh₃)₃Cl (0.1 mmol, 93 mg) stirred for 20 hrs. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.72 (dd, *J* = 19.2, 8.0 Hz, 2H), 7.34-7.27 (m, 3H), 7.24 (d, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 6.54 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.45 (d, *J* = 10.4 Hz, 1H), 5.38 (d, *J* = 17.2 Hz, 1H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 153.3, 150.5, 138.4, 137.4, 133.3, 128.6, 127.8, 125.7, 125.0, 123.4, 121.5, 118.0, 116.8, 82.4, 76.2, 27.8; HRMS Calcd. for C₂₁H₂₂NO₃⁺[M+H]⁺: 336.1600, found: 336.1601; M.p.: 74-75 °C.

 $[\alpha]^{20}_{D} = -176.7$ (c 0.38, CH₂Cl₂) for 88% ee; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, Hexane/^{*i*}PrOH = 95/5, 0.5 mL/min, 230 nm, $t_{minor} = 10.745 \text{ min}, t_{major} = 9.639 \text{ min}.$

Racemic Sample of 7

Peak Table

???A 2301	nm			
Peak#	Ret. Time	Area	Height	Area%
1	9.711	11639295	896520	50.139
2	10.777	11574560	792510	49.861
Total		23213855	1689029	100.000

Enantiomeric Sample of 7

mV

Peak Table

???A 2301	nm	1.1199 (1.1199) (1.1199)		
Peak#	Ret. Time	Area	Height	Area%
1	9.639	14782317	1262981	94.016
2	10.745	940957	82847	5.984
Total		15723274	1345827	100.000

f) Pinnick oxidation for the preparation of compound 8

Procedure (VIII): The compound **4** (0.1 mmol, 1 equiv.), NaH_2PO_4 (0.6 mmol, 6 equiv.) was dissolved in the mixture solution of THF, *t*-BuOH and H₂O (1:2:1 mL), 2-Me-2-butene (1 mmol, 10 equiv.) was added dropwised by a syringe at 0 °C, then NaClO (0.5 mmol, 5 equiv.) was added in above solution while mataining temperature at 0 °C for full conversion. After conversion, the reaction solution was quenched with Na₂SO₃ (0.8 mmol, 8 equiv.), then 0.5 M HCl was added for acidification. The obtained mixture was extracted twice with EtOAc and water, the organic layers obtained were dried over anhydrous Na₂SO₄ and purified by column chromatography (DCM/MeOH: 10/1) to afford the product **8** in 95% yield.

(S)-2-(1-(tert-butoxycarbonyl)-3-oxo-2-phenylindolin-2-yl)acrylic acid (8)

Compound **8** (36 mg, 95% yield) were obtained as yellow solid following the *procedure VIII* from **4a** (0.1 mmol, 36.3 mg), NaH₂PO₄ (0.6 mmol, 93.6 mg), 2-Me-2-butene (1 mmol, 0.11 mL) and NaClO₂ (0.5 mmol, 45.2 mg) stirred for 5 hrs. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.2 Hz, 1H), 7.55-7.50 (m, 2H), 7.44 (d, *J* = 6.8 Hz, 2H), 7.32-7.28 (m, 3H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.54 (s, 1H), 5.71 (s, 2H), 1.38 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 197.5, 170.2, 152.4, 151.3, 142.1, 136.1, 134.5, 132.0, 128.0, 127.9, 124.3, 123.1, 117.1, 82.9, 76.3, 28.0; HRMS Calcd. for C₂₂H₂₁NO₅Na⁺ [M+Na]⁺: 402.1317, found: 402.1321; M.p.: 170-172 °C; $[\alpha]^{20}_{D} = -25.2$ (c 0.70, CH₂Cl₂).

g) Preparation of compound 9

Procedure (IX): A solution of **3ae** (0.1 mmol, 1 equiv.) in MeOH was cooled to 0 °C under nitrogen atmosphere, 30% H₂O₂ (0.2 mmol, 2 equiv.) was added dropwised slowly while keeping temperature at 0 °C, then 24% NaOH (0.03 mmol, 0.3 equiv.) was added in above solution while keeping temperature at 0 °C for full conversion. The mixture was then quenched with saturated Na₂S₂O₃ solution and extracted twice with

EtOAc, the organic layers were combined and dried over anhydrous Na_2SO_4 . The residue obtained was purified by column chromatography (Petroleum ether/EtOAc: 8/1) to afford the product **9** in 44% yield with 93% ee.

2-((S)-3-oxo-2-phenylindolin-2-yl)oxirane-2-carbaldehyde (9)

Compound **9** (12.3 mg, 44% yield) were obtained as yellow solid following the *procedure IX* from **3ae** (0.1 mmol, 26.3 mg), 30% H_2O_2 (0.2 mmol, 22.7 mg, 15 µL) and 24% NaOH (0.03 mmol, 5 mg, 5 µL) stirred for 45 mins.

¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.50 (dd, J = 18.8, 7.6 Hz, 4H), 7.37-7.29 (m, 3H), 6.94 (d, J = 8.4 Hz, 1H), 6.83 (t, J = 7.6 Hz, 1H), 5.73 (s, 1H), 4.22 (d, J = 4.4 Hz, 1H), 3.35 (d, J = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 196.6, 160.5, 138.0, 136.2, 129.0, 128.4, 125.53, 125.51, 119.5, 118.3, 111.6, 68.8, 61.6, 48.5; HRMS Calcd. for C₁₇H₁₄NO₃⁺[M+H]⁺: 280.0968, found: 280.0975; **M.p.**: 166-168 °C; $[\alpha]^{20}_{D} = -307.8$ (c 0.20, CH₂Cl₂). for 93% ee; Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column, Hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, 230 nm, t_{minor} = 22.317 min, t_{major} = 24.102 min.

Racemic Sample of 9

mV

Chromatogram

D I		-	. 1	
Dag	7	0	h	0
E Ca				
			<u> </u>	••

???A 230r	nm			26
Peak#	Ret. Time	Area	Height	Area%
1	22.222	4429509	162145	50.812
2	24.052	4287870	142877	49.188
Total		8717378	305022	100.000

Enantiomeric Sample of 9

Chromatogram

mV

5. References

- [1] (a) K.-Q. Ling, Synth. Commun., 1995, 25, 3831; (b) H. Chung, J. Kim, G.-A. González-Montiel, P. Ha-Yeon Cheong, H.-G. Lee, Org. Lett., 2021, 23, 1096; (c) X. Yuan, X.-D. Wu, F. Peng, H.-J. Yang, C.-J. Zhu, H. Fu, Chem. Commun., 2020, 56, 12648. (d) B. Yin, P.-P. Huang, Y.-B. Lu, L.-X. Liu, RSC Adv., 2017, 7, 606.
- [2] T. Cablewski, A.-F. Faux, C.-R. Strauss, J. Org. Chem., 1994, 59, 3408.
- [3] M. Ito, A. Osaku, C. Kobayashi, A. Shibashi, T. Ikariya, Organometallics, 2009, 28, 390.
- [4] G. Bian, W. Shan, W. Su, Journal of Chemical Research, 2005, 585.
- [5] (a) J-J. Gong, K. Yuan, X.-Y. Wu, *Tetrahedron: Asymmetry*, 2009, 20, 2117; (b) Z. Dong, C. Yan, Y.-Z. Gao, C.-N. Dong, G.-F. Qiu, H.-B. Zhou, *Adv. Synth. Catal.*, 2015, 357, 2132; (c) S.-Q. Fang, J.-P. Tan, J.-K. Pan, H.-K. Zhang, Y. Chen, X.-Y. Ren, T.-L. Wang, *Angew. Chem. Int. Ed.*, 2021, 60, 14921; (d) X.-Y. Han, Y.-Q. Wang, F.-R. Zhong, Y. Lu, *Org. Biomol. Chem.*, 2011, 9, 6734. (e) Y. Lu, N. He, X. Miao, D. Wang, *Org. Chem. Front.*, 2022, 9, 4840.

6. X-ray data

Table 1. Crystal data and structure refinement for WD-LY687-ORTH_a-finalcif.

Identification code	WD-LY687-ORTH_a	
Empirical formula	C18 H15 N O2	
Formula weight	277.31	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 8.8982(5) Å	α=90°.
	b = 12.1235(7) Å	β= 90°.
	c = 13.0719(7) Å	$\gamma = 90^{\circ}$.
Volume	1410.16(14) Å ³	
Z	4	
Density (calculated)	1.306 Mg/m ³	
Absorption coefficient	0.683 mm ⁻¹	
F(000)	584	
Crystal size	0.15 x 0.12 x 0.1 mm ³	
Theta range for data collection	6.016 to 67.487°.	
Index ranges	-10<=h<=10, -14<=k<=14, -15<=l<=15	
Reflections collected	13582	
Independent reflections	2449 [R(int) = 0.0572]	
Completeness to theta = 67.487°	97.3 %	
Absorption correction	Semi-empirical from equivalents	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2449 / 0 / 191	
Goodness-of-fit on F ²	1.646	

Final R indices [I>2sigma(I)]	R1 = 0.0541, wR2 = 0.1838
R indices (all data)	R1 = 0.0555, wR2 = 0.1889
Absolute structure parameter	0.05(11)
Extinction coefficient	n/a
Largest diff. peak and hole	0.368 and -0.371 e.Å ⁻³

Table 1. Crystal data and structure refinement for LY929_a-finalcif.

Identification code	LY929_a		
Empirical formula	C18 H15 N O3		
Formula weight	293.31		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 10.4311(17) Å	<i>α</i> = 90°.	
	b = 11.3052(17) Å	β= 90°.	
	c = 12.2205(18) Å	$\gamma = 90^{\circ}.$	
Volume	1441.1(4) Å ³		
Z	4		
Density (calculated)	1.352 Mg/m ³		
Absorption coefficient	0.753 mm ⁻¹		
F(000)	616		
Crystal size	$0.10 \ x \ 0.09 \ x \ 0.07 \ mm^3$		
Theta range for data collection	5.330 to 68.068°.		
Index ranges	-12<=h<=12, -13<=k<=1	-12<=h<=12, -13<=k<=13, -14<=l<=11	
Reflections collected	12864		
Independent reflections	2506 [R(int) = 0.0904]		
Completeness to theta = 67.679°	97.1 %		

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7528 and 0.5246
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2506 / 0 / 200
Goodness-of-fit on F ²	1.033
Final R indices [I>2sigma(I)]	R1 = 0.0504, wR2 = 0.1031
R indices (all data)	R1 = 0.0753, wR2 = 0.1184
Absolute structure parameter	0.0(2)
Extinction coefficient	n/a
Largest diff. peak and hole	0.265 and -0.233 e.Å ⁻³

7. NMR Spectra

10.0 9.5 8.5 8.0 7.5 7.0 6.5 0.5 0.0 9.0 5.5 5.0 f1 (ppm) 1.5 1.0 6.0 4.0 2.5 2.0

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 11 (400 MHz, CDCl_3)

¹H and ¹³C NMR spectra of compound **10** (400 MHz, CDCl₃)

¹H, ¹³C and ³¹P NMR spectra of compound LB12 (400 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H, ¹³C and ³¹P NMR spectra of compound LB16 (400 MHz, CDCl₃)

f1 (ppm)

¹H, ¹³C, ³¹P and ¹⁹F NMR spectra of compound LB21 (400 MHz, CDCl₃)

¹H, ¹³C, ³¹P NMR spectra of compound LB22 (400 MHz, CDCl₃)

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H, ¹³C, ³¹P NMR spectra of compound LB23 (400 MHz, CDCl₃)

¹H, ¹³C, ³¹P NMR spectra of compound LB24 (400 MHz, CDCl₃)

f1 (ppm) 190 180 170 160 150 140 130

 $^1\text{H},\,^{13}\text{C},\,^{31}\text{P}$ and ^{19}F NMR spectra of compound LB26 (400 MHz, CDCl_3)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H, ¹³C, ³¹P and ¹⁹F NMR spectra of compound LB27 (400 MHz, CDCl₃)

¹H, ¹³C, ³¹P and ¹⁹F NMR spectra of compound LB28 (400 MHz, CDCl₃)

¹H, ¹³C, ³¹P and ¹⁹F NMR spectra of compound LB29 (400 MHz, CDCl₃)

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

¹H, ¹³C and ³¹P NMR spectra of compound LB30 (400 MHz, CDCl₃)

 $^1\text{H},\,^{13}\text{C}$ and ^{31}P NMR spectra of compound LB31 (400 MHz, CDCl_3)

¹H, ¹³C, ³¹P and ¹⁹F NMR spectra of compound LB32 (400 MHz, CDCl₃)

LB33

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm)

 $^1\text{H},\,^{13}\text{C},\,^{31}\text{P}$ and ^{19}F NMR spectra of compound LB33 (400 MHz, CDCl_3)

¹H and ¹³C NMR spectra of compound **3aa** (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound **3ab** (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound **3ac** (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound **3ae** (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound **3be** (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

 $^{1}_{100}$ $^{1}_{40}$ $^{1}_{20}$ $^{1}_{20}$ $^{1}_{-20}$ $^{1}_{-40}$ $^{1}_{-60}$ $^{1}_{-120}$ $^{1}_{-120}$ $^{1}_{-140}$ $^{1}_{-160}$ $^{1}_{-180}$ $^{1}_{-220}$ $^{1}_{-240}$ $^{1}_{-260$

-197.056 -194.303 -194.303 -159.732 -159.732 -159.7658 -138.2567 -138.2567 -138.2567 -138.2567 -125.625

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -200 -220 -240 -260 -280 -300 f1 (ppm)

¹H, ¹³C and ¹⁹F NMR spectra of compound **3ie** (400 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-196.606-194.179-159.721-159.721145.494133.4363133.7364133.7364132.3400132.5363112.5538111.727111.727111.727111.727

-196.849-194.058-159.537-159.537-137.168-137.168-137.168-137.168-137.168-137.168-137.000-68.965-68.965

— 197.902 — 194.384 145.939 188.001 184.31391 184.31391 184.31391 184.31391 184.3130 184.3130 182.918 182.918 182.918 182.918 182.580 112.5580 112.5580 112.5581 112.318 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 111.805 - 159.779

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3ne** (400 MHz, CDCl_3)

9.5 8.5 7.5 7.0 6.0 10.0 9.0 8.0 6.5 5.5 5.0 f1 (ppm) 0.0 4.0 3.5 2.0 1.0 0.5 4.5 3.0 2.5 1.5

-197.942-194.482-194.482-159.610-159.610147.422147.422137.965137.965137.965137.965137.965137.965-130.829-101.204-101.204-101.204-101.204-101.204

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3oe** (400 MHz, CDCl_3)

- 196.576 - 194.203 - 158.242 - 158.242 145.700 146.381 146.381 138.576 - 138.576 - 138.576 - 138.576 - 138.576 - 138.576 - 138.576 - 158.531 - 10.949 - 110.949 - 110.949 - 110.949 - 110.949 - 110.949 - 110.949 - 110.949 - 110.949 - 110.549

¹H and ¹³C NMR spectra of compound **3qe** (400 MHz, CDCl₃)

~ 195.942 ~ 194.302 $\begin{array}{c} -145.820 \\ 137.240 \\ 137.249 \\ 136.598 \\ 128.059 \\ 127.989 \\ 127.989 \\ 127.989 \\ 127.989 \\ 127.989 \\ 127.909 \\ 107.772 \\ 107.772 \\ 291.169 \\ < 97.909 \end{array}$ ~ 171.147 ~ 168.594 < 161.239< 161.09677.318 77.000 76.682 71.625

 $^1\mathrm{H}$, $^{13}\mathrm{C}$ and $^{19}\mathrm{F}$ NMR spectra of compound 3se (400 MHz, CDCl_3)

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound **3te** (400 MHz, CDCl_3)

¹H and ¹³C NMR spectra of compound **3ue** (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound **3we** (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound **3xe** (400 MHz, CDCl₃)

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 4 (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound **5** (400 MHz, CDCl₃)

¹H and ¹³C NMR spectra of compound 6 (400 MHz, CDCl₃)

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7 (400 MHz, CDCl_3)

8. Tertiary amine catalyzed the reaction

To a solution of compound **1a** (0.1 mmol, 1.0 equiv.) and tertiary amine catalyst β -ICD (0.01 mmol, 0.1 equiv.) in ethyl acetate (2.0 mL) was added compound **2a** (0.15 mmol, 1.5 equiv.) under nitrogen atmosphere at room temperature. TLC monitor until the compound **1a** consumed after six hours. The reaction mixture was then concentrated on a rotary evaporator under reduce pressure and the residue was subjected to purification by column chromatography (silica gel, PE/EtOAc: 15/1 to 10/1, R_f = 0.2-0.3) to afford the corresponding product **3aa** in 71% yield with 54% ee.