Electronic Supplementary Information for

Photocatalytic Traceless C-N Bond Formation/ Cleavage Strategy Enabling (α-Chiral) Alkyl Aldehydes as Deoxygenative (Chiral) Alkyl Radical Equivalents

Hanyang Bao, ${ }^{\text {sac, }}$ Limeng Zheng, ${ }^{\text {sa,c }}$ Qian Liu, ${ }^{\text {a }}$ Mingfeng Han, ${ }^{a}{ }^{\text {Y }}$ Ya Li, ${ }^{a}$ Miao Bao, ${ }^{\text {c }}$ Yuanqiang Li, ${ }^{\text {c }}$ Pucha Yan c and Yunkui Liu ${ }^{*}{ }^{\text {a,b }}$
${ }^{a}$ State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China

Email: ykuiliu@zjut.edu.cn
${ }^{b}$ Key Laboratory of Organosilicon Chemistry and Material, Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
${ }^{c}$ Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou 310018, P. R. China

Table of Contents

1. General Information S3
2. Preparation of Substrates and Photosensitizers S4
3. General procedures for deoxygenative alkylation/cyclization of 2-biphenylisonitriles with (α-chiral) alkyl aldehydes S5
3.1. Optimization of reaction conditions for achiral alkyl aldehydes S5
3.2. Optimization of reaction conditions for acyclic α-chiral amino aldehyde S7
3.3. Experimental details and characterization of products 4 S7
3.4. 3 mmol -scale synthesis of $\mathbf{4 a}$ S34
4. Mechanistic Studies S35
4.1. Radical scavenging experiment S35
4.2. Formation and detection of intermediate $\mathbf{6}$ when the reaction time was shorten to 4 h S35
4.3. Probing experiment on possible reaction intermediate S35
4.4. Detection of byproduct $\mathbf{4 a}^{\prime}$ S37
4.5. KIE experiment S37
4.6 Deuterium-labeling experiments S38
5. References S39
6. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S41

1. General Information

Unless otherwise noted, all reactions were carried out in flame-dried reaction vessels with Teflon screw caps under nitrogen. Solvents were purified and dried according to standard methods prior to use. Unless otherwise stated, all reagents were purchased from commercial suppliers and used as received. Flash column chromatography was performed on silica gel (200-300 mesh) with the indicated solvent mixtures. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light, KMnO_{4} indicator or phosphomolybdic acid indicator.

Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a spectrometer at $25{ }^{\circ} \mathrm{C}$ in CDCl_{3} at 400,500 or 600 MHz , with TMS as internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a spectrometer at $25^{\circ} \mathrm{C}$ in CDCl_{3} at 101,125 or 150 MHz . Chemical shifts (δ) are expressed in ppm and coupling constants J are given in Hz . The following abbreviations were used to identify the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{dq}=$ doublet of quartets, $\mathrm{br}=$ broad and all combinations thereof can be explained by their integral parts. High resolution mass spectra (HR-MS) were obtained on a TOF-MS instrument with EI or ESI source. Optical rotations were determined using a Rudolph Autopol IV polarimeter. HPLC analyses were performed using Agilent 1200 chromatography or Agilent 1260 chromatography.

2. Preparation of Substrates and Photosensitizers.

2-isocyanobiphenyls $\mathbf{1}$ were synthesized according to the previously reported procedure. ${ }^{1}$ All of these compounds are known compounds and their NMR spectra are consistent with the documented data $\left(\mathbf{1 a}^{2}, \mathbf{1 b}^{1}, \mathbf{1} \mathrm{c}^{2}, \mathbf{1 d}^{2}, \mathbf{1 e}^{2}, \mathbf{1 f}^{2}, \mathbf{1 g}^{2}, \mathbf{1 h}^{3}, \mathbf{1 i}^{4}, \mathbf{1 j}^{5}, \mathbf{1} \mathbf{k}^{6}, \mathbf{1 2}^{2}, \mathbf{1} \mathrm{~m}^{2}, \mathbf{1 n}^{7}, \mathbf{1 o}^{2}\right)$.

1a

1e

$1 i$

1b

$1 f$

1j

1c

1g

1k

1d

1h

1m

Aldehydes $\mathbf{2 a - 2} \mathbf{g}, \mathbf{2 j}$ are commercial available.
$\mathbf{2 h}, \mathbf{2 i}, \mathbf{2 k}$ was prepared via reduction of corresponding Weinreb amide according to the literature ${ }^{8}$ and their analytical data are consistent with the documented data $\left(\mathbf{2 h}{ }^{8}, \mathbf{2 i}^{9}, \mathbf{2} \mathbf{k}^{10}\right)$.
N-Boc-L-prolinal (21), N-Boc-L-valinal (2m), N-Boc-L-alaninal (2n), N-Boc-L-phenylalaninal (20), tert-butyl (S)-1-formyl-3-methylbutylcarbamate (2p), (S)-tert-butyl 3-formylpiperidine-1carboxylate (2q) are commercial available.

2a

2b

2c

2d

2e

$2 f$

2j

20 (98\% ee (S))

4CzIPN was prepared according to the literature and its analytical data are consistent with the documented data. ${ }^{11}$

3. General procedures for deoxygenative alkylation/cyclization of 2-

biphenylisonitriles with (α-chiral) alkyl aldehydes

3.1 Optimization of reaction conditions for achiral alkyl aldehydes ${ }^{[2]}$

4	$\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(7.5)$	diethylamine (3a)	1/4.5/4.5	1,4-dioxane	23/12 (5a)
5	$f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(7.5)$	diethylamine (3a)	1/4.5/4.5	1,4-dioxane	20/trace (5a)
6	PS4 (7.5)	diethylamine (3a)	1/4.5/4.5	1,4-dioxane	$0 / 0$ (5a)
7	PS5 (7.5)	diethylamine (3a)	1/4.5/4.5	1,4-dioxane	53/16 (5a)
8	Rose begal (7.5)	diethylamine (3a)	1/4.5/4.5	1,4-dioxane	$0 / 0$ (5a)
9	4CzIPN (7.5)	diethylamine (3a)	1/4.5/4.5	1,4-dioxane	75/trace (5a)
10	4CzIPN (5)	diethylamine (3a)	1/4.5/4.5	1,4-dioxane	75/trace (5a)
11	4CZIPN (2.5)	diethylamine (3a)	1/4.5/4.5	1,4-dioxane	61/trace (5a)
12	4CzIPN (5)	dipropylamine (3b)	1/4.5/4.5	1,4-dioxane	82/trace (5b)
13	4CzIPN (5)	pyrrolidine (3c)	1/4.5/4.5	1,4-dioxane	48/trace (5c)
14	4CzIPN (5)	piperidine (3d)	1/4.5/4.5	1,4-dioxane	81/trace (5d)
15	4CzIPN (5)	methyl 2piperidinecarboxylate (3e)	1/4.5/4.5	1,4-dioxane	81/trace (5e)
16	4CzIPN (5)	hexamethyleneimine (3f)	1/4.5/4.5	1,4-dioxane	59/trace (5f)
20	4CzIPN (5)	dipropylamine (3b)	1/3/3	1,4-dioxane	72/trace (5a)
21	4CzIPN (5)	dipropylamine (3b)	1/1.5/1.5	1,4-dioxane	44/trace (5a)
22	4 CzIPN (5)	dipropylamine (3b)	1/4.5/4.5	THF	70/trace (5a)
23	4CzIPN (5)	dipropylamine (3b)	1/4.5/4.5	EA	74/trace (5a)
$24{ }^{[\mathrm{c}]}$	4CzIPN (5)	dipropylamine (3b)	1/4.5/4.5	1,4-dioxane	$0 / 0$ (5b)
24	--	dipropylamine (3b)	1/4.5/4.5	1,4-dioxane	$0 / 0$ (5b)
25	4CzIPN (5)	--	1/4.5/--	1,4-dioxane	0/0 (5b)
$26^{[d]}$	4 CzIPN (5)	dipropylamine (3b)	1/4.5/4.5	1,4-dioxane	61/ trace (5b)

[a] Reaction condition: 1a (0.2 mmol), $\boldsymbol{P S}$ (x mol \%), Hantzsch ester (0.24 mmol), propionaldehyde $\mathbf{2 a}$ (0.9 mmol), amine $3(0.9 \mathrm{mmol})$ in solvent $(5.0 \mathrm{~mL})$, irradiated with 15 W blue LED at $25^{\circ} \mathrm{C}$ under nitrogen atmosphere for 14 h unless otherwise noted. [b] Isolated yield. [c] The reaction was carried out in the dark condition. [d] Hantzsch ester (0.5 equiv. based on $\mathbf{1 a}$) was used.

PS5

4CzIPN

3.2 Optimization of reaction conditions for acyclic α-chiral amino aldehyde. ${ }^{[a]}$

Entr				
	Amine (3)	Temperature (${ }^{\circ} \mathrm{C}$)	Yield (\%) ${ }^{\text {b }}$	$e e(\%)^{\text {[c] }}$
1	pyrrolidine (3c)	35	30	12
2	piperidine (3d)	35	72	46
3	methyl piperidine-2carboxylate (3e)	35	71	72
4	hexamethyleneimine ($\mathbf{3 f}$)	35	63	<10
5	methyl L-prolinate ($\mathbf{3 g}$)	35	85	74
6	dicyclohexylamine (3h)	35	63	<10
7	dibenzylamine (3i)	35	27	29
8	methyl L-prolinate ($\mathbf{3 g}$)	25	83	90
9	methyl L-prolinate (3g)	15	83	96
10	--	15	0	--
$11{ }^{[d]}$	methyl L-prolinate ($\mathbf{3 g}$)	15	73	96

[a] Reaction condition: 1a (0.2 mmol), 4CzIPN ($10 \mathrm{mmol} \%$), amine 3 (0.9 mmol), tert-butyl (S)-(3-methyl-1-oxobutan-2-yl)carbamate $\mathbf{2 m}(0.9 \mathrm{mmol})$, Hantzsch ester $(0.24 \mathrm{mmol})$ in 1, 4-dioxane (5.0 mL), irradiated with 15 W blue LED under nitrogen atmosphere for 14 h unless otherwise noted. [b] Isolated yield. [c] The $e e$ value was determined by HPLC analysis. [d] Without Hantzsch ester.

3.3 Experimental details and characterization of products 4

General procedure for the synthesis of 6-alkyl phenanthridine derivatives 4.

To a 25 mL flame-dried Schlenk tube was added $\mathbf{1}(0.3 \mathrm{mmol}), 4 \mathrm{CzIPN}(0.015 \mathrm{mmol}$ for achiral alkyl aldehydes or 0.03 mmol for chiral alkyl aldehydes) and Hantzsch ester ($91.2 \mathrm{mg}, 0.36 \mathrm{mmol}$). The tube was evacuated and refilled with N_{2} for three times. A solution of aldehyde $\mathbf{2}(1.35 \mathrm{mmol})$, amine 3 (1.35 mmol) in 1,4-dioxane (7.5 mL) was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 15 W blue LED and stirred at $25^{\circ} \mathrm{C}$ (for $\mathbf{4 z d} \mathbf{- 4 z g}$, at $\left.15^{\circ} \mathrm{C}\right) 14 \mathrm{~h}$. Upon completion, the reaction mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel (200-300 mesh), eluting with the indicated
mixture of ethyl acetate (EA)/petroleum ether (PE) or DCM to give pure 6-alkyl phenanthridine 4.
Reaction Setup:

15 W blue LED strips come with an adhesive back, so they may be easily adhered to the inside of a meshy cask. The Schlenk tube was placed in the center. Two fans were used to control the reaction temperature at room temperature. Meanwhile a thermometer was equipped to monitor the reaction temperature.

Characterization of products 4

6-propylphenanthridine (4a)

4a was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}$ $=20 / 1)$ as a colorless liquid $(55.8 \mathrm{mg}, 84 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{M}, \mathrm{CDCl}_{3}\right): \delta 8.67$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (dd, $J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{ddd}, J=8.3,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dddd}, J=9.2$, $8.2,7.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{ddd}, J=8.2,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.31(\mathrm{~m}, 2 \mathrm{H})$, $1.99(\mathrm{dq}, J=15.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 162.3,143.7$, $132.9,130.2,129.6,128.6,127.2,126.34,126.25,125.3,123.6,122.5,121.9,38.3,22.9,14.4$. Its analytical data are consistent with the documented data. ${ }^{12}$

2-methyl-6-propylphenanthridine (4b)

4b was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}=20 / 1)$ as a colorless liquid ($50.8 \mathrm{mg}, 72 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600\right.$ MHz): $\delta 8.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{dq}, J=14.9,7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 161.3,142.1,136.0,132.7,130.2,130.0$,
129.3, 127.0, 126.3, 125.3, 123.5, 122.4, 121.6, 38.3, 23.0, 21.9, 14.4. HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calcd 236.1434, found 236.1486 .

3-methyl-6-propylphenanthridine (4c):

4c was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}=20 / 1)$ as a colorless liquid $(45.0 \mathrm{mg}, 64 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta 8.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H})$, $1.15(\mathrm{t}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 162.2,143.8,138.6,133.0,130.1,129.2,127.9$, 126.7, 126.3, 125.0, 122.2, 121.7, 121.3, 38.3, 22.9, 21.5, 14.4. HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 236.1434, found 236.1495.

3-chloro-6-propylphenanthridine (4d)

4d was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}=20 / 1)$ as a colorless liquid ($48.3 \mathrm{mg}, 63 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600\right.$ MHz): $\delta 8.57$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.41-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.14$ (t, $J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): ~ \delta 163.6,144.5,134.1,132.5,130.6,128.9,127.5,126.8,126.4$, 125.2, 123.3, 122.4, 122.1, 38.2, 22.6, 14.4. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 256.0888, found 256.0916 .

8-methoxy-6-propylphenanthridine (4e)

$\mathbf{4 e}$ was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}$ $=20 / 1)$ as a white solid ($53.5 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 8.57$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=14.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.02 (s, 3H), 3.47-3.20 (m, 2H), 2.29-1.92 (m, 2H), 1.15 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta 161.3,158.6,142.9,129.6,127.6,127.3,126.6,126.3,124.2,123.7$, $121.4,120.3,107.0,55.5,38.4,22.5,14.5$. Its analytical data are consistent with the documented data. ${ }^{13}$ 6-propyl-8-(trifluoromethyl)phenanthridine (4f)

4f was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}$ $=20 / 1$) as yellow liquid ($43.4 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 8.75$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 161.9,144.5,135.2,129.9,129.8,129.0(\mathrm{q}, J=32.8 \mathrm{~Hz}), 126.9,126.1(\mathrm{q}, J=$
$3.0 \mathrm{~Hz}), 124.7,124.1(\mathrm{q}, ~ J=270.0 \mathrm{~Hz}), 123.7(\mathrm{q}, J=4.2 \mathrm{~Hz}), 123.6,122.7,122.3,38.0,22.6,14.3$. HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 290.1151, found 290.1218.

8-fluoro-6-propylphenanthridine (4g)

$\mathbf{4 g}$ was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}$ $=20 / 1)$ as colorless liquid ($41.6 \mathrm{mg}, 58 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $8.64(\mathrm{dd}, J=9.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.13(\mathrm{~m}, 1 \mathrm{H})$, 7.88-7.86 (m, 1H), 7.73-7.70 (m, 1H), 7.65-7.56 (m, 3H), 3.32-3.28 (m, 2H), 2.01-1.94 (m, 2H), $1.14(\mathrm{t}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 161.4$ (d, $J=246.6 \mathrm{~Hz}), 161.3(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 143.4,129.7,129.6,128.5,126.7,126.6,125.0(\mathrm{~d}, J=8.7 \mathrm{~Hz})$, $123.2,121.7,119.4(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 110.9(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 38.3,22.6,14.4$. HRMS (ESI) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FN}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calcd 240.1183, found 240.1252.

6-butylphenanthridine (4h)

4h was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}=20 / 1)$ as colorless liquid $(56.5 \mathrm{mg}, 80 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 8.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{q}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.63$ (t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.87$ (m, 2H), 1.66$1.53(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 162.5,143.8,133.0,130.3$, $129.5,128.6,127.2,126.4,126.3,125.3,123.7,122.5,121.9,36.2,31.8,23.1,14.0$. Its analytical data are consistent with the documented data. ${ }^{14}$

6-pentylphenanthridine (4i)

$4 i$ was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}=20 / 1)$ as colorless liquid ($57.6 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600\right.$ MHz): $\delta 8.63$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.25(\mathrm{~m}$, $2 \mathrm{H}), 1.96(\mathrm{dt}, J=15.7,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{dt}, J=15.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 162.5,143.8,133.0,130.2,129.6,128.6,127.2,126.3,126.2$, $125.3,123.7,122.5,121.9,36.5,32.2,29.4,22.6,14.1$. Its analytical data are consistent with the documented data. ${ }^{15}$
6-hexylphenanthridine (4j)

$\mathbf{4 j}$ was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}=20 / 1)$ as colorless liquid $(67.2 \mathrm{mg}, 85 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta 8.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.68(\mathrm{~m}$,
$2 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.31$ $(\mathrm{m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 162.5,143.8,133.0,130.2,129.6$, 128.6, 127.2, 126.4, 126.2, 125.3, 123.7, 122.5, 121.9, 36.5, 31.8, 29.7, 29.6, 22.7, 14.1. Its analytical data are consistent with the documented data. ${ }^{16}$

6-(5-chloropentyl)phenanthridine (4 k)

$\mathbf{4 k}$ was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}=20 / 1)$ as Colorless liquid $(67.3 \mathrm{mg}, 79 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta 8.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.67(\mathrm{~m}$, $2 \mathrm{H}), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.33(\mathrm{~m}, 2 \mathrm{H})$, 2.05-1.95 (m, 2H), 1.95-1.86(m, 2H), 1.75-1.64 (m, 2H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,150 \mathrm{MHz}\right): ~ \delta 161.8,143.7$, $133.0,130.3,129.6,128.6,127.3,126.4,126.1,125.2,123.7,122.5,121.9,45.0,36.0,32.6,28.5,27.2$. HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 284.1201, found 284.1240.

6-(3-phenylpropyl)phenanthridine (41)

41 was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}=20 / 1)$ as colorless liquid ($62.5 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz): $\delta 8.65$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.56$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (t, $J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.89-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.38-$ $7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.38-2.26(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 161.8,143.7,142.1,132.9,130.3,129.6$, 128.6, 128.4, 127.2, 126.3, 126.2, 125.9, 125.2, 123.7, 122.5, 121.9, 36.0, 35.6, 30.8. Its analytical data are consistent with the documented data. ${ }^{17}$

6-(3,7-dimethyloct-6-en-1-yl)phenanthridine (4m)

4 m
$\mathbf{4 m}$ was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=$ 100/1 to $\mathrm{PE} / \mathrm{EA}=20 / 1$) as colorless liquid ($53.3 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85$ (ddd, $J=8.2,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{qd}, J=6.9,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63$ (ddd, $J=8.2,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.53-$ $3.25(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.22(\mathrm{~m}$, $1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 162.8,143.8,133.0,131.2,130.3,129.6$, $128.6,127.2,126.33,126.25,125.2,124.9,123.7,122.5,121.9,37.1,36.7,34.3,33.1,25.7,25.6,19.6$, 17.7. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 318.2216, found 318.2259.
tert-butyl (1-(phenanthridin-6-yl)pentan-2-yl)carbamate (4n)

4n was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as white solid ($92.8 \mathrm{mg}, 85 \%$). Mp: $125-127^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.64(\mathrm{~d}, J=8,5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.12(\mathrm{~d}, 1 \mathrm{H}), 7.85-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 2 \mathrm{H})$, $7.65-7.62(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63-3.59 (m, 1H), 3.51-3.46 (m, 1H), 1.67-1.61 (m, 2H), 1.54-1.47 (s, $2 \mathrm{H}), 1.34(\mathrm{~m}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.2,155.7,143.4,132.8$, $130.4,129.7,128.5,127.5,126.5,126.3,125.7,123.7,122.4,121.9,78.8,50.4,40.9,37.0,28.3,19.5$, 14.0. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 365.2224, found 365.2227.

tert-butyl (4-(methylthio)-1-(phenanthridin-6-yl)butan-2-yl)carbamate (40)

40 was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as white solid ($73.7 \mathrm{mg}, 62 \%$). Mp:117-119 ${ }^{\circ} \mathrm{C}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.65(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.71(\mathrm{~m}$, $2 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.66-$ $3.53(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 2), 1.35(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.7,155.6,143.3,132.9,130.6,129.7,128.6,127.62,127.61$, 126.6, 126.2, 125.7, 123.7, 122.5, 122.0, 79.1, 49.8, 40.2, 34.2, 31.0, 28.3, 15.5. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 397.1944, found 397.1946.

6-(cyclohexylmethyl)phenanthridine (4p)

$\mathbf{4 p}$ was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=100 / 1$ to $\mathrm{PE} / \mathrm{EA}=20 / 1)$ as colorless liquid $(56.2 \mathrm{mg}, 68 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}): \delta 8.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.69(\mathrm{~m}, 2 \mathrm{H})$, $7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 5 \mathrm{H})$, $1.22(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 161.5,143.7,132.9,130.2,129.6,128.6,127.1,126.7$, $126.3,125.8,123.6,122.4,121.9,43.7,38.8,33.7,26.5,26.3$. Its analytical data are consistent with the documented data. ${ }^{18}$

tert-butyl 2-(phenanthridin-6-ylmethyl)morpholine-4-carboxylate (4q)

$\mathbf{4 q}$ was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as colorless liquid ($61.2 \mathrm{mg}, 54 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $8.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.8-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.67-$ $7.64(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.42(\mathrm{~m}, 2 \mathrm{H})$,
3.03-2.87 (m, 2H), $1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.7,143.6,132.9,131.4,130.4$, 129.8, 128.6, 127.3, 126.6, 126.4, 125.8, 123.7, 122.4, 121.9, 79.9, 75.2, 66.7, 28.4. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 379.2016, found .379.2020.

tert-butyl (S)-2-(phenanthridin-6-ylmethyl)pyrrolidine-1-carboxylate (4r)

$\mathbf{4 r}$ was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=5 / 1$) as colorless liquid ($85.4 \mathrm{mg}, 79 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, $e e=97 \%$ (HPLC: $254 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30$ ${ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=10.69 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=8.97 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=+77.1(\mathrm{c} 1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta\{8.80(\mathrm{~d}, J=7.8 \mathrm{~Hz})+8.50(\mathrm{~d}$, $J=7.8 \mathrm{~Hz})\}, 8.67-8.62(\mathrm{~m}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.63(\mathrm{~m}, 4 \mathrm{H})$, 4.49-4.45 (m, 1H), $\left\{4.19(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 0.5 \mathrm{H})+3.99\left(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 0.5 \mathrm{H}\right)\right\}$, $3.51-$ $3.32(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.67(\mathrm{~m}, 4 \mathrm{H}),\{1.54(\mathrm{~s}, 4.5 \mathrm{H})+1.50(\mathrm{~s}, 4.5 \mathrm{H})\},{ }^{13} \mathbf{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9 \& 159.4$ (due to rotamer), $154.8 \& 154.5$ (due to rotamer), $143.8 \& 143.7$ (due to rotamer), $132.9 \& 132.7$ (due to rotamer), $130.4,129.8 \& 129.7$ (due to rotamer), $128.6 \& 128.4$ (due to rotamer), $127.84 \& 127.82$ (due to rotamer), $127.5 \& 127.4$ (due to rotamer), $127.2 \& 127.1$ (due to rotamer), $126.7 \& 126.6$ (due to rotamer), $126.6 \& 126.5$ (due to rotamer), $125.8 \& 125.6$ (due to rotamer), $122.4 \& 122.0$ (due to rotamer), $121.9,79.8 \& 79.1$ (due to rotamer), $57.1 \& 56.9$ (due to rotamer), $46.9 \& 46.5$ (due to rotamer), $41.2 \& 40.4$ (due to rotamer), $30.0 \& 28.9$ (due to rotamer), 28.7, 23.5 \& 22.7 (due to rotamer). HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 363.2067, found 363.2069. Its analytical data are consistent with the documented data. ${ }^{19}$

Chiral HPLC Charts for $\mathbf{4 r}$:

Signal:	DAD1A,Sig=254,4 Ref=off				
RT [min]	Type	Width [min]	Area	Height	Area\%
8.972	$B B$	1.39	6530.703	420.19	49.5273
10.709	VBA	1.60	6655.374	364.26	50.4727

Figure $\boldsymbol{S 1}$. The HPLC chart of rac-4r

Signal:	DAD1A,Sig=254,4 Ref=off								
RT [min]	Type	Width [min]	Area	Height	Area\%				
8.968	$B B$	1.18	623.450	40.57	1.4824				
10.691	VB	1.62	41432.673	2161.85	98.5176				

Figure $\boldsymbol{S} \mathbf{2}$. The HPLC chart of $\mathbf{4 r}$
Note: at RT, this compound appears as a mixture of rotamers. This phenomenon was widely observed in the N-Boc pyrrolidine derivatives. ${ }^{19,20}$ And this phenomenon was disappeared when the protecting group (Boc) was removed. The NMR spectra of $\boldsymbol{d e} \boldsymbol{e} \boldsymbol{B o c}-\mathbf{4 r}$ was listed as blow.

(S)-6-(pyrrolidin-2-ylmethyl)phenanthridine (de-Boc-4r)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.60$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.81-$ $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.17(\mathrm{~m}, 1 \mathrm{H})$, 2.05-1.86 (m, 3H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,145.6,132.4$, 130.7, 129.6, 128.6, 127.5, 126.8, 125.2, 124.7, 123.4, 122.2, 121.6, 58.2, 44.9, 35.1, 30.1, 23.4.
tert-butyl (S)-2-((2-methylphenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4s)

4s was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as colorless liquid ($78.9 \mathrm{mg}, 70 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, $e e>99 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=11.90 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=9.09 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=$ +48.2 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta\{8.78(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 0.5 \mathrm{H})+8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.5 \mathrm{H})\}, 8.63\left(\mathrm{dd}, J_{1}=14.9 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.43(\mathrm{~m}, 1 \mathrm{H}),\{4.18$ $\left.\left(\mathrm{dd}, J_{1}=12.7 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 0.5 \mathrm{H}\right)+3.98(\mathrm{dd}, J=12.9,4.1 \mathrm{~Hz}, 0.5 \mathrm{H})\right\}, 3.52-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.43-$ $3.29(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.69(\mathrm{~m}, 2 \mathrm{H}),\{1.54(\mathrm{~s}, 4 \mathrm{H})+$ $1.52(\mathrm{~s} .5 \mathrm{H})\} ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9 \& 158.4,154.8 \& 154.5,142.1 \& 142.0,136.4$
\& 136.1, 132.6 \& 132.5, 130.3 \& 130.1, 130.2, 129.5 \& 129.4, $127.7 \& 127.4,126.9 \& 126.6,125.8 \&$ $125.7,123.6 \& 123.5,122.4 \& 122.0,121.5,79.7 \& 79.0,57.1 \& 56.9,46.8 \& 46.5,41.1 \& 40.4,29.9$ \& 28.8, 28.7, $23.5 \& 22.6,21.9$. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 377.2224, found 377.2222.

Chiral HPLC Charts for $\mathbf{4 s}$:

Signal:	DAD1A,Sig=210,4 Ref=off				
RT [min]	Type	Width [min]	Area	Height	Area\%
9.085	BBA	1.05	13933.145	659.80	49.0144
11.851	BBA	1.53	14493.515	656.14	50.9856

Figure $\boldsymbol{S 3}$. The HPLC chart of rac-4s

Signal: DAD1A,Sig=210,4 Ref=off

RT $[\mathrm{min}]$	Type	Width [min]	Area	Height	Area\%
11.898	BBA	1.42	4319.406	202.61	100.0000

Figure $\boldsymbol{S} 4$. The HPLC chart of 4 s
tert-butyl (\boldsymbol{S})-2-((2-bromophenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4t)

$\mathbf{4 t}$ was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as colorless liquid ($101.7 \mathrm{mg}, 77 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, $e e=94 \%$ (HPLC: $254 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=12.58 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=10.16 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}$ $=+92.4\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta\{8.78(\mathrm{~d}, J=$
$7.7 \mathrm{~Hz}, 0.5 \mathrm{H})+8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.5 \mathrm{H})\}, 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.54\left(\mathrm{dd}, J_{1}=14.6, J_{2}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.99-$ $7.97(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.70(\mathrm{~m}, 3 \mathrm{H}), 4.46-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.15\left(\mathrm{dd}, J_{1}=12.8 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right)+3.94$ $\left.\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 0.5 \mathrm{H}\right)\right\}, 3.54-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.89-$ $1.70(\mathrm{~m}, 2 \mathrm{H}),\{1.53(\mathrm{~s}, 4.5 \mathrm{H})+1.48(\mathrm{~s}, 4.5 \mathrm{H})\} ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.4 \& 159.9,154.8$ \& $154.5,142.44 \& 142.36,131.9 \& 131.7,131.6,131.44 \& 131.35,130.7,128.5 \& 127.8,127.5 \&$ $126.6,125.9 \& 125.7,125.4 \& 125.2,124.8,122.4 \& 122.0,120.5 \& 120.3,79.8 \& 79.1,57.0 \& 56.8$, $46.8 \& 46.5,41.1 \& 40.4,30.0 \& 29.0,28.6,23.5 \& 22.6$. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$ calcd 441.1172, found 441.1175.
Chiral HPLC Charts for $\mathbf{4 t}$:

Signal:							DAD1A,Sig=254,4 Ref=off			
RT [min]	Type	Width [min]	Area	Height	Area\%					
10.274	BV	1.35	17690.281	880.02	49.3363					
12.677	VBA	1.94	18166.265	790.46	50.6637					

Figure $\boldsymbol{S 5}$. The HPLC chart of rac-4t

Signal:	DAD1A,Sig=254,4 Ref=off					
RT [min]	Type	Width [min]	Area	Height	Area\%	
10.158	BB	2.11	848.252	42.36	3.0003	
12.583	BBA	2.15	27423.671	1184.87	96.9997	

Figure S6. The HPLC chart of $\mathbf{4 t}$
methyl (S)-6-((1-(tert-butoxycarbonyl)pyrrolidin-2-yl)methyl)phenanthridine-2-carboxylate (4u)

4u was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=5 / 1$) as colorless liquid ($85.7 \mathrm{mg}, 68 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak AD-H column, ee $=96 \%$ (HPLC: $254 \mathrm{~nm}, n-$ Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$, t_{r} $($ major $\left.)=19.19 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=20.56 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=+115(\mathrm{c} 1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}),\{8.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H})+8.49(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 0.5 \mathrm{H})\}, 8.73\left(\mathrm{dd}, J_{1}=15.1 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.33(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15\left(\mathrm{dd}, J_{1}=8.2 \mathrm{~Hz}\right.$, $\left.J_{2}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.90\left(\mathrm{dd}, J_{1}=12.8 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.84-7.71(\mathrm{~m}, 1 \mathrm{H}), 4.49\left(\mathrm{dd}, J_{1}=14.3 \mathrm{~Hz}\right.$, $\left.J_{2}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right),\left\{4.19\left(\mathrm{dd}, J_{1}=12.7 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 0.5 \mathrm{H}\right)+3.97\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}\right.\right.$, $0.5 \mathrm{H})\}, 3.54-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.49\left(\mathrm{dd}, J_{1}=\right.$ $\left.24.5 \mathrm{~Hz}, J_{2}=10 \mathrm{~Hz}, 9 \mathrm{H}\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.52 \& 166.49,162.4 \& 161.9,154.7 \&$ $154.4,146.10 \& 146.05,132.9 \& 132.7,130.9,129.8 \& 129.7,128.6 \& 128.3,128.0 \& 127.9,127.7$ \& 127.5, 126.7, 125.9 \& 125.7, 124.6, 123.3 \& 123.1, $122.6 \& 122.2,79.7 \& 79.1,61.3 \& 61.2,57.0$ \& 56.8, $46.8 \& 46.4,41.3 \& 40.6,30.1 \& 28.9,28.6,23.5 \& 22.6$. HRMS (ESI) for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calcd 421.2122, found 421.2126 .

Chiral HPLC Charts for $\mathbf{4 u}$:

Signal:	DAD1 254.0;4 Ref off				
RT [min]	Type	Width [min]	Area	Height	Area\%
19.452	BV	1.77	19091.931	503.26	49.9854
20.808	VB	3.17	19103.059	427.76	50.0146

Figure $\boldsymbol{S} 7$. The HPLC chart of rac-4u

Signal: DAD1 254.0;4 Ref off

RT [min]	Type	Width [min]	Area	Height	Area\%
19.190	BV	2.21	5288.271	139.08	97.865
20.559	VB	1.71	115.345	2.70	2.1346

Figure S8. The HPLC chart of $\mathbf{4 u}$
tert-butyl (S)-2-((2-cyanophenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4v)

$\mathbf{4 v}$ was isolated via column chromatography (eluent: DCM to PE/EA $=5 / 1$) as colorless liquid ($89.4 \mathrm{mg}, 77 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak AD-H column, $e e=97 \%$ (HPLC: $254 \mathrm{~nm}, n$-Hexane/isopropanol $=80 / 20$, flow rate $0.6 \mathrm{~mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}$ (major) $=8.56 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=8.97$ $\min) .[\alpha]_{\mathrm{D}}{ }^{25}=+16.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H} \mathbf{~ N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.87(\mathrm{~s}, 1 \mathrm{H}),\{8.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.5 \mathrm{H})+8.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H})\}, 8.59\left(\mathrm{dd}, J_{1}=18.3 \mathrm{~Hz}, J_{2}=8.0\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 8.19-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.75(\mathrm{~m}, 3 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}),\left\{4.17\left(\mathrm{dd}, J_{1}=12.8 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}\right.\right.$, $0.5 \mathrm{H})+3.96\left(\mathrm{dd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, 0.5 \mathrm{H}\right) 3.51-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}$, $2 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 2 \mathrm{H}),\{1.51(\mathrm{~s}, 5 \mathrm{H})+1.45(\mathrm{~s}, 4 \mathrm{H})\} ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.5$ \& 163.0, $154.8 \& 154.4,145.44 \& 145.38,131.7 \& 131.53,131.47,131.0 \& 130.9,130.2 \& 130.0,129.1 \&$ $128.5,127.7,126.9,126.1 \& 126.0,124.02 \& 123.9,122.4 \& 122.0,109.9 \& 109.6,79.8 \& 79.2,57.0$ \& 56.8, $53.4,46.8 \& 46.4,41.3 \& 40.6,30.2 \& 29.1,28.6,23.5 \& 22.6$. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calcd 388.2020, found 388.2022.
Chiral HPLC Charts for $\mathbf{4 v}$:

Signal: DAD1 254.0;4 Ref off

RT [min]	Type	Width [min]	Area	Height	Area\%
8.564	BV	0.62	2130.112	179.42	49.6671
9.013	VB	0.91	2158.664	175.15	50.3329

Figure $\boldsymbol{S 9}$. The HPLC chart of rac-4v

Signal: \quad DAD1 254.0;4 Ref off

RT [min]	Type	Width [min]	Area	Height	Area\%
8.559	BV	0.74	17968.373	1491.63	98.5123
8.974	VB	0.90	271.354	27.88	1.4877

Figure S10. The HPLC chart of $\mathbf{4 v}$
tert-butyl (S)-2-((3-(trifluoromethyl)phenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4w)

$\mathbf{4 w}$ was isolated via column chromatography (eluent: DCM to PE/EA $=5 / 1$) as colorless liquid ($100.6 \mathrm{mg}, 78 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, $e e>99 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}$ (major) $=7.95 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=6.80$ $\mathrm{min}) .[\alpha]_{\mathrm{D}}{ }^{25}=+24.4\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $\{8.85(\mathrm{~s}, 1.5 \mathrm{H}), 8.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H})\}, 8.65\left(\mathrm{dd}, J_{1}=14.9 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.23-8.21(\mathrm{~m}$, $1 \mathrm{H}), 7.93-7.89(\mathrm{~m}, 2 \mathrm{H}),\{7.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 0.5 \mathrm{H})+7.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 0.5 \mathrm{H})\}, 4.47(\mathrm{~s}, 1 \mathrm{H}),\{4.19$ $\left.\left(\mathrm{dd}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 0.5 \mathrm{H}\right)+3.94\left(\mathrm{dd}, J_{1}=12.9 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}, 0.5 \mathrm{H}\right)\right\}, 3.52-3.49(\mathrm{~m}, 1 \mathrm{H})$, $3.47-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 2 \mathrm{H}),\{1.53(\mathrm{~s}, 5 \mathrm{H})+1.48(\mathrm{~s}$,

4H) $\}$; ${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.4 \& 161.9,154.7 \& 154.4,145.1,132.4 \& 132.3,131.0 \&$ $130.6,130.5,128.6,128.0,127.6,126.8,126.0 \& 125.9,125.5,124.5 \& 124.3,124.4(\mathrm{q}, J=260 \mathrm{~Hz})$ $123.4 \& 123.3,122.4 \& 122.0,119.8(\mathrm{q}, J=3.75 \mathrm{~Hz}), 79.8 \& 79.1,57.0 \& 56.8,46.9 \& 46.4,41.1 \&$ $40.5,30.0 \& 29.0,28.6,23.5 \& 22.6$. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 431.1941, found 431.1944.

Chiral HPLC Charts for $\mathbf{4 w}$:

Signal:	VWD1A,Wavelength=210 nm								
RT [min]	Type	Width [min]	Area	Height	Area\%				
6.788	BB	1.13	12005.586	948.29	48.6766				
7.936	BBA	1.05	12658.416	890.01	51.3234				

Figure S11. The HPLC chart of rac-4w

Signal: VWD1A,Wavelength=210 nm

RT [min]	Type	Width [min]	Area	Height	Area\%
6.804	BB	0.50	35.547	3.02	0.3255
7.949	BBA	1.04	10884.872	763.55	99.6745

Figure S12. The HPLC chart of 4w
tert-butyl (S)-2-((8-methoxyphenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4x)

$\mathbf{4 x}$ was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as colorless liquid ($83.6 \mathrm{mg}, 71 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, $e e>99 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=7.00 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=6.40 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=+65.9$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.52-8.45(\mathrm{~m}, 3 \mathrm{H}), 8.11$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.21(\mathrm{~m}, 1 \mathrm{H}),\{4.16(\mathrm{~s}, 2.5 \mathrm{H})+4.00$ $(\mathrm{s}, 0.5 \mathrm{H})\}, 3.53-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}),\{1.53(\mathrm{~s}, 7 \mathrm{H})+1.30(\mathrm{~s}, 2 \mathrm{H})\} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.3 \& 159.2$, $154.7,142.9,129.6,127.3,127.2,127.0,126.4,124.1,123.5,121.9,121.4,107.4,79.1,57.1 \& 56.2$, 46.8, 41.3, 28.9, 28.6, 26.9, 23.6. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 393.2173, found 393.2175.

Chiral HPLC Charts for $\mathbf{4 x}$:

Signal:	VWD1A, Wavelength $=210 \mathrm{~nm}$					Name
RT [min]	Type	Width [min]	Area	Height	Area\%	
6.373	BV	0.58	7666.956	632.52	50.8003	
6.967	VB	0.76	7425.387	560.63	49.1997	

Figure $\boldsymbol{S 1 3}$. The HPLC chart of rac-4x

Figure S14. The HPLC chart of 4x

tert-butyl (S)-2-((8-methylphenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4y)

$\mathbf{4 y}$ was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as colorless liquid ($83.4 \mathrm{mg}, 74 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, $e e=97 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=8.42 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=7.22 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=+59.3$ (c $1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 8.74-8.43 (m, 1H), $8.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.57(\mathrm{~m}, 4 \mathrm{H}), 4.47-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.00(\mathrm{~m}, 1 \mathrm{H})$, $3.55-3.34(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.2 \& 159.7,154.8 \& 154.5,144.94 \& 144.87,135.6,135.2,134.7$ \& 134.6, 132.4, $130.1 \& 129.9,127.8,127.6,127.3 \& 127.1,126.5,125.9 \& 125.7,125.5 \& 125.1$, $79.7 \& 79.1,57.1 \& 56.9,46.8 \& 46.5,41.6 \& 40.9,29.9 \& 28.9,28.7,26.9,23.5 \& 22.6$. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 377.2224, found 377.2226.
Chiral HPLC Charts for $\mathbf{4 y}$:

Signal:	VWD1A,Wavelength=210 nm								
RT [min]	Type	Width [min]	Area	Height	Area\%				
7.320	BB	0.64	17427.808	1385.36	49.0777				
8.370	BB	0.78	18082.862	1215.56	50.9223				

Figure S15. The HPLC chart of rac-4y

Signal: \quad VWD1A, Wavelength $=210 \mathrm{~nm}$

RT [min]	Type	Width [min]	Area	Height	Area\%
7.224	BBA	0.83	33.387	1.91	1.2909
8.417	BBA	0.99	2552.880	165.35	98.7091

Figure S16. The HPLC chart of $\mathbf{4 y}$
tert-butyl (S)-2-((8-(trifluoromethyl)phenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4z)

$\mathbf{4 z}$ was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as colorless liquid ($69.4 \mathrm{mg}, 54 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, $e e>99 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=6.845 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=6.064 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=$ +18.9 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta\{9.16(\mathrm{~s}, 0.6 \mathrm{H})+$ 8.53-8.52 (m, 1.4 H) \}, 8.73-8.68 (m, 1H), $8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.75(\mathrm{~m}$, $1 \mathrm{H}), 7.67(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=39.1 \mathrm{~Hz}, 1 \mathrm{H}),\{4.17-4.06(\mathrm{~m}, 0.6 \mathrm{H})+3.97-394(\mathrm{~m}, 0.4 \mathrm{H})\}, 3.52-3.34$ (m, 2H), 3.29-3.12 (m, 1H), 2.05-1.86 (m, 4H), \{1.48 (s, 5H), 1.28(s, 4H)\}; ${ }^{13}$ C NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 159.8 \& 159.2,154.8 \& 154.4,144.4,135.0 \& 134.9,130.0,129.8,129.5,127.09,126.8$,
126.2 \& 126.2, $125.2 \& 125.0,123.7 \& 123.5,123.1,122.8 \& 122.6,122.3,79.4 \& 79.2,57.1 \& 56.7$, $46.7 \& 46.3,40.8 \& 40.6,31.0 \& 29.6,28.5 \& 28.3,22.9 \& 22.6$. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$ calcd 431.1941, found 431.1944 .
Chiral HPLC Charts for $\mathbf{4 z}$:

Signal:	1A,	length=210				
RT [min]	Type	Width [min]	Area	Height	Area\%	Name
6.064	BB	0.63	24200.173	1998.47	48.9653	
6.811	BBA	0.82	25222.906	2011.21	51.0347	

Figure $\boldsymbol{S 1 7}$. The HPLC chart of rac- $\mathbf{4 z}$

Signal:	VWD1A,Wavelength=210 nm				
RT [min]	Type	Width [min]	Area	Height	Area\%
6.845	BBA	0.93	1298.133	105.15	100.0000

Figure S18. The HPLC chart of rac- $\mathbf{4 z}$
tert-butyl (S)-2-((8-(trifluoromethoxy)phenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4za)

4za was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as colorless liquid ($95.0 \mathrm{mg}, 71 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, $e e>99 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=95 / 5$, flow rate 0.4 $\mathrm{mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=12.32 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=9.19 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=$ +70.3 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ \{8.71-8.65 (m,
$1.45 \mathrm{H})+8.22(\mathrm{~s}, 0.5 \mathrm{H})\}, 8.54-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.64(\mathrm{~m}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}),\{4.06$ $\left.\left(\mathrm{dd}, J_{1}=12.7 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 0.5 \mathrm{H}\right), 3.94\left(\mathrm{dd}, J_{1}=13.2 \mathrm{~Hz}, J_{2}=4.7 \mathrm{~Hz}, 0.5 \mathrm{H}\right)\right\}, 3.54-3.51(\mathrm{~m}, 1 \mathrm{H})$, 3.48-3.31 (m, 1H), 3.19-3.12 (m, 1H), 2.09-1.83 (m, 4H), \{1.49 (s, 4H), $1.44(\mathrm{~s}, 5 \mathrm{H})\},{ }^{13} \mathbf{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.24 \& 159.21,158.61 \& 158.58,154.7 \& 154.5,148.1 \& 147.9,143.8,131.5 \&$ $131.3,130.02 \& 130.01,129.1 \& 128.9,127.1 \& 126.8,124.7 \& 124.3,123.8,123.0 \& 122.8,121.9$, $120.6(\mathrm{q}, ~ J=264.2 \mathrm{~Hz}), 118.8 \& 118.2,79.8 \& 79.2,57.0 \& 56.6,46.7 \& 46.5,41.0 \& 40.5,30.3 \&$ 29.4, 28.5, 23.7 \& 22.7. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 447.1890, found 447.1893. Chiral HPLC Charts for 4za:

Signal:									VWD1A,Wavelength=210 nm				
RT [min]	Type	Width [min]	Area	Height	Area\%								
9.176	VBA	1.22	1023.107	65.10	49.3407								
12.317	BB	0.97	1050.451	52.20	50.6593								

Figure $\boldsymbol{S 1 9}$. The HPLC chart of rac-4za

Signal: VWD1A, Wavelength $=210 \mathrm{~nm}$

RT $[\mathbf{m i n}]$	Type	Width $[\mathbf{m i n}]$	Area	Height	Area\%
9.188	BB	0.48	3.472	0.27	0.3561
12.323	BV	1.38	971.679	49.89	99.6439

Figure $\boldsymbol{S 2 0}$. The HPLC chart of 4za
tert-butyl (S)-2-((7,9-dimethylphenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4zb)

4zb was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=5 / 1$) as colorless liquid ($78.5 \mathrm{mg}, 67 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, $e e=97 \%$ (HPLC: $210 \mathrm{~nm}, \mathrm{n}$-Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}$, t_{r} $($ major $\left.)=9.40 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=8.57 \mathrm{~min}\right) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+85.5\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}),\{4.22(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.05(\mathrm{~d}, J$ $=14.6 \mathrm{~Hz}, 0.5 \mathrm{H})\}, 3.51-3.34(\mathrm{~m}, 3 \mathrm{H}) 3.01(\mathrm{~d}, J=35.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.68(\mathrm{~m}, 4 \mathrm{H}),\{1.47$ $(\mathrm{s}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 5 \mathrm{H})\} ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,154.7,143.0,139.5,134.6,133.5,129.4$, 128.2, 126.1, 124.4, 123.4, 122.1, 120.6, 120.4, $79.1 \& 78.9,56.9,46.8 \& 46.4,44.9 \& 44.3,31.8 \&$ 30.2, 28.5, $26.3 \& 26.0,23.5 \& 22.9$, 21.7. HRMS (ESI) for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 391.2380, found 391.2184 .
Chiral HPLC Charts for $\mathbf{4 z b}$:

Signal:	VWD1A, Wavelength=210 nm					Name
RT [min]	Type	Width [min]	Area	Height	Area\%	
8.525	BV	0.79	25933.706	1869.41	49.0157	
9.284	VBA	0.79	26975.270	1699.03	50.9843	

Figure $\boldsymbol{S} \mathbf{2 1}$. The HPLC chart of rac-4zb

Signal:	VWD1A, Wavelength=210 nm								
RT [min]	Type	Width [min]	Area	Height	Area\%				
8.570	BB	1.06	32.969	1.99	1.3911				
9.404	BBA	0.76	2336.972	192.91	98.6089				

Figure $\boldsymbol{S} 22$. The HPLC chart of $\mathbf{4 z b}$

tert-butyl (S)-2-((10-methoxyphenanthridin-6-yl)methyl)pyrrolidine-1-carboxylate (4zc)

4zc was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=5 / 1$) as colorless liquid ($61.1 \mathrm{mg}, 53 \%$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak IG-3 column, ee $>99 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}$ $($ major $\left.)=10.73 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=11.70 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=+112.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.49\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.46-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.60$ $(\mathrm{m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.20-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.31(\mathrm{~m}$, $2 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 158.9 \& 158.5,154.8 \& 154.5,144.3,129.5 \& 129.4,127.9,127.7,127.3,126.4,126.2$, $123.6 \& 123.5,123.4 \& 123.2,119.7,118.9,111.6 \& 111.5,79.7 \& 79.0,57.0 \& 56.8,55.8,46.8 \&$ $46.5,41.6 \& 40.9,29.9 \& 28.9,28.7,23.5 \& 22.7$. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 393.2173 , found 393.2175 .

Chiral HPLC Charts for 4zc:

Signal: \quad VWD1A, Wavelength $=210 \mathrm{~nm}$

RT [min]	Type	Width [min]	Area	Height	Area\%
10.697	VV	1.08	24083.689	1265.03	50.3764
11.668	VBA	1.91	23723.777	1034.18	49.6236

Figure $\boldsymbol{S} \mathbf{2 3}$. The HPLC chart of rac-4zc

Signal:	VWD1A, Wavelength=210 nm				
RT [min]	Type	Width [min]	Area	Height	Area\%
10.725	BV	1.30	14661.401	773.84	99.2836
11.700	VB	1.48	105.790	3.47	0.7164

Figure $\boldsymbol{S} \mathbf{2 4}$. The HPLC chart of $\mathbf{4 z c}$

tert-butyl (R)-(3-methyl-1-(phenanthridin-6-yl)butan-2-yl)carbamate (4zd):

4zd was isolated via column chromatography (eluent: DCM to PE/EA = 5/1) as colorless liquid ($86.25 \mathrm{mg}, 83 \%, 96 \% \mathrm{ee}$). Mp: $144-146{ }^{\circ} \mathrm{C}$ Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak AD column, $e e=96 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30{ }^{\circ} \mathrm{C}$, t_{r} (major) $\left.=10.856 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=7.494 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+8.2\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.56\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}\right.$, $\left.J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13\left(\mathrm{dd}, J_{1}=8.1, J_{2}=0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.90-7.82(\mathrm{~m}, 1 \mathrm{H})$, $7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.65\left(\mathrm{dd}, J_{1}=14.2\right.$, $\left.J_{2}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.40(\mathrm{dd}, J=14.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.4,155.8,143.4,132.9,130.5,129.6$,
128.5, 127.5, 126.5, 126.1, 125.6, 123.8, 122.5, 121.9, 78.7, 55.6, 38.1, 31.7, 28.1, 19.4, 18.1. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 365.2224, found 365.2226.
Chiral HPLC Charts for $\mathbf{4 z d}$:

Figure $\boldsymbol{S} \mathbf{2 5}$. The HPLC chart of rac-4zd

Figure S26. The HPLC chart of $\mathbf{4 z d}$

tert-butyl (S)-(1-(phenanthridin-6-yl)propan-2-yl)carbamate (4ze)

4ze was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1)$ as white solid ($89.6 \mathrm{mg}, 89 \%, 93 \%$ ee $)$. $\mathrm{Mp}: 155-157^{\circ} \mathrm{C}$. Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak ID column, $e e=93 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 3{ }^{\circ} \mathrm{C}$, t_{r} (major) $\left.=14.398 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=12.758 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{25}=+22.4\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.87-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.75-$ $7.71(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.69(\mathrm{~m}$, $1 \mathrm{H}), 3.40\left(\mathrm{dd}, J_{1}=13.9 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,155.4,143.4,132.9,130.5,129.7,128.6,127.6,126.6,126.4,125.7,123.7$,
122.4, 121.9, 79.0, 46.5, 42.4, 28.3, 20.7. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 337.1911, found 337.1907.

Chiral HPLC Charts for 4ze:
VWD1 A, Wavelength=254 nm (ZLMIZLM 2021-06-17 12-11-401001-P1-B1-ZLM-B-DL.D)

Figure $\boldsymbol{S} 27$. The HPLC chart of rac-4ze

Figure $\boldsymbol{S} \mathbf{2 8}$. The HPLC chart of 4ze
tert-butyl (S)-(1-(phenanthridin-6-yl)-3-phenylpropan-2-yl)carbamate (4zf)

4zf was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as white solid ($93.5 \mathrm{mg}, 76 \%$). Mp:139-141 ${ }^{\circ} \mathrm{C}$. Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak ID column, $e e=93 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=13.998 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=12.732 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{25}=+19.5\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.63(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 3.58-$ $3.54(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.99(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.0,155.5,143.4,138.6,132.8,130.5,129.7,129.6,128.6,128.4,127.5,126.6$, $126.4,126.1,125.6,123.7,122.4,122.0,79.0,51.7,40.7,38.7,28.3$. HRMS (ESI) for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$: calcd 413.2224, found 413.2223.

Chiral HPLC Charts for $\mathbf{4 z f}$:

Figure $\boldsymbol{S} \mathbf{2 9}$. The HPLC chart of rac-4zf

Peak $\#$ $\#$RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area $\%$	
$-\mid$	12.732 BV E	0.4365	142.64622	5.03466	3.4138
1	13.998 VB R	0.5297	4035.92822	117.80275	96.5862

Figure S30. The HPLC chart of $\mathbf{4 z f}$
tert-butyl (S)-(4-methyl-1-(phenanthridin-6-yl)pentan-2-yl)carbamate (4zg):

4zg was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as white solid ($86.3 \mathrm{mg}, 76 \%$). $\mathrm{Mp}: 122-124^{\circ} \mathrm{C}$. Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak ID column, $e e=94 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}$, $\mathrm{t}_{\mathrm{r}}($ major $\left.)=9.076 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=6.309 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}{ }^{25}=+41.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~d}, J$ $=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.86-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.43(\mathrm{~m}$, $1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.2,155.6,143.5,132.8,130.4,129.8,128.5,127.5,126.5,126.3,125.8,123.7,122.4,121.9,78.8$, 48.7, 44.1, 41.3, 28.3, 25.1, 23.2, 22.1. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: calcd 379.2380, found 379.2383.

Chiral HPLC Charts for $\mathbf{4 z g}$:

Figure S31. The HPLC chart of rac-4zg

Figure $\boldsymbol{S 3 2}$. The HPLC chart of $\mathbf{4 z g}$
tert-butyl (R)-3-(phenanthridin-6-ylmethyl)piperidine-1-carboxylate (4zh)

4zh was isolated via column chromatography (eluent: DCM to $\mathrm{PE} / \mathrm{EA}=$ $5 / 1$) as colorless liquid ($80.0 \mathrm{mg}, 71 \%, 91 \% e e$). Enantiomeric excess was established by HPLC analysis by using a Daicel Chiralpak ID column, ee $=91 \%$ (HPLC: $210 \mathrm{~nm}, n$-Hexane/isopropanol $=90 / 10$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}$ (major) $\left.=17.14 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(\mathrm{min})=10.82 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}{ }^{25}=+34.6$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.35-2.23(\mathrm{~m}$, $2 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.9,154.9,143.6,132.9,130.3,129.7,128.6,127.3,126.4,126.2,125.5$, 123.6, 122.5, 121.9, 79.2, 50.1, 44.4, 39.5, 36.1, 31.1, 28.3, 24.9. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$ calcd 377.2224, found 377.2225.
Chiral HPLC Charts for $\mathbf{4 z h}$:

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	10. 85		0. 4887	1934.6	59.6	49. 997
2	17. 33	BBA	1. 2890	1934.9	22.4	50.003

Figure S33. The HPLC chart of rac-4zh

Figure $\boldsymbol{S 3 4}$. The HPLC chart of $\mathbf{4 z h}$

$3.4 \mathbf{3} \mathbf{~ m m o l}$-scale synthesis of 4a

1a $+$

2a

4a

Procedure: To a flame-dried Schlenk tube was added 1a ($3 \mathrm{mmol}, 538 \mathrm{mg}$), 4CzIPN (0.15 $\mathrm{mmol}, 118 \mathrm{mg}$) and Hantzsch ester ($912 \mathrm{mg}, 3.6 \mathrm{mmol}$). The tube was evacuated and refilled with N_{2} for three times. A solution of aldehyde $\mathbf{2 a}(13.5 \mathrm{mmol}, 784 \mathrm{mg})$, amine $\mathbf{3 b}(13.5 \mathrm{mmol}, 1.37 \mathrm{~g})$ in $1,4-$ dioxane $(75.0 \mathrm{~mL})$ was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 15 W blue LED and stirred at $25{ }^{\circ} \mathrm{C}$ for 14 h . Upon completion, the reaction mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel (200-300 mesh), eluting with the indicated mixture of ethyl acetate (EA)/petroleum ether (PE) to give pure $\mathbf{4 a}(484.7 \mathrm{mg}, 73 \%)$.

4. Mechanistic Studies

4.1 Radical scavenging experiment.

The procedure is similar as the one described in the model reaction of 1a and 2a under the standard reaction conditions except the addition of 2.0 equivalents of TEMPO. Radical-scavenging experiment indicated the reaction was completely suppressed when 2.0 equiv. TEMPO was added into the reaction mixture.

4.2 Formation and detection of intermediate 6 when the reaction time was shorten to 4 h .

Characterization of $\mathbf{6}$:
N, N-diethyl-1-(phenanthridin-6-yl)propan-1-amine (6)

6 was isolated via column chromatography (eluent: $\mathrm{PE} / \mathrm{EA}=10 / 1$) as a colorless liquid ($12.8 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.79$ (d, J $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}$, $\left.J_{1}=8.1 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.70-$ $7.64(\mathrm{~m}, 2 \mathrm{H}), 4.56\left(\mathrm{dd}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.72-2.61(\mathrm{~m}, 4 \mathrm{H})$, 2.56-2.45 (m, 1H), 2.12-2.01 (m, 1H), 1.53-1.39 (m, 4H), $0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.8,143.3,133.0,130.4,129.8,128.2,127.3,126.6,126.4$, $126.4,123.8,122.1,121.8,66.5,53.4,21.6,20.1,12.0,11.8$.

4.3 Probing experiment on possible reaction intermediate.

Procedure for the conversion of $\mathbf{6}$ to 4a: To a 25 mL flame-dried Schlenk tube was added $\mathbf{6}$ (0.3 $\mathrm{mmol}), 4 \mathrm{CzIPN}(0.015 \mathrm{mmol})$. The tube was evacuated and refilled with N_{2} for three times. 1,4dioxane (7.5 mL) was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 15 W blue LED and stirred at $25{ }^{\circ} \mathrm{C}$ for 14 h . Upon completion, the reaction mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel (200-300 mesh), eluting with the indicated mixture of ethyl acetate (EA)/petroleum ether (PE) to give $\mathbf{4 a}(90 \%)$.

Procedure for the conversion of 7 to 8: To a 25 mL flame-dried Schlenk tube was added 7 (0.3 $\mathrm{mmol})$, 4CzIPN (0.015 mmol). The tube was evacuated and refilled with N_{2} for three times. 1,4dioxane (7.5 mL) was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 15 W blue LED and stirred at $25^{\circ} \mathrm{C}$ for 14 h . Upon completion, the reaction mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel (200-300 mesh), eluting with the indicated mixture of ethyl acetate (EA)/petroleum ether (PE) to give $\mathbf{8}$ (67\%).

Characterization of $\mathbf{8}$:

2-propylquinoline (8):

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.92-1.83 (m, 2H), $1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.9,147.8,136.3,129.4,128.8,127.5,126.7,125.7,121.4,41.2,23.3,14.0$. Its analytical data are
consistent with the documented data. ${ }^{21}$

4.4 Detection of byproduct 4a'

Characterization of $\mathbf{4} \mathbf{a}^{\prime}$:

6-ethylphenanthridine (4a')

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.85-$ $7.82(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. Its analytical data are consistent with the documented data. ${ }^{22}$

4.5 KIE experiment.

Procedure: To a 25 mL flame-dried Schlenk tube was added 1a ($26.9 \mathrm{mg}, 0.15 \mathrm{mmol}$), 1a-d5 (27.6 $\mathrm{mg}, 0.15 \mathrm{mmol})$ 4CzIPN ($11.8 \mathrm{mg}, 0.015 \mathrm{mmol}$) and Hantzsch ester ($91.2 \mathrm{mg}, 0.36 \mathrm{mmol}$). The tube was evacuated and refilled with N_{2} for three times. A solution of aldehyde $\mathbf{2 a}$ ($78.3 \mathrm{mg}, 1.35 \mathrm{mmol}$), amine $\mathbf{3 b}$ ($136.0 \mathrm{mg}, 1.35 \mathrm{mmol}$) in 1,4-dioxane (7.5 mL) was added under nitrogen atmosphere. The reaction mixture was irradiated at a distance of 3 cm from 15 W blue LED and stirred at $25{ }^{\circ} \mathrm{C}$ for 14 h. Upon completion, the reaction mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel (200-300 mesh), eluting with the indicated mixture of ethyl acetate (EA)/petroleum ether (PE) to give pure $\mathbf{4 a}$ and $\mathbf{4 a} \mathbf{-} \boldsymbol{d} \mathbf{4}(31.4 \mathrm{mg}, \mathbf{4 7 \%})$. The $k_{\mathrm{H}} / k_{\mathrm{D}}$ was calculated to be 1.0 according to the analysis of ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ and $\mathbf{4 a}-\boldsymbol{d} \mathbf{4}$.

Figure $\boldsymbol{S 3 5} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ and $\mathbf{4 a}-\boldsymbol{d} \mathbf{4}$ for KIE experiments.

4.6 Deuterium-labeling experiments

$4 r$

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum for Deuterium-labeling experiments.

5. References

1. M. Tobisu, K. Koh, T. Furukawa and N. Chatani, Angew. Chem. Int. Ed., 2012, 51, 11363-11366.
2. J. Rong, L. Deng, P. Tan, C. Ni, Y. Gu and J. Hu, Angew. Chem. Int. Ed., 2016, 55, 2743-2747.
3. Q. Li, C.-Y. Zhou and C. Wang, Org. Lett., 2022, 24, 7654-7658.
4. P. López-Mendoza and L. D. Miranda, Org. Biomol. Chem., 2020, 18, 3487-3491.
5. Y. Liu, X.-L. Chen, X. -Y. Li, S.-S. Zhu, S.-J. Li, Y. Song, L.-B. Qu and B. Yu, J. Am. Chem. Soc., 2021, 143, 964-972.
6. Q. Wang, X. Dong, T. Xiao and L. Zhou, Org. Lett., 2013, 15, 4846-4849.
7. X. Tang, S. Song, C. Liu, R. Zhu and B. Zhang, RSC Adv., 2015, 5, 76363-76367.
8. A. García-Urricelqui, A. de Cózar, A. Mielgo and C. Palomo, Chem. Eur. J., 2021, 27, 2483-2492.
9. S. Jung, N. Fuchs, P. Johe, A.Wagner, E. Diehl, T. Yuliani, C. Zimmer, F. Barthels, R. A. Zimmermann, P. Klein, W. Waigel, J. Meyr, T. Opatz, S. Tenzer, U. Distler, H.-J. Räder, C. Kersten, B.

Engels, U. A. Hellmich, J. Klein and T. Schirmeister, J. Med. Chem., 2021, 64, 12322-12358.
10. E. Brenner, R. M. Baldwin and G. Tamagnan, Org. Lett., 2005, 7, 937-939.
11. H. Guan, Q. Zhang, P. J. Walsh, J. Mao, Angew. Chem. Int. Ed., 2020, 59, 5172-5177.
12. T. Gerfaud, L. Neuville and J. Zhu, Angew. Chem. Int. Ed., 2009, 48, 572-577.
13. Z. Yang, F. Chen, S. Zhang, Y. He, N. Yang and Q.-H. Fan, Org. Lett., 2017, 19, 1458-1461.
14. A. Kishi, K. Moriyama and H. Togo, J. Org. Chem., 2018, 83, 11080-11088.
15. C. Tang, Y. Yuan and N. Jiao, Org. Lett., 2015, 17, 2206-2209.
16. B. K. Mehta, K. Yanagisawa, M. Shiro and H. Kotsuki, Org. Lett., 2003, 5, 1605-1608.
17. Y. Jaiswal, Y. Kumar, J. Pal, R. Subramanian and A. Kumar, Chem. Commun., 2018, 54, 72077210.
18. X.-Y. Zhang, W.-Z. Weng, H. Liang, H. Yang and B. Zhang, Org. Lett., 2018, 20, 4686-4690.
19. J.-C. Yang, J.-Y. Zhang, J.-J. Zhang, X.-H. Duan and L.-N. Guo, J. Org. Chem., 2018, 83, 15981605.
20. (a) T. Xiao, L. Li and L. Zhou, J. Org. Chem., 2016, 81, 7908-7916; (b) J. Qin, Z. Zhou, T. Cui, M. Hemming and E. Meggers, Chem. Sci., 2019, 10, 3202-3207.
21. Q. Wu, S. Han, X. Ren, H. Lu, J. Li, D. Zou, Y. Wu and Y. Wu, Org. Lett., 2018, 20, 6345-6348.
22. D.-S. Li, T. Liu, Y. Hong, C.-L. Cao, J. Wu and H.-P. Deng, ACS Catal., 2022, 12, 4473-4480.

6. Copies of ${ }^{\mathbf{1}} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra


```
191120
BHY-F-PR CDCl3 1120
BHY-F-PR CDCI3 1120
```


LYK-B4

200623

BHY-F-R2-4F CDCl3 0623

$$
0
$$

(CDCL3 1024

LYK-B5

 201013

201013
ZLM-NC-R2-4CN CDCI3 1013

 $\underbrace{\dot{+} \underset{i}{T}}$ \ldots

-17000 -16000

R1-4OCH3
zlm-NC-R1-4OMe CDCI3 0129

R1-4CF3

zlm-NC-R1-4CF3 CDCl3 0129

21000

200708
zlm-NC-R2-5CF3 CDCl3 0708

 $\underbrace{\infty} \omega^{\infty} 0^{\infty} \infty^{\infty}$ 200708zlm-NC-R2-5CF3 CDCl3 0708

R1-3, 5 CH 3
zlm-NC-3,5-CH3 CDCl3 1203

R1-20CH3
zlm-NC-R1-2OMe CDCl3 1203

