Supporting Information

6-Exo-Dig Cyclization/Dearomatization Cascade towards N-

O Fused Spiro Polyheterocycles

Zhenwei Lv,^a Yan Li,^a Erik V. Van der Eycken,^{*bc} Lingchao Cai^{*a} and

Liangliang Song^{*a}

^aJiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China. E-mail: liangliangsong@njfu.edu.cn; cailingchao@njfu.edu.cn.

^bLaboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium. E-mail: erik.vandereycken@kuleuven.be.

°Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia.

Table of Contents

1. General Information	S3
2. Product Preparation	S4
3. Substrate Preparation	S11
4. In Vitro Antifungal Activities.	S17
5. Reference	S19
6. Spectra	S20

1. General Information

All other reagents were used as received from commercial sources. Reactions were monitored through thin layer chromatography (TLC) on 0.25-mm silica gel plates and visualized under UV light. Flash column chromatography (FCC) was performed using Flash silica gel (90-Å pore size, 200–300 μ m). NMR spectra were recorded on Bruker Avance-400 or -600 instrument, calibrated to CD(H)Cl₃ as the internal reference (7.26 and 77.0 ppm for ¹H and ¹³C NMR spectra, respectively). ¹H NMR spectral data were reported in terms of chemical shift (δ , ppm), multiplicity, coupling constant (Hz), and integration. ¹³C NMR spectral data were reported in terms of chemical shift (δ , ppm), multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. High-resolution mass spectra were recorded using a SCIEX X500R LC-Q-TOF, ESI ion Source.

2. Product Preparation

In a seal capped flask equipped with a stirring bar, 1 (0.1 mmol, 1 equiv), TsOBX (0.11 mmol, 1.1 equiv), and DCM (1 mL, 0.1 M) were added. The reaction mixture was reacted at room temperature for 3 h. The solvent was removed in *vacuo* and the remaining residue was purified by a silica gel column chromatography (petroleum ether/ethyl acetate from 4:1 to 2:1) to afford the products **2**.

Following general procedure, **1a** (37.1 mg, 0.1 mmol) was used to give **2a** (29.9 mg, 84%). Orange solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (dd, J = 21.5, 7.9 Hz, 1H), 7.49 – 7.28 (m, 3H), 7.25 (d, J = 7.7 Hz, 1H), 7.22 – 7.15 (m, 3H), 6.78 (d, J = 9.6 Hz, 2H), 6.52 (d, J = 9.6 Hz, 2H), 5.30 (s, 2H), 2.37 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 184.9, 164.5, 142.3, 138.9, 133.0, 132.2, 131.6, 129.9, 129.7, 128.7, 128.4, 128.2, 126.4, 125.3, 123.3, 113.9, 73.6, 59.2, 21.3.

¹³C NMR (101 MHz, CDCl₃, DEPT-135) δ 142.3, 133.1, 130.0, 129.8, 128.8, 128.3, 126.5, 125.4, 73.7, 21.4.

HRMS (ESI, m/z) calcd for $C_{23}H_{17}NO_3 [M + H]^+:356.1281$, found: 356.1283.

Following general procedure, **1b** (38.7 mg, 0.1 mmol) was used to give **2b** (20.7 mg, 56%). Brown solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 (t, J = 7.8 Hz, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.25 (d, J = 7.7 Hz, 1H), 7.16 (dd, J = 8.8, 2.80 Hz, 3H), 6.90 – 6.84 (m, 2H), 6.80 – 6.74 (m, 2H), 6.55 – 6.49 (m, 2H), 5.30 (s, 2H), 3.83 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 185.0, 164.6, 159.9, 142.4, 133.0, 132.2, 131.6, 130.2, 129.9, 128.3, 126.3, 125.3, 123.5, 123.4, 114.5, 113.8, 73.6, 59.3, 55.2.

HRMS (ESI, m/z) calcd for $C_{23}H_{17}NO_4 [M + H]^+$: 372.1231, found: 372.1226.

Following general procedure, 1c (35.7 mg, 0.1 mmol) was used to give 2c (20.4 mg, 60%). Brown solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 5.8 Hz, 4H), 7.25 (d, J = 7.3 Hz, 4H), 7.16 (t, J = 7.8 Hz, 1H), 6.78 (d, J = 9.6 Hz, 2H), 6.51 (d, J = 9.7 Hz, 2H), 5.30 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 184.8, 164.5, 142.1, 133.1, 132.5, 131.7, 131.6, 130.0, 129.0, 128.93, 128.90, 128.3, 126.4, 125.3, 123.2, 113.8, 73.6, 59.1.

HRMS (ESI, m/z) calcd for $C_{22}H_{15}NO_3$ [M + H]⁺: 342.1125, found: 342.1122.

Following general procedure, 1d (39.2 mg, 0.1 mmol) was used to give 2d (29.8 mg, 79%). Brown solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 – 7.39 (m, 1H), 7.35 – 7.32 (m, 2H), 7.28 – 7.25 (m, 2H), 7.23 – 7.18 (m, 3H), 6.75 (d, J = 10.0 Hz, 2H), 6.53 (d, J = 10.0 Hz, 2H), 5.30 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 184.6, 164.4, 141.8, 135.0, 133.3, 133.1, 131.9, 130.4, 130.2, 130.1, 129.5, 128.4, 126.4, 125.5, 123.0, 112.3, 73.7, 58.9.

HRMS (ESI, m/z) calcd for $C_{22}H_{14}CINO_3 [M + H]^+:376.0735$, found: 376.0741.

Following general procedure, 1e (42.5 mg, 0.1 mmol) was used to give 2e (17.3 mg, 42%). Brown solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, J = 7.9 Hz, 2H), 7.42 (t, J = 7.8 Hz, 3H), 7.31 (s, 1H), 7.23 (d, J = 6.8 Hz, 2H), 6.80 – 6.74 (m, 2H), 6.55 (d, J = 9.5 Hz, 2H), 5.32 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 184.5, 164.1, 141.7, 135.6, 133.7, 133.4, 132.1, 130.7, 129.2, 128.5, 126.4, 126.1 (q, J = 3.73 Hz), 125.7, 122.7, 111.7, 73.7, 58.8.
¹⁹F NMR (377 MHz, CDCl₃) δ -62.8.

HRMS (ESI, m/z) calcd for $C_{23}H_{14}F_3NO_3$ [M + H]⁺: 410.0999, found: 410.0998.

Following general procedure, **1f** (32.1 mg, 0.1 mmol) was used to give **2f** (10.7 mg, 35%). Yellow solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.7 Hz, 1H), 7.56 – 7.39 (m, 3H), 6.71 – 6.56 (m, 4H), 5.22 (s, 2H), 1.35 (s, 1H), 0.88 (s, 2H), 0.61 (d, J = 5.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) *δ* 185.1, 163.5, 143.4, 132.8, 131.6, 129.5, 128.5, 127.4, 125.3, 123.9, 114.8, 73.8, 58.8, 8.9, 7.1.

HRMS (ESI, m/z) calcd for $C_{19}H_{15}NO_3 [M + H]^+$: 306.1125, found: 306.1124.

Following general procedure, **1g** (37.1 mg, 0.1 mmol) was used to give **2g** (14.4 mg, 51%). Yellow solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, J = 6.6 Hz, 3H), 7.25 (d, J = 7.2 Hz, 2H), 7.16 (q, J = 7.9 Hz, 2H), 7.04 (s, 1H), 6.77 (d, J = 9.5 Hz, 2H), 6.52 (d, J = 9.5 Hz, 2H), 5.26 (s, 2H), 2.14 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 184.9, 164.5, 142.3, 138.2, 133.1, 132.8, 131.7, 131.0, 128.99, 128.95, 128.9, 126.9, 125.3, 123.1, 113.5, 73.6, 59.2, 21.2.

HRMS (ESI, m/z) calcd for $C_{23}H_{17}NO_3$ [M + H]⁺: 356.1281, found: 356.1277.

Following general procedure, **1h** (41.5 mg, 0.1 mmol) was used to give **2h** (14.9 mg, 37%). Brown solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.14 (d, J = 7.9 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 6.77 – 6.74 (m, 2H), 6.68 (d, J = 6.0 Hz, 2H), 6.51 – 6.48 (m, 2H), 5.98 (s, 2H), 5.19 (s, 2H), 2.36 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 185.0, 164.5, 147.6, 142.5, 138.9, 132.9, 132.1, 129.8, 128.8, 128.4, 126.8, 117.0, 111.9, 106.2, 105.6, 101.7, 73.4, 59.1, 21.3.

HRMS (ESI, m/z) calcd for $C_{24}H_{17}NO_5 [M + H]^+$: 400.1180, found: 400.1181.

Following general procedure, **1i** (42.5 mg, 0.1 mmol) was used to give **2i** (34.6 mg, 85%). Brown solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.53 (s, 1H), 7.43 – 7.36 (m, 4H), 7.34 (d, J = 8.3 Hz, 1H), 7.25 – 7.21 (m, 2H), 6.77 (d, J = 10.0 Hz, 2H), 6.52 (d, J = 10.0 Hz, 2H), 5.34 (s, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 184.6, 164.6, 141.5, 133.2, 132.4, 131.6, 131.5, 131.3, 130.9, 130.7, 129.4, 129.3, 128.7, 126.8, 126.6, 122.5 (q, J = 4.0 Hz), 122.5 (q, J = 4.0 Hz), 116.7, 73.2, 59.2.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -63.1.

HRMS (ESI, m/z) calcd for $C_{23}H_{14}F_{3}NO_{3}$ [M + H]⁺: 410.0999, found: 410.0991.

Following general procedure, **1j** (42.5 mg, 0.1 mmol) was used to give **2j** (39.2 mg, 96%). Yellow solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.61 (dd, J = 8.0, 1.7 Hz, 1H), 7.47 (d, J = 1.7 Hz, 1H), 7.44 – 7.37 (m, 4H), 7.26 – 7.22 (m, 2H), 6.78 (d, J = 9.8 Hz, 2H), 6.54 (d, J = 9.7 Hz, 2H), 5.35 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 184.6, 164.8, 141.6, 135.1, 134.3, 133.2, 131.6, 131.0, 130.8, 130.7, 130.6, 129.5, 129.3, 128.62, 128.55, 126.4 (q, J = 3.0 Hz), 126.1, 124.0, 123.3 (q, J = 3.7 Hz), 116.1, 73.1, 59.2.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -63.5.

HRMS (ESI, m/z) calcd for $C_{23}H_{14}F_{3}NO_{3}$ [M + H]⁺: 410.0999, found: 410.0996.

Following general procedure, 1k (39.2 mg, 0.1 mmol) was used to give 2k (23.5 mg, 63%). Yellow solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 (d, J = 1.9 Hz, 2H), 7.38 (s, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.25 – 7.18 (m, 4H), 6.79 – 6.73 (m, 2H), 6.53 (dd, J = 9.9, 2.0 Hz, 2H), 5.27 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 184.7, 164.7, 144.4, 143.1, 141.7, 134.3, 133.3, 131.6, 130.9 (q, J = 2.33 Hz), 130.1, 129.4, 129.3, 128.7, 127.6, 126.8, 126.3, 124.9, 115.5,

73.2, 59.2. HRMS (ESI, m/z) calcd for C₂₂H₁₄ClNO₃ [M + H]⁺: 376.0735, found: 376.0737.

Following general procedure, **11** (43.9 mg, 0.1 mmol) was used to give **21** (35.9 mg, 85%). Brown solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.61 – 7.58 (m, 1H), 7.46 – 7.44 (m, 1H), 7.43 – 7.36 (m, 4H), 7.24 – 7.20 (m, 2H), 6.73 (dd, J = 9.8, 2.9 Hz, 1H), 6.57 – 6.55 (m, 1H), 6.52 (d, J = 9.8 Hz, 1H), 5.34 (s, 2H), 1.95 (d, J = 1.5 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 185.3, 165.5, 141.0, 140.5, 136.5, 135.1, 133.0, 131.3, 130.9, 129.4, 129.2, 128.6, 126.2 (q, J = 3.69 Hz), 126.0, 124.2, 123.3 (q, J = 3.7 Hz), 121.7, 116.7, 73.1, 59.3, 16.2.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -63.5.

HRMS (ESI, m/z) calcd for $C_{24}H_{16}F_3NO_3$ [M + H]⁺: 424.1155, found: 424.1149.

Following general procedure, **1m** (46 mg, 0.1 mmol) was used to give **2m** (36.1 mg, 81%). Brown solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.6 (dd, J = 8.1, 1.7 Hz, 1H), 7.5 – 7.4 (m, 2H), 7.4 – 7.4 (m, 3H), 7.2 – 7.2 (m, 2H), 7.0 (d, J = 2.7 Hz, 1H), 6.8 (dd, J = 9.8, 2.7 Hz, 1H), 6.6 (d, J = 9.7 Hz, 1H), 5.4 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 177.7, 163.8, 141.7, 137.4, 137.2, 135.2, 132.4, 131.9, 131.1, 130.3, 129.8, 129.5, 128.6, 126.6 (q, J = 3.9 Hz), 126.1, 123.8, 123.4 (q, J = 3.8 Hz), 115.2, 73.2, 60.7.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -63.5.

HRMS (ESI, m/z) calcd for $C_{23}H_{13}ClF_{3}NO_{3}$ [M + H]⁺: 444.0609, found: 444.0602.

Following general procedure, **1n** (50.4 mg, 0.1 mmol) was used to give **2n** (48.4 mg, 99%). Brown solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.61 (dd, J = 8.0, 1.7 Hz, 1H), 7.45 – 7.42 (m, 2H), 7.42 – 7.38 (m, 3H), 7.25 (d, J = 2.7 Hz, 1H), 7.24 – 7.21 (m, 2H), 6.81 (dd, J = 9.8, 2.7 Hz,

1H), 6.59 (d, J = 9.8 Hz, 1H), 5.34 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 177.7, 163.5, 141.8, 141.6, 135.2, 134.3, 131.9, 130.9, 130.3, 129.8, 129.5, 129.0, 128.7, 126.7 (q, J = 3.8 Hz), 126.2, 125.2, 124.4, 123.8, 123.4 (q, J = 4.1 Hz), 121.7, 115.0, 73.2, 61.7.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -63.5.

HRMS (ESI, m/z) calcd for $C_{23}H_{13}BrF_{3}NO_{3}$ [M + H]⁺: 488.0104, found: 488.0110.

Following general procedure, **1o** (45.4 mg, 0.1 mmol) was used to give **2o** (38.0 mg, 87%). Brown solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 1:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.57 (d, J = 8.1 Hz, 1H), 7.42 (s, 1H), 7.39 – 7.34 (m, 4H), 7.19 (d, J = 7.6 Hz, 2H), 6.52 (s, 2H), 5.31 (s, 2H), 1.93 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 186.0, 166.1, 139.9, 136.1, 135.1, 131.1, 131.0, 130.9, 130.6, 129.3, 129.2, 128.7, 126.1, 126.0, 124.5, 124.3, 123.3 (q, J = 3.8 Hz), 121.8, 117.3, 73.1, 59.0, 16.4.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -63.5.

HRMS (ESI, m/z) calcd for $C_{25}H_{18}F_{3}NO_{3}$ [M + H]⁺: 438.1312, found: 438.1301.

Following general procedure, **1p** (43.9 mg, 0.1 mmol) was used to give **2p** (40.7 mg, 96%). Brown solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.1 Hz, 1H), 7.56 (s, 1H), 7.44 – 7.33 (m, 4H), 7.22 (d, J = 7.3 Hz, 2H), 6.73 (d, J = 9.8 Hz, 1H), 6.51 (d, J = 9.8 Hz, 1H), 6.36 (s, 1H), 5.40 – 5.29 (m, 2H), 2.02 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 185.4, 165.1, 151.2, 141.6, 135.1, 132.2, 132.1, 131.9, 131.0, 130.7, 130.5, 129.6, 129.3, 128.3, 126.4 (q, J = 3.6 Hz), 126.1, 124.4, 124.0, 123.4 (q, J = 4.0 Hz), 121.7, 116.4, 73.4, 62.1, 19.7.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -63.5.

HRMS (ESI, m/z) calcd for $C_{24}H_{16}F_3NO_3$ [M + H]⁺: 424.1155, found: 424.1154.

Following general procedure, 1q (46.0 mg, 0.1 mmol) was used to give 2q (42.5 mg, 96%). Brown solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 1H), 7.49 – 7.35 (m, 6H), 7.29 (s, 1H), 6.81 (d, J = 9.8 Hz, 1H), 6.64 (s, 1H), 6.54 (d, J = 9.8 Hz, 1H), 5.35 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 183.7, 163.2, 148.0, 140.8, 135.1, 133.0, 131.8, 131.1, 130.8, 129.8, 129.4, 128.8, 126.6 (q, J = 3.7 Hz), 126.1, 124.3, 123.8, 123.5 (q, J = 4.0 Hz), 121.6, 115.1, 73.4, 63.7.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -63.5.

HRMS (ESI, m/z) calcd for C₂₃H₁₃ClF₃NO₃ [M + H]⁺: 444.0609, found: 444.0607.

Following general procedure, 1r (50.4 mg, 0.1 mmol) was used to give 2r (48.6 mg, 99%). Brown solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.2 Hz, 1H), 7.47 (s, 1H), 7.45 – 7.36 (m, 4H), 7.31 (d, J = 7.3 Hz, 2H), 6.89 (d, J = 6.9 Hz, 2H), 6.58 (dd, J = 9.9, 2.4 Hz, 1H), 5.36 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 182.9, 163.3, 141.5, 139.3, 137.0, 135.2, 132.7, 131.7, 131.1, 130.7, 129.84, 129.77, 129.3, 128.9, 126.6 (q, J = 3.6 Hz), 126.1, 123.8, 123.5 (q, J = 4.1 Hz), 121.6, 115.4, 73.4, 64.5.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -63.5.

HRMS (ESI, m/z) calcd for C₂₃H₁₃BrF₃NO₃ [M + H]⁺: 488.0104, found: 488.0097.

Following general procedure, **1s** (44.3 mg, 0.1 mmol) was used to give **2s** (33.9 mg, 80%). Brown solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.1 Hz, 1H), 7.48 – 7.38 (m, 5H), 7.25 (d, J = 7.3 Hz, 2H), 6.68 – 6.60 (m, 1H), 6.48 (d, J = 9.8 Hz, 1H), 6.18 (dd, J = 13.5, 2.6 Hz, 1H), 5.36 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 186.8 (d, J = 15.2 Hz), 169.2 (d, J = 283.4 Hz), 162.9, 137.54, 137.49, 135.2, 133.1, 132.1, 131.1, 130.8, 129.9, 129.6, 128.8, 126.7 (q, J = 3.4 Hz), 126.1, 124.4, 123.5 (q, J = 4.0 Hz), 123.5, 121.7, 113.9 (d, J = 9.5 Hz), 73.3, 60.3 (d, J = 25.0 Hz).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -63.5, -90.9.

HRMS (ESI, m/z) calcd for $C_{23}H_{13}F_4NO_3$ [M + H]⁺: 428.0905, found: 428.0901.

3. Substrate Preparation

The synthesis steps of compounds **1a-1t** were according to reported literature.¹

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.65 – 7.61 (m, 2H), 7.60 – 7.55 (m, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.40 – 7.36 (m, 2H), 7.15 (d, J = 7.8 Hz, 2H), 6.88 – 6.83 (m, 2H), 5.31 (s, 2H), 3.83 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 138.7, 136.9, 132.3, 131.5, 130.0, 129.1, 128.9, 128.6, 128.4, 124.2, 123.9, 119.7, 113.8, 94.2, 86.3, 76.6, 55.4, 21.5.

HRMS (ESI, m/z) calcd for $C_{24}H_{21}NO_3 [M + H]^+$: 372.1594, found: 372.1600.

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 12.1 Hz, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.55 (q, J = 4.8 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.40 – 7.30 (m, 2H), 6.90 – 6.78 (m, 4H), 5.29 (s, 2H), 3.82 (s, 3H), 3.80 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 166.2, 162.4, 159.7, 136.8, 134.1, 133.0, 132.0, 129.9, 128.9, 128.5, 128.1, 124.1, 123.9, 123.3, 114.9, 113.9, 113.7, 94.0, 85.7, 76.4, 55.3, 55.2.

HRMS (ESI, m/z) calcd for $C_{24}H_{21}NO_4$ [M + H]⁺: 388.1544, found: 388.1543.

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 – 7.55 (m, 5H), 7.54 – 7.50 (m, 2H), 7.40 – 7.36 (m, 2H), 7.34 (dd, J = 4.8, 2.4 Hz, 3H), 6.85 (d, J = 8.3 Hz, 2H), 5.32 (s, 2H), 3.82 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 165.9, 162.5, 137.1, 132.3, 131.6, 130.0, 128.9, 128.61, 128.57, 128.5, 128.3, 124.0, 123.6, 122.8, 113.8, 94.0, 86.9, 76.4, 55.4.

HRMS (ESI, m/z) calcd for $C_{23}H_{19}NO_3 [M + H]^+$: 358.1438, found: 358.1437.

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 6.9 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.38 (dd, J = 6.7, 3.3 Hz, 2H), 7.30 (s, 2H), 6.84 (d, J = 8.4 Hz, 2H), 5.28 (s, 2H), 3.82 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 162.5, 137.1, 134.5, 132.8, 132.3, 130.1, 128.9, 128.8, 128.6, 124.0, 123.4, 121.3, 113.8, 92.8, 87.8, 76.3, 55.3.

HRMS (ESI, m/z) calcd for $C_{23}H_{18}CINO_3 [M + H]^+$: 392.1048, found: 392.1041.

White solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.63 (s, 2H), 7.62 – 7.59 (m, 5H), 7.57 (s, 1H), 7.47 – 7.38 (m, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.32 (s, 2H), 3.83 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.6, 137.3, 132.5, 131.9, 130.3, 129.2, 128.9, 128.8, 126.6, 125.2 (q, J = 3.6 Hz), 123.8, 123.1, 113.9, 92.4, 89.2, 76.3, 55.4.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.8.

HRMS (ESI, m/z) calcd for $C_{24}H_{18}F_{3}NO_{3}$ [M + H]⁺: 426.1312, found: 426.1312.

White solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.68 (d, J = 8.3 Hz, 2H), 7.52 – 7.40 (m, 2H), 7.34 – 7.28 (m, 2H), 6.91 (d, J = 8.3 Hz, 2H), 5.19 (s, 2H), 3.85 (s, 3H), 1.46 – 1.38 (m, 1H), 0.87 – 0.81 (m, 2H), 0.80 – 0.74 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) *δ* 162.5, 137.0, 132.3, 129.8, 128.9, 128.5, 127.7, 124.4, 113.8, 98.4, 76.3, 73.2, 55.4, 8.8, 0.2.

HRMS (ESI, m/z) calcd for $C_{20}H_{19}NO_3$ [M + H]⁺: 322.1438, found: 322.1438.

White solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (600 MHz, CDCl₃) δ 8.44 (s, 1H), 7.62 (d, J = 8.8 Hz, 2H), 7.51 (dd, J = 6.8, 3.0 Hz, 2H), 7.46 – 7.42 (m, 2H), 7.35 – 7.32 (m, 3H), 7.20 (d, J = 7.8 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 5.28 (s, 2H), 3.83 (s, 3H), 2.39 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 162.5, 138.7, 134.0, 132.9, 131.6, 130.3, 129.5, 128.9, 128.4, 128.3, 124.2, 123.7, 122.9, 113.8, 93.5, 87.1, 76.3, 55.4, 21.0.

HRMS (ESI, m/z) calcd for $C_{24}H_{21}NO_3$ [M + H]⁺: 372.1594, found: 372.1596.

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (600 MHz, CDCl₃) δ 8.65 (d, J = 43.6 Hz, 1H), 7.66 – 7.62 (m, 2H), 7.37 (d, J = 7.74 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 7.04 – 7.03 (m, 1H), 6.99 (dd, J = 3.8, 1.7 Hz, 1H), 6.86 – 6.82 (m, 2H), 6.01 (dd, J = 4.2, 1.9 Hz, 2H), 5.22 – 5.19 (m, 2H), 3.83 – 3.80 (m, 3H), 2.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 162.4, 148.0, 147.7, 138.4, 131.8, 131.3, 129.1, 128.9, 124.1, 119.8, 117.5, 113.8, 111.5, 110.2, 101.6, 92.7, 86.3, 76.3, 55.3, 21.5. HRMS (ESI, m/z) calcd for C₂₅H₂₁NO₅ [M + H]⁺: 416.1493, found: 416.1490.

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.75 (d, J = 30.2 Hz, 1H), 7.86 (s, 1H), 7.70 – 7.63 (m, 3H), 7.61 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 7.1 Hz, 2H), 7.39 – 7.33 (m, 3H), 6.86 (dd, J = 8.8, 2.3 Hz, 2H), 5.35 (s, 2H), 3.82 (d, J = 2.0 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 166.7, 162.7, 138.1, 132.6, 131.8, 130.2 (q, J = 32.8 Hz), 129.1, 129.0, 128.5, 127.0, 126.38, 126.35, 126.31, 126.27, 125.2 (q, J = 4.4 Hz), 123.8, 122.4, 122.2, 113.9, 96.5, 85.6, 75.8, 55.4.

¹⁹**F NMR** (377 MHz, CDCl₃) *δ* -62.7.

HRMS (ESI, m/z) calcd for $C_{24}H_{18}F_{3}NO_{3}$ [M + H]⁺: 426.1312, found: 426.1309.

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 7.82 (s, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.66 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.2 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.36 (d, J = 6.5 Hz, 3H), 6.85 (d, J = 8.4 Hz, 2H), 5.33 (s, 2H), 3.81 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 166.6, 162.7, 140.9, 131.7, 129.73, 129.70, 129.0, 128.4, 125.0 (q, J = 5.6 Hz), 123.7, 122.7, 122.2, 113.9, 95.6, 85.4, 75.7, 55.3.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.9.

HRMS (ESI, m/z) calcd for $C_{24}H_{18}F_{3}NO_{3}$ [M + H]⁺: 426.1312, found: 426.1312.

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 2.0 Hz, 1H), 7.53 (d, J = 7.3 Hz, 3H), 7.39 – 7.34 (m, 4H), 6.87 (d, J = 8.4 Hz, 2H), 5.28 (s, 2H), 3.84 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 162.6, 135.5, 134.4, 131.9, 131.7, 131.3, 128.9, 128.7, 128.4, 125.3, 123.8, 122.3, 113.9, 95.1, 85.6, 75.7, 55.4.

HRMS (ESI, m/z) calcd for $C_{23}H_{18}CINO_3$ [M + H]⁺: 392.1048, found: 392.1048.

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.86 – 7.82 (m, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.62 (dd, J = 8.1, 1.9 Hz, 1H), 7.57 – 7.51 (m, 3H), 7.48 (d, J = 2.3 Hz, 1H), 7.40 – 7.34 (m, 3H), 6.78 (d, J = 8.5 Hz, 1H), 5.36 (s, 2H), 3.86 (s, 3H), 2.18 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 166.9, 160.9, 140.9, 131.7, 130.9, 130.6, 129.8, 129.5, 129.0, 128.4, 127.1, 126.5, 125.0 (q, J = 4.3 Hz), 124.0, 123.2, 122.2, 109.4, 95.5, 85.4, 75.8, 55.4, 16.1.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.9.

HRMS (ESI, m/z) calcd for $C_{25}H_{20}F_{3}NO_{3}$ [M + H]⁺: 440.1468, found: 440.1475.

White solid. $R_f = 0.4$ (Petroleum ether/EtOAc, 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.84 (s, 1H), 7.83 (s, 1H), 7.71 (d, J = 4.8 Hz, 2H), 7.63 – 7.56 (m, 2H), 7.53 (d, J = 7.1 Hz, 2H), 7.40 – 7.33 (m, 3H), 6.87 (d, J = 8.7 Hz, 1H), 5.34 (s, 2H), 3.91 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 157.9, 131.7, 130.0, 129.1 (q, J = 4.7 Hz), 128.5, 127.2, 125.1, 124.3, 124.1, 122.8, 122.1, 111.5, 95.6, 85.4, 75.8, 56.3.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.9.

HRMS (ESI, m/z) calcd for $C_{24}H_{17}ClF_3NO_3$ [M + H]⁺: 460.0922, found: 460.0915.

White solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.87 (d, J = 18.0 Hz, 2H), 7.73 (d, J = 8.1 Hz, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 6.1 Hz, 2H), 7.41 – 7.34 (m, 3H), 6.85 (d, J = 9.0 Hz, 1H), 5.35 (s, 2H), 3.93 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 165.3, 158.9, 131.7, 129.9, 129.1, 129.0, 128.5, 128.0, 125.0 (q, J = 3.7 Hz), 122.1, 111.8, 111.3, 95.6, 85.4, 75.8, 56.4.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.9.

HRMS (ESI, m/z) calcd for $C_{24}H_{17}BrF_3NO_3$ [M + H]⁺: 504.0417, found: 504.0419.

White solid. $R_f = 0.3$ (Petroleum ether/EtOAc, 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 9.44 (s, 1H), 7.78 (s, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.56 – 7.49 (m, 3H), 7.37 – 7.30 (m, 5H), 5.32 (s, 2H), 3.67 (s, 3H), 2.19 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 166.6, 160.1, 140.8, 135.0, 131.6, 131.2, 130.7, 130.3, 128.9, 128.8 (q, J = 3.8 Hz), 128.3, 127.8, 126.8, 124.8 (q, J = 4.2 Hz), 124.3, 123.6, 122.2, 122.1, 95.5, 85.3, 75.5, 59.5, 15.9.

¹⁹**F NMR** (377 MHz, CDCl₃) *δ* -62.8.

HRMS (ESI, m/z) calcd for $C_{26}H_{22}F_3NO_3$ [M + H]⁺: 454.1625, found: 454.1625.

White solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.85 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.38 (d, J = 5.5 Hz, 3H), 7.26 (s, 1H), 6.74 (s, 1H), 6.66 (d, J = 8.6 Hz, 1H), 5.37 (s, 2H), 3.80 (s, 3H), 2.44 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 161.2, 139.7, 131.7, 129.8, 129.1 (q, J = 3.6 Hz), 129.0, 128.9, 128.5, 125.0 (q, J = 3.3 Hz), 124.1, 122.2, 116.7, 110.8, 95.7, 85.3, 75.8, 55.3, 21.0.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.9.

HRMS (ESI, m/z) calcd for $C_{25}H_{20}F_3NO_3 [M + H]^+$: 440.1468, found: 440.1466.

White solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.92 (s, 1H), 7.84 (s, 1H), 7.76 (s, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.59 – 7.55 (m, 2H), 7.41 – 7.36 (m, 3H), 6.88 (d, J = 2.5 Hz, 1H), 6.80 (dd, J = 8.7, 2.5 Hz, 1H), 5.39 (s, 2H), 3.81 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 161.9, 140.5, 132.1, 132.0, 131.7, 129.8, 129.0, 128.5, 125.0 (q, J = 3.6 Hz), 124.1, 122.2, 115.5, 113.0, 95.7, 85.3, 75.8, 55.7.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.9.

HRMS (ESI, m/z) calcd for $C_{24}H_{17}ClF_3NO_3 [M + H]^+$: 460.0922, found: 460.0912.

White solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.84 (s, 1H), 7.81 – 7.71 (m, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.45 (d, J = 8.6 Hz, 1H), 7.39 (d, J = 3.7 Hz, 3H), 7.08 (d, J = 2.3 Hz, 1H), 6.83 (dd, J = 8.7, 2.4 Hz, 1H), 5.40 (s, 2H), 3.81 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 161.7, 140.5, 131.7, 131.3 (q, J = 5.9 Hz), 131.1, 130.8, 129.1, 129.0, 128.5, 126.4, 125.0 (q, J = 3.8 Hz), 124.1, 122.2, 120.6, 118.7, 113.4, 95.7, 85.3, 75.8, 55.7.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.9.

HRMS (ESI, m/z) calcd for $C_{24}H_{17}BrF_3NO_3 [M + H]^+$: 504.0417, found: 504.0409.

White solid. $R_f = 0.6$ (Petroleum ether/EtOAc, 2:1).

¹**H** NMR (400 MHz, CDCl₃) δ 9.17 (d, J = 12.4 Hz, 1H), 8.02 (t, J = 8.5 Hz, 1H), 7.84 (s, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.63 (d, J = 8.3 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.41 – 7.33 (m, 3H), 6.77 (d, J = 8.7 Hz, 1H), 6.59 (dd, J = 13.9, 2.9 Hz, 1H), 5.38 (s, 2H), 3.84 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 164.0 (d, J = 12.3 Hz), 162.5 (d, J = 15.4 Hz), 160.1, 140.6, 133.04, 132.99, 131.7, 130.9, 130.6, 129.7, 129.0 (q, J = 3.9 Hz), 128.9, 128.4, 125.0 (q, J = 3.6 Hz), 123.9, 122.2, 110.9 (d, J = 2.4 Hz), 101.5 (d, J = 28.6 Hz), 95.5, 85.3, 75.8, 55.8.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.9, -107.3.

HRMS (ESI, m/z) calcd for $C_{24}H_{17}F_{4}NO_{3}$ [M + H]⁺: 444.1218, found: 444.1215.

White solid. $R_f = 0.5$ (Petroleum ether/EtOAc, 2:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.83 (s, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.64 – 7.58 (m, 3H), 7.57 – 7.51 (m, 2H), 7.37 (q, J = 3.5, 3.0 Hz, 3H), 6.61 (d, J = 8.2 Hz, 2H), 5.35 (s, 2H), 3.02 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 167.4, 152.9, 141.2, 131.7, 129.72, 129.68, 129.0 (q, J = 3.6 Hz), 128.9, 128.6, 128.4, 124.9 (q, J = 6.7, 2.3 Hz), 122.3, 117.9, 111.0, 95.5, 85.4, 75.8, 40.0.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.8.

HRMS (ESI, m/z) calcd for $C_{25}H_{21}F_{3}N_{2}O_{2}$ [M + H]⁺: 439.1628, found: 439.1619.

4. In Vitro Antifungal Activities.

Each target compound was dissolved in DMSO to prepare the stock solution (10.0 g/L). The stock solution was added into the PDA medium, and the concentration of target compounds in the medium was 50.0 mg/L. Pure DMSO without the target compounds was utilized as the blank control, and boscalid was coassayed as the reference compound. Fresh dishes with a diameter of 5 mm were taken from the edge of the PDA-cultured fungi colonies and inoculated on the above three PDA media. Each treatment was tested for three replicates, and the antifungal effect was averaged. The relative inhibitory rate I (%) of all the tested compounds was calculated through the equation: I

 $(\%) = [(C - T)/(C - 5)] \times 100$. In this equation, I is the inhibitory rate and C and T are the colony diameter of the blank control (mm) and treatment (mm), respectively.

Mycelia growth of three crop pathogenic fungi and a forest pathogenic fungus after treating with the target compounds on PDA medium as illustrated in the figures (**Supplementary Figure 1**) below.

Supplementary Figure 1-1 S. sclerotiorum

Supplementary Figure 1-2 T. cucumeris

Supplementary Figure 1-3 C. chrysosperma

Supplementary Figure 1-4 C. paradoxa

5. Reference

1. Song, L. *et al.* Intramolecular cascade annulation triggered by C–H activation via rhodium hydride intermediate. *Mol. Catal.* **463**, 30–36 (2019).

6. Spectra

