Supporting Information for

Kinetic Resolution of *N*-Heterobiaryl *N*-oxides by Asymmetric C-H Olefination: An Expeditious Access to (*R*)-QUINAP

Qi-Ying Zhang*[‡], Hai-Yang Wang[‡], Songlin Wang, Jing Ma and Hai-Ming Guo*

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

Table of Contents

1. General information	S2
2. Experimental Section	S2
2.1 Synthesis methods for starting materials ¹	S2
2.2 Optimization of reaction conditions	S3
2.3 General procedure for kinetic resolution of heterobiaryl N-oxides	S5
2.4 Control experiments	S6
2.5 Kinetic isotope effects (KIE) studies	S6
2.5.1 Synthesis of substrates <i>rac</i> -1a-[D ₇] ²	S6
2.5.2 Kinetic isotope effect experiment	S7
2.6 Gram-scale reaction	S8
2.7 Derivatization of recovered (S)-1a and product 3aa ³	S11
3. The analytical and spectral characterization data	
4. Copies of NMR spectra	
5. Copies of HPLC spectra for racemic and chiral products	S84
6. References	S134

1. General information

All reactions were carried out in oven-dried tube, and monitored by thin layer chromatography (TLC). All reagents were reagent grade quality and purchased from commercial sources unless otherwise indicated. ¹H NMR, ¹³C NMR, ¹⁹F NMR and ³¹P NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane with the solvent resonance as the internal standard. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (*J*) are in Hertz (Hz), and integration. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel ODH/IA/AD/IF/ID/AY-RH in comparison with the authentic racemates. Chiral HPLC analysis was recorded on Thermo Scientific Dionex Ultimate 3000 and Agilent Technologies 1260 Infinity. Optical rotations were recorded on Autopol Automatic Polarimeter, and were reported as follows: [*a*]_D^T (c: g/100 mL, in CH₂Cl₂). High resolution mass spectra (HRMS) were recorded on an ABI/Sciex QStar Mass Spectrometer (ESI). Melting point (m.p.) data were obtained on X-5 micro melting point apparatus. For column chromatography, silica gel (200-300 mesh) was used as the stationary phase.

2. Experimental Section

2.1 Synthesis methods for starting materials¹

Synthesis of substrates rac-1a-n

To a 100 mL round bottom flask, Aryl-Cl, Aryl boric acid (6.0 mmol), Pd(PPh₃)₄ (288.9 mg, 0.25 mmol), K₂CO₃ (2.0732 g, 15.0 mmol) and toluene (40 mL) were added successively. The resulting solution was degassed with N₂ for 5 min. The reaction mixture was stirred at 110 °C until the starting materials were consumed as indicated by TLC analysis. After completion, the resulting reaction mixture was slowly brought to room temperature, then quenched with H₂O (20 mL) and extracted with CH₂Cl₂ (30 mL×3). The combined organic layers were washed with brine (100

mL×3), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography with petroleum ether/ethyl acetate (20/1 to 10/1, v/v) as the eluant to afford the coupling products *rac*-1a'-n'.

To a solution of the *rac*-**1a'-n'** (3.0 mmol) in CH₂Cl₂ (25 mL) was added *m*-chloroperoxybenzoic acid (776.6 mg, 4.5 mmol). The reaction mixture was stirred at r.t. until the coupling products were consumed as indicated by TLC analysis. Then the reaction mixture was quenched with saturated Na₂CO₃ aqueous solution and extracted with CH₂Cl₂ (20 mL×3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtrated. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/methanol = 10/1, v/v) to afford *rac*-**1a-n**.

2.2 Optimization of reaction conditions

	+ CO ₂ nBu -	Pd(TFA) ₂ (10.0 mol %) L1 (Boc-L-Phe-OH)(15.0 mol %) Ag ₂ CO ₃ (2.0 equiv) solvent (1.0 mL) 80 °C, air, 15 h		Bu +	-
ra	<i>c</i> -1a 2a		3aa	(S)- 1a	
entry	solvent	ee (3aa) (%) ^b	ee ((S)-1a) (%) ^b	conv (%) ^c	s ^d
1	DCE	46	41	47	4.0
2	CH ₃ CN	91	10	10	23.4
3	THF	60	35	37	5.6
4	DCE/ CH ₃ CN (1/1)	88	25	22	20.0
5	THF/ CH ₃ CN (1/1)	90	21	19	23.3
6	DCE/ CH ₃ CN (9/1)	74	37	33	9.6
7	DCE/ CH ₃ CN (8/2)	83	33	28	14.8
8	DCE/ CH ₃ CN (7/3)	85	27	24	16.0
9	DCE/ CH3CN (6/4)	92	38	29	34.8

Table S1 Screening of different solvents^a

^{*a*}reaction conditions: *rac*-1a (0.1 mmol), 2a (0.3 mmol), Pd(TFA)₂ (10.0 mol %), L1 (Boc-L-Phe-OH)(15.0 mol %), Ag₂CO₃ (2.0 equiv), solvent (1.0 mL), under air at 80 °C. ^{*b*}Determined by chiral HPLC analysis. ^{*c*}Conversion (C) = $ee_{1a}/(ee_{1a} + ee_{3aa})$. ^{*d*}Selectivity factor, $s = \ln[(1-C)(1-ee_{1a})]/\ln[(1-C)(1+ee_{1a})]$.

Table S2	Screening	of different	quinone	additives ^a
	C7			

ra	r-1a	$\frac{Pd(TFA)_{2} (10.0 \text{ mol }\%)}{L8 (Ac-L-Ala-OH) (15.0 \text{ mol }\%)}$ + CO ₂ nBu $\frac{L8 (Ac-L-Ala-OH) (15.0 \text{ mol }\%)}{Ag_{2}CO_{3} (2.0 \text{ equiv})}$ DCE/CH ₃ CN (3/2, 1.0 mL) quinone (20.0 mol %) 2a $\frac{80 \text{ °C, air, 5 h}}{3aa}$					Bu + (S)-1a	`0¯
		Q2		O O Q4	O O Q5			
entry	quin	one (20.0 m	ol %)	ee (3aa) (%	$(b)^b$ ee	$((S)-1a) (\%)^b$	$\operatorname{conv}(\%)^c$	s ^d
1		Q1		93		89	49	82.6
2		Q2		96		43	31	74.9
3		Q3		90		14	13	21.8
4		Q4		95		60	39	71.9
5		Q5		94		57	38	57.5
6		Q6		93		69	43	57.0
7		Q7		93		72	44	59.5

^{*a*} reaction conditions: *rac*-1a (0.1 mmol), 2a (0.3 mmol), Pd(TFA)₂ (10.0 mol %), L8 (Ac-L-Ala-OH) (15.0 mol %), Ag₂CO₃ (2.0 equiv), quinone (20.0 mol%), DCE/CH₃CN (3/2, 1.0 mL), under air at 80 °C, 5 h. ^{*b*}Determined by chiral HPLC analysis. ^{*c*}Conversion (C) = $ee_{1a}/(ee_{1a} + ee_{3aa})$. ^{*d*}Selectivity factor, $s = ln[(1 - C)(1 - ee_{1a})]/ln[(1 - C)(1 + ee_{1a})]$.

Table S3 Screening of different protic additiv	es ^a
--	-----------------

rac-	× 0 [−] + ×	Pd(TFA) ₂ (10.0 r L8 (Ac-L-Ala-OH) (1 CO ₂ <i>n</i> Bu <u>Ag₂CO₃ (2.0 e</u> BQ (20.0 mol %), additi DCE/CH ₃ CN (3/2, 80 °C, air, 5	mol %) 5.0 mol %) quiv) ve (6.0 equiv) 1.0 mL) th 3aa	O ₂ nBu + (S)-1a	
entry	additives	ee (3aa) (%) ^{<i>b</i>}	ee ((S)-1a) (%) ^b	$\operatorname{conv}(\%)^c$	s ^d
1	TFE	93	92	50	90.7
2	MeOH	90	92	51	62.3
3	EtOH	90	91	50	60.2
4	<i>i</i> PrOH	92	91	50	76.3
5	HFIP	96	79	45	118.6

^{*a*} reaction conditions: *rac*-**1a** (0.1 mmol), **2a** (0.3 mmol), Pd(TFA)₂(10 mol %), **L8** (Ac-L-Ala-OH)

(15.0 mol %), Ag₂CO₃ (2.0 equiv), BQ (20.0 mol%), additive (6.0 equiv), DCE/CH₃CN (3/2, 1.0 mL), under air at 80 °C, 5 h. ^{*b*} Determined by chiral HPLC analysis. ^{*c*} Conversion (C) = $ee_{1a}/(ee_{1a} + ee_{3aa})$. ^{*d*} Selectivity factor, $s = \ln[(1 - C)(1 - ee_{1a})]/\ln[(1 - C)(1 + ee_{1a})]$.

rac-1	A $CO_2 nBu$	Pd(TFA) ₂ (10.0 mol %) L8 (Ac-L-Ala-OH) (15.0 mol %) <u>Ag₂CO₃ (2.0 equiv)</u> BQ (20.0 mol %), TFE (x equiv) DCE/CH ₃ CN (3/2, 1.0 mL) 80 °C, air, 5 h		O ₂ <i>n</i> Bu + (S)- 1a	Ì [№] `o ⁻
entry	TFE (x equiv)	ee (3aa) $(\%)^b$	ee ((S)-1a) (%) ^b	$\operatorname{conv}(\%)^c$	s ^d
1	2.0	91	94	51	75.3
2	3.0	91	93	51	72.2
3	4.0	92	94	51	85.2
4	5.0	93	95	51	102.7
5	6.0	93	92	50	90.7

Table S4 Screening of TFE dosages^a

^{*a*} reaction conditions: (*rac*)-**1a** (0.1 mmol), **2a** (0.3 mmol), Pd(TFA)₂(10 mol%), **L8** (Ac-L-Ala-OH) (15.0 mol%), Ag₂CO₃ (2.0 equiv), BQ (20.0 mol%), TFE (5.0 equiv), DCE/CH₃CN (3/2, 1.0 mL), under air at 80 °C, 5 h. ^{*b*} Determined by chiral HPLC analysis. ^{*c*} Conversion (C) = $ee_{1a}/(ee_{1a} + ee_{3aa})$. ^{*d*}Selectivity factor, $s = ln[(1 - C)(1 - ee_{1a})]/ln[(1 - C)(1 + ee_{1a})]$.

2.3 General procedure for kinetic resolution of heterobiaryl N-oxides

In a test tube, *rac*-1a-n (0.1 mmol), BQ (2.2 mg, 0.02 mmol), L8 (Ac-L-Ala-OH) (2.0 mg, 0.015 mmol), Pd(TFA)₂ (3.3 mg, 0.01 mmol), and Ag₂CO₃ (55.2 mg, 0.2 mmol) were added. Then, DCE/CH₃CN (3/2, v/v, 1.0 mL), 2a-j (0.3 mmol, 3.0 equiv), and TFE (36 μ L, 0.5 mmol) were added successively. The reaction was stirred under air at 80 °C for 5 h. After the reaction was complete (monitoring by TLC), the reaction mixture was filtered through a pad of celite. Subsequently, the filtrate was concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 1/10 to 1/20, v/v) to give the products 3aa-la/3ab-aj and recovered (*S*)-1a-n.

2.4 Control experiments

In a test tube, *rac*-1a (0.1 mmol), BQ (2.2 mg, 0.02 mmol), L9 or L10 (0.015 mmol), Pd(TFA)₂ (3.3 mg, 0.01 mmol), and Ag₂CO₃ (55.2 mg, 0.2 mmol) were added. Then, DCE/CH₃CN (3/2, v/v, 1.0 mL), 2a (0.3 mmol, 3.0 equiv), and TFE (36 μ L, 0.5 mmol) were added successively. The reaction was stirred under air at 80 °C for 5 h. The reaction was monitored by TLC, and no desired product was observed.

2.5 Kinetic isotope effects (KIE) studies

2.5.1 Synthesis of substrates *rac*-1a-[D₇]²

According the method for the preparation of rac-1a, rac-1a-[D7] was synthesized.

1-(naphthalen-1-yl-d7)isoquinoline-N-oxide (rac-1a-[D₇])

Foamy solid, $R_f = 0.30$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, J = 7.2 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.75 (d, J = 7.2 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 145.4, 137.4, 133.6, 131.2, 130.3, 129.5 (t, J = 24.0 Hz), 129.1, 128.8, 128.8, 128.3, 128.0 (m), 126.8, 126.4 (t, J = 24.0 Hz), 125.5, 124.8 (m), 123.7. HRMS (ESI): exact mass calcd for C₁₉H₇D₇NO⁺ (M+H)⁺

requires m/z 279.1509, found m/z 279.1511.

In six parallel tubes, rac-1a (27.1 mg, 0.1 mmol), BQ (2.2 mg, 0.02 mmol), L8 (Ac-L-Ala-OH) (2.0 mg, 0.015 mmol), Pd(TFA)₂ (3.3 mg, 0.01 mmol), and Ag₂CO₃ (55.2 mg, 0.2 mmol) were added. Then, DCE/CH₃CN (6/4, v/v, 1 mL), 2a (43 µL 0.3 mmol), and TFE (36 µL, 0.5 mmol) were added successively. The reaction was stirred under air at 80 °C. These reactions were stopped at the time of 5 min, 10 min, 15 min, 20 min, 25 min and 30 min successively. In the other six test tube, rac-1a-[D₇] (27.8 mg, 0.1 mmol) was used instead rac-1a. These reactions were stopped at the time of 20 min, 40 min, 60 min, 80 min, 100 min and 120 min successively. The corresponding yield of each product was determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as the internal standard.

t/min	3aa yield (%)	3aa- [D ₆] yield (%)								
5	10	/								
10	14	/	35		¢	Equation	y = a	+ b*x		■ H
15	19	/	30		1	R-Square a	0.99423 Value 5.26667	Error 0.60264	L	• 0
20	23	8	(%) 25 -		/	b	0.90857	0.03095		
25	29	/	A 20	•				•		
30	32	/	broduct	•			•	Equation R-Square	y = a 0.9898	+ b*x
40	/	11	10 -	. d •				a b	Value 5.2 0.15429	Error 0.54511 0.007
60	/	15	5 L 0	20		40	60	80	100	120
80	/	18					time (n	un)		
100	/	21								
120	/	23								

The corresponding data was listed below. KIE value = $k_H/k_D = 0.90857/0.15429 = 5.89$

2.6 Gram-scale reaction

1

_

In a pressure flask, rac-1a (1.3566 g, 5.0 mmol), BQ (0.1081 g, 1.0 mmol), L8 (Ac-L-Ala-OH)

(98.4 mg, 0.75 mmol), Pd(TFA)₂ (166.2 mg, 0.5 mmol), and Ag₂CO₃ (2.7575 g, 10.0 mmol) were added. Then, DCE/CH₃CN (6/4, v/v, 50.0 mL), **2a** (2.15 mL, 15 mmol), and TFE (1768 μ L, 25 mmol) were added successively. The reaction was stirred under air at 80 °C for 5 h. After the reaction was complete (monitoring by TLC), the reaction mixture was filtered through a pad of celite. Subsequently, the reaction mixture was concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 1/10 to 1/20, v/v) to give the recovered (*S*)-**1a** (595.7 mg, 44% yield, 91% ee) and products **3aa** (847.9 mg, 43% yield, 92% ee). The enantiomeric ratios of (*S*)-**1a** and (*S*)-**3aa** were determined by chiral HPLC analysis.

2.7 Derivatization of recovered (S)-1a and product 3aa³

To 25 mL pressure tube, the recovered (*S*)-**1a** (189.9 mg, 0.7 mmol, 95% ee), NIS (236.2 mg, 1.05 mmol, 1.5 equiv), Pd(TFA)₂ (23.3 mg, 0.07 mmol) and DME (7.0 mL) was added successively, and the tube was sealed. The reaction mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the reaction mixture was quenched with saturated Na₂S₂O₃ aqueous solution and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and filtrated. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1/10, v/v) to afford the corresponding product **4a** as foam solid with 70% yield (194.5 mg, 95% ee).

In a 10 mL Schlenk-type sealed tube, **4a** (39.7 mg, 0.1 mmol), CuI (2.4 mg, 0.0125 mmol), Cs₂CO₃ (122.2 mg, 0.375 mmol) were added. Then, toulene (1.0 mL), *N*,*N*-dimethylethylenediamine (9.5 μ L, 0.0875 mmol), Ph₂PH (44 μ L, 0.25 mmol), were added successively under nitrogen atmosphere. The reaction was stirred under air at 110 °C for 4 h. After cooling to room temperature, the reaction was quenched with H₂O and extracted with ethyl acetate.

The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3/1, v/v) to afford the corresponding product (*R*)-QUINAP as white solid with 72% yield and 92% ee (31.6 mg).

To a solution of **3aa** (79.5 mg, 0.2 mmol, 92% ee) in THF (1.4 mL) and H₂O (0.7 mL), $K_2OsO_4 \cdot 2H_2O$ (11.1 mg, 0.03 mmol) and NaIO₄ (427.8 mg, 2.0 mmol) were added, the reaction mixture was stirred at 50 °C for 4 h. The reaction mixture was then stopped by the addition with saturated Na₂S₂O₃ aqueous solution (5.0 mL) and stirred for 30 min. The biphasic reaction mixture was extracted with EtOAc, dried over Na₂SO₄, and concentrated. The crude product was purified by silica gel column chromatography (EtOAc /MeOH = 50:1) to afford the corresponding product **4aa** (51.4 mg, 86% yield, 92% ee).

To a solution of **4aa** (29.9 mg, 0.1 mmol) in MeOH (1.0 mL) was added portion-wise NaBH₄ (41.6 mg, 0.11 mmol). The reaction mixture effervesced upon addition of NaBH₄. After 20 minutes the reaction was quenched with HCl aqueous solution (1.0 M, 3.0 mL) and extracted with CH₂Cl₂. The organic layer was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/methanol = 30/1, v/v) to afford the corresponding product **5aa** (29.2 mg, 97% yield, 92% ee).

3. The analytical and spectral characterization data

(1) The analytical and spectral characterization data of starting materials *rac*-1-(naphthalen-1-yl)isoquinoline-*N*-oxide (*rac*-1a)¹

Foamy solid, $R_f = 0.28$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 7.2 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.61 – 7.46 (m, 3H), 7.44 – 7.33 (m, 2H), 7.29 (d, J = 8.4 Hz, 1H), 7.21 (t, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 137.5, 133.8, 131.4, 130.3, 130.0, 129.2, 128.9, 128.9, 128.7, 128.4, 128.4, 127.0, 126.9, 126.4, 125.6, 125.1, 123.8. HRMS (ESI): exact mass calcd for C₁₉H₁₄NO⁺ (M+H)⁺ requires m/z 272.1070, found m/z 272.1071.

rac-6-methyl-1-(naphthalen-1-yl)isoquinoline-N-oxide (rac-1b)¹

Foamy solid, $R_f = 0.23$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.71 – 7.59 (m, 3H), 7.56 – 7.46 (m, 2H), 7.42 – 7.35 (m, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.21 (dd, J = 8.4, 1.6 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 138.9, 137.5, 133.8, 131.4, 130.0, 129.2, 129.1, 128.6, 128.5, 128.4, 127.0, 126.3, 126.0, 125.5, 125.2, 123.2, 21.6. HRMS (ESI): exact mass calcd for C₂₀H₁₆NO⁺ (M+H)⁺ requires m/z 286.1226, found m/z 286.1228.

rac-6-isopropyl-1-(naphthalen-1-yl)isoquinoline-*N*-oxide (*rac*-1c)

Foamy solid, R_f = 0.31 (EtOAc/MeOH, 25/1, v/v). ¹**H NMR** (600 MHz, CDCl₃) δ 8.35 (d, *J* = 7.2 Hz, 1H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 7.2 Hz, 1H), 7.69 – 7.63 (m,

2H), 7.55 - 7.48 (m, 2H), 7.41 - 7.36 (m, 1H), 7.30 (dd, J = 9.0, 1.8 Hz, 2H), 7.15 (d, J = 8.4 Hz, 1H), 3.09 - 3.00 (m, 1H), 1.31 (dd, J = 7.2, 3.0 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 149.6, 145.4, 137.5, 133.9, 131.4, 130.0, 129.3, 129.2, 129.1, 129.0, 128.7, 128.4, 127.0, 126.4, 125.8, 125.6, 125.2, 123.5, 123.4, 34.2, 23.7, 23.6. HRMS (ESI): exact mass calcd for C₂₂H₂₀NO⁺ (M+H)⁺ requires m/z 314.1539, found m/z 314.1538.

rac-6-chloro-1-(naphthalen-1-yl)isoquinoline-N-oxide (rac-1d)¹

Foamy solid, $R_f = 0.34$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 2.4 Hz, 1H), 7.69 – 7.62 (m, 2H), 7.53 – 7.48 (m, 2H), 7.42 – 7.36 (m, 1H), 7.31 (dd, J = 9.0, 1.8 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 9.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 145.6, 138.7, 134.6, 133.9, 131.3, 130.3, 130.1, 129.5, 128.8, 128.8, 128.5, 128.4, 127.3, 127.2, 126.6, 125.9, 125.6, 125.0, 122.8. HRMS (ESI): exact mass calcd for C₁₉H₁₃ClNO⁺ (M+H)⁺ requires m/z 306.0680, found m/z 306.0679.

rac-5-methyl-1-(naphthalen-1-yl)isoquinoline-N-oxide (rac-1e)

Foamy solid, $R_f = 0.23$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 7.2 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.65 (dd, J = 8.0, 7.2 Hz, 1H), 7.56 – 7.44 (m, 2H), 7.39 – 7.27 (m, 3H), 7.21 (dd, J = 8.0, 6.8 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 2.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 136.8, 134.0, 133.6, 131.2, 130.4, 129.7, 129.2, 129.0, 128.9, 128.5, 128.2, 128.0, 126.7, 126.1, 125.3, 125.0, 123.7, 120.3, 18.6. HRMS (ESI): exact mass calcd for C₂₀H₁₆NO⁺ (M+H)⁺ requires m/z 286.1226, found m/z 286.1228.

rac-1-(4-methoxynaphthalen-1-yl)isoquinoline-N-oxide (rac-1f)¹

Foamy solid, $R_f = 0.20$ (EtOAc/MeOH, 25/1, v/v). ¹**H** NMR (600 MHz, CDCl₃) δ 8.38 (dd, J = 15.0, 8.4 Hz, 2H), 7.84 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 7.2 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.30 (t, J = 8.4 Hz, 1H), 7.21 (t, J = 8.4 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 4.09 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 156.9, 145.9, 137.7, 132.4, 130.8, 129.1, 129.0, 129.0, 128.3, 127.5, 126.9, 126.1, 126.0, 125.7, 125.0, 123.6, 122.8, 121.0, 103.7, 55.8. **HRMS** (ESI): exact mass calcd for C₂₀H₁₆NO₂⁺ (M+H)⁺ requires m/z 302.1176, found m/z 302.1178.

rac-1-(4-methylnaphthalen-1-yl)isoquinoline-N-oxide (rac-1g)¹

Foamy solid, $R_f = 0.26$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, J = 7.2 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 7.2 Hz, 1H), 7.57 – 7.48 (m, 3H), 7.44 – 7.35 (m, 3H), 7.26 (dd, J = 18.0, 8.4 Hz, 2H), 2.81 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 145.9, 137.0, 136.8, 133.1, 131.4, 130.6, 129.2, 128.9, 128.4, 128.2, 127.3, 126.9, 126.8, 126.5, 125.9, 125.8, 124.9, 123.7, 19.8. **HRMS** (ESI): exact mass calcd for C₂₀H₁₆NO⁺ (M+H)⁺ requires m/z 286.1226, found m/z 286.1225.

rac-1-(4-fluoronaphthalen-1-yl)isoquinoline-N-oxide (rac-1h)¹

Foamy solid, R_f = 0.28 (EtOAc/MeOH, 25/1, v/v). ¹**H NMR** (600 MHz, CDCl₃) δ 8.36 (d, *J* = 7.2 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.50 – 7.38 (m, 3H), 7.37 – 7.31 (m, 1H), 7.29 – 7.24 (m, 1H), 7.22 (d, *J* = 8.4 Hz, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ 159.9 (d, *J* = 252.0 Hz), 144.9, 137.6, 133.0 (d, *J* = 6.0 Hz), 130.5,

129.4, 129.0, 128.6 (d, J = 9.0 Hz), 128.5, 128.1, 127.0, 126.8, 125.6, 125.2 (d, J = 1.5 Hz), 124.9 (d, J = 6.0 Hz), 124.3 (d, J = 16.5 Hz), 124.0, 121.4 (d, J = 6.0 Hz), 109.5 (d, J = 19.5 Hz). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -120.1. **HRMS** (ESI): exact mass calcd for C₁₉H₁₃FNO⁺ (M+H)⁺ requires m/z 290.0976, found m/z 290.0977.

rac-1-(6-methoxynaphthalen-1-yl)isoquinoline-N-oxide (rac-1i)

Foamy solid, $R_f = 0.10$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.33 (d, J = 7.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.64 (t, J = 7.2 Hz, 2H), 7.54 – 7.47 (m, 2H), 7.38 (t, J = 7.2 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.16 – 7.08 (m, 2H), 7.02 (dd, J = 9.6, 2.4 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 145.4, 137.8, 133.8, 131.4, 130.8, 130.0, 129.1, 128.7, 128.4, 127.5, 127.0, 126.4, 125.6, 125.5, 125.2, 122.7, 121.6, 105.5, 55.7. HRMS (ESI): exact mass calcd for C₂₀H₁₆NO₂⁺ (M+H)⁺ requires m/z 302.1176, found m/z 302.1175.

rac-6-methyl-1-(4-methylnaphthalen-1-yl)isoquinoline-N-oxide (rac-1j)¹

Foamy solid, $R_f = 0.25$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, J = 7.2 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.62 (s, 1H), 7.56 – 7.52 (m, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.42 (d, J = 7.2 Hz, 1H), 7.40 – 7.36 (m, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.22 (dd, J = 8.4, 1.2 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 2.81 (s, 3H), 2.49 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 145.7, 138.9, 137.6, 136.7, 133.1, 131.4, 131.4, 129.3, 128.8, 128.1, 127.4, 126.7, 126.4, 126.3, 126.1, 125.8, 125.8, 124.9, 123.1, 21.7, 19.8. HRMS (ESI): exact mass calcd for C₂₁H₁₈NO⁺ (M+H)⁺ requires m/z 300.1383, found m/z 300.1382.

rac-1-(4-fluoronaphthalen-1-yl)-6-methylisoquinoline-N-oxide (rac-1k)¹

Foamy solid, $R_f = 0.25$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, J = 7.2 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 7.2 Hz, 1H), 7.64 (s, 1H), 7.59 – 7.54 (m, 1H), 7.49 – 7.41 (m, 2H), 7.33 (dd, J = 10.2, 7.8 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.12 (d, J = 9.0 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.8 (d, J = 253.5 Hz), 144.7, 139.1, 137.5, 132.9 (d, J = 4.5 Hz), 131.6, 129.3, 128.6, 128.6 (d, J = 9.0 Hz), 128.0, 126.8, 126.2, 125.4, 125.2 (d, J = 3.0 Hz), 125.0 (d, J = 4.5 Hz), 124.2 (d, J = 16.5 Hz), 123.4, 121.3 (d, J = 6.0 Hz), 109.5 (d, J = 21.0 Hz), 21.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -120.2. HRMS (ESI): exact mass calcd for C₂₀H₁₅FNO⁺ (M+H)⁺ requires m/z 304.1132, found m/z 304.1132.

rac-1-(4-fluoronaphthalen-1-yl)-6-methoxyisoquinoline-N-oxide (rac-1l)

Foamy solid, $R_f = 0.12$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (600 MHz, CDCl₃) δ 8.33 (d, J = 7.2 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.59 – 7.54 (m, 1H), 7.48 – 7.42 (m, 2H), 7.32 (dd, J = 10.2, 7.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.16 – 7.11 (m, 2H), 7.06 (d, J = 9.6, 2.4 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.8 (d, J = 253.5 Hz), 159.8, 144.8, 137.9, 133.0 (d, J = 6.0 Hz), 130.9, 128.6 (d, J = 9.0 Hz), 128.1, 127.4, 126.8, 125.7, 125.3 (d, J = 1.5 Hz), 125.1 (d, J = 4.5 Hz), 124.3 (d, J = 16.5 Hz), 122.8, 121.9, 121.3 (d, J = 4.5 Hz), 109.5 (d, J = 19.5 Hz), 105.6, 55.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -120.2. HRMS (ESI): exact mass calcd for C₂₀H₁₅FNO_{2⁺} (M+H)⁺ requires m/z 320.1081, found m/z 320.1085.

rac-1-(naphthalen-1-yl)benzo[h]isoquinoline-N-oxide (rac-1m)

Foamy solid, $R_f = 0.25$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 7.2 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.86 – 7.76 (m, 3H), 7.72 – 7.62 (m, 2H), 7.57 – 7.50 (m, 2H), 7.57 – 7.48 (m, 2H), 7.46 – 7.36 (m, 3H), 7.11 (d, J = 8.8 Hz, 1H), 6.96 – 6.89 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 137.5, 134.2, 134.1, 133.6, 131.3, 130.6, 129.9, 129.6, 129.0, 128.9, 128.1, 127.8, 127.6, 127.3, 127.2, 127.0, 126.9, 126.7, 126.6, 124.9, 124.7, 124.2. HRMS (ESI): exact mass calcd for C₂₃H₁₆NO⁺ (M+H)⁺ requires m/z 322.1226, found m/z 322.1229.

rac-1-(pyren-1-yl)isoquinoline-N-oxide (rac-1n)

Foamy solid, $R_f = 0.18$ (EtOAc/MeOH, 25/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 7.2 Hz, 1H), 8.38 (d, J = 8.0 Hz, 1H), 8.24 (d, J = 7.6 Hz, 1H), 8.21 – 8.14 (m, 3H), 8.08 – 7.98 (m, 3H), 7.86 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 7.2 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.37 – 7.31 (m, 1H), 7.16 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 137.7, 132.5, 131.2, 131.0, 130.6, 129.9, 129.3, 129.0, 128.8, 128.6, 128.4, 127.9, 127.4, 127.0, 126.3, 125.8, 125.8, 125.7, 125.1, 124.8, 124.5, 123.9. HRMS (ESI): exact mass calcd for C₂₅H₁₆NO⁺ (M+H)⁺ requires m/z 346.1226, found m/z 346.1221.

(2) The analytical and spectral characterization data of the recovered material and products (S)-1-(naphthalen-1-yl)isoquinoline-N-oxide ((S)-1a)¹

Foamy solid, 12.4 mg, 46% yield, 95% ee. **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 13.657 min, 18.048 min. [α]_D²⁵ = +330.14 (c = 0.230, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)naphthalen-1-yl)isoquinoline-N-oxide (3aa)

Foamy solid, 17.7 mg, 45% yield, m.p.: 77.2-79.6 °C, 93% ee. $R_f = 0.52$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 250 nm, retention time: 19.930 min, 23.317 min. [α]_D²⁵ = -93.02 (c = 0.334, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.37 (d, *J* = 7.2 Hz, 1H), 8.03 (d, *J* = 9.0 Hz, 1H), 7.95 – 7.89 (m, 2H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 7.2 Hz, 1H), 7.58 – 7.45 (m, 2H), 7.41 – 7.29 (m, 2H), 7.24 (d, *J* = 16.2 Hz, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.53 (d, *J* = 15.6 Hz, 1H), 4.09 – 3.97 (m, 2H), 1.59 – 1.46 (m, 2H), 1.32 – 1.18 (m, 2H), 0.85 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 166.5, 143.2, 141.1, 137.6, 134.4, 132.2, 131.6, 130.4, 130.3, 130.0, 129.8, 128.6, 128.6, 127.8, 127.5, 127.2, 125.6, 124.9, 124.4, 123.2, 121.2, 64.3, 30.6, 19.1, 13.7. **HRMS** (ESI): exact mass calcd for C₂₆H₂₃NNaO₃⁺ (M+Na)⁺ requires m/z 420.1570, found m/z 420.1565.

(S)-6-methyl-1-(naphthalen-1-yl)isoquinoline-N-oxide ((S)-1b)¹

Foamy solid, 11.3 mg, 40% yield, 97% ee. **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 13.270 min, 17.678 min. [α]_D²⁵ = +272.57 (c = 0.226, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)naphthalen-1-yl)-6-methyl-isoquinoline-N-oxide (3ba)

Foamy solid, 20.7 mg, 50% yield, m.p.: 165.8-166.8 °C, 87% ee. $R_f = 0.43$ (EtOAc/MeOH, 50/1, v/v). HPLC CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 13.727 min, 15.453 min. $[\alpha]_D^{25} = -107.57$ (c = 0.414, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 7.2 Hz, 1H), 8.02 (d, *J* = 8.8 Hz, 1H), 7.94 – 7.87 (m, 2H), 7.74 (d, *J* = 7.2 Hz, 1H), 7.36 – 7.29 (m, 1H), 7.28 – 7.16 (m, 2H), 7.12 (d, *J* =

8.4 Hz, 1H), 6.87 (d, J = 8.8 Hz, 1H), 6.52 (d, J = 16.0 Hz, 1H), 4.10 – 3.97 (m, 2H), 2.46 (s, 3H), 1.59 – 1.46 (m, 2H), 1.32 – 1.18 (m, 2H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 143.0, 141.2, 139.1, 137.5, 134.4, 132.1, 131,9, 131.6, 130.3, 130.1, 128.9, 128.5, 127.7, 127.4, 126.3, 125.7, 124.8, 123.8, 123.1, 121.0, 64.3, 30.6, 21.7, 19.1, 13.7. HRMS (ESI): exact mass calcd for C₂₇H₂₆NO₃⁺ (M+H)⁺ requires m/z 412.1907, found m/z 412.1907.

(S)-6-isopropyl-1-(naphthalen-1-yl)isoquinoline-N-oxide ((S)-1c)

Foamy solid, 13.8 mg, 44% yield, m.p.: 210.2-212.4 °C, 98% ee. **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 6.693 min, 8.548 min. [α]_D²⁵ = +326.67 (c = 0.1, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)naphthalen-1-yl)-6-isopropyl-isoquinoline-N-oxide (3ca)

Foamy solid, 20.5 mg, 47% yield, m.p.: 171.7-173.9 °C, 86% ee. $R_f = 0.46$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL AD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 7.752 min, 9.210 min. [α] $_D^{25} = -128.06$ (c = 0.354, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.37 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 9.0 Hz, 1H), 7.96 – 7.89 (m, 2H), 7.78 (d, J = 7.2 Hz, 1H), 7.68 (s, 1H), 7.53 – 7.48 (m, 1H), 7.36 – 7.31 (m, 1H), 7.27 (dd, J = 9.0, 1.8 Hz, 1H), 7.24 (d, J = 15.6 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.52 (d, J = 16.2 Hz, 1H), 4.10 – 3.96 (m, 2H), 3.09 – 2.98 (m, 1H), 1.57 – 1.49 (m, 2H), 1.31 (d, J = 7.2 Hz, 6H), 1.29 – 1.21 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 166.6, 149.9, 143.1, 141.3, 137.6, 134.5, 132.2, 131.7, 130.4, 130.2, 129.8, 129.1, 129.0, 128.6, 127.8, 127.6, 125.8, 125.1, 124.2, 123.7, 123.2, 121.1, 64.4, 34.3, 30.7, 23.7, 23.6, 19.2, 13.8. **HRMS** (ESI): exact mass calcd for C₂₉H₃₀NO₃⁺ (M+H)⁺ requires m/z 440.2220, found m/z 440.2220.

(S)-6-chloro-1-(naphthalen-1-yl)isoquinoline-N-oxide ((S)-1d)¹

Foamy solid, 14.0 mg, 52% yield, 82% ee. **HPLC** CHIRALCEL AD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 7.720 min, 9.473 min. [α]_D²⁵ = +239.09 (c = 0.278, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)naphthalen-1-yl)-6-chloro-isoquinoline-N-oxide (3da)

Foamy solid, 19.4 mg, 45% yield, m.p.: 203.5-204.7 °C, 94% ee. $R_f = 0.60$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL AD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 14.443 min, 21.577 min. [α]_D²⁵ = -107.22 (c = 0.388, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, J = 7.2 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.93 (t, J = 8.4 Hz, 2H), 7.88 (d, J = 2.0 Hz, 1H), 7.76 (d, J = 7.2 Hz, 1H), 7.57 – 7.48 (m, 1H), 7.39 – 7.28 (m, 2H), 7.20 (d, J = 16.0 Hz, 1H), 7.08 (d, J = 8.8 Hz, 1H), 6.91 (d, J = 8.8 Hz, 1H), 6.52 (d, J = 15.6 Hz, 1H), 4.13 – 3.96 (m, 2H), 1.61 – 1.48 (m, 2H), 1.35 – 1.19 (m, 2H), 0.87 (t, J = 7.2 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 166.5, 143.4, 140.9, 138.9, 135.0, 134.5, 132.4, 131.6, 130.8, 130.8, 129.3, 129.2, 128.9, 128.8, 128.0, 127.7, 126.6, 126.2, 125.5, 123.4, 123.3, 121.5, 64.5, 30.7, 19.2, 13.8. **HRMS** (ESI): exact mass calcd for C₂₆H₂₂ClNNaO₃⁺ (M+Na)⁺ requires m/z 454.1180, found m/z 454.1175.

(S)-5-methyl-1-(naphthalen-1-yl)isoquinoline-N-oxide ((S)-1e)

Foamy solid, 11.8 mg, 41% yield, m.p.: 205.4-207.6 °C, 95% ee. **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 16.168 min, 19.820 min. [α]_D²⁵ = +238.12 (c = 0.212, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)naphthalen-1-yl)-5-methylisoquinoline-N-oxide (3ea)

Foamy solid, 19.4 mg, 47% yield, m.p.: 158.9-160.8 °C, 88% ee, $R_f = 0.42$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL AD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 15.225 min, 21.807 min. [α]_D²⁵ = -122.32 (c = 0.414, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (d, *J* = 7.2 Hz, 1H), 8.05 (d, *J* = 8.8 Hz, 1H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.94 (d, *J* = 8.8 Hz, 2H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.41 – 7.32 (m, 2H), 7.31 – 7.23 (m, 2H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.85 (d, *J* = 8.8 Hz, 1H), 6.56 (d, *J* = 15.6 Hz, 1H), 4.13 – 4.01 (m, 2H), 2.75 (s, 3H), 1.61 – 1.52 (m, 2H), 1.34 – 1.24 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 166.4, 143.3, 141.1, 137.0, 134.4, 134.3, 132.1, 131.6, 130.6, 130.3, 129.6, 129.4, 128.5, 128.0, 127.6, 127.4, 125.6, 123.2, 123.1, 121.0, 121.0, 64.2, 30.5, 19.1, 18.8, 13.7. **HRMS** (ESI): exact mass calcd for C₂₇H₂₆NO₃⁺ (M+H)⁺ requires m/z 412.1907, found m/z 412.1908.

Foamy solid, 13.5 mg, 45% yield, 86% ee. **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 14.402 min, 23.650 min. [α]_D²⁵ = +200.24 (c = 0.276, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)-4-methoxy-naphthalen-1-yl)isoquinoline-N- oxide (3fa)

Foamy solid, 19.8 mg, 46% yield, m.p.: 227.6-228.8 °C, 91% ee. $R_f = 0.52$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda = 250$ nm, retention time: 12.457 min, 16.007 min. $[\alpha]_D^{25} = -122.56$ (c = 0.328, CH₂Cl₂). ¹**H NMR** (600 MHz,

CDCl₃) δ 8.37 (d, J = 7.2 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 7.2 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.40 – 7.31 (m, 2H), 7.23 (d, J = 16.2 Hz, 1H), 7.19 (s, 1H), 7.08 – 7.01 (m, 2H), 6.50 (d, J = 16.2 Hz, 1H), 4.11 (s, 3H), 4.08 – 3.99 (m, 2H), 1.56 – 1.48 (m, 2H), 1.29 – 1.19 (m, 2H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.4, 156.9, 143.4, 141.6, 137.7, 132.5, 130.8, 129.7, 128.6, 128.5, 128.2, 127.1, 127.1, 126.9, 125.4, 125.1, 124.2, 122.8, 122.8, 120.7, 100.6, 64.3, 55.8, 30.6, 19.1, 13.7. HRMS (ESI): exact mass calcd for C₂₇H₂₆NO_{4⁺} (M+H)⁺ requires m/z 428.1856, found m/z 428.1852.

(S)-1-(4-methylnaphthalen-1-yl)isoquinoline-N-oxide ((S)-1g)¹

Foamy solid, 11.3 mg, 40% yield, 96% ee. **HPLC** CHIRALCEL AD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 7.667 min, 16.903 min. [α]_D²⁵ = +356.46 (c = 0.222, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)-4-methyl-naphthalen-1-yl)isoquinoline-N-oxide (3ga)

Foamy solid, 19.6 mg, 48% yield, m.p.: 192.7-194.3 °C, 87% ee. $R_f = 0.52$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, $\lambda = 250$ nm, retention time: 17.573 min, 25.713 min. $[\alpha]_D^{25} = -102.37$ (c = 0.394, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.38 (d, J = 7.2 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.78 (s, 1H), 7.57 – 7.50 (m, 2H), 7.38 – 7.31 (m, 2H), 7.22 (d, J = 15.6 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.53 (d, J = 15.6 Hz, 1H), 4.08 – 3.98 (m, 2H), 2.81 (s, 3H), 1.57 – 1.48 (m, 2H), 1.30 – 1.20 (m, 2H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C **NMR** (150 MHz, CDCl₃) δ 166.5, 143.4, 141.2, 137.6, 137.0, 133.8, 131.7, 131.6, 130.5, 129.7, 128.6, 128.4, 127.4, 127.4, 127.1, 126.2, 125.0, 124.8, 124.3, 123.8, 120.9, 64.3, 30.6, 19.9, 19.1, 13.7. **HRMS** (ESI): exact mass calcd for C₂₇H₂₅NNaO₃⁺ (M+Na)⁺ requires m/z 434.1727, found m/z 434.1723.

(S)-1-(4-fluoronaphthalen-1-yl)isoquinoline-N-oxide ((S)-1h)¹

Foamy solid, 13.9 mg, 48% yield, 82% ee. **HPLC** CHIRALCEL AD-H, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 7.783 min, 10.088 min. [α]_D²⁵ = +276.97 (c = 0.246, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)-4-fluoro-naphthalen-1-yl)isoquinoline-N-oxide (3ha)

Foamy solid, 17.4 mg, 42% yield, m.p.: 180.2-181.6 °C, 94% ee. $R_f = 0.48$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL AD, *n*-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 21.347 min, 31.317 min. [α]_D²⁵ = -102.76 (c = 0.242, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.38 (d, J = 7.2 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 7.2 Hz, 1H), 7.62 – 7.54 (m, 3H), 7.40 (t, J = 7.2 Hz, 2H), 7.18 (d, J = 16.2 Hz, 1H), 7.11 (d, J = 9.0 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.47 (d, J = 15.6 Hz, 1H), 4.08 – 3.99 (m, 2H), 1.59 – 1.48 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 166.2, 160.0, (d, J = 253.5 Hz), 142.5, 140.3, 137.7, 133.3 (d, J = 6.0 Hz), 133.0 (d, J = 9.0 Hz), 130.5, 130.0, 128.8 (d, J = 9.0 Hz), 128.7, 127.9, 127.3, 126.1 (d, J = 3.0 Hz), 125.7 (d, J = 1.5 Hz), 125.2, 125.0, 124.9, 124.6, 121.9, 121.5 (d, J = 4.5 Hz), 106.8 (d, J = 22.5 Hz), 64.5, 30.6, 19.2, 13.8. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -119.9. **HRMS** (ESI): exact mass calcd for C₂₆H₂₂FNNaO₃⁺ (M+Na)⁺ requires m/z 438.1476, found m/z 438.1466.

(S)-1-(6-methoxynaphthalen-1-yl)isoquinoline N-oxide ((S)-1i)

Foamy solid, 12.5 mg, 42% yield, 230.1-232.2 °C, 90% ee. **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256 \text{ nm}$, retention time: 15.247 min, 21.308

min. $[\alpha]_D^{25} = +321.54$ (c = 0.164, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)-6-methoxynaphthalen-1-yl)isoquinoline N-oxide (3ia)

Foamy solid, 21.9 mg, 51% yield, m.p.: 184.0-185.6 °C, 80% ee. $R_f = 0.20$ (EtOAc/MeOH, 50/1, v/v). HPLC CHIRALCEL IF, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 37.968 min, 42.123 min. [α]_D²⁵ = -119.49 (c = 0.342, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 7.2 Hz, 1H), 8.04 (d, *J* = 8.8 Hz, 1H), 7.96 – 7.86 (m, 2H), 7.73 (d, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.39 – 7.30 (m, 1H), 7.26 – 7.15 (m, 2H), 7.12 (d, *J* = 8.4 Hz, 1H), 7.02 (dd, *J* = 9.2, 2.4 Hz, 1H), 6.88 (d, *J* = 9.2 Hz, 1H), 6.51 (d, *J* = 15.6 Hz, 1H), 4.10 – 3.98 (m, 2H), 3.93 (s, 3H), 1.59 – 1.48 (m, 2H), 1.33 – 1.19 (m, 2H), 0.87 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 160.0, 143.3, 141.3, 137.9, 134.5, 132.2, 131.7, 130.8, 130.5, 130.1, 128.6, 127.8, 127.6, 126.9, 125.8, 125.7, 123.3, 123.2, 122.4, 121.2, 105.8, 64.4, 55.8, 30.7, 19.2, 13.8. HRMS (ESI): exact mass calcd for C₂₇H₂₆NO₄⁺ (M+H)⁺ requires m/z 428.1856, found m/z 428.1857.

Foamy solid, 11.1 mg, 37% yield, 94% ee. **HPLC** CHIRALCEL AD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 7.212 min, 13.438 min. [α]_D²⁵ = +343.20 (c = 0.196, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)-4-methyl-naphthalen-1-yl)-6-methyl- isoquinoline-N-oxide (3ja)

Foamy solid, 19.4 mg, 46% yield, m.p.: 190.4-191.8 °C, 81% ee. $R_f = 0.42$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 11.520 min, 15.093 min. $[\alpha]_D^{25} = -147.33$ (c = 0.362, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.35 (d, J = 7.2 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.77 (s, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.64 (s, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.24 – 7.16 (m, 2H), 7.13 (d, J = 8.4 Hz, 1H), 6.90 (d, J = 9.0 Hz, 1H), 6.52 (d, J = 15.6 Hz, 1H), 4.08 – 3.99 (m, 2H), 2.80 (s, 3H), 2.46 (s, 3H), 1.57 – 1.49 (m, 2H), 1.30 – 1.21 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H). ¹³C **NMR** (150 MHz, CDCl₃) δ 166.5, 143.3, 141.3, 139.1, 137.6, 136.9, 133.8, 131.9, 131.7, 131.6, 128.9, 128.7, 128.6, 127.4, 127.4, 126.3, 124.9, 124.8, 123.8, 123.7, 120.8, 64.3, 30.6, 21.7, 19.9, 19.1, 13.7. **HRMS** (ESI): exact mass calcd for C₂₈H₂₈NO₃⁺ (M+H)⁺ requires m/z 426.2064, found m/z 426.2065.

(S)-1-(4-fluoronaphthalen-1-yl)-6-methylisoquinoline-N-oxide ((S)-1k)¹

Foamy solid, 13.7 mg, 45% yield, 95% ee. **HPLC** CHIRALCEL AD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 7.263 min, 9.643 min. [α]_D²⁵ = +321.94 (c = 0.234, CH₂Cl₂).

(*S*)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)-4-fluoro-naphthalen-1-yl)-6-methyl-isoquinoline-*N*-oxide (3ka)

Foamy solid, 19.7 mg, 46% yield, m.p.: 169.6-171.2 °C, 92% ee. $R_f = 0.44$ (EtOAc/MeOH, 50/1, v/v). HPLC CHIRALCEL AD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm,

retention time: 10.784 min, 14.906 min. $[\alpha]_D^{25} = -172.12$ (c = 0.342, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, *J* = 7.2 Hz, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 7.2 Hz, 1H), 7.67 (s, 1H), 7.61 – 7.55 (m, 2H), 7.43 – 7.37 (m, 1H), 7.25 – 7.21 (m, 2H), 7.20 – 7.15 (m, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 6.46 (d, *J* = 15.6 Hz, 1H), 4.11 – 3.97 (m, 2H), 2.49 (s, 3H), 1.57 – 1.49 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 160.0, (d, *J* = 255.0 Hz), 142.4, 140.4, 139.4, 137.7, 133.3 (d, *J* = 4.5 Hz), 132.9 (d, *J* = 9.0 Hz), 132.2, 129.0, 128.8 (d, *J* = 9.0 Hz), 127.9, 126.5, 126.3 (d, *J* = 3.0 Hz), 125.7 (d, *J* = 3.0 Hz), 125.2, 125.1, 124.8, 124.0, 121.8, 121.4 (d, *J* = 4.5 Hz), 106.9 (d, *J* = 21.0 Hz), 64.5, 30.7, 21.8, 19.2, 13.8. ¹⁹F NMR (565 MHz, CDCl₃) δ -120.0 HRMS (ESI): exact mass calcd for C₂₇H₂₅FNO₃⁺ (M+H)⁺ requires m/z 430.1813, found m/z 430.1812.

(S)-1-(4-fluoronaphthalen-1-yl)-6-methoxyisoquinoline-N-oxide ((S)-11)

Foamy solid, 15.0 mg, 47% yield, m.p.: 270.3-272.0 °C, 91% ee. **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 11.115 min, 16.447 min. [α]_D²⁵ = +277.21 (c = 0.234, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)-4-fluoro-naphthalen-1-yl)-6-methoxy- isoquinoline-N-oxide (3la)

Foamy solid, 22.2 mg, 50% yield, m.p.: 208.0-209.7 °C, 90% ee. $R_f = 0.18$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL IF, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 26.871 min, 32.012 min. [α]_D²⁵ = -149.47 (c = 0.380, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.34 (d, *J* = 7.2 Hz, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 7.2 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.22 – 7.15 (m, 2H), 7.12 (d, *J* = 8.4 Hz, 1H), 7.03 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.89 (d, *J* = 9.0 Hz, 1H), 6.46 (d, *J* = 15.6 Hz, 1H), 4.08 – 3.99 (m, 2H), 3.91 (s, 3H),

1.58 – 1.48 (m, 2H), 1.31 – 1.21 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.2, 159.9 (d, J = 249.0 Hz), 159.9, 142.3, 140.3, 137.9, 133.2 (d, J = 6.0 Hz), 132.8 (d, J = 9.0 Hz), 130.6, 128.8, 127.8, 126.5, 126.3 (d, J = 4.5 Hz), 125.7 (d, J = 4.5 Hz), 125.1, 124.9, 123.4, 122.4, 121.8, 121.3 (d, J = 4.5 Hz), 106.8 (d, J = 22.5 Hz), 105.8, 64.5, 55.7, 30.6, 19.1, 13.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -120.0. HRMS (ESI): exact mass calcd for C₂₇H₂₅FNO₄⁺ (M+H)⁺ requires m/z 446.1762, found m/z 446.1761.

(S)-1-(naphthalen-1-yl)benzo[h]isoquinoline-N-oxide ((S)-1m)

Foamy solid, 12.5 mg, 39% yield, m.p.: 134.4-136.6 °C, 99% ee. **HPLC** CHIRALCEL OD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 250 nm, retention time: 18.832 min, 23.914 min. [α]_D²⁵ = +195.16 (c = 0.186, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)naphthalen-1-yl)benzo[h]isoquinoline-N-oxide (3ma)

Foamy solid, 21.9 mg, 49% yield, m.p.: 104.0-105.7 °C, 73% ee. $R_f = 0.40$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL IF, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 35.249 min, 48.795 min. [α] $_D^{25} = -172.67$ (c = 0.322, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.57 (d, J = 7.2 Hz, 1H), 8.11 (d, J = 9.0 Hz, 1H), 7.96 (dd, J = 9.0, 4.2 Hz, 2H), 7.89 (d, J = 6.6 Hz, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.51 – 7.48 (m, 1H), 7.42 – 7.38 (m, 1H), 7.29 – 7.22 (m, 3H), 7.06 (d, J = 9.0 Hz, 1H), 6.95 – 6.91 (m, 1H), 6. 46 (d, J = 15.6 Hz, 1H), 4.02 – 3.92 (m, 2H), 1.51 – 1.45 (m, 2H), 1.25 – 1.18 (m, 2H), 0.84 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 144.1, 140.8, 137.7, 134.9, 134.3, 134.2, 131.3, 131.2, 131.1, 130.4, 129.6, 129.3, 128.8, 128.3, 128.0, 127.9, 127.8, 127.6, 127.5, 126.2, 125.1, 124.9, 124.9, 123.8, 121.1, 64.3, 30.7, 19.2, 13.8. **HRMS** (ESI): exact mass calcd for C₃₀H₂₆NO₃⁺ (M+H)⁺ requires m/z 448.1907, found m/z 448.1904.

(S)-1-(pyren-1-yl)isoquinoline-N-oxide ((S)-1n)

Foamy solid, 15.0 mg, 43% yield, m.p.: 239.9-242.6 °C, 94% ee. **HPLC** CHIRALCEL OD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 21.883 min, 29.523 min. [α]_D²⁵ = +179.67 (c = 0.200, CH₂Cl₂).

(S)-1-(2-(3-butoxy-3-oxoprop-1-en-1-yl)pyren-1-yl)isoquinoline-N-oxide (3na)

Foamy solid, 20.6 mg, 44% yield, m.p.: 184.0-185.8 °C, 89% ee. $R_f = 0.42$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL OD, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 28.265 min, 48.893 min. [α]_D²⁵ = +114.57 (c = 0.302, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.47 (d, J = 7.2 Hz, 1H), 8.22 (d, J = 7.6 Hz, 1H), 8.18 – 8.10 (m, 3H), 8.01 (t, J = 7.6 Hz, 1H), 7.98 – 7.86 (m, 3H), 7.59 – 7.47 (m, 2H), 7.38 – 7.28 (m, 2H), 6.92 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 15.6 Hz, 1H), 4.15 – 4.02 (m, 2H), 1.63 – 1.51 (m, 2H), 1.33 – 1.26 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.5, 143.8, 142.0, 137.8, 132.5, 132.1, 131.4, 131.1, 130.7, 130.3, 129.9, 129.4, 129.2, 128.7, 128.7, 127.4, 127.2, 126.9, 126.2, 126.1, 126.0, 125.8, 125.1, 124.5, 124.5, 124.4, 123.0, 121.7, 64.4, 30.7, 19.2, 13.8. **HRMS** (ESI): exact mass calcd for C₃₂H₂₆NO₃⁺ (M+H)⁺ requires m/z 472.1907, found m/z 472.1897.

(S)-1-(2-(3-methoxy-3-oxoprop-1-en-1-yl)naphthalen-1-yl)isoquinoline-N-oxide (3ab)

Foamy solid, 15.0 mg, 42% yield, m.p.: 176.2-177.9 °C, 91% ee. $R_f = 0.30$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 32.407 min, 39.073 min. [α]_D²⁴ = -92.22 (c = 0.300, CH₂Cl₂). ¹**H NMR** (400

MHz, CDCl₃) δ 8.38 (d, J = 7,2 Hz, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.95 – 7.80 (m, 4H), 7.57 – 7.46 (m, 2H), 7.39 – 7.30 (m, 2H), 7.27 (d, J = 16.0 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.53 (d, J = 15,6 Hz, 1H), 3,64 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 166.9, 143.1, 141.4, 137.6, 134.5, 132.2, 131.6, 130.5, 130.4, 130.0, 129.8, 128.7, 128.6, 128.6, 127.8, 127.6, 127.2, 125.7, 124.9, 124.5, 123.2, 120.8, 51.7. **HRMS** (ESI): exact mass calcd for C₂₃H₁₇NNaO₃⁺ (M+Na)⁺ requires m/z 378.1101, found m/z 378.1096.

(S)-1-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)naphthalen-1-yl)isoquinoline-N-oxide (3ac)

Foamy solid, 16.0 mg, 43% yield, m.p.: 223.6-225.2 °C, 92% ee. $R_f = 0.35$ (EtOAc/MeOH, 50/1, v/v). HPLC CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 17.828 min, 20.520 min. [α]_D²⁴ = -89.79 (c = 0.320, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.95 – 7.89 (m, 2H), 7.85 (dd, J = 16.0, 7.2 Hz, 2H), 7.57 – 7.46 (m, 2H), 7.39 – 7.30 (m, 2H), 7.26 (d, J = 16.0 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.53 (d, J = 16.0 Hz, 1H), 4.10 (q, J = 7.2 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 143.2, 141.2, 137.6, 134.4, 132.2, 131.6, 130.4, 130.4, 129.9, 129.8, 128.6, 128.6, 127.8, 127.5, 127.2, 125.6, 124.9, 124.5, 123.2, 121.2, 60.5, 14.2. HRMS (ESI): exact mass calcd for C₂₄H₁₉NNaO₃⁺ (M+Na)⁺ requires m/z 392.1257, found m/z 392.1257.

(S)-1-(2-(3-isopropoxy-3-oxoprop-1-en-1-yl)naphthalen-1-yl)isoquinoline-N-oxide (3ad)

Foamy solid, 16.4 mg, 43% yield, m.p.: 194.4-197.3 °C, 91% ee. $R_f = 0.40$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 12.130 min, 15.125 min. [α]_D²⁵ = -92.88 (c = 0.328, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.38 (d, *J* = 6.6 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.93 (dd, *J* = 8.4, 4.2 Hz, 2H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 7.2 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.39 – 7.31 (m, 2H), 7.23 (d, *J* = 15.6

Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.51 (d, J = 16.2 Hz, 1H), 4.99 – 4.91 (m, 1H), 1.17 (dd, J = 10.2, 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 166.0, 143.3, 141.0, 137.7, 134.5, 132.3, 131.7, 130.4, 130.4, 129.9, 129.8, 128.7, 128.7, 128.6, 127.8, 127.5, 127.2, 125.7, 125.0, 124.4, 123.3, 121.7, 67.9, 21.9. **HRMS** (ESI): exact mass calcd for C₂₅H₂₂NO₃⁺ (M+H)⁺ requires m/z 384.1594, found m/z 384.1585.

(S)-1-(2-(3-oxo-3-phenoxyprop-1-en-1-yl)naphthalen-1-yl)isoquinoline-N-oxide (3ae)

Foamy solid, 15.4 mg, 37% yield, m.p.: 238.8-240.2 °C, 89% ee. $R_f = 0.48$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL IF, *n*-hexane/2-propanol = 50/50, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 30.132 min, 34.907 min. [α]_D²⁵ = -99.35 (c = 0.308, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, J = 7.2 Hz, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.98 (dd, J = 14.4, 8.8 Hz, 2H), 7.89 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.55 (q, J = 7.2 Hz, 2H), 7.45 – 7.29 (m, 5H), 7.19 (t, J = 7.6 Hz, 1H), 7.13 (d, J = 8.8 Hz, 1H), 7.08 – 6.96 (m, 3H), 6.74 (d, J = 16.0 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.0, 150.8, 143.1, 143.1, 137.7, 134.7, 132.0, 131.7, 130.6, 130.5, 130.4, 129.9, 129.4, 128.8, 128.7, 128.0, 127.8, 127.3, 125.8, 125.8, 124.9, 124.6, 123.3, 121.6, 120.2. **HRMS** (ESI): exact mass calcd for C₂₈H₁₉NNaO₃⁺ (M+Na)⁺ requires m/z 440.1257, found m/z 440.1257.

(S)-1-(2-(3-(benzyloxy)-3-oxoprop-1-en-1-yl)naphthalen-1-yl)isoquinoline-N-oxide (3af)

Foamy solid, 16.5 mg, 38% yield, m.p.: 197.2-198.8 °C, 91% ee. $R_f = 0.44$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 28.785 min, 35.675 min. [α]_D²⁵ = -82.02 (c = 0.330, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.38 (d, *J* = 7.2 Hz, 1H), 8.05 (d, *J* = 9.0 Hz, 1H), 7.93 (t, *J* = 9.0 Hz, 2H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 7.2 Hz, 1H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.2Hz, 1H), 7.41 – 7.28 (m, 6H), 7.24 (d, *J* = 7.2 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 9.0 Hz, 1H), 6.59 (d, *J*

= 15.6 Hz, 1H), 5.14 – 5.05 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 166.2, 143.2, 141.8, 137.7, 136.0, 134.6, 132.1, 131.7, 130.5, 130.4, 130.2, 129.9, 128.7, 128.6, 128.6, 128.2, 128.0, 127.9, 127.6, 127.2, 125.7, 125.0, 124.5, 123.2, 120.7, 66.3. HRMS (ESI): exact mass calcd for C₂₉H₂₁NNaO₃⁺ (M+Na)⁺ requires m/z 454.1414, found m/z 454.1409.

(S)-1-(2-(2-(phenylsulfonyl)vinyl)naphthalen-1-yl)isoquinoline-N-oxide (3ag)

Foamy solid, 11.4 mg, 26% yield, m.p.: 108.3-110.7 °C, 97% ee. $R_f = 0.33$ (EtOAc/MeOH, 50/1, v/v). HPLC CHIRALCEL IA, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 15.085 min, 20.340 min. [α]_D²⁵ = -91.82 (c = 0.228, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, *J* = 7.2 Hz, 1H), 8.03 (d, *J* = 9.0 Hz, 1H), 7.91 (dd, *J* = 18.6, 8.4 Hz, 2H), 7.83 (d, *J* = 7.2 Hz, 1H), 7.75 (d, *J* = 9.0 Hz, 1H), 7.68 (d, *J* = 7.8 Hz, 2H), 7.61 – 7.50 (m, 3H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.23 (d, *J* = 15.6 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.91 – 6.86 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 142.6, 140.1, 139.6, 137.6, 134.7, 133.4, 131.6, 130.7, 130.7, 130.5, 130.3, 130.0, 129.3, 128.8, 128.7, 128.6, 128.1, 128.1, 127.8, 127.4, 125.9, 124.8, 123.4. HRMS (ESI): exact mass calcd for C₂₇H₁₉NNaO₃S⁺ (M+Na)⁺ requires m/z 460.0978, found m/z 460.0968.

(S)-1-(2-(2-chlorostyryl)naphthalen-1-yl)isoquinoline-N-oxide (3ah)

Foamy solid, 15.8 mg, 39% yield, m.p.: 196.2-198.1 °C, 93% ee. $R_f = 0.46$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 15.553 min, 24.103 min. [α]_D²⁵ = -92.62 (c = 0.231, CH₂Cl₂). ¹**H** NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 7.2 Hz, 1H), 8.07 (s, 2H), 7.96 – 7.82 (m, 3H), 7.62 – 7.52 (m, 2H), 7.50 – 7.44 (m, 1H), 7.41 – 7.36 (m, 1H), 7.35 – 7.27 (m, 2H), 7.20 – 7.16 (m, 1H), 7.13 – 7.00 (m, 4H), 6.66 (d, J = 16.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 137.7, 135.2, 134.8, 133.7, 133.6, 131.9, 130.5, 130.4, 129.8, 128.9, 128.8, 128.6, 128.3, 128.0, 127.6, 127.2, 127.1,

126.9, 126.8, 126.6, 125.5, 125.2, 124.2, 123.6. **HRMS** (ESI): exact mass calcd for C₂₇H₁₈ClNNaO⁺ (M+Na)⁺ requires m/z 430.0969, found m/z 430.0962.

1-((*S*)-2-((*E*)-3-(((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl)oxy)-3-oxoprop-1-en-1-yl)naphthalen-1-yl) isoquinoline-*N*oxide (3ai)

Foamy solid, 27.9 mg, 47% yield, m.p.: 165.9-167.8 °C, 90% de. $R_f = 0.44$ (EtOAc/MeOH, 50/1, v/v). HPLC CHIRALCEL AD, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 34.095 min, 45.887 min. [α]_D²¹ = +15.41 (c = 0.558, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 8.37 (d, J = 7.2 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.97 (dd, J = 21.0, 8.4 Hz, 2H), 7.87 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.53 (q, J = 7.8 Hz, 2H), 7.44 – 7.33 (m, 3H), 7.24 (d, J = 8.4 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.82 – 6.76 (m, 2H), 6.73 (d, J = 15.6 Hz, 1H), 2.91 – 2.82 (m, 2H), 2.49 (dd, J = 19.2, 8.4 Hz, 1H), 2.41 – 2.35 (m, 1H), 2.29 – 2.22 (m, 1H), 2.17 – 2.09 (m, 1H), 2.06 – 1.93 (m, 3H), 1.64 – 1.39 (m, 6H), 0.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 165.1, 148.6, 143.0, 142.9, 137.9, 137.6, 137.3, 134.6, 131.9, 131.6, 130.6, 130.4, 130.3, 129.9, 128.7, 128.6, 128.6, 127.9, 127.8, 127.2, 126.3, 125.7, 124.8, 124.5, 123.2, 121.6, 120.2, 118.7, 50.4, 48.0, 44.2, 38.0, 35.9, 31.6, 29.4, 26.3, 25.8, 21.6, 13.9. HRMS (ESI): exact mass calcd for C₄₀H₃₅NNaO₄⁺ (M+Na)⁺ requires m/z 616.2458, found m/z 616.2452.

1-((*S*)-2-((*E*)-3-(4-((*S*)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenoxy)-3oxoprop-1-en-1-yl)naphthalen-1-yl)isoquinoline-*N*-oxide (3aj)

Foamy solid, 27.1 mg, 44% yield, m.p.: 110.3-112.4 °C, 93% de. $R_f = 0.49$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 17.260 min, 28.822 min. [α]_D²¹ = -40.21 (c = 0.542, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.37 (d, *J* = 6.6 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.96 (dd, *J* = 23.4, 6.0 Hz, 2H), 7.84 (d,

J = 22.8, 7.2 Hz, 2H), 7.52 (q, J = 8.4 Hz, 2H), 7.43 – 7.31 (m, 3H), 7.10 (dd, J = 25.8, 8.4 Hz, 3H), 6.97 (dd, J = 19.2, 8.4 Hz, 3H), 6.71 (d, J = 15.6 Hz, 1H), 5.05 (d, J = 7.8 Hz, 1H), 4.61 – 4.48 (m, 1H), 3.67 (s, 3H), 3.12 – 2.94 (m, 2H), 1.41 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 164.8, 155.1, 149.7, 143.0, 142.9, 137.6, 134.6, 133.6, 131.8, 131.6, 130.5, 130.5, 130.3, 130.1, 129.8, 128.7, 128.6, 128.6, 127.8, 127.7, 127.2, 125.7, 124.8, 124.5, 123.1, 121.6, 120.0, 79.9, 54.4, 52.2, 37.6, 28.3. HRMS (ESI): exact mass calcd for C₃₇H₃₄N₂NaO₇⁺ (M+Na)⁺ requires m/z 641.2258, found m/z 641.2253.

(R)-1-(2-iodonaphthalen-1-yl)isoquinoline-N-oxide (4a)¹

Foamy solid, 194.5 mg, 70% yield, 95% ee. $R_f = 0.23$ (EtOAc/MeOH, 50/1, v/v). HPLC CHIRALCEL AY-RH, *n*-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 14.747 min, 16.750 min. [α]_D²⁴ = -12.67 (c = 0.1, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 9.74 (s, 1H), 8.39 (d, *J* = 7.2 Hz, 1H), 8.17 (q, *J* = 8.4 Hz, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.90 (dd, *J* = 19.2, 8.4 Hz, 2H), 7.64 (t, *J* = 7.8 Hz, 1H), 7.58 (t, *J* = 7.8 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.27 (d, *J* = 9.0 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 146.9, 137.5, 135.5, 134.3, 133.0, 132.8, 131.0, 129.7, 129.4, 128.8, 128.6, 128.6, 127.9, 127.1, 126.9, 125.1, 124.7, 124.3, 98.2. HRMS (ESI): exact mass calcd for C₁₉H₁₂INNaO⁺ (M+Na)⁺ requires m/z 419.9856, found m/z 419.9855.

(R)-1-(2-(diphenylphosphanyl)naphthalen-1-yl)isoquinoline ((R)-QUINAP)³

White solid, 31.6 mg, 72% yield, 92% ee. $R_f = 0.34$ (Pet/EtOAc, 4/1, v/v). HPLC CHIRALCEL ID, *n*-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, $\lambda = 230$ nm, retention time: 12.103 min, 16.355 min. $[\alpha]_D^{24} = +122.6$ (c = 0.108, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, J = 6.0Hz, 1H), 7.88 (t, J = 8.4 Hz, 3H), 8.73 (d, J = 5.4 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.48 – 7.42 (m, 2H), 7.30 – 7.14 (m, 13H), 7.10 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 160.6 (d, J = 7.5 Hz), 144.4 (d, J = 33.0 Hz), 142.4, 137.5 (d, J = 12.0 Hz), 137.4 (d, J = 10.5 Hz), 136.0, 134.9 (d, J = 13.5 Hz), 133.9, 133.7 (d, J = 6.0 Hz), 133.4, 133.2, 132.8 (d, J = 7.5 Hz), 130.1 (d, J = 4.5 Hz), 129.1 (d, J = 3.0 Hz), 128.8, 128.5, 128.4, 128.3, 128.2, 128.0, 127.5, 127.1, 127.0 (d, J = 1.5 Hz), 126.7, 120.4. ³¹P NMR (243 MHz, CDCl₃) δ 14.1. HRMS (ESI): exact mass calcd for C₃₁H₂₃NP⁺ (M+H)⁺ requires m/z 440.1563, found m/z 440.1560.

(S)-1-(2-formylnaphthalen-1-yl)isoquinoline-N-oxide (4aa)

Foamy solid, 51.4 mg, 86% yield, m.p.: 157.6-160.2 °C, 92% ee. $R_f = 0.2$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 50/50, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 12.047 min, 27.918 min. [α]_D²⁴ = +52.86 (c = 0.396, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 9.74 (s, 1H), 8.39 (d, J = 7.2 Hz, 1H), 8.17 (q, J = 8.4 Hz, 2H), 8.01 (d, J = 8.4 Hz, 1H), 7.90 (dd, J = 19.8, 8.4 Hz, 2H), 7.64 (t, J = 7.8 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.27 (d, J = 9.0 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ 190.6, 141.9, 137.6, 136.7, 134.3, 132.8, 131.3, 130.9, 130.8, 130.1, 129.4, 128.9, 128.9, 128.6, 128.2, 127.3, 126.1, 124.7, 124.7, 123.7. **HRMS** (ESI): exact mass calcd for C₂₀H₁₄NO₂⁺ (M+H)⁺ requires m/z 300.1019, found m/z 300.1013.

(S)-1-(2-(hydroxymethyl)naphthalen-1-yl)isoquinoline-N-oxide (5aa)

Foamy solid, 29.2 mg, 97% yield, m.p.: 198.8-200.9 °C, 92% ee. $R_f = 0.1$ (EtOAc/MeOH, 50/1, v/v). **HPLC** CHIRALCEL OD-H, *n*-hexane/2-propanol = 50/50, flow rate = 1.0 mL/min, $\lambda = 256$ nm, retention time: 6.102 min, 8.757 min. [α]_D²⁴ = +416.38 (c = 0.346, CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃) δ 8.40 (d, J = 7.2 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.93 (dd, J = 28.8, 7.8 Hz, 2H), 7.85 (d, J = 6.6 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.48 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.29 (t, J = 7.2 Hz, 1H), 7.01 (dd, J = 13.8, 8.4 Hz, 2H), 5.00 (br, 1H), 4.52 – 4.45 (m, 1H), 4.33 (d, J = 11.4 Hz, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ 146.2, 138.9, 137.5, 133.6,

131.7, 130.9, 130.1, 129.8, 129.5, 129.5, 128.7, 128.1, 127.3, 127.2, 126.8, 126.4, 125.9, 125.2, 124.4, 65.4. **HRMS** (ESI): exact mass calcd for $C_{20}H_{15}NNaO_2^+$ (M+Na)⁺ requires m/z 324.0995, found m/z 324.0986.
4. Copies of NMR spectra

S39

S42

f1 (ppm)

S58

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S76

S78

5. Copies of HPLC spectra for racemic and chiral products

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	19.930	31.658	34.043	3.38	3.68
2	23.317	904.619	892.053	96.62	96.32
Total:		936.277	926.096	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	15.225	11.297	10.485	6.04	8.57
2	21.807	175.634	111.846	93.96	91.43
Total:		186.932	122.331	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	12.457	105.416	150.447	4.43	6.14
2	16.007	2272.511	2298.769	95.57	93.86
Total:		2377.927	2449.216	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	17.573	130.764	159.503	6.34	11.00
2	25.713	1932.438	1290.584	93.66	89.00
Total:		2063.202	1450.087	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	7.783	913.693	1497.298	91.11	92.12
2	10.088	89.198	128.137	8.89	7.88
Total:		1002.892	1625.435	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	21.347	61.262	42.610	3.15	5.11
2	31.317	1885.876	791.565	96.85	94.89
Total:		1947.138	834.175	100.00	100.00

Total:		2644.420	1264.919	100.00	100.00	
2	42.123	2378.489	1117.331	89.94	88.33	
1	37.968	265.932	147.588	10.06	11.67	
	min	mAU*min	mAU	%	%	
reak	Retention Time	Alea	Height	Alea	Height	

5 15 20 10 25 min Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] 00 1 18.832 BB 1.0838 6.00315e4 822.00616 99.2638 2 23.914 BB 0.9801 445.22940 5.35582 0.7362

HPLC spectra of recovered (S)-1a, for 3ab

HPLC spectra of recovered (S)-1a, for 3ac

1474.737

100.00

100.00

HPLC spectra of recovered (S)-1a, for 3ad

965.496

100.00

100.00

HPLC spectra of recovered (S)-1a, for 3ae

838.828

100.00

100.00

HPLC spectra of recovered (S)-1a, for 3af

S	1	2	1

315.191

100.00

100.00

974.418

Total:

HPLC spectra of recovered (S)-1a, for 3ag

- Total:	10.010	1127.101	1419.393	100.00	100.00
2	16.610	346 445	360.097	30.74	25.37
1	12.777	780.656	1059.297	69.26	74.63
	min	mAU*min	mAU	%	%

HPLC spectra of recovered (S)-1a, for 3ah

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	15.553	19.006	16.141	3.37	4.95
2	24.103	544.352	310.103	96.63	95.05
Total:		563.358	326.245	100.00	100.00

HPLC spectra of recovered (S)-1a, for 3ai

1586.945

100.00

100.00

HPLC spectra of recovered (S)-1a, for 3aj

Total:		329.291	260.343	100.00	100.00
2	28.822	11.196	5.236	3.40	2.01
1	17.260	318.096	255.107	96.60	97.99
	min	mAU*min	mAU	%	%
Реак	Retention Time	Area	Height	Area	Height

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	12.103	50.934	125.107	4.23	9.90
2	16.355	1153.056	1139.051	95.77	90.10
Total:		1203.990	1264.158	100.00	100.00

Total:		742.713	1305.001	100.00	100.00
2	8.757	712.452	1224.768	95.93	93.85
1	6.102	30.261	80.233	4.07	6.15
	min	mAU*min	mAU	%	%
Реак	Retention Lime	Area	Height	Area	Height

6. References

- D.-W. Gao, Q. Gu and S.-L. You, Pd(II)-Catalyzed Intermolecular Direct C-H Bond Iodination: An Efficient Approach toward the Synthesis of Axially Chiral Compounds *via* Kinetic Resolution, ACS Catal., 2014, 4, 2741-2745.
- U. Dhawa, C. Tian, T. Wdowik, J. A. Oliveira, J. Hao and L. Ackermann, Enantioselective Pallada-Electrocatalyzed C-H Activation by Transient Directing Groups: Expedient Access to Helicenes, *Angew. Chem. Int. Ed.*, 2020, *59*, 13451-13457.
- K. M. Allan, B. D. Hong and B. M. Stoltz, Expedient Synthesis of 3-Hydroxyisoquinolines and 2-Hydroxy-1,4-naphthoquinones via One-pot Aryne Acyl-alkylation/condensation, *Org. Biomol. Chem.*, 2009, 7, 4960-4964.