Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Metal-free photocatalyzed allylic silylation of allyl acetates and chlorides

Xin-Long Yu,^a Jia-Wei Hu,^a Jian Cao*^a and Li-Wen Xu*^{a,b}

^aCollege of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China ^bKey Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, P. R. China

E-mail: caojian@hznu.edu.cn; liwenxu@hznu.edu.cn

Table of Contents			
General information	S2		
Optimization of reaction conditions	\$3-\$5		
Mechanistic Studies	S6-S7		
Synthesis of allylsilanes 3 and 5	S8-S17		
Synthesis of 6 , 7 , 8	S18-S19		
References	S20		
NMR spectra	S21-S47		
Crystal data of 3m	S48		

General information

Unless otherwise stated, all reactions were carried out under a nitrogen atmosphere in glass reaction tubes. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (300-400 meshes) using petroleum ether (bp. 60~90 °C) and ethyl acetate as eluent. Precoated silica gel plates F-254 were used for thin-layer analytical chromatography and visualized by UV fluorescence (254 nm) then one of the following: KMnO₄, phosphomolybdic acid. NMR spectra were recorded on a Bruker Avance (400 MHz) spectrometer, using CDCl₃ as the solvent and TMS as internal standard. Chemical shifts (δ) were reported in parts per million (ppm) relative to residual solvent peaks rounded to the nearest 0.01 for proton and 0.1 for carbon (*ref: CHCl₃ ¹H: 7.26, ¹³C: 77.16*). Coupling constants (*J*) were reported in Hz to the nearest 0.1 Hz. Peak multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), m (multiplet) and br (broad). High resolution mass spectrometry (HRMS) was performed on a Waters Micromass (ESI-TOF). Silacarboxylic acids,¹ allyl acetates,² and allyl chlorides³ were synthesized according to reported procedures.

Optimization of reaction conditions

Table S1. Screening of photocatalysts.^a

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.2 mmol, 1.0 equiv.), photocatalyst (5 mol%, 0.01 mmol), MeCN (2 mL) at room temperature under visible light irradiation (blue LED, 460-465 nm, 15 W) under N₂ for 5 h. ^{*b*} Determined by ¹H NMR. ^{*c*} Ir[dF(CF₃)ppy]₂(bpy)PF₆ (2 mol%, 0.004 mmol).

Table S	S2 .	Screening	of	sol	lvents. ^a
Lable	 .	bereening	O1	501	venus.

Ph CC	$P_2Me + Ph_2MeSi-COOH$	4CzIPN (5 mol%) Solvent, r.t., 5 h Blue LED (15 W)	Ph CO ₂ Me
1a	2a		3a
Entry	Solvent	Yield of 3a (%)	$Z:E^b$
1	DMSO	< 5	-
2	NMP	< 5	-
3	DMF	< 5	-
4	DCM	22	1:1.6
5	THF	75	1:1.4
6	MeCN	85	1:2
7	Hexane	17	1:0.9
8	EtOH	70	1:1.2
9	Acetone	78	1:1.8
10	Toluene	45	1:1.2
11	1,4-Dioxane	73	1:1.5
12	H_2O	< 5	1:1
13	MeCN/H ₂ O (1:1)	85	1:2
14	DCE/H ₂ O (1:1)	< 5	1:1

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.2 mmol, 1.0 equiv.), 4CzIPN (5 mol%, 0.01 mmol), solvent (2 mL) at room temperature under visible light irradiation (blue LED, 460-465 nm, 15 W) under N₂ for 5 h. ^{*b*} Determined by ¹H NMR.

Table S3. Screening of catalyst loading.^a

O Ph	Ac CO ₂ Me +	Ph ₂ MeSi-COOI	H → MeCN, r.t., 12 h Blue LED (15 W)	Ph	CO₂Me ──SiPh₂Me
	1a	2a			3a
	Entry	x mol%	Yield of 3a (%)	$Z:E^b$	
	1	5	85	1:2	
	2	2.5	85	1:2	
	3	1	70	1:2	

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.2 mmol, 1.0 equiv.), 4CzIPN (x mol%), MeCN (2 mL) at room temperature under visible light irradiation (blue LED, 460-465 nm, 15 W) under N₂ for 12 h. ^{*b*} Determined by ¹H NMR.

Table S4. Screening of conditions for isomerization of 3a.

	Ph SiPh ₂ Me conditions MeCN, r.t.	► Ph	D₂Me −SiPh₂Me	
	3a	Z-	3a	
Entry	conditions	Time (h)	Yield of 3a (%)	$Z:E^b$
1	UV irradiation (365 nm)	12	100	1:1.4
2	Ph ₂ S ₂ (100 mol%) (blue LED, 15 W)	1	88	>20:1
3	Ph ₂ S ₂ (20 mol%) (blue LED, 15 W)	1	90	>20:1
4	Ph_2S_2 (5 mol%) (blue LED, 15 W)	1	90	15:1

^{*a*} Reaction conditions: **3a** (0.2 mmol, 1.0 equiv.), MeCN (2 mL) at room temperature under N_2 . ^{*b*} Determined by ¹H NMR.

Table S5. Screening of reaction conditions for the synthesis of 5a.

Ph₂ ^t BuSiCOOH	+CI -	4CzIPN (5 mol%) Base Solvent Blue LED (15 W)	SiPh ₂ ^t Bu
2c	4a		5a
Entry	Base	Solvent	Yield of 5a (%)
1	Et ₃ N	MeCN	trace
2	Et ₃ N	THF	trace
3	K_2CO_3	THF	41
4	Na ₂ CO ₃	THF	31
5	NaHCO ₃	THF	62
6	NaOAc	THF	88
7	K ₂ HPO ₄	THF	54
8	Imidazole	THF	85
9	Pyridine	THF	85
10	Imidazole	EA	88
11	Imidazole	EtOH	77
12	Imidazole	1,4-dioxane	90
13	Imidazole	DMF	64
14	Imidazole	DCM	N.D.
15	Imidazole	DME	92
16	-	DME	13
17	Imidazole	H_2O	N.D.
18^{b}	Imidazole	DME	49
19 ^c	Imidazole	DME	92

^{*a*} Reaction conditions: **2c** (0.2 mmol, 1.0 equiv.), **4a** (0.4 mmol, 2.0 equiv.), 4CzIPN (5 mol%, 0.01 mmol), base (1.0 equiv.), solvent (2 mL) at room temperature under visible light irradiation (blue LED, 460-465 nm, 15 W) under N₂ for 1 h. ^{*b*} 4CzIPN (2.5 mol%). ^{*c*} **4a** (0.24 mmol, 1.2 equiv.)

Mechanistic Studies

Radical trapping experiments

Under nitrogen atmosphere, a 10 mL tube equipped with a magnetic stirrer bar was charged sequentially with allyl acetate **1a** (46.9 mg, 0.2 mmol, 1.0 equiv.), Ph₂MeSiCOOH **2a** (48.5 mg, 0.2 mmol, 1.0 equiv.), TEMPO (93.8 mg, 3.0 equiv.) and 4CzIPN (4.0 mg, 0.005 mmol, 2.5 mol%). Then MeCN (0.1 M, 2 mL) was injected into the reaction tube. The solution was stirred under irradiation with 15 W blue LED at room temperature for 12 h. The reaction mixture was diluted with DCM and detected by GC-MS. The product **3a** was observed in trace amount, indicating the reaction was suppressed by the radical scavenger.

Light/dark experiment

Under nitrogen atmosphere, five 10 mL tubes (No. 1-5) equipped with magnetic stirrer bars were charged sequentially with allyl acetate **1a** (46.9 mg, 0.2 mmol, 1.0 equiv.), Ph₂MeSiCOOH **2a** (48.5 mg, 0.2 mmol, 1.0 equiv.), and 4CzIPN (4.0 mg, 0.005 mmol, 2.5 mol%). Then MeCN (0.1 M, 2 mL) was injected into the reaction tube and the reaction mixtures were stirred under irradiation. After 10 min, the Blue LED was turned off, and No.1 vial was removed from the irradiation setup for analysis. The remaining four vials were stirred in the absence of light for an additional 10 min. Then, No.2 vial was removed for analysis, and the Blue LED was turned back on to irradiate the remaining three reaction mixtures. After an additional 10 min of irradiation, the Blue LED was turned off, and No. 3 vial was removed for analysis. The remaining two vials were stirred in the absence of light for an additional 10 min. Then, No. 4 vial was removed for analysis, and the Blue LED was turned off analysis, and the Blue LED was turned off analysis, and the Blue LED was turned off, and No. 3 vial was removed for analysis. The remaining two vials were stirred in the absence of light for an additional 10 min. Then, No. 4 vial was removed for analysis, and the Blue LED was turned back on to irradiate the remaining last reaction mixture for 10 min, and then it was analyzed. Yields were determined by analysis of the crude ¹H NMR spectra using 1,3,5-trimethoxybenzene as an internal standard.

Synthesis of allylsilanes 3

Typical procedure for the synthesis of 3a

Under nitrogen atmosphere, a 10 mL tube equipped with a magnetic stirrer bar was charged sequentially with allyl acetate **1a** (46.9 mg, 0.2 mmol, 1.0 equiv.), Ph₂MeSiCOOH **2a** (48.5 mg, 0.2 mmol, 1.0 equiv.), and 4CzIPN (4.0 mg, 0.005 mmol, 2.5 mol%). Then MeCN (0.1 M, 2 mL) was injected into the reaction tube. The solution was stirred under irradiation with 15 W blue LED at room temperature for 12 h. Upon completion, solvent was removed under vacuum and the residue was purified by a short flash column chromatography to afford the crude product. A solution of the crude product and Ph_2S_2 (8.7 mg, 0.04 mmol, 20 mol%) in MeCN (0.1 M, 2 mL) was stirred under irradiation with 15 W blue LED at room temperature for 1 h. Upon completion, solvent was removed under vacuum and the residue under vacuum and the residue was purified by SiO₂ column chromatography to afford the desired product **3a**.

Figure S1. Experimental setup

methyl (*Z*)-2-((methyldiphenylsilyl)methyl)-3-phenylacrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 65.4

mg, 75% yield.

¹H NMR (400 MHz, CDCl₃): δ 7.58 (s, 1H), 7.51-7.47 (m, 4H), 7.39-7.31 (m, 6H), 7.26-7.18 (m,

5H), 3.55 (s, 3H), 2.72 (d, *J* = 0.9 Hz, 1H), 0.52 (s, 3H).

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ 169.2, 136.5, 136.4, 136.2, 134.7, 130.6, 129.4, 129.1, 128.4,

127.91, 127.88, 51.9, 16.2, -3.8.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{24}H_{24}O_2NaSi$, 395.1438; found 395.1444.

methyl (Z)-2-((dimethyl(phenyl)silyl)methyl)-3-phenylacrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 43.5

mg, 70% yield.

¹H NMR (400 MHz, CDCl₃) *δ* 7.56 (s, 1H), 7.48-7.46 (m, 2H), 7.34-7.33 (m, 3H), 7.30-7.26 (m, 4H), 3.70 (s, 3H), 2.41 (s, 2H), 0.27 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 138.7, 136.4, 135.8, 133.7, 131.0, 129.20, 129.15, 128.4,

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{19}H_{22}O_2NaSi$, 333.1281; found 333.1280.

$$Ph$$
 $SiPh_2^tBu$ $3c$

methyl (Z)-2-((tert-butyldiphenylsilyl)methyl)-3-phenylacrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 70.5 mg, 85% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.35 (m, 4H), 7.32 (s, 1H), 7.28-7.23 (m, 2H), 7.19-7.15 (m,

7H), 7.12-7.09 (m, 2H), 3.20 (s, 3H), 2.63 (d, *J* = 1.1 Hz, 2H), 0.94 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) *δ* 168.9, 136.54, 136.49, 136.2, 134.1, 131.7, 129.07, 129.03, 128.4, 127.7, 127.3, 51.5, 27.6, 18.7, 11.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for C₂₇H₃₀O₂NaSi, 437.1907; found 437.1909.

methyl (Z)-3-phenyl-2-((triphenylsilyl)methyl)acrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 86.4 mg, 99% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.40-7.38 (m, 6H), 7.32-7.21 (m, 9H), 7.11-7.00 (m,

5H), 3.20 (s, 3H), 2.85 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.9, 136.7, 136.1, 134.4, 130.9, 129.6, 129.1, 128.4, 127.9, 51.6,

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for C₂₉H₂₆O₂NaSi, 457.1594; found 457.1599.

(E)-methyldiphenyl(3-phenyl-2-(phenylsulfonyl)allyl)silane

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 72.6 mg, 80% yield.

1H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 8.3, 1.3 Hz, 2H), 7.69 (s, 1H), 7.63-7.55 (m, 2H), 7.48-

7.46 (m, 5H), 7.42-7.30 (m, 6H), 7.24-7.11 (m, 5H), 2.53 (s, 2H), 0.64 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.0, 139.2, 136.6, 135.4, 134.7, 134.07, 133.97, 133.3, 130.0,

129.5, 129.3, 129.2, 129.0, 128.6, 128.4, 128.04, 127.95, 16.1, -3.8.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for C₂₈H₂₆O₂NaSSi, 477.1315; found 477.1317.

diethyl (E)-(3-(methyldiphenylsilyl)-1-phenylprop-1-en-2-yl)phosphonate

The crude product was purified by column chromatography (SiO₂, PE:EA 5:1 to 2:1). Colorless oil. 49.0 mg, 54% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.47-7.45 (m, 4H), 7.41 (s, 1H), 7.37-7.28 (m, 6H), 7.25-7.19 (m, 5H), 3.98-3.94 (m, 4H), 2.67 (dd, *J* = 21.2, 1.1 Hz, 2H), 1.20 (t, *J* = 7.1 Hz, 6H), 0.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.2 (d, J = 11.9 Hz), 137.3, 136.1(d, J = 23.9 Hz), 134.6, 129.5, 129.2, 129.1 (d, J = 1.7 Hz), 128.4, 128.0, 127.8, 61.8 (d, J = 6.0 Hz), 16.32 (d, J = 6.3 Hz), 16.30 (d, J = 9.5 Hz), -3.8.

³¹P NMR (162 MHz, CDCl₃) δ 22.06.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{26}H_{31}O_3NaPSi$, 473.1672; found 473.1674.

phenyl (Z)-2-((methyldiphenylsilyl)methyl)-3-phenylacrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 79.4 mg, 91% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.42 (dd, J = 7.9, 1.6 Hz, 4H), 7.32-7.22 (m, 9H), 7.15-

7.12 (m, 5H), 6.76 (d, *J* = 7.6 Hz, 2H), 2.74 (s, 2H), 0.49 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 167.4, 151.1, 137.9, 136.4, 136.0, 134.9, 130.4, 129.5, 129.4, 129.3,

128.5, 128.3, 128.0, 125.8, 121.8, 16.3, -3.3.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calculated for $C_{29}H_{27}O_2Si$, 457.1594; found 457.1594.

$$= \underbrace{\begin{smallmatrix} \mathsf{CO}_2\mathsf{Et} \\ \\ \mathsf{SiPh}_3 \\ \mathbf{3h} \end{smallmatrix}}_{\mathsf{SiPh}_3}$$

ethyl 2-((triphenylsilyl)methyl)acrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 53.6 mg, 72% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.56-7.54 (m, 6H), 7.44-7.35 (m, 9H), 6.01 (s, 1H), 5.30 (s, 1H), 3.72

(q, *J* = 7.0 Hz, 2H), 2.74 (s, 2H), 1.06 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) 167.4, 137.3, 136.0, 134.2, 129.7, 127.9, 123.8, 60.7, 18.4, 14.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{24}H_{24}O_2NaSi$, 395.1438; found 395.1441.

methyl (Z)-3-(p-tolyl)-2-((triphenylsilyl)methyl)acrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 79.9

mg, 89% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.54-7.49 (m, 7H), 7.41-7.39 (m, 3H), 7.36-7.32 (m, 6H), 7.04 (d, J = 7.8 Hz, 2H), 6.97 (d, J = 7.8 Hz, 2H), 3.31 (s, 3H), 2.95 (s, 2H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 169.1, 138.0, 136.8, 136.1, 134.5, 133.2, 130.0, 129.6, 129.2, 129.1, 127.9, 51.6, 21.4, 15.7.

HRMS (ESI-TOF) m/z: [M + K]⁺ calculated for C₃₀H₂₈O₂KSi, 487.1490; found 487.1487.

methyl (Z)-3-(4-fluorophenyl)-2-((triphenylsilyl)methyl)acrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 68.9 mg, 76% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.50-7.49 (m, 7H), 7.44-7.40 (m, 3H), 7.37-7.33 (m, 6H), 7.07 (dd,

J = 8.4, 5.5 Hz, 2H), 6.83 (dd, $J_1 = J_2 = 8.5$ Hz, 2H), 3.31 (s, 3H), 2.91 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 163.3 (d, J = 247.8 Hz), 136.1, 135.5, 134.2, 132.1 (d, J =

3.2 Hz), 130.9 (d, *J* = 8.3 Hz), 130.8, 129.7, 127.9, 115.4 (d, *J* = 21.4 Hz), 51.7, 15.8.

¹⁹F NMR (471 MHz, CDCl₃) δ -113.2.

HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for C₂₉H₂₅O₂FNaSi, 475.1500; found 475.1513.

methyl (Z)-3-(4-chlorophenyl)-2-((triphenylsilyl)methyl)acrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 69.0 mg, 74% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.51-7.49 (m, 7H), 7.44-7.40 (m, 3H), 7.39-7.32 (m, 6H), 7.12 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 8.3 Hz, 2H), 3.32 (s, 3H), 2.92 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) *δ* 168.7, 136.0, 135.3, 134.5, 134.1, 133.7, 131.5, 130.4, 129.8, 128.6, 128.0, 51.7, 15.9.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for C₂₉H₂₅ClO₂NaSi, 491.1205; found 491.1201.

methyl (Z)-3-(3-bromophenyl)-2-((triphenylsilyl)methyl)acrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 60.7

mg, 60% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.48-7.38 (m, 10H), 7.35-7.31 (m, 7H), 7.22 (s, 1H), 7.01-6.99 (m,

2H), 3.31 (s, 3H), 2.92 (s, 2H).

 ^{13}C NMR (100 MHz, CDCl₃) δ 168.6, 138.3, 136.0, 135.0, 134.0, 132.3, 131.6, 130.8, 129.9, 129.7,

128.0, 127.5, 122.6, 51.8, 15.8.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{29}H_{25}BrO_2NaSi$, 535.0699; found 535.0701.

3m

methyl (Z)-2-((dimethyl(phenyl)silyl)methyl)-3-(pyridin-2-yl)acrylate

The crude product was purified by column chromatography (SiO₂, PE:EA 40:1 to 20:1). White solid,

mp 96-98 °C (PE:EA). 77.5 mg, 89% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, J = 5.4, 2.0 Hz, 1H), 7.47-7.36 (m, 7H), 7.29-7.22 (m, 4H),

7.22-7.16 (m, 6H), 6.94-6.92 (m, 2H), 3.59 (s, 3H), 3.32 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) *δ* 169.1, 155.4, 148.9, 136.1, 136.0, 134.9, 134.6, 133.4, 129.3, 127.5, 126.1, 122.1, 51.8, 16.0.

HRMS (ESI-TOF) m/z: [M + H]⁺ calculated for C₂₈H₂₅NO₂Si, 436.1727; found 436.1725.

methyl (Z)-2-((methyldiphenylsilyl)methyl)-5-phenylpent-2-enoate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 51.0 mg, 64% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.65-7.63 (m, 4H), 7.48-7.42 (m, 7H), 7.37-7.33 (m, 2H), 7.19-7.16 (m, 1H), 7.12 (d, *J* = 7.6 Hz, 2H), 6.77 (t, *J* = 7.2 Hz, 1H), 3.61 (s, 3H), 2.62 (t, *J* = 7.8 Hz, 2H),

2.45 (s, 2H), 2.23 (td, *J* = 7.8, 7.7 Hz, 2H), 0.63 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 168.6, 141.4, 139.1, 136.6, 134.8, 129.5, 129.4, 128.5, 128.4, 127.9, 126.1, 51.6, 34.8, 30.8, 15.8, -4.0.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for C₂₆H₂₈O₂NaSi, 423.1751; found 423.1751.

methyl (Z)-2-((dimethyl(phenyl)silyl)methyl)-5-phenylpent-2-enoate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 44.0 mg, 65% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.52-7.49 (m, 2H), 7.36-7.34 (m, 3H), 7.30-7.28 (m, 2H), 7.22-7.20 (m, 1H), 7.11-7.09 (m, 2H), 6.65 (t, *J* = 7.2 Hz, 1H), 3.62 (s, 3H), 2.61 (t, *J* = 7.9 Hz, 2H), 2.23 (td, *J* = 7.9, 7.2 Hz, 2H), 2.01 (s, 2H), 0.28 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 141.5, 138.8, 138.4, 133.7, 129.9, 129.2, 128.5, 128.4, 127.9, 126.1, 51.7, 34.9, 30.9, 17.3, -2.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{21}H_{26}O_2NaSi$, 361.1594; found 361.1591.

methyl (Z)-4-methyl-2-((triphenylsilyl)methyl)pent-2-enoate

The crude product was purified by column chromatography (SiO₂, PE:EA 20:1). Colorless oil. 54.0 mg, 67% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.45-7.43 (m, 6H), 7.25-7.34 (m, 9H), 6.31 (d, J = 10.2 Hz, 1H), 3.16

(s, 3H), 2.57 (s, 2H), 2.29-2.22 (m, 1H), 0.62 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 147.0, 136.1, 134.4, 129.6, 127.8, 126.5, 51.3, 28.5, 21.8, 14.8.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{26}H_{28}O_2NaSi$, 423.1751; found 423.1755.

Synthesis of allylsilanes 5

Typical procedure for the synthesis of 5a

A 10 mL tube equipped with a magnetic stirrer bar was charged sequentially with $Ph_2'BuSiCOOH$ (0.2 mmol, 1.0 equiv.), imidazole (0.2 mmol, 1.0 equiv.) and 4CzIPN (7.9 mg, 5 mol%), evacuated and refilled with N₂. DME (2 mL) and allyl chloride (0.24 mmol, 1.2 equiv.) were sequentially added and the solution was stirred under irradiation with 15 W blue LED at room temperature for 1 h. Upon completion, solvent was removed under vacuum and the residue was purified by SiO₂ column chromatography to afford the desired product **5a**.

tert-butyl(2-methylallyl)diphenylsilane

The crude product was purified by column chromatography (SiO₂, PE). Colorless oil. 54.2 mg, 92% vield.

¹H NMR (400 MHz, CDCl₃) *δ* 7.70-7.67 (m, 4H), 7.44-7.35 (m, 6H), 4.61 (s, 1H), 4.59 (s, 1H), 2.25 (s, 2H), 1.42 (s, 3H), 1.11 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 143.4, 136.3, 135.0, 129.2, 127.5, 110.9, 27.9, 25.6, 22.3, 18.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{20}H_{26}NaSi$, 317.1696; found 317.1696.

5b

allyl(tert-butyl)diphenylsilane

The crude product was purified by column chromatography (SiO₂, PE). Colorless oil. 44.8 mg, 80% yield. The spectra were in accordance with the reported literature.⁴

¹H NMR (400 MHz, CDCl₃) δ 7.64-7.61 (m, 4H), 7.43-7.34 (m, 6H), 5.82-5.75 (m, 1H), 4.92 (ddt, J = 16.6, 3.5, 1.7 Hz, 1H), 4.82 (ddt, J = 10.0 Hz, 3.3, 1.1 Hz, 1H), 2.21 (dt, J = 7.9, 1.4 Hz, 2H), 1.08 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) *δ* 136.1, 134.8, 134.5, 129.2, 127.7, 114.6, 28.0, 18.9, 18.6.

tert-butyldiphenyl(2-phenylallyl)silane

The crude product was purified by column chromatography (SiO₂, PE). Colorless oil. 53.4 mg, 75% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.59-7.57 (m, 4H), 7.39-7.35 (m, 2H), 7.31-7.29 (m, 4H), 7.22-7.15 (m, 5H), 5.04 (d, *J* = 1.4 Hz, 1H), 4.83 (td, *J*₁ = *J*₂ = 1.4 Hz, 1H), 2.67 (d, *J* = 1.4 Hz, 2H), 1.08 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) *δ* 145.6, 143.5, 136.4, 134.4, 129.0, 128.0, 127.4, 127.0, 126.5, 113.5, 28.0, 19.1, 18.7.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calculated for C₂₅H₂₉Si, 357.2033; found 357.2027.

tert-butyl(2-(naphthalen-2-yl)allyl)diphenylsilane

The crude product was purified by column chromatography (SiO₂, PE to PE:EA = 100:1). Colorless

oil. 49.8 mg, 61% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.78-7.75 (m, 1H), 7.68-7.54 (m, 7H), 7.45-7.22 (m, 9H), 5.20 (s,

1H), 4.97 (s, 1H), 2.79 (s, 2H), 1.09 (s, 9H).

 ^{13}C NMR (100 MHz, CDCl₃) δ 145.5, 140.5, 136.4, 134.4, 133.2, 132.6, 129.0, 128.3, 127.42,

127.35, 125.8, 125.6, 125.3, 125.1, 113.9, 28.0, 19.3, 18.8.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calculated for C₂₉H₃₁Si, 407.2190; found 407.2175.

.

tert-butyldiphenyl(2-((trimethylsilyl)methyl)allyl)silane

The crude product was purified by column chromatography (SiO₂, PE). Colorless oil. 70.5 mg, 96% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.65-7.63 (m, 4H), 7.39-7.32 (m, 6H), 4.47 (s, 1H), 4.34 (s, 1H), 2.14

(s, 2H), 1.16 (s 2H), 1.08 (s, 9H), 0.08 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 136.4, 135.2, 129.1, 127.5, 114.0, 108.1, 29.2, 27.9, 23.0, 18.7, -1.2. HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for C₂₃H₃₄NaSi₂, 389.2091; found 389.2092.

tert-butyl(2-(chloromethyl)allyl)diphenylsilane

The crude product was purified by column chromatography (SiO₂, PE). Colorless oil. 43.6 mg, 66% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.67-7.64 (m, 4H), 7.42-7.35 (m, 6H), 4.93 (d, J = 1.2 Hz, 1H), 4.77 (d,

J = 1.2 Hz, 1H), 3.55 (d, *J* = 0.9 Hz, 2H), 2.35 (d, *J* = 1.1 Hz, 2H), 1.09 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 142.5, 136.3, 134.0, 129.5, 127.7, 115.4, 50.4, 27.9, 18.6, 16.8.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calculated for C₂₀H₂₆ClSi, 330.1565; found 330.1558.

ethyl 3-(triphenylsilyl)-2-((triphenylsilyl)methyl)propanoate

Under nitrogen atmosphere, a 10 mL tube equipped with a magnetic stirrer bar was charged sequentially with ethyl 2-(acetoxymethyl)acrylate (31.6 mg, 0.2 mmol, 1.0 equiv.), Ph₃SiCOOH (152.2 mg, 0.5 mmol, 2.5 equiv.), and 4CzIPN (8.0 mg, 0.01 mmol, 5 mol%). Then MeCN (0.1 M, 2 mL) was injected into the reaction tube. The solution was stirred under irradiation with 15 W blue LED at room temperature for 12 h. Upon completion, solvent was removed under vacuum and the residue was purified by column chromatography to afford the desired product **3a** (SiO₂, PE:EA 40:1 to 20:1). White solid, (PE:EA) mp 158-160 °C. 66.9 mg, 53% yield.

1H NMR (400 MHz, CDCl₃) δ 7.42-7.38 (m, 18H), 7.31-7.28 (m, 12H), 3.16 (q, *J* = 7.2 Hz, 2H), 3.04-3.00 (m, 1H), 1.85 (dd, *J* = 14.8, 8.8 Hz, 2H), 1.69 (dd, *J* = 14.8, 5.6 Hz, 2H), 0.80 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.9, 135.9, 134.5, 129.5, 127.9, 60.1, 36.8, 21.0, 13.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calculated for $C_{42}H_{40}O_2NaSi_2$, 655.2459; found 655.2454.

2-methyl-3-((triphenylsilyl)methyl)but-3-en-2-ol

To a solution of **3h** (0.2 mmol, 74.5 mg) in THF (2 mL) was added MeMgBr (2.5 mL, 1.0 M in THF) at 0 °C, and the mixture was stirred at room temperature for 12 h. The reaction was quenched by saturated aqueous NH₄Cl (5 mL) and extracted with EtOAc (5 mL x 2). The combined organic layers were washed with brine, dried (MgSO₄), filtered and evaporated. The crude product was purified by column chromatography (SiO₂, PE:EA 40:1 to 20:1). Colorless oil, 65.4 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.57 (m, 6H), 7.45-7.31 (m, 9H), 4.91 (s, 1H), 4.70 (s, 1H), 2.51 (s, 2H), 1.20 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 151.8, 136.4, 135.1, 129.8, 128.0, 109.3, 73.5, 28.9, 17.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ calculated for C₂₄H₂₆ONaSi, 381.1645; found 381.1641.

Me SiPh₃

2-methyl-3-(triphenylsilyl)propanal

To a solution of LiAlH₄ (0.24 mmol, 7.6 mg) in THF (2 mL) was added **3h** (0.2 mmol, 74.5 mg) at 0 °C, and the mixture was stirred at room temperature for 12 h. H₂O (5 mL) and EtOAc (5 mL) were added and the organic layer was separated, dried (MgSO₄), filtered and evaporated. The crude product was purified by column chromatography (SiO₂, PE:EA 40:1 to 20:1). White solid, mp 55-57 °C (PE:EA). 55.4 mg, 84% yield.

¹H NMR (400 MHz, CDCl₃) 9.51 (d, *J* = 1.4 Hz, 1H), 7.77-7.49 (m, 6H), 7.46-7.31 (m, 9H), 2.57-2.52 (m, 1H), 1.95 (dd, *J* = 15.1, 4.9 Hz, 1H), 1.30 (dd, *J* = 15.0, 8.8 Hz, 1H), 1.02 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 204.5, 135.8, 134.5, 129.9, 128.2, 42.3, 16.7, 13.9.

HRMS (ESI-TOF) m/z: $[M + K]^+$ calculated for C₂₂H₂₂OKSi, 369.1072; found 369.1087.

Reference

- (1) (a) S. D. Friis, R. H. Taaning, A. T. Lindhardt and T. Skrydstrup, Silacarboxylic Acids as Efficient Carbon Monoxide Releasing Molecules: Synthesis and Application in Palladium-Catalyzed Carbonylation Reactions, *J. Am. Chem. Soc.*, 2011, **133**, 18114–18117; (b) N.-X. Xu, B.-X. Li, C. Wang and M. Uchiyama, Sila- and Germacarboxylic Acids: Precursors for the Corresponding Silyl and Germyl Radicals, *Angew. Chem., Int. Ed.*, 2020, **59**, 10639–10644.
- (2) (a) Z. He, B. Wibbeling and A. Studer, Oxidative Heck Coupling of Allylic Amines with 2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) as Oxidant for the Preparation of Tetrasubstituted Alkenes, *Adv. Synth. Catal.*, 2013, **355**, 3639–3647; (b) H. Park, C.-W. Cho and M. J. Krische, Phosphine-Catalyzed Allylic Substitution of Morita–Baylis–Hillman Acetates: Synthesis of N-Protected β-Aminophosphonic Acid Esters, *J. Org. Chem.*, 2006, **71**, 7892–7894; (c) B. Zhu, L. Yan, Y. Pan, R. Lee, H. Liu, Z. Han, K.-W. Huang, C.-H. Tan and Z. Jiang, Lewis Base Catalyzed Enantioselective Allylic Hydroxylation of Morita–Baylis–Hillman Carbonates with Water, *J. Org. Chem.* **2011**, *76*, 6894–6900; (d) V. K. Aggarwal, I. Emme and S. Y. Fulford, Correlation between pKa and Reactivity of Quinuclidine-Based Catalysts in the Baylis–Hillman Reaction: Discovery of Quinuclidine as Optimum Catalyst Leading to Substantial Enhancement of Scope, *J. Org. Chem.*, 2003, **68**, 692–700.
- (3) (a) B. Xu and U. Tambar, Remote Allylation of Unactivated C(sp3)–H Bonds Triggered by Photogenerated Amidyl Radicals, *ACS Catal.*, 2019, 9, 4627–4931; (b) P. Martínez-Balart, B. L. Tóth, Á. Velasco-Rubio and M. Fañanás-Mastral, Direct C–H Allylation of Unactivated Alkanes by Cooperative W/Cu Photocatalysis, *Org. Lett.*, 2022, 24, 6874–6879.
- (4) (a) G. Zhang, C. Zhang, H. Jiao and F. Chen, Photoredox/nickel cooperatively catalyzed radical allylic silylation of allyl acetates Scope and mechanism, *J Catal.*, 2023, 418, 312–319; (b) S. Ito, A. Hayashi, H. Komai, H. Yamaguchi, Y. Kubota and M. Asami, Mesoporous aluminosilicate-catalyzed allylation of carbonyl compounds and acetals, *Tetrahedron*, 2011, 67, 2081–2089.

0 150 140 130 120 110 100 90 80 70 60 50 40 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

3j; ¹H NMR (400 MHz, CDCl₃); ¹³C NMR (100 MHz, CDCl₃); ¹⁹F NMR (471 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

S35

5f; ¹H NMR (400 MHz, CDCl₃); ¹³C NMR (100 MHz, CDCl₃)

6; ¹H NMR (400 MHz, CDCl₃); ¹³C NMR (100 MHz, CDCl₃)

7; ¹H NMR (400 MHz, CDCl₃); ¹³C NMR (100 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Crystal data of **3m**

Table 1 Crystal data and structure refinement for mo230226a.			
Identification code	mo230226a		
Empirical formula	$C_{28}H_{25}NO_2Si$		
Formula weight	435.58		
Temperature/K	296.15		
Crystal system	triclinic		
Space group	P-1		
a/Å	8.2953(17)		
b/Å	11.112(2)		
c/Å	13.432(3)		
α/°	75.647(4)		
β/°	76.178(4)		
γ/°	86.139(4)		
Volume/Å ³	1164.7(4)		
Z	2		
$\rho_{calc}g/cm^3$	1.242		
µ/mm ⁻¹	0.126		
F(000)	460.0		
Crystal size/mm ³	$0.15 \times 0.15 \times 0.12$		
Radiation	MoKa ($\lambda = 0.71073$)		
2Θ range for data collection/°	3.216 to 61.05		
Index ranges	$-9 \le h \le 11, -15 \le k \le 15, -18 \le l \le 19$		
Reflections collected	24067		
Independent reflections	6555 [$R_{int} = 0.0293$, $R_{sigma} = 0.0313$]		
Data/restraints/parameters	6555/0/290		
Goodness-of-fit on F ²	1.029		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0447, wR_2 = 0.1062$		
Final R indexes [all data]	$R_1 = 0.0715, wR_2 = 0.1203$		
Largest diff. peak/hole / e Å ⁻³	0.25/-0.22		