Supporting Information

Iron-Catalyzed C–S Bond-Forming Reaction via Photo-Induced Ligand to Metal Charge Transfer

Ao-Men Hu, a, # Jia-Lin Tu, a, # Chao Yang, a Lin Guo a,* and Wujiong Xia a,b,*

a State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

A.-M. H. and J.-L.T. contributed equally to this work.

Email: guolin@hit.edu.cn; xiawj@hit.edu.cn

Table of Contents

1. General information .. S2
2. Photochemical reaction setup .. S2
3. General procedures for synthesis of substrates ... S3
4. Optimization of the reaction conditions ... S9
5. General procedures for iron catalyzed LMCT reaction .. S13
6. Mechanistic studies .. S19
7. Characterization of the products ... S35
8. NMR Spectra for the substrates and products .. S80
1. General information

1H NMR (400 MHz), 13C NMR (100 MHz) and 19F NMR (376 MHz) spectra were recorded on a Quantum-I Plus 400 NMR spectrometer with CDCl$_3$ as solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts were reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to CDCl$_3$ at 7.26 ppm (for 1H NMR) and 77.16 ppm (for 13C NMR). HR-MS spectra were recorded on a Waters Xevo G2QTOF/UPLC mass spectrometer using electrospray ionization. EPR experiments were conducted using Bruker Elexsys E580 Spectrometer. All commercially available reagents and solvents were purchased from Energy Chemical and Adamas-beta® and used as received unless otherwise specified.

2. Photochemical reaction setup

Figure S1: Reaction setup

Light source: Purple LEDs was purchased from Shanghai 3S Technology Co., Ltd (390-395 nm), China (Figure S1).
3. General procedures for synthesis of substrates

3.1 Synthesis of substrates

Method A\(^1\):

\[
\text{RSO}_2\text{Na} + \text{RSO}_2\text{Na} \xrightarrow{\text{BF}_3\cdot\text{OEt}_2, \text{CH}_2\text{Cl}_2, 50 \, ^\circ\text{C}, 3 \, \text{h}} \rightarrow \text{R-S-S-R}
\]

The mixture of sodium sulfinate (5 mmol), sodium sulfinate (5 mmol) and BF\(_3\)·OEt\(_2\) (3 equiv) in CH\(_2\)Cl\(_2\) (50 mL) was stirred at 50 °C under air for 3 h at ambient temperature, the reaction mixture was diluted with H\(_2\)O (15 mL) and extracted with CH\(_2\)Cl\(_2\) (3 × 15 mL). The organic extracts were dried over anhydrous Na\(_2\)SO\(_4\). After filtration and evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford the desired product.

Method B\(^2\):

\[
\text{PhSO}_2\text{Na} + \text{R-SH} \xrightarrow{\text{I}_2, \text{Pyridine, DCM, 3 \, h}} \rightarrow \text{R-S-S-Ph}
\]

In a single-necked flask was added thiol (1.00 equiv), pyridine (1.05 equiv), iodine (2.00 equiv) and dichloromethane as solvent. After reaction and stirring for five minutes, added sodium benzenesulfite (1.7 equiv). The mixture was stirred for 3 h in air. The product was purified by silica-gel chromatography (petroleum ether/EtOAc= 10: 1 as eluent).

Method C\(^3\):

\[
\text{R}_1^\text{S-S-R}_2 + \text{PhSO}_2\text{Na} \xrightarrow{\text{I}_2, \text{DCM, rt, 5 \, h}} \rightarrow \text{R}_1^\text{S-S-S-R}_2^\text{Ph}
\]

To a mixture of Disulfide ether (1.0 equiv), sodium benzenesulfinate (3.2 equiv) in DCM (50 mL, 0.2 M) was added I\(_2\) (2.0 equiv) portionwise with stirring. Then the mixture was stirred at room temperature until the disulfide was totally consumed (about
5 h, monitored by TLC). After completion, the mixture was diluted by DCM (50 mL) and saturated aqueous solution of Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3} (about 10 mL) was added with stirring until the color of I\textsubscript{2} disappeared. The organic layer was separated, washed with H\textsubscript{2}O (20 mL × 2) and dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}. After the removal of volatiles \textit{in vacuo}, purification by flash column chromatography (eluting with EA/PE=1:10) afforded production as a yellow solid.

![Chemical Structure](attachment:image.png)

S-phenyl benzenesulfonothioate (S1): Prepared using general procedure A from sodium benzenesulfinate. Yellow oil; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.64 – 7.57 (m, 3H), 7.54 – 7.49 (m, 1H), 7.48 – 7.43 (m, 2H), 7.41 – 7.33 (m, 4H); 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 142.9, 136.6, 133.6, 131.4, 129.4, 128.8, 127.8, 127.6.

![Chemical Structure](attachment:image.png)

S-(4-methoxyphenyl) benzenesulfonothioate (S2): Prepared using general procedure B from sodium benzenesulfinate and 4-methoxybenzenethiol. Colorless oil; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.64 – 7.57 (m, 3H), 7.49 – 7.43 (m, 2H), 7.28 (d, \textit{J} = 8.6 Hz, 2H), 6.87 (d, \textit{J} = 8.7 Hz, 2H), 3.86 (s, 3H); 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 162.3, 142.9, 138.3, 133.5, 128.8, 127.6, 118.5, 115.0, 77.4, 77.0, 76.7, 55.5.

![Chemical Structure](attachment:image.png)

S-(4-fluorophenyl) benzenesulfonothioate (S5): Prepared using general procedure B from sodium benzenesulfinate and 4-fluorobenzenethiol. Yellow oil.1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.63 – 7.53 (m, 3H), 7.48 – 7.41 (m, 2H), 7.35 – 7.28 (m, 2H), 7.05 – 6.98 (m, 2H); 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 166.0, 163.5, 142.6, 138.8 (d, \textit{J} = 9.1
Hz), 134.0, 129.0, 127.5, 123.3 (d, J = 3.0 Hz), 77.5, 77.2, 76; 19F NMR (376 MHz, CDCl$_3$) δ -106.98 (s, 1F).

$\text{S-(2-chlorophenyl) benzenesulfonylthioate (S6):}$ Prepared using general procedure B from 2-chlorobenzenethiol and sodium benzenesulfinate. Colorless; 1H NMR (400 MHz, CDCl$_3$) δ 7.72 (d, J = 7.7, 1.3 Hz, 1H), 7.68 – 7.59 (m, 3H), 7.51 – 7.41 (m, 4H), 7.39 – 7.33 (m, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 143.4, 140.3, 139.6, 134.0, 133.0, 130.3, 129.0, 127.7, 127.5, 127.0.

$\text{S-(3-bromophenyl) benzenesulfonylthioate (S7):}$ Prepared using general procedure B from 3-bromobenzenethiol and sodium benzenesulfinate. Colorless oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.69 – 7.58 (m, 4H), 7.54 – 7.47 (m, 2H), 7.46 – 7.41 (m, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.31 – 7.27 (m, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 142.6, 138.9, 135.1, 134.5, 134.0, 130.8, 129.7, 129.0, 127.6, 122.7.

$\text{S-(benzo[d]thiazol-2-yl) benzenesulfonylthioate (S8):}$ Prepared using general procedure C from 1, 2-bis(benzo[d]thiazol-2-yl)disulfane and sodium benzenesulfinate. Colorless oil; 1H NMR (400 MHz, CDCl$_3$) δ 8.11 – 8.06 (m, 1H), 7.97 – 7.93 (m, 1H), 7.85 – 7.81 (m, 2H), 7.71 – 7.66 (m, 1H), 7.60 – 7.56 (m, 1H), 7.55 – 7.50 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 154.3, 153.2, 143.4, 138.8, 134.6, 129.3, 127.8, 127.0, 126.9, 124.4, 121.5.
S-(4-(tert-butyl) phenyl) benzenesulfonothioate (S10): Prepared using general procedure B from sodium benzenesulfinate and 4-(tert-butyl) benzenethiol. Colorless oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, $J = 8.1$ Hz, 3H), 7.47 – 7.39 (m, 2H), 7.37 (d, $J = 5.6$ Hz, 2H), 7.29 (d, $J = 5.7$ Hz, 2H), 1.33 (s, 9H); 13C NMR (101 MHz, CDCl$_3$) δ 155.2, 143.0, 136.3, 133.6, 128.8, 127.5, 126.6, 124.3, 34.9, 31.1.

S-(3,5-dimethylphenyl) benzenesulfonothioate (S35): Prepared using general procedure A from 3,5-dimethylbenzenethiol. Colorless oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.71 – 7.60 (m, 3H), 7.55 – 7.47 (m, 2H), 7.16 (s, 1H), 6.98 (s, 2H), 2.30 (s, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 142.8, 139.2, 134.2, 133.7, 133.3, 128.7, 127.8, 127.0, 21.1.

S-(2-methoxyphenyl) benzenesulfonothioate (S42): Prepared using general procedure A from 2-methoxybenzenethiol and sodium benzenesulfinate. Colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.63 – 7.49 (m, 4H), 7.48 – 7.32 (m, 2H), 6.99 – 6.89 (m, 1H), 6.76 (d, $J = 8.3$ Hz, 1H), 3.40 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 159.9, 144.2, 139.5, 133.97, 133.3, 128.5, 127.5, 121.3, 115.2, 111.3, 55.4.

56
1H NMR (400 MHz, CDCl$_3$) δ 7.89 (d, $J = 7.8$ Hz, 2H), 7.82 (d, $J = 8.6$ Hz, 1H), 7.77 (d, $J = 8.0$ Hz, 1H), 7.66 – 7.52 (m, 5H), 7.45 – 7.37 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 142.9, 137.6, 134.1, 133.7, 133.3, 131.8, 129.2, 128.9, 128.4, 128.3, 127.8, 127.6, 127.0, 124.9.

S-(2-methylfuran-3-yl) benzenesulfonothioate (S47): Prepared using general procedure A from 2-methylfuran-3-thiol and sodium benzenesulfinate. Brown oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.66 (d, $J = 8.3$ Hz, 2H), 7.62 (d, $J = 8.0$ Hz, 1H), 7.54 – 7.43 (m, 2H), 6.26 (s, 1H), 1.93 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 160.4, 142.7, 141.6, 133.8, 129.1, 127.4, 115.2, 105.3, 11.3.

S-(4-(trifluoromethyl)phenyl)-4-(trifluoromethyl)benzenesulfonothioate (S60): Prepared using general procedure A from sodium 4-(trifluoromethyl)benzenesulfinic acid. Colorless oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.81 – 7.73 (m, 4H), 7.68 (d, $J = 8.1$ Hz, 2H), 7.61 – 7.54 (m, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 146.1, 136.7 (s), 135.3 (q, $J = 33.9$, 8.9 Hz), 133.7 (q, $J = 32.7$, 11.7 Hz), 131.6, 127.9, 126.5 (q, $J = 3.6$ Hz), 126.3 (q, $J = 6.8$, 3.2 Hz), 124.4 (q, $J = 36.5$, 18.1 Hz), 121.7 (q, $J = 39.2$, 20.0 Hz); 19F NMR (376 MHz, CDCl$_3$) δ -63.08 (s, 3F), -63.19 (s, 3F).
S-(p-tolyl) 4-methylbenzenesulphonothioate (S61): Prepared using general procedure A from sodium 4-methylbenzenesulfinate. Colorless oil; **\(^1\)H NMR (400 MHz, CDCl\(_3\))** \(\delta 7.49\) (d, \(J = 7.8\) Hz, 2H), 7.31 – 7.26 (m, 2H), 7.25 (d, \(J = 8.3\) Hz, 2H), 7.17 (d, \(J = 7.8\) Hz, 2H), 2.45 (s, 3H), 2.41 (s, 3H); **\(^13\)C NMR (101 MHz, CDCl\(_3\))** \(\delta 144.6, 142.0, 140.4, 136.5, 130.2, 129.4, 127.6, 124.6, 26.9, 21.6.**

![Chemical Structure](image)

S-(thiophen-2-yl) benzenesulphonothioate (S67): Prepared using general procedure B from sodium benzenesulfinic acid and thiophene-2-thiol. Brown oil.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.75 - 7.62\) (m, 4H), 7.54 – 7.47 (m, 2H), 7.16 (d, \(J = 3.7\) Hz, 1H), 7.12 – 7.07 (m, 1H); **\(^13\)C NMR (101 MHz, CDCl\(_3\))** \(\delta 142.0, 139.5, 135.4, 134.0, 129.05, 128.4, 127.8, 124.9.**
4. Optimization of the reaction conditions

Table S1. Optimization of Alkyl decarboxylation thioetherification

<table>
<thead>
<tr>
<th>Entry</th>
<th>Fe catal</th>
<th>Solvent</th>
<th>Base</th>
<th>Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>b</sup></td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (10 %)</td>
<td>6 h</td>
<td>51%</td>
</tr>
<tr>
<td>2</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (10 %)</td>
<td>6 h</td>
<td>68%</td>
</tr>
<tr>
<td>3</td>
<td>Fe(acac)<sub>3</sub></td>
<td>MeCN</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (10 %)</td>
<td>6 h</td>
<td>61%</td>
</tr>
<tr>
<td>4</td>
<td>Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub></td>
<td>MeCN</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (10 %)</td>
<td>6 h</td>
<td>21%</td>
</tr>
<tr>
<td>5</td>
<td>Fe(OTf)<sub>3</sub></td>
<td>MeCN</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (10 %)</td>
<td>6 h</td>
<td>14%</td>
</tr>
<tr>
<td>6</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>toluene</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (10 %)</td>
<td>6 h</td>
<td>86%</td>
</tr>
<tr>
<td>7</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>DCE</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (10 %)</td>
<td>6 h</td>
<td>11%</td>
</tr>
<tr>
<td>8</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>DCM</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (10 %)</td>
<td>6 h</td>
<td>N.R.</td>
</tr>
<tr>
<td>9</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>THF</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (10 %)</td>
<td>6 h</td>
<td>28%</td>
</tr>
<tr>
<td>10</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (50 %)</td>
<td>6 h</td>
<td>89%</td>
</tr>
<tr>
<td>11</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (80 %)</td>
<td>6 h</td>
<td>86%</td>
</tr>
<tr>
<td>12</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (100 %)</td>
<td>6 h</td>
<td>84%</td>
</tr>
<tr>
<td>13</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>CH<sub>3</sub>COONa (50 %)</td>
<td>6 h</td>
<td>44%</td>
</tr>
<tr>
<td>14</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>NaOH (50 %)</td>
<td>6 h</td>
<td>78%</td>
</tr>
<tr>
<td>15</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>NaHCO<sub>3</sub> (50 %)</td>
<td>6 h</td>
<td>41%</td>
</tr>
<tr>
<td>16</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>K<sub>2</sub>CO<sub>3</sub> (50 %)</td>
<td>6 h</td>
<td>91%</td>
</tr>
<tr>
<td>17</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>KOH (50 %)</td>
<td>6 h</td>
<td>34%</td>
</tr>
<tr>
<td>18</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>CH<sub>3</sub>COOK (50 %)</td>
<td>6 h</td>
<td>51%</td>
</tr>
<tr>
<td>19</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>KF (50 %)</td>
<td>6 h</td>
<td>N.R.</td>
</tr>
<tr>
<td>20</td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>CsCO<sub>3</sub> (50 %)</td>
<td>6 h</td>
<td>54%</td>
</tr>
<tr>
<td>22<sup>d</sup></td>
<td>Fe(NO<sub>3</sub>)·9H<sub>2</sub>O</td>
<td>MeCN</td>
<td>Na<sub>2</sub>CO<sub>3</sub> (50 %)</td>
<td>6 h</td>
<td>N.R.</td>
</tr>
</tbody>
</table>

^b Reaction run with base added 10 min after Fe catalyst.

^d Reaction run with base added 30 min after Fe catalyst.
Table S2. Optimization of Alkyl decarboxylation thioetherification

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Base</th>
<th>Addition</th>
<th>Solvent</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe(NO₃)₃·9H₂O</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>70%</td>
</tr>
<tr>
<td>2</td>
<td>Fe(acac)₃</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>65%</td>
</tr>
<tr>
<td>3</td>
<td>FeCl₃</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>73.4%</td>
</tr>
<tr>
<td>4</td>
<td>Fe₂(SO₄)₃</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>N.D.</td>
</tr>
<tr>
<td>5</td>
<td>Fe(NO₃)₃</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>69%</td>
</tr>
<tr>
<td>6</td>
<td>FeBr₃ (10 mol%)</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>94%</td>
</tr>
<tr>
<td>7</td>
<td>FeBr₃ (5 mol%)</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>80%</td>
</tr>
<tr>
<td>8</td>
<td>FeBr₃ (15 mol%)</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>84%</td>
</tr>
<tr>
<td>9</td>
<td>FeBr₃ (20 mol%)</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>79%</td>
</tr>
<tr>
<td>10</td>
<td>FeBr₃ (10 mol%)</td>
<td>Na₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>80%</td>
</tr>
<tr>
<td>11</td>
<td>FeBr₃ (10 mol%)</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>94%</td>
</tr>
<tr>
<td>12</td>
<td>FeBr₃ (10 mol%)</td>
<td>Na₂PO₄</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>23%</td>
</tr>
<tr>
<td>13</td>
<td>FeBr₃ (10 mol%)</td>
<td>NaF</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>82%</td>
</tr>
<tr>
<td>14</td>
<td>FeBr₃ (10 mol%)</td>
<td>tBuONa</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>64%</td>
</tr>
<tr>
<td>15</td>
<td>FeBr₃ (10 mol%)</td>
<td>K₂CO₃</td>
<td>nBu₄NBr (40%)</td>
<td>MeCN</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

*a Reaction conditions: 1 (0.40 mmol, 2 equiv), 2 (0.20 mmol, 1.0 equiv.), Metal catalyst (10 mol%), K₂CO₃ (50 mol%) and tBuNBr (40 mol%) in CH₃CN (2 mL, 0.1 M), 35 °C, 390 nm purple LEDs, N₂ asmopheras as internal standard. *b Isolated yield. *c The reaction proceeds in dark.
Table S3. Optimization of C-H thioetherification reactions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Metal catalyst</th>
<th>Solvent</th>
<th>Addition</th>
<th>Yield(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>DCM</td>
<td>\</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>DCE</td>
<td>\</td>
<td>8%</td>
</tr>
<tr>
<td>3</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>MeCN</td>
<td>\</td>
<td>74%</td>
</tr>
<tr>
<td>4</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>THF</td>
<td>\</td>
<td>22%</td>
</tr>
<tr>
<td>5</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>Acetone</td>
<td>\</td>
<td>33%</td>
</tr>
<tr>
<td>6</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>H(_2)O</td>
<td>\</td>
<td>N.R</td>
</tr>
<tr>
<td>7</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>MeCN:Acetone=1:1</td>
<td>\</td>
<td>51%</td>
</tr>
<tr>
<td>8</td>
<td>Fe(Br(_3)) (10 mol%)</td>
<td>MeCN</td>
<td>\</td>
<td>N.R</td>
</tr>
<tr>
<td>9</td>
<td>Fe(Cl(_3)) (5 mol%)</td>
<td>MeCN</td>
<td>\</td>
<td>70%</td>
</tr>
<tr>
<td>10</td>
<td>Fe(Cl(_3)) (15 mol%)</td>
<td>MeCN</td>
<td>\</td>
<td>72%</td>
</tr>
<tr>
<td>11</td>
<td>Fe(Cl(_3)) (20 mol%)</td>
<td>MeCN</td>
<td>\</td>
<td>68%</td>
</tr>
<tr>
<td>12</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>MeCN</td>
<td>LiCl (10%)</td>
<td>91%</td>
</tr>
<tr>
<td>13</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>MeCN</td>
<td>TBAC (10%)</td>
<td>84%</td>
</tr>
<tr>
<td>14</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>MeCN</td>
<td>HCl (10%)</td>
<td>70%</td>
</tr>
<tr>
<td>15(^c)</td>
<td>Fe(Cl(_3)) (10 mol%)</td>
<td>MeCN</td>
<td>\</td>
<td>N.R</td>
</tr>
</tbody>
</table>

\(^a\)Reaction conditions: alkane substrate (2.0 mmol, 10.0 equiv.), thiosulfonate (0.2 mmol, 1.0 equiv.), Fe catalyst (10 mol%) in solevnt (2 mL, 0.1 M), 390 nm purple LEDs, N\(_2\) atmophere.\(^b\)Isolated yield.\(^c\)The reaction proceeds in dark.
We initially attempted the decarboxylative thiolation reaction using benzoic acid and its derivatives. However, for substrates without substitution or containing electron-donating groups, the reaction did not proceed at all. Traces of product were obtained when using trifluoromethyl benzoic acid as the substrate, while the use of pentafluorobenzoic acid gave less than 5% yield of the desired product. Following these unsuccessful attempts, we then considered utilizing 2-quinolinecarboxylic acid as the substrate for further investigations.
5. General procedures for iron catalyzed LMCT reaction

General procedure 1: To a 25 mL quartz tube equipped with a magnetic stir bar, carboxylic acid (0.4 mmol, 2.0 equiv.), 2 (0.2 mmol, 1.0 equiv.), Fe(NO$_3$)$_3$·9H$_2$O (8.0 mg, 10 mol%) and CH$_3$CN (2 mL) were added. The resulting mixture was stirred in nitrogen atmosphere under a purple LEDs and irradiated for 6 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel.

![Figure S2. Before and after the photochemical reaction](image)

General procedure 2: To a 25 mL quartz tube equipped with a magnetic stir bar, The 2 (0.2 mmol, 1.0 equiv.), Pyridine carboxylic acid (0.2 mmol, 1.0 equiv.), FeBr (7.0 mg,
10 mol%), Tetrabutylammonium bromide (25.7 mg, 40 %), K₂CO₃ (13.8 mg, 50 mol%), and CH₃CN (2 mL) were added. The resulting mixture was stirred in Air under a purple LEDs and irradiated for 12 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel.

Figure S3. Before and after photochemical reaction

General procedure 3: To a 25 mL quartz tube equipped with a magnetic stir bar, The alkane substrate (2.0 mmol, 10.0 equiv.), thiosulfonate (0.2 mmol, 1.0 equiv.), FeCl₃ (3.2 mg, 10 mol%), LiCl (0.85 mg, 10 mol%) and CH₃CN (2 mL) were added. The resulting mixture was stirred in nitrogen atmosphere under a purple LEDs and irradiated for 6 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel.
General procedure 4: To a 25 mL quartz tube equipped with a magnetic stir bar, the alkane substrate (2.0 mmol, 10.0 equiv.), thiosulfonate (0.2 mmol, 1.0 equiv.), FeCl₃ (3.2 mg, 10 mol%), LiCl (0.85 mg, 10 mol%) and CH₃CN (2 mL) were added. The resulting mixture was stirred in air under a purple LEDs and irradiated for 8 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel.
General procedure 5: To a 25 mL quartz tube equipped with a magnetic stir bar, the corresponding alkane (2 mmol, 10.0 equiv.), DABSO (1, 4-Diazabicyclo[2.2.2]octane-1,4-diium-1,4-disulfinate, 0.2 mmol, 1.0 equiv.), NFSI (N-Fluorobenzenesulfonimide, 0.4 mmol, 2.0 equiv) FeCl₃ (3.2 mg, 10 mol%) and CH₃CN (2 mL) were added. The resulting mixture was stirred in N₂ under a purple LEDs and irradiated for 12 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel.

Scale-up synthesis of compound 39

To a 100 mL Two-necked flask equipped with a magnetic stir bar, Quinaldic acid (1.0 g, 6 mmol, 1.0 equiv.), S-phenyl benzenesulfonothioate (1.50 g, 6 mmol, 1.0 equiv.), FeBr₃ (88.5 mg, 5 mol%), tetrabutylammonium bromide (772.8 mg, 40 mol%) and CH₃CN (50 mL) were added. The resulting mixture was stirred in N₂ under a 390 nm
LEDs and irradiated for 36 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography to give **40** (881.6 mg, 62% yield) as a yellow oil.

Figure S7. Gram-scale pyridine thioetherification photoreaction

Scale-up synthesis of compound 62

![Reaction Scheme]

To a 100 mL Two-necked flask equipped with a magnetic stir bar, cyclohexane (50 mmol, 10.0 equiv.), S-phenylbenzenesulfonate (2.5 g, 10 mmol, 1.0 equiv.), FeCl₃ (82.1 mg, 5 mol%), LiCl (21.2 mg, 5 mol%) and CH₃CN (50 mL) were added. The resulting mixture was stirred in N₂ under a 390 nm LEDs and irradiated for 24 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography to give **62** (1.49 g, 78% yield) as a yellow oil.
Figure S8. Gram-scale alkane thioetherification photoreaction
6. Mechanistic studies

6.1 Ring-opening experiments

General procedure: To a 25 mL quartz tube equipped with a magnetic stir bar, 104 (0.2 mmol, 1.0 equiv.), thiosulfonate (0.2 mmol, 1.0 equiv.), Fe(NO$_3$)$_3$·9H$_2$O (8.0 mg, 10 mol%), K$_2$CO$_3$ (50 mol%) and CH$_3$CN (2 mL) were added. The resulting mixture was stirred in N$_2$ under a 390 nm LEDs and irradiated for 5 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel.

To probe the mechanism of the reaction, cyclopropylacetic acid (104) was employed as the substrate, which afforded the ring-opening product (105) in 52% yield. The result demonstrated that (104) underwent decarboxylation, releasing one molecule of carbon dioxide and generating the corresponding carbon radical intermediate. This then triggered a ring-opening process.

but-3-en-1-yl(4-methoxyphenyl)sulfane (105): 1H NMR (400 MHz, CDCl$_3$) δ 7.39 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 5.91 – 5.81 (m, 1H), 5.15 – 5.05 (m, 2H), 3.84 (s, 3H), 2.91 (t, J = 7.1 Hz, 2H), 2.40 – 2.32 (m, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 136.6, 133.4, 126.3, 126.0, 116.1, 114.5, 55.3, 35.2, 33.6.

1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 105
13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 105
6.2 The decarboxylation-oxidation experiment

General procedure: To a 25 mL quartz tube equipped with a magnetic stir bar, The 107/110 (0.2 mmol, 1.0 equiv.), 2 (0.2 mmol, 1.0 equiv.), Fe(NO₃)₃·9H₂O (8.0 mg, 10 mol%), K₂CO₃ (50 mol%) and CH₃CN (2 mL) were added. The resulting mixture was stirred in air under LEDs and irradiated for 5 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel. Attempts at oxidizing the thioether to the corresponding sulfoxide utilizing atmospheric oxygen were unsuccessful, with the anticipated product undetected. As anticipated, experimentation revealed the generation of a highly reactive carbon-centered radical species via acid-mediated decarboxylation. Owing to the inherent instability of the radical intermediate, rapid oxidation and subsequent transformations yielded aldehyde products. This rationalized the non-generation of the decarboxylated thioether product.

4-bromobenzaldehyde (107): 1H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.80 – 7.75 (m, 2H), 7.74 – 7.69 (m, 2H). 13C NMR (101 MHz, CDCl₃) δ 191.1, 135.0, 132.4,
$^{131.0, 129.8}$.

1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 107

^{13}C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 107
2-phenylacetaldehyde (110): 1H NMR (400 MHz, CDCl$_3$) δ 9.83 (s, 1H), 7.34 – 7.29 (m, 2H), 7.24 – 7.20 (m, 3H), 2.97 (t, $J = 7.5$ Hz, 2H), 2.82 – 2.76 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 201.6, 140.3, 128.6, 128.3, 126.3, 45.3, 28.1.

Spectral data is in agreement with the literature4.

1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 111

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 110
6.3 Traditional photocatalyst catalyzed reactions

To underscore the distinctness of the visible light-induced iron-catalyzed decarboxylation transformation, a selection of prevalent photoredox catalysts including \(\text{Ir}[\text{dF}(\text{CF}_3)\text{ppy}]_2(\text{dtbpy})\text{PF}_6 \), \(\text{Ru(bpy)}_3(\text{PF}_6)_2 \), Eosin Y, and 4-CzIPN were employed to perform the reaction. The outcomes of these experiments revealed that in the presence of these catalytic systems, the anticipated products could only be furnished in measly amounts.

<table>
<thead>
<tr>
<th>entry</th>
<th>Fe cat.</th>
<th>(E_{1/2}) (*P/P, V vs. SCE)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{Ir}[\text{dF}(\text{CF}_3)\text{ppy}]_2(\text{dtbpy})\text{PF}_6)</td>
<td>1.21</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>(\text{[Ru(bpy)}_3(\text{PF}_6)_2)</td>
<td>0.77</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>Eosin Y</td>
<td>0.83</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>4-CzIPN</td>
<td>1.35</td>
<td>trace</td>
</tr>
</tbody>
</table>

6.4 Kinetic isotopic effect (KIE) experiment

Thioether KIE experiment: To a 10 mL oven-dried round-bottom Schlenk bottle equipped with a magnetic stir bar, \(S \)-phenyl benzenesulfonothioate (0.2 mmol, 1.0 equiv.), \(\text{FeCl}_3 \) (3.2mg, 10 mol %), \(\text{LiCl} \) (0.85mg, 10 mol%), were added. \(\text{CH}_3\text{CN} \) (2 mL) and cyclohexane (1.0 mmol, 5.0 equiv.), and cyclohexane-\(d_{12} \) (1.0 mmol, 5.0 equiv.) were then added under argon atmosphere. The resulting mixture was sealed and then
subjected to freeze-pump-thaw for three times. After that, the resulting mixture was stirred in N\(_2\) under LEDs and irradiated for 2.5 hours. The temperature was maintained at 35 °C when the 390 nm LED light was on. After the reaction was finished (monitored by TLC), the mixture were removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the mixture of products 62 and 62\(\text{-d}_{II}\) in combined 70% yield. Comparing the \(^1\)H NMR spectra, we found the ratio of 62:62\(\text{-d}_{II}\) was 1:1, so the intermolecular KIE value was 1.0.

Sulfoxide KIE experiment:

To a 25ml over-dired quartz tube equipped with a magnetic stir bar was added S-phenyl benzenesulfonothioate (50.0 mg, 1 equiv), FeCl\(_3\) (3.2 mg, 10 mol%), LiCl (0.85 mg, 10 mol%), cyclohexane (84 mg, 5.0 equiv), cyclohexane-\(d_{12}\) (96 mg, 5.0 equiv) and CH\(_3\)CN (2 mL). The resulting mixture was stirred in nitrogen under a purple 390 nm LEDs and irradiated for 4 hours. The mixture were removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the mixture of products 85 and 85\(\text{-d}_{II}\) in combined 62% yield. Comparing the \(^1\)H NMR spectra, we found the ratio of 85:85\(\text{-d}_{II}\) was 1:1, so the intermolecular KIE value was 1.0.

6.5 Control experiment for thioether

a) Radical trapping experiment
To a 25 mL quartz tube equipped with a magnetic stir bar, cyclohexane (168 mg, 10.0 equiv), 2 (0.2 mmol, 1.0 equiv.), FeCl₃ (3.2 mg, 10 mol%), LiCl (0.85 mg, 10 mol%), TEMPO (2,2,6,6-Tetramethylpiperidinooxy, 0.4 mmol, 2.0 equiv.) and CH₃CN (2 mL) were added. The mixture was strictly deaerated and irradiated for 5 hours by purple LEDs (λ=390 nm). The addition of TEMPO greatly inhibited the reaction. This result indicates that TEMPO suppressed the reaction progress, demonstrating that the reaction proceeded via a radical process.

b) The effect of oxidation state of the iron catalyst on the reaction

<table>
<thead>
<tr>
<th>entry</th>
<th>Oxidant</th>
<th>yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NFSI</td>
<td>65%</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>N.D</td>
</tr>
</tbody>
</table>

^a Isolated yield.

Standard conditions. cyclohexane (168 mg, 10.0 equiv), 2 (0.2 mmol, 1.0 equiv.), and FeCl₃ (10 mol%) were added into MeCN (2 mL). The mixture was strictly deaerated and irradiated for 5 hours by purple LEDs (λ=390 nm). The product was separated by column chromatography. When ferrous chloride was used as catalyst to participate in the reaction, the target product was not detected, but the corresponding target product was detected when adding NFSI (126 mg, 1.0 equiv). The above results suggested that the coordination of high valent iron species with chloride is the key to generating free chlorine radicals, which would undergo the following HAT process.
c) The effect of chlorine source on the reaction

![Chemical reaction diagram](image)

Standard conditions. Cyclohexane (168 mg, 10.0 equiv), 2 (0.2 mmol, 1.0 equiv.) and FeCl₃ (10 mol%) were added into MeCN (2 mL). The mixture was strictly deaerated and irradiated for 6 hours by purple LEDs (λ=390 nm). The product was separated by column chromatography.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Fe Catalyst</th>
<th>“Cl” source</th>
<th>Yielda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe(NO₃)₃·9H₂O</td>
<td>LiCl</td>
<td>41%</td>
</tr>
<tr>
<td>2</td>
<td>Fe(OTf)₃</td>
<td>LiCl</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>Fe(acac)₃</td>
<td>LiCl</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>Fe(NO₃)₃·9H₂O</td>
<td>/</td>
<td>N.D</td>
</tr>
</tbody>
</table>

a Isolated yield.

This indicates that under visible light irradiation, the synergistic effect of ferrous ions and chloride ions led to an electron transfer process from metal to chloride ligands (a ligand-to-metal charge transfer), which resulted in the cleavage of the Fe-Cl bond to generate chlorine radicals. The chlorine radicals then proceeded to abstract hydrogen atoms from the substrate via hydrogen atom transfer.
Proposed mechanism

![Diagram of Proposed mechanism]

Figure S9. Possible mechanism of decarboxylative thiolation

![Diagram of Figure S10. Possible mechanism of C(sp³)-H thiolation]

6.6 UV-vis absorption study

UV-visible absorption spectra were collected on a SPECORD 200 PLUS. Fe(NO₃)₃ · 9H₂O, Quinolinecarboxylic acid were prepared 1.0×10⁻⁵ mol/L in CH₃CN (Figure S11). In the spectrum of Fe(NO₃)₃ · 9H₂O with Quinolinecarboxylic acid, a
broad absorption peak was observed around 350 nm, indicative of photochemical activity under purple LED light irradiation.

![Absorption spectrum](image)

Figure S11. UV-vis absorption study

6.7 Derivatization study

6.7.1 Preparation of Sulfoxide

To a 25 mL round bottom flask equipped with a magnetic stir bar, sulfide (0.1 mmol,
1.0 equiv.), NFSI (0.2 mmol, 2.0 equiv.), and water (1 mL) were added. The resulting mixture was stirred in air and react for 6 hours. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel.

6.7.2 Sulfone preparation

To a 25 mL round bottom flask equipped with a magnetic stir bar, sulfide (0.1 mmol, 1.0 equiv.), mCPBA (0.3 mmol, 3.0 equiv.), and CH$_2$Cl$_2$ were added. The resulting mixture was stirred in air and react for overnight. After the reaction was finished (monitored by TLC), the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel.

\[
\text{1,4-dimethyl-2-((4-methyl-4-(phenylsulfinyl)pentyl)oxy)benzene (113): } \quad \text{H NMR} \ (400 \text{ MHz, Chloroform-d}) \ \delta \ 7.65 - 7.56 \text{ (m, 2H), 7.53 - 7.45 \text{ (m, 3H), 7.00 \text{ (d, J = 7.5 Hz, 1H), 6.67 \text{ (d, J = 7.4 Hz, 1H), 6.61 \text{ (s, 1H), 4.03 - 3.87 \text{ (m, 2H), 2.31 \text{ (s, 3H), 2.13 \text{ (s, 3H), 2.00 - 1.87 \text{ (m, 2H), 1.86 - 1.76 \text{ (m, 1H), 1.72 - 1.60 \text{ (m, 1H), 1.19 \text{ (s, 3H), 1.14 \text{ (s, 3H); } } \text{C NMR (101 MHz, CDCl3) \ \delta \ 156.8, 139.6, 136.6, 131.3, 130.4, 128.5, 126.6, 123.6, 120.9, 112.0, 67.7, 58.8, 32.4, 24.1, 21.5, 20.1, 20.0, 15.9.}
\]
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 113

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 113
(phenylsulfonyl)cyclooctane (114): 1H NMR (400 MHz, CDCl3) δ 7.91 – 7.84 (m, 2H), 7.69 – 7.60 (m, 1H), 7.60 – 7.51 (m, 2H), 3.16 – 3.07 (m, 1H), 2.17 – 2.05 (m, 2H), 1.81 – 1.61 (m, 4H), 1.60 – 1.37 (m, 8H); 13C NMR (101 MHz, CDCl3) δ 137.9, 133.5, 129.1, 129.0, 64.3, 26.3, 26.1, 25.9, 25.2.

1H NMR spectrum (400 MHz, CDCl3, 23 °C) of 114
13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 114
7. Characterization of the products

neopentyl(phenyl)sulfane (3): Followed the general procedure 1 with S-phenyl benzenesulphonothioate (50.0 mg, 0.2 mmol) and 3,3-dimethylbutanoic acid (46.4 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 32.7 mg of the title compound (Colorless oil); 91% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.31 (m, 2H), 7.31 – 7.25 (m, 2H), 7.20 – 7.12 (m, 1H), 2.92 (s, 2H), 1.06 (s, 9H): 13C NMR (101 MHz, CDCl$_3$) δ 138.4, 128.8, 128.7, 125.4, 48.5, 32.4, 29.0. HRMS (ESI) calcd C$_{11}$H$_{16}$S [M + H]$^+$: 181.1045, found: 181.1044.

4-methoxyphenyl(neopentyl)sulfane (4): Followed the general procedure 1 with S-(4-methoxyphenyl) benzenesulphonothioate (56.0 mg, 0.2 mmol) and 3,3-dimethylbutanoic acid (46.4 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 22.2 mg of the title compound (Colorless oil); 91% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.46 – 7.33 (m, 2H), 6.92 – 6.77 (m, 2H), 3.83 (d, J = 4.4 Hz, 3H), 2.86 (s, 2H), 1.05 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 158.4, 132.5, 128.8, 114.5, 55.3, 51.1, 32.6, 29.0; HRMS (ESI) calcd C$_{11}$H$_{13}$O$_2$ [M + H]$^+$: 210.1078, found: 210.1079.

4-fluorophenyl(neopentyl)sulfane (5): Followed the general procedure 1 with S-(4-fluorophenyl) benzenesulphonothioate (54.0 mg, 0.2 mmol) and 3,3-dimethylbutanoic acid (46.4 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as
eluent) to give 22.1 mg of the title compound (Colorless oil); 56% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.33 (m, 2H), 7.06 – 6.91 (m, 2H), 2.91 (s, 2H), 1.06 (s, 9H); 13C NMR (101 MHz, CDCl$_3$) δ 161.4 (d, $J = 245.3$ Hz), 133.3, 131.71 (d, $J = 7.8$ Hz), 115.8 (d, $J = 21.8$ Hz), 50.1, 32.6, 29.0; 19F NMR (376 MHz, CDCl$_3$) δ -116.56 (s, 1F); HRMS (ESI) calcd C$_{11}$H$_{15}$FS [M + H]$^+$: 199.0951, found: 199.0955.

(2-chlorophenyl)(neopentyl)sulfane (6): Followed the general procedure 1 with S-(2-chlorophenyl) benzenesulfonothioate (56.6 mg, 0.2 mmol) and 3,3-dimethylbutanoic acid (46.4 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 27.4 mg of the title compound (Colorless oil); 64% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.38 (d, $J = 7.9$ Hz, 1H), 7.33 (d, $J = 7.8$ Hz, 1H), 7.23 (t, $J = 7.3$ Hz, 1H), 7.14 – 7.08 (m, 1H), 2.90 (s, 2H), 1.12 (s, 9H); 13C NMR (101 MHz, CDCl$_3$) δ 137.4, 133.4, 129.5, 128.2, 127.0, 126.0, 47.2, 32.2, 29.2; HRMS (ESI) calcd C$_{11}$H$_{15}$ClS [M + H]$^+$: 215.0656, found: 215.0654.

(3-bromophenyl)(neopentyl)sulfane (7): Followed the general procedure 1 with S-(2-chlorophenyl) benzenesulfonothioate (65.4 mg, 0.2 mmol) and 3,3-dimethylbutanoic acid (46.4 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 34.8 mg of the title compound (Colorless oil); 53% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.50 – 7.48 (m, 1H), 7.31 – 7.28 (m, 2H), 7.17 – 7.12 (m, 1H), 2.91 (s, 2H), 1.08 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 141.0, 130.8, 130.0, 128.3, 127.0, 122.7, 48.1, 32.5, 29.1; HRMS (ESI) calcd C$_{11}$H$_{15}$BrS [M + H]$^+$: 259.0151, found: 259.0148.
2-(neopentylthio)benzo[d]thiazole (8): Followed the general procedure 1 with S-(benzo[d]thiazol-2-yl) benzenesulfonothioate (61.2 mg, 0.2 mmol) and 3,3-dimethylbutanoic acid (46.4 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 21.8 mg of the title compound (Colorless oil); 46% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.90 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.44 (t, J = 11.3, 4.0 Hz, 1H), 7.35 – 7.30 (m, 1H), 3.43 (s, 2H), 1.13 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 168.3, 153.0, 135.1, 126.0, 121.3, 120.9, 47.3, 32.4, 28.8; HRMS (ESI) calcd C$_{12}$H$_{15}$NS$_2$ [M + H]$^+$: 239.0719, found: 239.0722.

(4-methoxyphenyl)(methyl)sulfane (9): Followed the general procedure 1 with S-(4-methoxyphenyl) benzenesulfonothioate (56.0 mg, 0.2 mmol) and acetic acid (24 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether : EA= 30: 1) to give 21.8 mg of the title compound (Colorless oil); 84% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.31 (d, J = 8.8 Hz, 2H), 6.93 – 6.85 (m, 2H), 3.83 (s, 3H), 2.48 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 158.2, 130.2, 128.78, 114.6, 55.4, 18.1; HRMS (ESI) calcd C$_8$H$_{10}$OS [M + H]$^+$: 155.0525, found: 155.0524.

(4-(tert-butyl)phenyl)(ethyl)sulfane (10): Followed the general procedure 1 with S-(4-(tert-butyl)phenyl) benzenesulfonothioate (61.2 mg, 0.2 mmol) and propionic acid (29.6 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 36.5 mg of the title compound (Colorless oil); 94% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.38 – 7.31 (m, 4H), 2.97 (q, J = 7.3, 1.4 Hz, 2H), 1.35 (M, 3H), 1.34 (S, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 149.1, 132.9, 129.3, 125.9, 34.4, 31.3, 28.1,
14.5; **HRMS (ESI)** calcd C_{12}H_{18}S [M + H]^+: 195.1202, found: 195.1199.

(4-(tert-butyl)phenyl)(isobutyl)sulfane (11): Followed the general procedure 1 with S-(4-(tert-butyl)phenyl) benzenesulfonylthioate (61.2 mg, 0.2 mmol) and 3-methylbutanoic acid (40.8 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 21.3 mg of the title compound (Colorless oil); 48% yield; **^1H NMR (400 MHz, CDCl₃)** δ 7.37 – 7.29 (m, 4H), 2.83 (d, J = 6.9 Hz, 2H), 1.97 – 1.85 (m, 1H), 1.36 (s, 10H), 1.07 (d, J = 6.6 Hz, 6H); **^13C NMR (101 MHz, CDCl₃)** δ 148.9, 133.7, 129.0, 125.9, 43.0, 34.4, 31.3, 28.3, 22.1; **HRMS (ESI)** calcd C_{14}H_{22}S [M + H]^+: 223.1515, found: 223.1515.

(4-methylbenzyl)(phenyl)sulfane (12): Followed the general procedure 1 with S-phenyl benzenesulfonylthioate (50.0 mg, 0.2 mmol) and 2-(p-tolyl)acetic acid (30.0 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 36.5 mg of the title compound (Colorless oil); 79% yield; **^1H NMR (400 MHz, CDCl₃)** δ 7.35 (d, J = 7.9 Hz, 2H), 7.30 (t, J = 6.4 Hz, 2H), 7.25 – 7.18 (m, 3H), 7.14 (d, J = 7.7 Hz, 2H), 4.14 (s, 2H), 2.36 (s, 3H). **^13C NMR (101 MHz, CDCl₃)** δ 136.8, 136.6, 134.3, 129.6, 129.2, 128.8, 128.7, 126.2, 38.7, 21.1; **HRMS (ESI)** calcd C_{14}H_{14}S [M + H]^+: 215.0889, found: 215.0889.
(4-bromobenzyl)(phenyl)sulfane (13): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 2-(4-bromophenyl)acetic acid (30.0 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 29.5 mg of the title compound (Colorless oil); 53% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.42 – 7.37 (m, 2H), 7.31 – 7.26 (m, 3H), 7.26 – 7.18 (m, 2H), 7.14 (d, \(J = 8.3\) Hz, 2H), 4.04 (s, 2H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 136.7, 135.6, 131.6, 130.5, 130.3, 128.9, 126.7, 121.0, 38.6; HRMS (ESI) calcd C\(_{13}\)H\(_{11}\)\(^{79}\)BrS [M + H]\(^+\): 278.9838, found: 278.9837.

Phenylation(3-phenylpropyl)sulfane (14): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 4-phenylbutanoic acid (32.8 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 21.8 mg of the title compound (Colorless oil); 48% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34 – 7.27 (m, 6H), 7.24 – 7.16 (m, 4H), 2.93 (t, \(J = 7.3\) Hz, 2H), 2.77 (t, \(J = 7.5\) Hz, 2H), 2.03 – 1.93 (m, 2H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 141.3, 136.5, 129.1, 128.9, 128.5, 128.4, 126.0, 125.8, 34.7, 32.9, 30.6; HRMS (ESI) calcd C\(_{15}\)H\(_{16}\)S [M + H]\(^+\): 229.1045, found: 229.1049.

5-(phenylthio)pentan-2-one (15): Followed the general procedure 1 with S-phenyl
benzenesulfonothioate (50.0 mg, 0.2 mmol) and 5-oxohexanoic acid (26.0 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA = 20:1) to give 26.0 mg of the title compound (Colorless oil); 67% yield; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.37 (d, J = 7.4 Hz, 2H), 7.32 (d, J = 7.4 Hz, 2H), 7.24 – 7.17 (m, 1H), 2.97 (t, J = 7.0 Hz, 2H), 2.64 (t, J = 7.1 Hz, 2H), 2.16 (s, 3H), 1.94 (p, J = 7.0 Hz, 2H). 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 208.1, 129.2, 128.9, 126.0, 41.9, 32.9, 30.0, 22.9; HRMS (ESI) calcd C\textsubscript{11}H\textsubscript{14}O\textsubscript{S} [M + H]+: 195.0838, found: 195.0842.

pent-4-en-1-yl(phenyl)sulfane (16): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and hex-5-enoic acid (22.8 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 18.1 mg of the title compound (Colorless oil); 51% yield; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.37 (d, J = 7.5 Hz, 2H), 7.34 – 7.30 (m, 2H), 7.24 – 7.18 (m, 1H), 5.89 – 5.75 (m, 1H), 5.12 – 4.99 (m, 2H), 2.96 (t, J = 7.4 Hz, 2H), 2.23 (q, J = 7.0 Hz, 2H), 1.78 (p, J = 7.3 Hz, 2H); 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 137.6, 136.7, 129.0, 128.9, 125.8, 115.4, 32.9, 32.7, 28.3; HRMS (ESI) calcd C\textsubscript{11}H\textsubscript{14}S [M + H]+: 178.0889, found: 178.0889.

but-3-yn-1-yl(phenyl)sulfane (17): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and pent-4-ynoic acid (19.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 17.1 mg of the title compound (Colorless oil); 53% yield; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.44 – 7.38 (m, 2H), 7.36 – 7.31 (m, 2H), 7.30 – 7.26 (m, 1H), 3.17 – 3.06 (m, 2H), 2.57 – 2.47 (m, 2H), 2.11 – 2.03 (m, 1H); 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 135.1, 130.1, 129.8, 115.4, 101.4, 32.9, 32.7, 28.3; HRMS (ESI) calcd C\textsubscript{11}H\textsubscript{14}S [M + H]+: 178.0889, found: 178.0889.
tert-butyl 2-((phenylthio)methyl)piperidine-1-carboxylate (18): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 2-(1-(tert-butoxycarbonyl)piperidin-2-yl)acetic acid (48.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 10: 1) to give 30.1 mg of the title compound (Colorless oil); 49% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40 (d, \(J = 7.8\) Hz, 2H), 7.34 – 7.30 (m, 2H), 7.23 – 7.17 (m, 1H), 4.42 (s, 1H), 4.05 (d, \(J = 12.0\) Hz, 1H), 3.24 – 3.02 (m, 2H), 2.78 (t, \(J = 12.5\) Hz, 1H), 1.98 (d, \(J = 13.3\) Hz, 1H), 1.75 – 1.55 (m, 4H), 1.43 (s, 9H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 154.9, 136.3, 129.1, 128.9, 126.0, 79.6, 49.5, 33.3, 28.4, 26.4, 25.2, 18.7; HRMS (ESI) calcd C\(_{17}\)H\(_{25}\)NO\(_2\)S [M + H]\(^+\): 308.1679, found: 308.1675.

benzyl (5-(phenylthio)pentyl)carbamate (19): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 6-(((benzyloxy)carbonyl)amino)hexanoic acid (53.1 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 10: 1) to give 38.1 mg of the title compound (Yellow oil); 49% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40 – 7.38 (m, 4H), 7.38 – 7.30 (m, 5H), 7.24 – 7.18 (m, 1H), 5.13 (s, 2H), 4.78 (s, 1H), 3.26 – 3.16 (m, 2H), 2.94 (t, \(J = 7.2\) Hz, 2H), 1.74 – 1.60 (m, 5H), 1.59 – 1.45 (m, 5H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 156.4, 136.6, 129.0, 128.9, 128.5, 128.1, 125.8, 124.0, 66.6, 40.9, 33.5, 29.6, 28.7, 25.9;
HRMS (ESI) calcd C_{19}H_{23}NO_{2}S [M + H]^+: 330.1522, found: 330.1518.

(4-(tert-butyl)phenyl)(isopropyl)sulfane (20): Followed the general procedure 1 with S-(4-(tert-butyl)phenyl) benzenesulfonothioate (61.2 mg, 0.2 mmol) and isobutyric acid (35.2 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 18.7 mg of the title compound (Colorless oil); 45% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.32 (m, 4H), 3.41 – 3.31 (m, 1H), 1.35 (s, 9H), 1.32 (d, $J = 6.7$ Hz, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 150.08, 132.18, 131.76, 125.84, 38.52, 34.54, 31.32, 23.25; HRMS (ESI) calcd C$_{13}$H$_{20}$S [M + H]$^+$: 209.1358, found: 209.1355.

(4-(tert-butyl)phenyl)(cyclobutyl)sulfane (21): Followed the general procedure 1 with S-(4-(tert-butyl)phenyl) benzenesulfonothioate (61.2 mg, 0.2 mmol) and cyclobutanecarboxylic acid (40.0 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 33.8 mg of the title compound (Colorless oil); 77% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.32 (m, 4H), 3.41 – 3.31 (m, 1H), 1.35 (s, 9H), 1.32 (d, $J = 6.7$ Hz, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 149.0, 133.2, 129.2, 125.8, 40.5, 34.4, 31.3, 30.7, 18.7; HRMS (ESI) calcd C$_{14}$H$_{20}$S [M + H]$^+$: 211.1358, found: 211.1357.
(S)-pentan-2-yl(phenyl)sulfane (22): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 3-methylbutanoic acid (40.8 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 17.2 mg of the title compound (Colorless oil); 48% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.33 (m, 4H), 3.29 – 3.07 (m, 1H), 1.72 – 1.55 (m, 2H), 1.54 – 1.49 (m, 2H), 1.34 (s, 9H), 1.32 – 1.29 (m, 3H), 0.96 (t, $J = 7.0$ Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 149.9, 132.1, 131.7, 125.8, 43.2, 38.8, 34.5, 31.3, 21.2, 20.3, 13.9; HRMS (ESI) calcd C$_{15}$H$_{24}$S [M + H]$^+$: 237.1671, found: 237.1667.

pent-4-en-2-yl(phenyl)sulfane (23): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 2-methylpent-4-enoic acid (22.8 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 20.5 mg of the title compound (Colorless oil); 53% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.55 – 7.48 (m, 2H), 7.43 – 7.37 (m, 2H), 7.37 – 7.33 (m, 1H), 6.01 – 5.88 (m, 1H), 5.21 – 5.13 (m, 2H), 3.38 (dd, $J = 12.2$, 5.4 Hz, 1H), 2.56 – 2.46 (m, 1H), 2.39 – 2.28 (m, 1H), 1.38 (d, $J = 4.2$ Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 135.4, 135.1, 132.1, 128.9, 126.9, 117.3, 42.7, 40.9, 20.5; HRMS (ESI) calcd C$_{11}$H$_{19}$S [M + H]$^+$: 179.0889, found: 179.0839.

cyclopent-3-en-1-yl(phenyl)sulfane (24): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and cyclopent-3-ene-1-carboxylic acid (22.4 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 20.5 mg of the title compound (Colorless oil); 56% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.98 – 7.86 (m, 4H), 3.51 – 3.13 (m, 1H), 2.67 – 1.97 (m, 4H), 1.31 (d, $J = 4.2$ Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 142.2, 135.2, 132.1, 128.9, 126.9, 117.3, 42.7, 40.9, 20.5; HRMS (ESI) calcd C$_{15}$H$_{24}$S [M + H]$^+$: 237.1671, found: 237.1667.
MHz, CDCl$_3$) δ 7.42 – 7.37 (m, 2H), 7.36 – 7.30 (m, 2H), 7.26 – 7.19 (m, 1H), 5.83 – 5.71 (m, 2H), 4.09 – 3.91 (m, 1H), 3.02 – 2.82 (m, 2H), 2.58 – 2.38 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 136.8, 129.6, 129.2, 128.8, 125.9, 42.8, 40.4; HRMS (ESI) calcd C$_{11}$H$_{12}$S [M + H]$^+$: 177.0732, found: 177.0734.

(4-(4-chlorophenyl)cyclohexyl)(phenyl)sulfane (25): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 4-(4-chlorophenyl)cyclohexane-1-carboxylic acid (47.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 19.3 mg of the title compound (Colorless oil); 32% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.47 (d, J = 7.9 Hz, 2H), 7.37 – 7.32 (m, 2H), 7.30 – 7.26 (m, 3H), 7.15 (d, J = 8.4 Hz, 2H), 3.19 – 3.08 (m, 1H), 2.60 – 2.49 (m, 1H), 2.27 – 2.15 (m, 2H), 1.98 – 1.92 (m, 2H), 1.56 – 1.49 (m, 4H); 13C NMR (101 MHz, CDCl$_3$) δ 145.1, 134.6, 132.3, 131.7, 128.8, 128.5, 128.1, 126.9, 46.0, 43.0, 34.2, 33.6; HRMS (ESI) calcd C$_{18}$H$_{19}$ClS [M + H]$^+$: 303.0969, found: 303.0966.

(4,4-difluorocyclohexyl)(phenyl)sulfane (26): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 4,4-difluorocyclo-hexane-1-carboxylic acid (32.8 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 22.8 mg of the title compound (Colorless oil); 50% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.49 – 7.44 (m, 2H), 7.39 – 7.33 (m, 2H), 7.33 – 7.30 (m, 1H), 3.33 – 3.24 (m, 1H), 2.29 – 2.14 (m, 2H), 2.11 – 2.02 (m, 2H), 1.95 – 1.72 (m, 5H); 13C NMR (101 MHz, CDCl$_3$) δ 134.1, 132.5, 129.0, 122.8 (t, J = 241.3
Hz), 32.2 (t, $J = 24.4$ Hz), 28.6 (t, $J = 4.8$ Hz); 19F NMR (376 MHz, CDCl$_3$) δ -95.8 (d, $J = 233.2$ Hz), -97.9 (d, $J = 216.3$ Hz); HRMS (ESI) calcd C$_{12}$H$_{14}$F$_2$S [M + H]$^+$: 229.0857, found: 229.0860.

![3-(phenylthio)tetrahydrofuran (27):](image)

(3-(phenylthio)tetrahydrofuran (27): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and tetrahydrofuran-3-carboxylic acid (46.4 mg, 0.4 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 24.1 mg of the title compound (Colorless oil); 67% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.45 – 7.38 (m, 2H), 7.38 – 7.32 (m, 2H), 7.29 – 7.24 (m, 1H), 4.18 – 4.10 (m, 1H), 4.03 – 3.95 (m, 1H), 3.94 – 3.81 (m, 2H), 3.77 – 3.70 (m, 1H), 2.43 – 2.32 (m, 1H), 2.02 – 1.91 (m, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 135.6, 130.6, 129.0, 126.7, 73.6, 67.6, 44.8, 33.1; HRMS (ESI) calcd C$_{10}$H$_{12}$OS [M + H]$^+$: 181.0682, found: 181.0679.

![tert-butyl-3-(phenylthio)pyrroolidine-1-carboxylate (28):](image)

tert-butyl-3-(phenylthio)pyrroolidine-1-carboxylate (28): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 1-(tert-butoxycarbonyl)pyrroolidine-3-carboxylic acid (43 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 22.8 mg of the title compound (Colorless oil); 67% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.47 – 7.42 (m, 2H), 7.38 – 7.30 (m, 3H), 3.82 – 3.68 (m, 2H), 3.65 – 3.34 (m, 3H), 2.31 – 2.20 (m, 1H), 1.99 – 1.89 (m, 1H), 1.71 (s, 1H), 1.49 (s, 9H); 13C NMR (101 MHz, CDCl$_3$) δ 154.4, 131.7, 131.6, 129.1, 127.24, 79.5, 51.9, 51.7, 45.2, 44.9, 44.6, 32.0, 31.5, 28.5;
HRMS (ESI) calcd C$_{15}$H$_{21}$NO$_2$S [M + H]$^+$: 280.1366, found: 280.1362.

\[
\begin{array}{c}
\text{H}_3\text{CO} \quad \text{S} \\
\end{array}
\]

tert-butyl(4-methoxyphenyl)sulfane (29): Followed the general procedure 1 with S-phenyl S-(4-methoxyphenyl) benzenesulfonothioate (56.0 mg, 0.2 mmol) and pivalic acid (20.4 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 22.0 mg of the title compound (Colorless oil); 56% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.51 – 7.44 (m, 2H), 6.92 – 6.84 (m, 2H), 3.85 (s, 3H), 1.28 (s, 9H); 13C NMR (101 MHz, CDCl$_3$) δ 160.2, 138.9, 123.6, 113.9, 55.3, 45.5, 30.7; HRMS (ESI) calcd C$_{11}$H$_{16}$OS [M + H]$^+$: 197.0995, found: 197.0990.

\[
\begin{array}{c}
\text{S} \\
\end{array}
\]

(1-methylcyclohexyl)(phenyl)sulfane (30): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 1-methylcyclohexane-1-carboxylic acid (28.4 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 21.4 mg of the title compound (Colorless oil); 52% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, J = 6.5 Hz, 2H), 7.41 – 7.31 (m, 3H), 1.85 – 1.75 (m, 2H), 1.71 – 1.65 (m, 2H), 1.56 – 1.45 (m, 5H), 1.25 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 137.7, 132.0, 128.5, 128.4, 50.2, 38.3, 28.7, 25.9, 22.6; HRMS (ESI) calcd C$_{13}$H$_{18}$S [M + H]$^+$: 207.1202, found: 207.1202.

\[
\begin{array}{c}
\text{S} \\
\end{array}
\]

(3r, 5r, 7r)-adamantan-1-yl)(phenyl)sulfane (31): Followed the general procedure 1
with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and (3r,5r,7r)-adamantane-1-carboxylic acid (28.4 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 23.0 mg of the title compound (Colorless oil); 47% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.54 (d, J = 6.8 Hz, 2H), 7.43 – 7.31 (m, 3H), 2.04 (s, 3H), 1.85 (s, 6H), 1.65 (q, J = 12.1 Hz, 7H); 13C NMR (101 MHz, CDCl$_3$) δ 137.7, 130.5, 128.6, 128.3, 47.8, 43.6, 36.2, 30.0; HRMS (ESI) calcd C$_{16}$H$_{20}$S [M + H]$^+$: 245.1358, found: 245.1358.

(1-(4-bromophenyl)-2-methylpropan-2-yl)(phenyl)sulfane (32): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 3-(4-bromophenyl)-2,2-dimethylpropanoic acid (51.2 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 23.0 mg of the title compound (Yellow oil); 42% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.60 (d, J = 7.6 Hz, 2H), 7.46 – 7.36 (m, 5H), 7.09 (d, J = 8.1 Hz, 2H), 2.88 (s, 2H), 1.23 (s, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 137.7, 136.7, 132.4, 131.8, 131.0, 128.9, 128.6, 120.5, 49.0, 48.3, 28.0; HRMS (ESI) calcd C$_{16}$H$_{17}$BrS [M + H]$^+$: 321.0307, found: 321.0302.

2-(phenylthio)pyridine (33): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and picolinic acid (24.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 30.4 mg of the title compound (Colorless oil); 81% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.46 (d, J = 4.7 Hz, 1H), 7.67 – 7.59 (m, 2H), 7.53 – 7.38 (m, 4H), 7.03 (M, 1H), 6.92 (d, J = 8.1 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 161.6, 149.6, 136.8, 135.0, 129.7, 129.1,
121.3, 119.9; **HRMS (ESI)** calcd C\textsubscript{11}H\textsubscript{9}NS [M + H]+: 188.0528 found: 188.0529.

![Structure 1](image)

2-fluoro-6-(phenylthio)pyridine (34): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 6-fluoropicolinic acid (24.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 25.5 mg of the title compound (Colorless oil); 62% yield; **1H NMR (400 MHz, CDCl\textsubscript{3})** δ 7.68 – 7.61 (m, 2H), 7.59 – 7.52 (m, 1H), 7.51 – 7.45 (m, 3H), 6.72 (d, J = 7.7 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H); **13C NMR (101 MHz, CDCl\textsubscript{3})** δ 164.0, 161.6, 160.78 (d, J = 4.1 Hz), 141.23 (d, J = 7.8 Hz), 135.4, 129.8, 129.6, 117.9 (d, J = 4.1 Hz), 105.0, 104.6; **19F NMR (376 MHz, CDCl\textsubscript{3})** δ -66.83 (s, 1F); **HRMS (ESI)** calcd C\textsubscript{11}H\textsubscript{8}FNS [M + H]+: 206.0434 found: 206.0433.

![Structure 2](image)

2,4-difluoro-6-(phenylthio)pyridine (35): Followed the general procedure 1 with S-phenyl benzenesulfonylthioate (50.0 mg, 0.2 mmol) and 4,6-difluoropicolinic acid (31.8 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 24.2 mg of the title compound (Colorless oil); 54% yield; **1H NMR (400 MHz, CDCl\textsubscript{3})** δ 8.21 (d, J = 2.3 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.44 – 7.40 (m, 3H), 7.24 – 7.18 (m, 1H); **13C NMR (101 MHz, CDCl\textsubscript{3})** δ 159.1 (d, J = 4.2 Hz), 155.6 (d, J = 190.8 Hz), 155.5 (d, J = 192.3 Hz), 134.1, 133.72 (dd, J = 23.2, 3.7 Hz), 129.8, 129.2, 128.8, 111.4 (t, J = 22.0 Hz); **19F NMR (376 MHz, CDCl\textsubscript{3})** δ -113.56 (s, 1F), -127.38 (s, 1F); **HRMS (ESI)** calcd C\textsubscript{11}H\textsubscript{7}F\textsubscript{2}NS [M + H]+: 224.0340 found: 224.0340.
5-bromo-3-chloro-2-(phenylthio)pyridine (36): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 5-bromo-3-chloropicolinic acid (46.8 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 34.2 mg of the title compound (Colorless oil); 57% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.29 (s, 1H), 7.79 – 7.76 (m, 1H), 7.62 – 7.54 (m, 2H), 7.51 – 7.43 (m, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 156.5, 148.3, 138.3, 135.5, 129.4, 129.1, 128.9, 128.8, 115.8; HRMS (ESI) calcd C\(_{11}\)H\(_7\)Br\(_3\)ClNS \([M + H]^+\): 299.9244 found: 299.9242.

methyl 6-(phenylthio)picolinate (37): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 6-(methoxycarbonyl)picolinic acid (36.2 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 37.4 mg of the title compound (Colorless oil); 76% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.85 (d, \(J = 7.6\) Hz, 1H), 7.70 – 7.63 (m, 2H), 7.59 (t, \(J = 7.9\) Hz, 1H), 7.51 – 7.46 (m, 3H), 6.98 (d, \(J = 8.1\) Hz, 1H), 4.02 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 165.4, 163.3, 147.7, 137.5, 135.4, 129.9, 129.6, 124.1, 121.2, 53.0; HRMS (ESI) calcd C\(_{13}\)H\(_{11}\)NO\(_2\)S \([M + H]^+\): 246.0583 found: 246.0585.

2-(phenylthio)-5-(trifluoromethyl)pyridine (38): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 5-(trifluoromethyl)p-
colinic acid (38.2 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 29.4 mg of the title compound (Colorless oil); 58% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.71 – 8.65 (m, 1H), 7.69 – 7.62 (m, 3H), 7.54 – 7.48 (m, 3H), 6.95 (d, $J = 8.5$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 166.9, 146.38 (q, $J = 7.7$, 3.7 Hz), 135.6, 133.5 (q, $J = 3.2$ Hz), 130.0, 129.2, 123.6 (q, $J = 271.8$ Hz), 122.7, 122.4, 120.0. 19F NMR (376 MHz, CDCl$_3$) δ -62.18 (s, 3F); HRMS (ESI) calcd C$_{12}$H$_8$F$_3$NS [M + H]$^+$: 254.0402 found: 254.0403.

2-(phenylthio)quinoline (39): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 47.7 mg of the title compound (Colorless oil); 94% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.99 (d, $J = 8.5$ Hz, 1H), 7.92 (d, $J = 8.7$ Hz, 1H), 7.76 – 7.67 (m, 4H), 7.52 – 7.45 (m, 4H), 7.02 (d, $J = 8.7$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 161.7, 148.0, 136.5, 135.2, 130.9, 130.1, 129.7, 129.3, 128.3, 127.6, 125.8, 119.5; HRMS (ESI) calcd C$_{15}$H$_{11}$NS [M + H]$^+$: 254.0998 found: 254.0998.

2-((4-(tert-butyl)phenyl)thio)quinoline (40): Followed the general procedure 1 with S-(4-(tert-butyl)phenyl) benzenesulfonothioate (61.2 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 41.1 mg of the title compound (Colorless oil); 63% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, $J = 8.4$ Hz, 1H), 7.91 (d, $J = 8.7$ Hz, 1H), 7.76 – 7.66 (m, 2H), 7.65 – 7.60 (m, 2H), 7.53 – 7.44 (m, 3H), 7.01 (d, $J = 8.7$ Hz,
1H), 1.40 (s, 9H); 13C NMR (101 MHz, CDCl$_3$) δ 162.3, 152.7, 148.0, 136.5, 135.0, 130.0, 128.2, 127.6, 127.1, 126.8, 125.7, 119.3, 34.87, 31.3; HRMS (ESI) calcd C$_{19}$H$_{19}$NS [M + H]$^+$: 294.1311 found: 294.1309.

2-((4-methoxyphenyl)thio)quinoline (41): Followed the general procedure 1 with S-phenyl S-(4-methoxyphenyl) benzenesulfonylthioate (56.0 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 35.9 mg of the title compound (Colorless oil); 67% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.99 (d, $J = 8.4$ Hz, 1H), 7.90 (d, $J = 8.7$ Hz, 1H), 7.75 – 7.66 (m, 2H), 7.63 (d, $J = 6.7$ Hz, 2H), 7.46 (t, $J = 7.5$ Hz, 1H), 7.03 (d, $J = 6.8$ Hz, 2H), 6.94 (d, $J = 8.7$ Hz, 1H), 3.90 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 162.9, 160.8, 147.9, 137.4, 136.5, 130.1, 128.1, 127.6, 125.7, 125.6, 120.9, 118.8, 115.3, 55.4; HRMS (ESI) calcd C$_{16}$H$_{13}$NOS [M + H]$^+$: 268.0791 found: 268.0795.

2-((2-methoxyphenyl)thio)quinoline (42): Followed the general procedure 1 with S-(2-methoxyphenyl) benzenesulfonylthioate (56.0 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 27.3 mg of the title compound (Colorless oil); 51% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, $J = 8.4$ Hz, 1H), 7.90 (d, $J = 8.7$ Hz, 1H), 7.75 – 7.65 (m, 3H), 7.53 – 7.44 (m, 2H), 7.10 – 7.03 (m, 2H), 6.96 (d, $J = 8.7$, 2.1 Hz, 1H), 3.83 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 161.3, 159.9, 147.9, 137.2, 136.2, 131.5, 129.9, 128.2, 127.5, 125.8, 125.6, 121.4, 119.1, 111.7, 56.0; HRMS (ESI) calcd C$_{16}$H$_{13}$NOS [M + H]$^+$: 268.0791 found: 268.0795.
2-((2-chlorophenyl)thio)quinoline (43): Followed the general procedure 1 with S-(3-bromophenyl) benzenesulfonothioate (56.6 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 34.8 mg of the title compound (Colorless oil); 64% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.04 – 7.93 (m, 2H), 7.82 – 7.74 (m, 2H), 7.74 – 7.68 (m, 1H), 7.60 (d, \(J = 7.9\) Hz, 1H), 7.50 (t, \(J = 7.5\) Hz, 1H), 7.46 – 7.40 (m, 1H), 7.37 (t, \(J = 7.5\) Hz, 1H), 7.00 (d, \(J = 8.7\) Hz, 1H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.6, 148.0, 139.1, 137.1, 136.8, 130.8, 130.5, 130.1, 128.3, 127.7, 127.6, 126.0, 119.5; HRMS (ESI) calcd C\(_{15}\)H\(_{10}\)ClNS [M + H]\(^+\): 272.0295 found: 272.0296.

\[
\begin{array}{c}
\text{Cl} \\
\text{S} \\
\text{N} \\
\text{N} \\
\text{S} \\
\end{array}
\]

2-((3-bromophenyl)thio)quinoline (44): Followed the general procedure 1 with S-(2-chlorophenyl) benzenesulfonothioate (65.4 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 44.2 mg of the title compound (Colorless oil); 70% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.02 – 7.97 (m, 2H), 7.87 – 7.85 (m, 1H), 7.77 (d, \(J = 8.1\) Hz, 1H), 7.72 (t, \(J = 7.7\) Hz, 1H), 7.64 – 7.58 (m, 2H), 7.51 (t, \(J = 7.5\) Hz, 1H), 7.35 (t, \(J = 7.9\) Hz, 1H), 7.09 (d, \(J = 8.7\) Hz, 1H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 160.0, 147.9, 137.21, 136.92, 133.3, 132.2, 130.8, 130.3, 128.3, 127.6, 126.2, 126.0, 123.1, 119.9; HRMS (ESI) calcd C\(_{15}\)H\(_{10}\)\(^{79}\)BrNS [M + H]\(^+\): 315.9790 found: 315.9791.
2-((4-fluorophenyl)thio)quinoline (45): Followed the general procedure 1 with S-(4-fluorophenyl) benzenesulfonylthioate (54.0 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 31.2 mg of the title compound (Colorless oil); 61% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.98 – 7.91 \text{ (m, 2H)}, 7.74 \text{ (d, } J = 8.1 \text{ Hz, 1H}), 7.72 – 7.66 \text{ (m, 3H)}, 7.49 \text{ (t, } J = 7.5 \text{ Hz, 1H}), 7.23 – 7.16 \text{ (m, 2H)}, 7.00 \text{ (d, } J = 8.7 \text{ Hz, 1H}); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 164.7, 162.2, 161.2, 148.0, 137.51 \text{ (d, } J = 8.5 \text{ Hz, } 1\text{H}), 136.6, 130.1, 128.3, 127.6, 125.8, 119.2, 116.8 \text{ (d, } J = 22.0 \text{ Hz}); \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta -111.1 \text{ (s, 1F)}; \) HRMS (ESI) calcd C\(_{15}\)H\(_{10}\)FNS [M + H]\(^+\): 256.0591 found: 256.0591.

2-(naphthalen-2-ylthio)quinoline (46): Followed the general procedure 1 with S-phenyl S-((naphthalen-2-yl) benzenesulfonylthioate (60.3 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 29.9 mg of the title compound (Colorless oil); 52% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.25 \text{ (s, 1H)}, 8.02 \text{ (d, } J = 8.4 \text{ Hz, 1H}), 7.97 – 7.88 \text{ (m, 4H)}, 7.77 – 7.67 \text{ (m, 3H)}, 7.63 – 7.56 \text{ (m, 2H)}, 7.50 \text{ (t, } J = 7.5 \text{ Hz, 1H}), 7.04 \text{ (d, } J = 8.7 \text{ Hz, 1H}); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 161.6, 147.9, 136.7, 134.8, 133.9, 133.3, 131.6, 130.2, 129.3, 128.2, 128.0, 127.8, 127.6, 127.2, 126.8, 125.9, 119.7; \) HRMS (ESI) calcd C\(_{19}\)H\(_{13}\)NS [M + H]\(^+\): 288.0841 found: 288.0839.

2-((2-methylfuran-3-yl)thio)quinoline (47): Followed the general procedure 1 with S-
(2-methylfuran-3-yl) benzenesulfonothioate (50.8 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 28.0 mg of the title compound (Colorless oil); 58% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.99 – 7.89 (m, 2H), 7.73 – 7.64 (m, 2H), 7.48 – 7.42 (m, 2H), 7.02 (d, J = 8.7 Hz, 1H), 6.53 – 6.47 (m, 1H), 2.39 (s, 3H); \(^1\)^C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 161.6, 157.7, 148.0, 141.5, 136.6, 130.1, 128.1, 127.6, 125.7, 118.0, 115.7, 106.3, 12.0; HRMS (ESI) calcd C\(_{14}\)H\(_{11}\)NOS [M + H]\(^+\): 242.0634 found: 242.0630.

\[
\begin{align*}
\text{S} & \quad \text{N}
\end{align*}
\]

2-((3,5-dimethylphenyl)thio)pyridine (48): Followed the general procedure 1 with S-(3,5-dimethylphenyl) benzenesulfonothioate (56.0 mg, 0.2 mmol) and picolinic acid (24.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA= 20: 1) to give 27.2 mg of the title compound (Yellow oil); 63% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.48 – 8.44 (m, 1H), 7.51 – 7.45 (m, 1H), 7.26 (s, 2H), 7.08 (s, 1H), 7.04 – 6.99 (m, 1H), 6.92 (d, J = 8.1 Hz, 1H), 2.37 (s, 6H); \(^1\)^C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.1, 149.5, 139.3, 136.7, 132.6, 131.0, 130.2, 121.2, 119.7, 21.2; HRMS (ESI) calcd C\(_{13}\)H\(_{13}\)NS [M + H]\(^+\): 216.0841 found: 216.0840

\[
\begin{align*}
\text{S} & \quad \text{N}
\end{align*}
\]

2-(phenylsulfinyl)pyridine (49): Followed the general procedure 2 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and quinoline-2-carboxylic acid (24.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether: EA= 4: 1 as eluent) to give 9.7 mg of the title compound (Yellow oil); 24% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.62 – 8.56 (m, 1H), 8.09 (d, J = 7.9 Hz, 1H), 7.94 – 7.88 (m, 1H), 7.83 – 7.75 (m, 2H), 7.52 – 7.42 (m, 2H), 7.31 – 7.22 (m, 1H), 7.01 (d, J = 8.1 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 2.38 (s, 3H); \(^1\)^C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.1, 149.5, 139.3, 136.7, 132.6, 131.0, 130.2, 121.2, 119.7, 21.2; HRMS (ESI) calcd C\(_{14}\)H\(_{15}\)NS [M + H]\(^+\): 221.0841 found: 221.0840

\[
\begin{align*}
\text{S} & \quad \text{N}
\end{align*}
\]
7.87 – 7.81 (m, 2H), 7.51 – 7.46 (m, 3H), 7.37 – 7.32 (m, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 165.8, 149.8, 144.1, 138.1, 131.1, 129.2, 124.9, 124.7, 118.5; HRMS (ESI) calcld C$_{11}$H$_9$NOS [M + H]$^+$: 204.0478 found: 204.0476.

methyl 6-(phenylsulfinyl)picolinate (50): Followed the general procedure 2 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 6-(methoxycarbonyl)picolinic acid (36.2 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether: EA= 4: 1 as eluent) to give 14.6 mg of the title compound (Yellow oil); 28% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.28 (d, $J = 7.8$ Hz, 1H), 8.15 (d, $J = 7.6$ Hz, 1H), 8.09 – 8.04 (m, 1H), 7.89 (d, $J = 7.8$ Hz, 2H), 7.54 – 7.44 (m, 3H), 4.04 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 166.8, 164.6, 148.0, 143.6, 139.2, 131.2, 129.3, 126.0, 124.6, 121.4, 53.1; HRMS (ESI) calcld C$_{13}$H$_{11}$NO$_3$S [M + H]$^+$: 262.0532 found: 262.0531.

![methyl 6-(phenylsulfinyl)picolinate (50)](image)

2-(phenylsulfinyl)-5-(trifluoromethyl)pyridine (51): Followed the general procedure 2 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 6-(methoxycarbonyl)-picolinic acid (36.2 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether: EA= 4: 1 as eluent) to give 10.8 mg of the title compound (Yellow oil); 20% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.84 (s, 1H), 8.26 (d, $J = 8.2$ Hz, 1H), 8.20 – 8.12 (m, 1H), 7.88 – 7.80 (m, 2H), 7.56 – 7.47 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 170.1, 146.7 (q, $J = 3.2$ Hz), 143.1, 135.44 (q, $J = 3.3$ Hz), 131.6, 129.4, 127.54 (q, $J = 33.1$ Hz), 124.9, 122.9 (d, $J = 272.3$ Hz), 118.3; 19F NMR (376 MHz, CDCl$_3$) δ -62.36 (s, 3F); HRMS (ESI) calcld C$_{12}$H$_8$F$_3$NOS [M + H]$^+$: 272.0351 found: 272.0350.

![2-(phenylsulfinyl)-5-(trifluoromethyl)pyridine (51)](image)
2-(phenylsulfinyl)quinoline (52): Followed the general procedure 2 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether: EA= 4: 1 as eluent) to give 16.2 mg of the title compound (Yellow oil); 32% yield; ^1H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.5 Hz, 1H), 8.14 (M, 2H), 7.95 – 7.87 (m, 3H), 7.84 – 7.78 (m, 1H), 7.64 (t, J = 7.3 Hz, 1H), 7.51 – 7.40 (m, 3H); ^13C NMR (101 MHz, CDCl₃) δ 165.8, 147.5, 144.1, 138.7, 131.0, 130.7, 129.5, 129.2, 128.3, 128.0, 127.9, 124.6, 114.5; HRMS (ESI) calcd C₁₅H₁₁NOS [M + H]^+: 254.0634 found: 254.0630.

2-((4-(tert-butyl)phenyl)sulfinyl)quinoline (53): Followed the general procedure 2 with S-(4-(tert-butyl)phenyl) benzenesulfonothioate (61.2 mg, 0.2 mmol) and quinoline-2-carboxylic acid (34.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether: EA= 4: 1 as eluent) to give 16.0 mg of the title compound (Yellow oil); 26% yield; ^1H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 8.6 Hz, 1H), 8.15 (t, J = 8.2 Hz, 2H), 7.87 (d, J = 8.2 Hz, 1H), 7.84 – 7.75 (m, 3H), 7.62 (t, J = 7.5 Hz, 1H), 7.49 (d, J = 8.5 Hz, 2H), 1.30 (s, 9H). ^13C NMR (101 MHz, CDCl₃) δ 154.5, 147.5, 140.8, 138.6, 130.6, 129.5, 128.3, 128.0, 127.8, 126.3, 124.5, 114.6, 31.1; HRMS (ESI) calcd C₁₉H₁₉NOS [M + H]^+: 310.1260 found: 310.1259.
(2S,5R)-3,3-dimethyl-2-((phenylthio)methyl)-4-thia-1-azabicyclo[3.2.0]heptan-7-one 4,4-dioxide (54): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and Sulbactam (49.4 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA=10:1 as eluent) to give 22.6 mg of the title compound (Colorless oil); 47% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.52 – 7.44 (m, 2H), 7.42 – 7.34 (m, 3H), 5.75 (s, 1H), 5.13 – 4.96 (m, 1H), 3.33 (dt, $J = 15.3$, 4.3 Hz, 1H), 2.82 (d, $J = 15.3$ Hz, 1H), 1.90 – 1.74 (m, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 163.2, 135.1, 129.9, 129.5, 129.3, 129.1, 115.8, 60.0, 43.6, 22.8, 19.2; HRMS (ESI) calcd C$_{14}$H$_{17}$NO$_3$S$_2$ [M + H]$^+$: 312.0723 found: 321.0724.

methyl N-((benzylxy)carbonyl)-S-phenyl-L-homocysteinate (55): Followed the general procedure 1 with S-phenyl benzenesulfonylthioate (50.0 mg, 0.2 mmol) and Z-GLU-OME (59.0 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA=4 : 1 as eluent) to give 34.4 mg of the title compound (Colorless oil); 48% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.31 (m, 9H), 7.27 – 7.21 (m, 1H), 5.44 (d, $J = 7.7$ Hz, 1H), 5.17 – 5.12 (m, 2H), 4.60 – 4.51 (m, 1H), 3.77 (s, 3H), 3.04 – 2.91 (m, 2H), 2.29 – 2.16 (m, 1H), 2.05 – 1.95 (m, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 172.3, 155.9, 136.1, 135.5, 129.7, 129.0, 128.6, 128.3, 128.2, 126.4, 67.2, 53.1, 52.6, 32.3, 29.7; HRMS (ESI) calcd C$_{19}$H$_{21}$NO$_3$S [M + H]$^+$: 360.1264 found: 360.1260.
N,N-bis(2-chloroethyl)-4-(3-(phenylthio)propyl)aniline (56): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and Chlorambucil (60.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 36.7 mg of the title compound (Colorless oil); 50% yield; \(^{1}\text{H} \text{NMR (400 MHz, CDCl}_3\text{)} \delta 7.39 - 7.29 (m, 4H), 7.24 - 7.17 (m, 1H), 7.10 (d, J = 7.4 Hz, 2H), 6.66 (d, J = 7.3 Hz, 2H), 3.81 - 3.70 (m, 4H), 3.69 - 3.60 (m, 4H), 2.96 (t, J = 7.2 Hz, 2H), 2.70 (t, J = 7.4 Hz, 2H), 2.02 - 1.89 (m, 2H); \(^{13}\text{C NMR (101 MHz, CDCl}_3\text{)} \delta 144.3, 136.6, 130.4, 129.7, 129.1, 128.9, 125.8, 112.1, 53.6, 40.5, 33.5, 32.8, 30.8; \text{HRMS (ESI) calcd C}_{19}\text{H}_{23}\text{Cl}_2\text{NS [M + H]}^+: 368.1001 \text{ found: 368.1002.}

4,5-diphenyl-2-(2-(phenylthio)ethyl)oxazole (57): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and Oxaprozin (58.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether : EA = 20: 1) to give 27.8 mg of the title compound (Colorless oil); 39% yield; \(^{1}\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.65 (d, J = 6.9 Hz, 2H), 7.58 (d, J = 6.8 Hz, 2H), 7.49 - 7.43 (m, 2H), 7.42 - 7.30 (m, 9H), 3.55 - 3.38 (m, 2H), 3.32 - 3.14 (m, 2H); \(^{13}\text{C NMR (101 MHz, CDCl}_3\text{)} \delta 145.4, 132.4, 130.4, 129.1, 128.6, 128.6, 128.5, 128.1, 127.9, 126.7, 126.5, 31.33, 28.8; \text{HRMS (ESI) calcd C}_{23}\text{H}_{19}\text{NO S [M + H]}^+: 358.1260 \text{ found: 358.1258.}
(2S,5R)-2-isopropyl-5-methylcyclohexyl 3-(phenylthio)propanoate (58): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and Monomethyl succinate (45.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether: EA= 10:1 as eluent) to give 33.9 mg of the title compound (Colorless oil); 53% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.38 (m, 2H), 7.36 – 7.31 (m, 2H), 7.28 – 7.20 (m, 1H), 4.74 (td, $J = 10.9$, 4.4 Hz, 1H), 3.20 (t, $J = 7.4$ Hz, 2H), 2.64 (t, $J = 7.4$ Hz, 2H), 2.05 – 1.97 (m, 1H), 1.96 – 1.84 (m, 1H), 1.76 – 1.68 (m, 2H), 1.64 (s, 1H), 1.56 – 1.46 (m, 1H), 1.42 – 1.35 (m, 1H), 1.12 – 1.04 (m, 1H), 0.99 (d, $J = 11.3$ Hz, 1H), 0.93 (t, $J = 6.8$ Hz, 6H), 0.79 (d, $J = 6.9$ Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 171.3, 135.4, 130.0, 129.0, 126.5, 74.7, 47.0, 40.9, 34.7, 34.2, 31.4, 29.2, 26.2, 23.4, 22.0, 20.8, 16.3; HRMS (ESI) calcd C$_{19}$H$_{28}$O$_2$S [M + H]$^+$: 321.1883 found: 321.1882.

(3aR,4R,6S,6aS)-4-methoxy-2,2-dimethyl-6-(phenylthio)tetrahydrofuro[3,4-d][1,3]dioxole (59): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and Ribosic acid (43.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether: EA= 20:1 as eluent) to give 35.5 mg of the title compound (Colorless oil); 63% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.53 (d, $J = 7.2$ Hz, 2H), 7.36 (t, $J = 7.4$ Hz, 2H), 7.30 – 7.26 (m, 1H), 5.65 (s, 1H), 5.15 (s, 1H), 4.97 (d, $J = 5.8$ Hz, 1H), 4.76 (d, $J = 5.8$ Hz, 1H), 3.44 (s, 3H), 1.51 (s, 3H), 1.36 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 135.3, 130.8, 129.1, 127.1, 113.0, 110.4, 93.3, 85.9, 84.7, 55.2, 26.4, 25.1; HRMS (ESI) calcd C$_{14}$H$_{18}$O$_4$S [M + H]$^+$: 283.0999 found:
benzyl (R)-(1-(phenylthio)ethyl)carbamate (60): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and N-Cbz-D-Alanine (44.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether: EA= 10: 1 as eluent) to give 32.7 mg of the title compound (Colorless oil); 57% yield; 1H NMR (400 MHz, CDCl3) δ 7.53 – 7.47 (m, 2H), 7.42 – 7.30 (m, 8H), 5.40 – 5.24 (m, 1H), 5.15 – 4.96 (m, 3H), 1.53 (d, $J = 6.7$ Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 154.89, 136.23, 133.86, 132.28, 128.97, 128.56, 128.22, 128.11, 66.87, 55.17, 22.53; HRMS (ESI) calcd C16H17NO2S [M + H]$^+$: 288.1053 found: 288.1053.

(5-(2,5-dimethylphenoxy)-2-methylpentan-2-yl)(phenyl)sulfane (61): Followed the general procedure 1 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and N-Cbz-D-Alanine (44.6 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether: EA= 20: 1 as eluent) to give 32.7 mg of the title compound (Colorless oil); 57% yield; 1H NMR (400 MHz, CDCl3) δ 7.60 – 7.53 (m, 2H), 7.44 – 7.32 (m, 3H), 7.05 (d, $J = 5.5$ Hz, 1H), 6.75 – 6.64 (m, 2H), 4.04 – 3.95 (m, 2H), 2.40 – 2.33 (m, 3H), 2.24 – 2.18 (m, 3H), 2.09 – 1.98 (m, 2H), 1.74 – 1.66 (m, 2H), 1.32 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 157.0, 137.5, 136.5, 132.2, 130.3, 128.7, 128.5, 123.6, 120.7, 111.9, 68.0, 49.0, 38.7, 28.8, 25.1, 21.4, 15.9; HRMS (ESI) calcd C20H26OS [M + H]$^+$: 315.1777 found: 315.1773.
cyclohexyl(phenyl)sulfane (62): Followed the general procedure 3 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 35.0 mg of the title compound (Colorless oil); 91% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.46 – 7.41 (m, 2H), 7.35 – 7.27 (m, 3H), 3.21 – 3.08 (m, 1H), 2.08 – 1.99 (m, 2H), 1.85 – 1.77 (m, 2H), 1.70 – 1.62 (m, 1H), 1.39 – 1.29 (m, 5H); 13C NMR (101 MHz, CDCl$_3$) δ 135.1, 131.8, 128.7, 127.5, 126.6, 77.3, 77.0, 76.7, 46.5, 33.3, 29.76, 26.1, 25.8; HRMS (ESI) calcd C$_{12}$H$_{16}$S [M + H]$^+$: 193.1045 found: 193.1046.

(2-chlorophenyl)(cyclohexyl)sulfane (64): Followed the general procedure 3 with S-(2-chlorophenyl) benzenesulfonothioate (55.6 mg, 0.2 mmol) and cyclohexane (84.1
mg, 2 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 25.7 mg of the title compound (Colorless oil); 57% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.42 (d, J = 7.9 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 3.35 – 3.22 (m, 1H), 2.09 – 1.98 (m, 2H), 1.92 – 1.77 (m, 2H), 1.73 – 1.63 (m, 1H), 1.52 – 1.30 (m, 5H); 13C NMR (101 MHz, CDCl$_3$) δ 135.2, 134.8, 131.3, 129.8, 127.1, 126.9, 45.2, 33.0, 26.0, 25.8; HRMS (ESI) calcd C$_{12}$H$_{15}$ClS [M + H]$^+$: 227.0656 found: 227.0656.

![Image of chemical structure](image)

(3-bromophenyl)(cyclohexyl)sulfane (65): Followed the general procedure 3 with S-(3-bromophenyl) benzenesulfonothioate (65.4 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 39.96 mg of the title compound (Colorless oil); 57% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.54 – 7.50 (m, 1H), 7.35 – 7.27 (m, 2H), 7.16 – 7.11 (m, 1H), 3.17 – 3.07 (m, 1H), 2.04 – 1.95 (m, 2H), 1.81 – 1.74 (m, 2H), 1.65 – 1.58 (m, 1H), 1.41 – 1.27 (m, 5H). 13C NMR (101 MHz, CDCl$_3$) δ 137.8, 133.7, 130.1, 129.8, 129.4, 122.6, 46.5, 33.2, 26.0, 25.7; HRMS (ESI) calcd C$_{12}$H$_{15}$BrS [M + H]$^+$: 271.0151 found: 271.0153.

![Image of chemical structure](image)

cyclohexyl(4-(trifluoromethyl)phenyl)sulfane (66): Followed the general procedure 3 with S-(4-(trifluoromethyl)phenyl) 4-(trifluoromethyl)benzenesulfonothioate (77.1 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 22.8 mg of the title compound (yellow oil); 54% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, J = 7.0 Hz, 2H), 7.45 (d, J = 7.1 Hz, 2H), 3.34 – 3.18 (m, 1H), 2.12 – 1.94 (m, 2H), 1.92 – 1.76 (m, 2H), 1.78 – 1.64 (m, 1H), 1.46 – 1.30 (m, 5H); 13C NMR (101 MHz, CDCl$_3$) δ 141.2, 129.7, 127.8 (q, J = 32.6 Hz), 125.6 (q, J = 3.6 Hz), 121.5 (q, J = 273.9 Hz), 45.6, 33.1, 26.0,
25.7; 19F NMR (376 MHz, CDCl$_3$) δ -62.40 (s, 3F); HRMS (ESI) calcd C$_{13}$H$_{15}$F$_3$S [M + H]$^+$: 261.0919 found: 261.0920.

cyclohexyl(p-tolyl)sulfane (67): Followed the general procedure 3 with S-(p-tolyl) 4-methylbenzenesulfonothioate (56.2 mg, 0.2 mmol) and cycloheptane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 28.8 mg of the title compound (yellow oil); 70 % yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.35 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 3.10 – 2.99 (m, 1H), 2.36 (s, 3H), 2.03 – 1.93 (m, 2H), 1.82 – 1.74 (m, 2H), 1.67 – 1.59 (m, 3H), 1.41 – 1.25 (m, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 136.9, 132.8, 131.1, 129.5, 47.1, 33.4, 26.1, 25.8, 21.1; HRMS (ESI) calcd C$_{13}$H$_{18}$S [M + H]$^+$: 207.1202 found: 207.1199.

(4-(tert-butyl)phenyl)(cyclohexyl)sulfane (68): Followed the general procedure 3 with S-(4-(tert-butyl)phenyl) benzenesulfonothioate (61.2 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 33.7 mg of the title compound (yellow oil); 68% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.40 – 7.32 (m, 4H), 3.14 – 3.04 (m, 1H), 2.06 – 1.98 (m, 2H), 1.84 – 1.76 (m, 2H), 1.69 – 1.60 (m, 1H), 1.42 – 1.37 (m, 2H), 1.35 (s, 9H), 1.34 – 1.29 (m, 4H); 13C NMR (101 MHz, CDCl$_3$) δ 149.9, 132.1, 131.4, 125.8, 46.8, 34.5, 33.4, 31.3, 26.1, 25.8; HRMS (ESI) calcd C$_{16}$H$_{24}$S [M + H]$^+$: 249.1671 found: 249.1675.

cyclohexyl(4-methoxyphenyl)sulfane (69): Followed the general procedure 3 with S-phenyl S-(4-methoxyphenyl) benzenesulfonothioate (56.0 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petr
oleum ether as eluent) to give 37.7 mg of the title compound (yellow oil); 85% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.42 (d, \(J = 6.0\) Hz, 2H), 6.87 (d, \(J = 6.0\) Hz, 2H), 3.83 (s, 3H), 3.01 – 2.88 (m, 1H), 2.01 – 1.94 (m, 2H), 1.82 – 1.75 (m, 2H), 1.68 – 1.61 (m, 1H), 1.38 – 1.25 (m, 5H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.3, 135.6, 125.0, 114.3, 55.3, 47.9, 33.4, 26.1, 25.8; HRMS (ESI) calcd C\(_{13}\)H\(_{18}\)OS [M + H]\(^+\): 223.115 found: 223.1146.

![cyclohexyl(2-methoxyphenyl)sulfane](image)

cyclohexyl(2-methoxyphenyl)sulfane (70): Followed the general procedure 3 with \(S\)-(2-methoxyphenyl) benzenesulfonylthioate (56.0 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 30.2 mg of the title compound (yellow oil); 63% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.37 (d, \(J = 7.6\) Hz, 1H), 7.28 – 7.21 (m, 1H), 6.97 – 6.92 (m, 1H), 6.90 (d, \(J = 8.2\) Hz, 1H), 3.92 (s, 3H), 3.35 – 3.11 (m, 1H), 2.05 – 1.96 (m, 2H), 1.86 – 1.76 (m, 2H), 1.71 – 1.59 (m, 1H), 1.48 – 1.27 (m, 5H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 160.1, 144.2, 139.5, 133.9, 133.3, 128.5, 127.5, 121.3, 115.2, 111.3, 55.4; HRMS (ESI) calcd C\(_{13}\)H\(_{18}\)OS [M + H]\(^+\): 223.1151 found: 223.1153.

![cyclohexyl(3,5-dimethylphenyl)sulfane](image)
cyclohexyl(3,5-dimethylphenyl)sulfane (71): Followed the general procedure 3 with \(S\)-(3,5-dimethylphenyl) benzenesulfonylthioate (56.0 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 24.6 mg of the title compound (yellow oil); 56% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.07 (s, 2H), 6.89 (s, 1H), 3.18 – 3.06 (m, 1H), 2.33 (s, 6H), 2.07 – 1.96 (m, 2H), 1.86 – 1.76 (m, 2H), 1.68 – 1.59 (m, 1H), 1.42 – 1.29 (m, 5H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 138.3, 134.6, 129.5, 128.5, 46.5, 33.4, 26.1, 25.8, 21.2; HRMS (ESI)
cald C_{14}H_{20}S [M + H]^+: 221.1358 found: 221.1358.

cyclohexyl(naphthalen-2-yl)sulfane (72): Followed the general procedure 3 with S-phenyl S-(naphthalen-2-yl) benzenesulfonothioate (60.3 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 32 mg of the title compound (yellow oil); 65% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.90 (s, 1H), 7.85–7.78 (m, 3H), 7.57–7.45 (m, 3H), 3.40–3.14 (m, 1H), 2.13–2.05 (m, 2H), 1.87–1.80 (m, 2H), 1.72–1.63 (m, 1H), 1.50–1.32 (m, 5H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 133.7, 132.7, 132.1, 130.2, 129.6, 128.2, 127.7, 127.3, 126.4, 125.9, 46.6, 33.4, 26.1, 25.8; HRMS (ESI) calcd C\(_{16}\)H\(_{18}\)S [M + H]^+: 243.1202 found: 243.1199.

2-(cyclohexylthio)thiophene (73): Followed the general procedure 3 with S-(thiophen-2-yl) benzenesulfonothioate (51.1 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 22.9 mg of the title compound (yellow oil); 58% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.39 (d, J = 5.3 Hz, 1H), 7.14 (d, J = 3.5 Hz, 1H), 7.04–7.00 (m, 1H), 2.96–2.83 (m, 1H), 2.03–1.97 (m, 2H), 1.83–1.78 (m, 2H), 1.65–1.60 (m, 1H), 1.39–1.25 (m, 5H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 134.9, 132.8, 129.7, 127.4, 49.9, 33.2, 26.1, 25.6; HRMS (ESI) calcd C\(_{10}\)H\(_{14}\)S\(_2\) [M + H]^+: 199.0610 found: 199.0607.

2-(cyclohexylthio)benzo[d]thiazole (74): Followed the general procedure 3 with S-(benzo[d]thiazol-2-yl) benzenesulfonothioate (48.6 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent)
to give 22.9 mg of the title compound (yellow oil); 46% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.95 – 7.88 (m, 1H), 7.82 – 7.76 (m, 1H), 7.48 – 7.40 (m, 1H), 7.37 – 7.30 (m, 1H), 4.01 – 3.88 (m, 1H), 2.25 (d, $J = 12.4$ Hz, 2H), 1.90 – 1.80 (m, 2H), 1.69 – 1.64 (m, 1H), 1.64 – 1.26 (m, 5H). 13C NMR (101 MHz, CDCl$_3$) δ 166.5, 153.4, 135.3, 126.0, 124.2, 121.6, 120.9, 47.4, 33.3, 25.9, 25.6; HRMS (ESI) calcd C$_{13}$H$_{15}$NS$_2$ [M + H]$^+$: 250.0719 found: 250.0724.

cycloheptyl(phenyl)sulfane (75): Followed the general procedure 3 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and cycloheptane (98.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 23.9 mg of the title compound (yellow oil); 58% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.41 (d, $J = 7.1$ Hz, 2H), 7.35 – 7.30 (m, 2H), 7.27 – 7.21 (m, 1H), 3.45 – 3.27 (m, 1H), 2.12 – 2.01 (m, 2H), 1.83 – 1.71 (m, 2H), 1.67 – 1.48 (m, 8H); 13C NMR (101 MHz, CDCl$_3$) δ 136.2, 131.2 128.8, 126.3, 47.9, 34.6, 28.3, 26.0; HRMS (ESI) calcd C$_{13}$H$_{18}$S [M + H]$^+$: 207.1202 found: 207.1200.

cyclooctyl(phenyl)sulfane (76): Followed the general procedure 3 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and cyclooctane (112.2 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 26.9 mg of the title compound (yellow oil); 61% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.41 (d, $J = 7.6$ Hz, 2H), 7.35 – 7.29 (m, 2H), 7.26 – 7.21 (m, 1H), 3.51 – 3.38 (m, 1H), 2.08 – 1.91 (m, 2H), 1.83 – 1.50 (m, 12H); 13C NMR (101 MHz, CDCl$_3$) δ 136.1, 131.4, 128.8, 126.4, 47.6, 32.0, 27.1, 25.8, 25.2; HRMS (ESI) calcd C$_{14}$H$_{20}$S [M + H]$^+$: 221.1358 found: 221.1358.
cyclododecyl(phenyl)sulfane (77): Followed the general procedure 3 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and cyclododecane (168.3 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 33.7 mg of the title compound (yellow oil); 61% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.41 (d, $J = 7.8$ Hz, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.20 (m, 1H), 3.40 – 3.19 (m, 1H), 1.80 – 1.68 (m, 2H), 1.65 – 1.55 (m, 4H), 1.49 – 1.28 (m, 16H); 13C NMR (101 MHz, CDCl$_3$) δ 136.0, 131.2, 128.8, 126.3, 44.7, 29.9, 24.2, 23.8, 23.4, 22.1; HRMS (ESI) calcd C$_{18}$H$_{28}$S [M + H]$^+$: 277.1984 found: 277.1987.

(2,3-*dimethylbutyl*)(phenyl)sulfane (78): Followed the general procedure 3 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and 2,3-*dimethylbutane* (85.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 15.1 mg of the title compound (yellow oil); 39% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.36 (d, $J = 8.2$ Hz, 2H), 7.31 – 7.27 (m, 2H), 7.22 – 7.15 (m, 1H), 3.10 – 3.00 (m, 1H), 2.81 – 2.68 (m, 1H), 1.87 – 1.74 (m, 1H), 1.71 – 1.60 (m, 1H), 1.03 – 0.97 (m, 3H), 0.97 – 0.91 (m, 3H), 0.92 – 0.83 (m, 4H); 13C NMR (101 MHz, CDCl$_3$) δ 137.5, 128.8, 128.7, 125.5, 38.9, 38.4, 31.4, 20.33, 17.7, 15.1; HRMS (ESI) calcd C$_{12}$H$_{18}$S [M + H]$^+$: 195.1202 found: 195.1204.

((1R, 5R, 7S)-adamantan-2-yl)(phenyl)sulfane (79): Followed the general procedure 3 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and cyclododecane (168.3 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to
give 25.8 mg of the title compound (yellow oil); 53% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.42 (d, $J = 7.9$ Hz, 2H), 7.34 – 7.30 (m, 2H), 7.25 – 7.19 (m, 1H), 3.62 – 3.58 (m, 1H), 2.31 – 2.24 (m, 2H), 2.11 – 2.05 (m, 2H), 1.98 – 1.90 (m, 4H), 1.87 – 1.77 (m, 4H), 1.64 – 1.58 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 136.7, 130.8, 128.8, 126.1, 55.5, 38.7, 37.7, 32.9, 32.0, 27.7, 27.4; HRMS (ESI) calcd C$_{16}$H$_{20}$S [M + H]$^+$: 245.1358, found: 245.1361.

5-(phenylthio)pentan-1-ylum (80-a), pentan-2-yl(phenyl)sulfane (80-b), pentan-3-yl(phenyl)sulfane (80-c): Followed the general procedure 3 with S-phenyl benzenesulphonothioate (50.0 mg, 0.2 mmol) and pentane (72.0 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 11.1 mg of the title compound (yellow oil); 31% yield (α:β:γ=31:46:23); 1H NMR (400 MHz, CDCl$_3$) δ 7.56 – 7.51 (m, 1H), 7.46 – 7.40 (m, 1H), 7.38 – 7.30 (m, 2H), 7.29 – 7.17 (m, 1H), 3.32 – 3.21 (m, 0.33 H, 80-a), 3.08 – 3.00 (m, 0.17H, 80-c), 2.98 – 2.93 (m, 0.45 H, 80-b), 1.74 – 1.58 (m, 2H), 1.57 – 1.35 (m, 2H), 1.32 – 1.28 (m, 1H), 1.08 – 1.02 (m, 1H), 0.99 – 0.87 (m, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 137.0, 135.5, 131.8, 131.7, 129.1, 128.8, 128.8, 127.5, 127.2, 126.6, 126.4, 125.6, 52.2, 43.0, 38.8, 33.5, 31.0, 29.7, 28.8, 26.7, 22.3, 21.1, 20.3, 14.0, 13.9, 11.2; HRMS (ESI) calcd C$_{11}$H$_{16}$S [M + H]$^+$: 181.1045, found: 181.1042.

1-(phenylthio)pentan-3-one (81): Followed the general procedure 3 with S-phenyl benzenesulphonothioate (50.0 mg, 0.2 mmol) and pentan-3-one (86.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 13.1 mg of the title compound (yellow oil); 34% yield (α:β>20:1); 1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.35 (m, 2H), 7.32 (dd, $J = 13.3$, 5.2 Hz, 2H), 7.25 – 7.20 (m, 1H), 3.18 (t, $J = 7.3$ Hz, 2H).
2H), 2.76 (t, J = 7.3 Hz, 2H), 1.08 (t, J = 7.3 Hz, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) δ 209.4, 135.7, 129.0, 129.0, 126.3, 41.7, 36.3, 27.6, 7.7; HRMS (ESI) calcd C\(_{11}\)H\(_{14}\)OS [M + H]\(^+\): 195.0838 found: 195.0842.

\[\text{2-(phenylthio)tetrahydrofuran (82):} \]
Followed the general procedure 3 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and tetrahydrofuran (72.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 19.4 mg of the title compound (yellow oil); 54% yield (α:β>20:1); \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.55 (d, J = 7.3 Hz, 2H), 7.36 – 7.30 (m, 2H), 7.29 – 7.23 (m, 1H), 5.75 – 5.63 (m, 1H), 4.13 – 3.95 (m, 2H), 2.47 – 2.34 (m, 1H), 2.12 – 1.96 (m, 2H), 1.96 – 1.86 (m, 1H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) δ 135.7, 131.1, 128.8, 126.8, 87.1, 67.3, 32.6, 24.9; HRMS (ESI) calcd C\(_{10}\)H\(_{12}\)OS [M + H]\(^+\): 181.0682 found: 181.0687.

\[\text{N-methyl-N-((phenylthio)methyl)acetamide (83):} \]
Followed the general procedure 3 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and N,N-dimethylacetamide (87.0 mg, 1 mmol) and purified using flash chromatography (petroleum ether as eluent) to give 19.9 mg of the title compound (yellow oil); 51% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.54 – 7.47 (m, 3H), 7.40 – 7.23 (m, 6H), 4.97 – 4.84 (m, 2H), 4.76 – 4.64 (m, 2H), 3.05 – 3.01 (m, 3H), 3.00 (s, 2H), 2.08 – 2.00 (m, 2H), 1.67 (s, 2H), 1.21 (s, 1H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) δ 170.6, 135.0, 134.0, 132.4, 131.5, 129.4, 129.0, 127.3, 57.8, 51.7, 35.2, 32.8, 21.9, 20.7; HRMS (ESI) calcd C\(_{10}\)H\(_{13}\)NOS [M + H]\(^+\): 196.0791 found: 196.0789.
S-phenyl benzothioate (84): Followed the general procedure 3 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and Benzaldehyde (106.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 20.6 mg of the title compound (yellow oil); 48% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, J = 7.5 Hz, 2H), 7.71 – 7.62 (m, 1H), 7.59 – 7.48 (m, 7H); 13C NMR (101 MHz, CDCl$_3$) δ 190.2, 136.6, 135.1, 133.7, 129.6, 129.3, 128.8, 127.5; HRMS (ESI) calcd C$_{13}$H$_{10}$OS [M + H$^+$]: 215.0525 found: 215.0527.

(cyclohexylsulfinyl)benzene (85): Followed the general procedure 4 with S-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 4:1) to give 36.6 mg of the title compound (yellow oil); 88% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.66 – 7.58 (m, 2H), 7.58 – 7.48 (m, 3H), 2.69 – 2.51 (m, 1H), 1.90 – 1.83 (m, 4H), 1.72 – 1.64 (m, 1H), 1.52 – 1.35 (m, 2H), 1.34 – 1.23 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 141.8, 130.9, 128.9, 125.0, 63.2, 26.3, 25.6, 25.4, 25.3, 24.0; HRMS (ESI) calcd C$_{12}$H$_{16}$OS [M + H$^+$]: 209.0995 found: 209.0992.

1-(cyclohexylsulfinyl)-4-fluorobenzene (86): Followed the general procedure 4 with S-(4-fluorophenyl) benzenesulfonothioate (53.2 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 4:1) to give 25.3 mg of the title compound (yellow oil); 56% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.65 – 7.56 (m, 2H), 7.27 – 7.20 (m, 2H), 2.64 – 2.51 (m, 1H), 1.91 – 1.83 (m, 4H), 1.72 – 1.63 (m, 1H), 1.50 – 1.
20 (m, 5H); 13C NMR (101 MHz, CDCl$_3$) δ 164.3 (d, $J = 251.2$ Hz), 137.2 (d), 127.2 (d, $J = 8.8$ Hz), 116.3 (d, $J = 22.4$ Hz), 63.3, 26.1, 25.5, 25.4, 25.3, 24.1; 19F NMR (376 MHz, CDCl$_3$) δ -108.76 (s, 1F); HRMS (ESI) calcd C$_{12}$H$_{15}$FOS [M + H]$^+$: 227.0900 found: 227.0903.

(S)-1-bromo-3-(cyclohexylsulfinyl)benzene (87): Followed the general procedure 4 with S-(3-bromophenyl) benzenesulfonothioate (65.4 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 4:1) to give 32.0 mg of the title compound (yellow oil); 56% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.76 (d, $J = 1.6$ Hz, 1H), 7.63 (d, $J = 7.9$ Hz, 1H), 7.50 (d, $J = 7.8$ Hz, 1H), 7.44 – 7.36 (m, 1H), 2.58 (tt, $J = 1.9$, 3.5 Hz, 1H), 1.95 – 1.83 (m, 4H), 1.81 – 1.74 (m, 1H), 1.71 – 1.65 (m, 1H), 1.47 – 1.42 (m, 1H), 1.31 – 1.21 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 144.2, 134.0, 130.3, 127.7, 123.6, 123.3, 63.2, 26.3, 25.6, 25.3, 25.3, 23.7; HRMS (ESI) calcd C$_{12}$H$_{15}$BrOS [M + H]$^+$: 287.0100 found: 287.0104.

(S)-1-chloro-2-(cyclohexylsulfinyl)benzene (88): Followed the general procedure 4 with S-(2-chlorophenyl) benzenesulfonothioate (55.6 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 4:1) to give 25.6 mg of the title compound (yellow oil); 53% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.67 (d, $J = 7.6$ Hz, 1H), 7.40 – 7.33 (m, 1H), 7.32 – 7.27 (m, 1H), 7.26 – 7.11 (m, 1H), 2.82 – 2.67 (m, 1H), 1.94 (d, $J = 11.8$ Hz, 1H), 1.82 – 1.64 (m, 2H), 1.59 – 1.47 (m, 2H), 1.47 – 1.35 (m, 1H), 1.34 – 1.03 (m, 4H); 13C NMR (101 MHz, CDCl$_3$) δ 139.88, 131.62, 130.61, 129.64, 127.28, 127.15, 59.78, 27.32, 25.89, 25.16, 21.93;
HRMS (ESI) calcd C_{12}H_{13}^{35}ClOS [M + H]^+: 243.0605 found: 243.0605.

1-(cyclohexylsulfinyl)-4-methoxybenzene (89): Followed the general procedure 4 with S-(4-methoxyphenyl) benzenesulfonylthioate (56.0 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 27.6 mg of the title compound (yellow oil); 58% yield. \textbf{H} NMR (400 MHz, CDCl$_3$) δ 7.56 (d, $J = 7.5$ Hz, 2H), 7.05 (d, $J = 8.6$ Hz, 2H), 3.89 (s, 3H), 2.63 – 2.51 (m, 1H), 2.00 – 1.80 (m, 4H), 1.51 – 1.32 (m, 2H), 1.32 – 1.15 (m, 4H); \textbf{C} NMR (101 MHz, CDCl$_3$) δ 161.9, 132.7, 126.9, 114.5, 63.3, 55.5, 26.0, 25.5, 25.3, 24.7; HRMS (ESI) calcd C$_{13}$H$_{18}$O$_2$S [M + H]$^+$: 239.1100 found: 239.1098.

1-(cyclohexylsulfinyl)-4-methylbenzene (90): Followed the general procedure 4 with S-(p-tolyl) 4-methylbenzenesulfonylthioate (56.2 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 25.8 mg of the title compound (Colorless oil); 53% yield. \textbf{H} NMR (400 MHz, CDCl$_3$) δ 7.50 (d, $J = 8.1$ Hz, 2H), 7.33 (d, $J = 8.0$ Hz, 2H), 2.61 – 2.51 (m, 1H), 2.44 (s, 3H), 1.92 – 1.77 (m, 4H), 1.71 – 1.62 (m, 1H), 1.48 – 1.31 (m, 2H), 1.30 – 1.16 (m, 3H); \textbf{C} NMR (101 MHz, CDCl$_3$) δ 141.4, 138.5, 129.6, 125.1, 63.2, 26.2, 25.6, 25.5, 25.3, 24.2, 21.4; HRMS (ESI) calcd C$_{13}$H$_{18}$OS [M + H]$^+$: 223.1151 found: 223.1149.

1-(tert-butyl)-4-(cyclohexylsulfinyl)benzene (91): Followed the general procedur
e 4 with S-(4-(tert-butyl)phenyl) benzenesulfonothioate (61.2 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 35.9 mg of the title compound (yellow oil); 68% yield. \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.60 – 7.47 (m, 4H), 2.65 – 2.52 (m, 1H), 1.96 – 1.79 (m, 4H), 1.72 – 1.63 (m, 1H), 1.55 – 1.39 (m, 2H), 1.37 (s, 9H), 1.33 – 1.21 (m, 3H); \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 154.5, 138.6, 126.0, 124.9, 63.1, 35.0, 31.2, 26.2, 25.6, 25.5, 25.3, 24.3; HRMS (ESI) calcd C\(_{16}\)H\(_{24}\)OS [M + H]+: 265.1621 found: 265.1622.

\chemimage{S-S0.png}

1-(cyclohexylsulfinyl)-4-(trifluoromethyl)benzene (92): Followed the general procedure 4 with S-(4-(trifluoromethyl)phenyl)4-(trifluoromethyl)benzenesulfonothioate (77.1 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 22.6 mg of the title compound (yellow oil); 41% yield. \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.78 (d, \(J = 7.3\) Hz, 2H), 7.71 (d, \(J = 7.4\) Hz, 2H), 2.65 – 2.52 (m, 1H), 1.95 – 1.79 (m, 3H), 1.73 – 1.60 (m, 2H), 1.54 – 1.39 (m, 2H), 1.32 – 1.13 (m, 4H); \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 146.3, 132.9 (q, \(J = 32.8\) Hz), 125.9 (q, \(J = 3.6\) Hz), 125.4, 77.4, 77.06, 76.74, 63.3, 26.4, 25.6, 25.3 (q, \(J = 2.4\) Hz), 2.35; \(^{19}F\) NMR (376 MHz, CDCl\(_3\)) \(\delta\) -62.75 (s, 3F); HRMS (ESI) calcd C\(_{13}\)H\(_{15}\)F\(_3\)OS [M + H]+: 277.0868 found: 277.0869.

\chemimage{S-S1.png}

1-(cyclohexylsulfinyl)-3,5-dimethylbenzene (93): Followed the general procedure 4 with S-(3,5-dimethylphenyl) benzenesulfonothioate (56.0 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (pet
roleum ether/EtOAc = 10:1) to give 27.4 mg of the title compound (yellow oil); 58% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.21 (s, 2H), 7.13 (s, 1H), 2.63 – 2.52 (m, 1H), 2.41 (s, 6H), 1.95 – 1.81 (m, 4H), 1.72 – 1.63 (m, 1H), 1.52 – 1.36 (m, 2H), 1.32 – 1.17 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 141.6, 138.8, 132.7, 122.5, 63.0, 26.4, 25.6, 25.5, 25.3, 24.1, 21.3; HRMS (ESI) calcd C$_{14}$H$_{20}$OS [M + H]$^+$: 237.1308 found: 237.1305.

![2-(cyclohexylsulfinyl)naphthalene](image)

2-(cyclohexylsulfinyl)naphthalene (94): Followed the general procedure 4 with S-(naphthalen-2-yl) benzenesulfonothioate (60.6 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 26.3 mg of the title compound (yellow oil); 51% yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.17 (s, 1H), 8.03 – 7.91 (m, 3H), 7.67 – 7.58 (m, 3H), 2.76 – 2.61 (m, 1H), 1.96 – 1.81 (m, 4H), 1.70 – 1.68 (m, 1H), 1.57 – 1.44 (m, 2H), 1.31 – 1.24 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 139.0, 134.5, 132.7, 129.0, 128.5, 128.0, 127.7, 127.2, 125.7, 120.8, 63.0, 30.9, 26.4, 25.6, 25.4, 25.3, 24.0; HRMS (ESI) calcd C$_{16}$H$_{18}$OS [M + H]$^+$: 258.1151 found: 258.1151.

![2-(cyclohexylsulfinyl)thiophene](image)

2-(cyclohexylsulfinyl)thiophene (95): Followed the general procedure 4 with S-(thiophen-2-yl) benzenesulfonothioate (51.3 mg, 0.2 mmol) and cyclohexane (84.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 20.1 mg of the title compound (yellow oil); 47% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.76 – 7.65 (m, 1H), 7.54 – 7.38 (m, 1H), 7.22 – 7.13 (m, 1H), 3.02 – 2.76 (m, 1H), 2.30 – 2.19 (m, 1H), 2.03 – 1.83 (m, 2H), 1.72 – 1.67 (m, 2H), 1.39 – 1.24 (m,
5H); 13C NMR (101 MHz, CDCl$_3$) δ 144.2, 131.0, 130.3, 127.2, 64.8, 25.8, 25.5, 25.3, 25.1; HRMS (ESI) calcd C$_{10}$H$_{14}$OS $[\text{M + H}]^+$: 215.0559 found: 215.0558.

![cyclopentylsulfinyl]benzene (96): Followed the general procedure 4 with S-(p-tolyl) S-phenyl benzenesulphonothioate (50.0 mg, 0.2 mmol) and cyclopentane (70.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 20.9 mg of the title compound (Colorless oil); 54% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.64 (d, $J = 6.0$ Hz, 2H), 7.56 – 7.42 (m, 3H), 3.19 – 3.04 (m, 1H), 2.17 – 2.02 (m, 1H), 1.84 – 1.59 (m, 7H); 13C NMR (101 MHz, CDCl$_3$) δ 143.7, 130.9, 129.0, 124.6, 77.3, 77.0, 76.7, 64.4, 27.6, 26.1 25.6, 24.9; HRMS (ESI) calcd C$_{11}$H$_{14}$OS $[\text{M + H}]^+$: 195.0838 found: 195.0839.

![phenylsulfinyl)cycloheptane (97): Followed the general procedure 4 with S-phenyl benzenesulphonothioate (50.0 mg, 0.2 mmol) and cycloheptane (98.1 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 21.7 mg of the title compound (yellow oil); 49% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.69 – 7.58 (m, 2H), 7.56 – 7.49 (m, 3H), 2.91 – 2.60 (m, 1H), 2.02 – 1.90 (m, 2H), 1.80 – 1.71 (m, 2H), 1.61 – 1.41 (m, 8H); 13C NMR (101 MHz, CDCl$_3$) δ 142.0, 131.0, 128.8, 125.3, 64.3, 28.4, 28.3, 27.4, 26.3, 26.0, 25.8; HRMS (ESI) calcd C$_{13}$H$_{18}$OS $[\text{M + H}]^+$: 223.1151 found: 223.1153.
(phenylsulfinyl)cyclododecane (98): Followed the general procedure 4 with S-phenyl benzenesulphonothioate (50.0 mg, 0.2 mmol) and cyclooctane (112.2 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 24.0 mg of the title compound (yellow oil); 51% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.69 – 7.61 (m, 2H), 7.59 – 7.48 (m, 3H), 2.89 – 2.79 (m, 1H), 2.03 – 1.93 (m, 2H), 1.80 – 1.67 (m, 2H), 1.63 – 1.38 (m, 10H); 13C NMR (101 MHz, CDCl$_3$) δ 141.9 (s), 131.0, 128.8, 125.4, 63.6, 26.3, 26.3, 26.2, 25.6, 25.6, 24.9; HRMS (ESI) calcd C$_{14}$H$_{20}$OS [M + H]$^+$: 237.1308 found: 237.1310.

(phenylsulfinyl)cyclododecane (99): Followed the general procedure 4 with S-phenyl benzenesulphonothioate (50.0 mg, 0.2 mmol) and cyclododecane (168.3 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1) to give 25.6 mg of the title compound (yellow oil); 44% yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.68 – 7.60 (m, 2H), 7.58 – 7.48 (m, 3H), 2.85 – 2.65 (m, 1H), 1.84 – 1.76 (m, 2H), 1.72 – 1.63 (m, 2H), 1.61 – 1.56 (m, 2H), 1.43 – 1.31 (m, 16H); 13C NMR (101 MHz, CDCl$_3$) δ 142.2, 130.8, 128.9, 125.0, 61.3, 32.5, 24.1, 23.9, 23.9, 23.8, 23.8, 23.4, 23.4, 23.2, 22.5, 22.3, 22.1; HRMS (ESI) calcd C$_{18}$H$_{28}$OS [M + H]$^+$: 293.1934 found: 293.1935.

((2,3-dimethylbutyl)sulfinyl)benzene (100): Followed the general procedure 4 with S-phenyl benzenesulphonothioate e (50.0 mg, 0.2 mmol) and 2,3-dimethylbutane (86.2 mg, 1 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 10:1)
to give 15.5 mg of the title compound (yellow oil); 37% yield (d:r = 3:2). 1H NMR (400 MHz, CDCl$_3$) δ 7.67 (d, $J = 6.3$ Hz, 2H), 7.55 (d, $J = 6.7$ Hz, 3H), 2.90 – 2.83 (m, 0.57 H), 2.79 – 2.73 (m, 0.77 H), 2.43 (t, $J = 11.9$ Hz, 1H), 2.16 – 2.06 (m, 1H), 1.95 – 1.82 (m, 1H), 1.75 – 1.64 (m, 1H), 1.14 (d, $J = 6.8$ Hz, 2H), 1.03 – 0.98 (m, 1H), 0.95 – 0.80 (m, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 144.8, 144.6, 131.1 130.9, 129.3, 124.1, 123.9, 64.4, 63.6, 34.1, 33.7, 32.5, 31.1, 19.8, 19.6, 18.1, 17.2, 15.6, 15.0; HRMS (ESI) calcd C$_{12}$H$_{18}$O$_3$ [M + H]$^+$: 211.1151 found: 211.1151.

cyclohexanesulfonyl fluoride (101): Followed the general procedure 5 with cyclohexane (84.1 mg, 1 mmol), NFSI (63.1 mg, 0.2 mmol) and DABSO (84.0 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 15:1) to give 23.9 mg of the title compound (Colorless oil); 72% yield; 1H NMR (400 MHz, CDCl$_3$) δ 3.34 (t, $J = 12.1$ Hz, 1H), 2.33 (d, $J = 12.0$ Hz, 2H), 1.99 (d, $J = 13.3$ Hz, 2H), 1.82 – 1.67 (m, 3H), 1.49 – 1.21 (m, 4H); 13C NMR (101 MHz, CDCl$_3$) δ 61.0 (d, $J = 12.5$ Hz), 26.5, 24.74, 24.69; 19F NMR (376 MHz, CDCl$_3$) δ 40.83 (s, 1F); HRMS (ESI) calcd C$_6$H$_{11}$FO$_2$S [M + H]$^+$: 167.0537 found: 167.0533.

cycloheptanesulfonyl fluoride (102): Followed the general procedure 5 with cycloheptane (98.1 mg, 1 mmol), NFSI (63.1 mg, 0.2 mmol) and DABSO (84.0 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 15:1) to give 19.8 mg of the title compound (Colorless oil); 55% yield; 1H NMR (400 MHz, CDCl$_3$) δ 3.60 – 3.46 (m, 1H), 2.38 – 2.28 (m, 2H), 2.06 – 1.95 (m, 2H), 1.92 – 1.84 (m, 2H), 1.66 – 1.59 (m, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 62.2 (d, $J = 10.3$ Hz), 26.6, 26.0, 24.8; 19F NMR (376 MHz, CDCl$_3$) δ 41.06 (s, 1F); HRMS (ESI) calcd

cyclododecanesulfonyl fluoride (103): Followed the general procedure 5 with cyclododecane (168.3 mg, 1 mmol), NFSI (63.1 mg, 0.2 mmol) and DABSO (84.0 mg, 0.2 mmol) and purified using flash chromatography (petroleum ether/EtOAc = 15:1) to give 24.5 mg of the title compound (Colorless oil); 49% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.48 (s, 1H), 2.02 – 1.95 (m, 2H), 1.65 – 1.54 (m, 4H), 1.46 – 1.34 (m, 16H).

¹³C NMR (101 MHz, CDCl₃) δ 59.4 (d, J = 10.3 Hz), 25.1, 23.7, 23.4, 23.3, 21.9. ¹⁹F NMR (376 MHz, CDCl₃) δ 45.9 (s, 1F); HRMS (ESI) calcd C₁₂H₂₃FO₂S [M + H]⁺: 251.1476 found: 251.1478.
Reference:

8. NMR Spectra for the substrates and products

1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of S1

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of S1
\(^1\)H NMR spectrum (400 MHz, CDCl\(_3\), 23 °C) of S2

\[^{13}\]C NMR spectrum (100 MHz, CDCl\(_3\), 23 °C) of S2
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of S5

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of S5
$^{19}\text{F NMR spectrum (376 MHz, CDCl}_3, \ 23 \ ^\circ\text{C}) \ of \ \text{S5}$
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of S6

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of S6
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of S7

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of S7
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of S8

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of S8
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of S10

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of S10
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of S35

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of S35
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of S42

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of S42
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of S46

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of S46
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of S47

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of S47
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of **S60**

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of **S60**
19F NMR spectrum (376 MHz, CDCl$_3$, 23 °C) of S60
$^1\text{H NMR spectrum (400 MHz, CDCl}_3$, 23 °C) of S61

$^{13}\text{C NMR spectrum (100 MHz, CDCl}_3$, 23 °C) of S61
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of S67

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of S67
1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3

13C NMR spectrum (100 MHz, CDCl₃, 23 °C) of 3
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 4

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 4
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 5

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 5
$^{19}\text{F} \text{ NMR spectrum (376 MHz, CDCl}_3, \ 23 ^\circ \text{C}) \text{ of 5}$
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 6

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 6
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 7

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 7
^1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 8

^{13}C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 8
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 9

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 9
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 10

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 10
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 11

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 11
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 12

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 12
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 13

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 13
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 14

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 14
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 15

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 15
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 16

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 16
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 17

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 17
\(^1\)H NMR spectrum (400 MHz, CDCl\(_3\), 23 °C) of 18

\(^{13}\)C NMR spectrum (100 MHz, CDCl\(_3\), 23 °C) of 18
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 19

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 19
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 20

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 20
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 20

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 20
^{1}H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 22

^{13}C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 22
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 23

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 23
1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 24

13C NMR spectrum (100 MHz, CDCl₃, 23 °C) of 24
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 25

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 25
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 26

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 26
19F NMR spectrum (376 MHz, CDCl$_3$, 23 °C) of 26
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 27

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 27
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 28

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 28
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 29

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 29
^{1}H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 30

^{13}C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 30
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 31

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 31
¹H NMR spectrum (400 MHz, CDCl₃, 23 ºC) of 32

¹³C NMR spectrum (100 MHz, CDCl₃, 23 ºC) of 32
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 33

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 33
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 34

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 34
19F NMR spectrum (376 MHz, CDCl$_3$, 23 °C) of 34
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 35

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 35
$^{19}\text{F} \text{ NMR spectrum (376 MHz, CDCl}_3, \ 23 ^\circ\text{C}) \text{ of 35}$
1H NMR spectrum (400 MHz, CDCl$\textsubscript{3}$, 23 °C) of 36

13C NMR spectrum (100 MHz, CDCl$\textsubscript{3}$, 23 °C) of 36
^{1}H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 37

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 37
$\text{H NMR spectrum (400 MHz, CDCl}_3\text{, 23 °C) of 38}$

$\text{C NMR spectrum (100 MHz, CDCl}_3\text{, 23 °C) of 38}$
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 38
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 39

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 39
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 40

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 40
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 41

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 41
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 42

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 42
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 43

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 43
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 44

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 44
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 45

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 45
${}^{19}\text{F NMR spectrum (376 MHz, CDCl}_3, \ 23 \ ^\circ\text{C) of 45}$
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 46

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 46
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 47

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 47
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 48

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 48
^{1}H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 49

^{13}C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 49
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 50

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 50
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 51

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 51

19F NMR spectrum (376 MHz, CDCl$_3$, 23 ºC) of 51
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 52

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 52
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 53

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 53
1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 54

13C NMR spectrum (100 MHz, CDCl₃, 23 °C) of 54
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 55

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 55
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 56

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 56
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 57

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 57
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 58

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 58
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of **59**

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of **59**
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 60

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 60
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 61

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 61
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 62

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 62
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 63

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 63
19F NMR spectrum (376 MHz, CDCl$_3$, 23 ºC) of 63
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 64

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 64
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 65

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 65
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 66

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 66
19F NMR spectrum (376 MHz, CDCl$_3$, 23 °C) of 66
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 67

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 67
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 68

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 68
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ℃) of 69

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ℃) of 69
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 70

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 70
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 71

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 71
\(^1\)H NMR spectrum (400 MHz, CDCl\(_3\), 23 \(^\circ\)C) of \(\textbf{72}\)

\(^{13}\)C NMR spectrum (100 MHz, CDCl\(_3\), 23 \(^\circ\)C) of \(\textbf{72}\)
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 73

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 73
1H NMR spectrum (400 MHz, CDCl$_3$, 23 $^\circ$C) of 74

13C NMR spectrum (100 MHz, CDCl$_3$, 23 $^\circ$C) of 74
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 75

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 75
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 76

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 76
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 77

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 77
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 78

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 78
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 79

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 79
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 80

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 80
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 81

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 81
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 82

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 82
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 83

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 83
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 84

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 84
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 85

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 85
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 86

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 86
19F NMR (376 MHz, CDCl$_3$, 23 °C) of 86
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 87

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 87
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 88

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 88
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 89

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 89
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 90

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 90
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 91

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 91
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 92

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 92
19F NMR (376 MHz, CDCl$_3$, 23 °C) of 92
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 93

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 93
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 94

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 94
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 95

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 95
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 96

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 96
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 97

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 97
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 98

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 98
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 99

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 99
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 100

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 100
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 101

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 101
19F NMR (376 MHz, CDCl$_3$, 23 °C) of 101
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 102

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 102
19F NMR (376 MHz, CDCl$_3$, 23 °C) of 102
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 103

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 103
19F NMR (376 MHz, CDCl$_3$, 23 °C) of 103
1H NMR spectrum (400 MHz, CDCl$_3$, 23 °C) of 62

13C NMR spectrum (100 MHz, CDCl$_3$, 23 °C) of 62
1H NMR spectrum (400 MHz, CDCl$_3$, 23 ºC) of 85

13C NMR spectrum (100 MHz, CDCl$_3$, 23 ºC) of 85