Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Intramolecular Cascade Cyclization via Photogenerated N-Amidyl

Radicals toward Isoindolin-1-one/3,4-Dihydroisoquinolin-1(2H)-one

Fused Oxazinane

Yuan-Xiang He, ^{a, b} Kui Hu, ^{a, b} Yu Ran, ^{a, b} Zhen-Yao Lei, ^b Shu Geng, ^b Li-Na Chen, ^b Li Pan, ^{*b} Jun-Bo Zhong, ^{*a} and Feng Huang ^{*b}
^a College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China.
*E-mail: junbozhong@suse.edu.cn;
^b State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
*E-mail: <u>bk6180b@163.com</u>; john_hf@163.com;

Table of Contents

1. General	S2
2. Substrates preparation	
3. General experimental procedure	S4
4. Mechanistic Studies	
Luminescence quenching experiments	S5
¹ H NMR Study on the effect of the base with 1a	S6
Radical trapping experiments	S7
H/D exchange experiments	S8
5. Density functional theory (DFT) calculation	S10
6. Sunlight-catalyzed reaction	
7. Procedure for the follow-up transformations of 2a	S45
8. References	S46
9. Analytical data for substrates	S46
10. Analytical data for products	
11. X-ray structure of products 2a (major), 2a (minor), 2s (major), 4a (major), 4a (minor)
and 4p (major)	
12. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	S96

1. General

Unless otherwise noted, reagents obtained from commercial suppliers were used without further purification. All glassware was washed with detergent, rinsed with acetone, and dried in an oven at 125 °C before use. Moisture-sensitive reactions were carried out in the argon atmosphere, and sensitive reagents were added via syringe and cannula techniques. TLC (Thin Layer Chromatography) was performed on precoated silica gel HSGF254 plates, which were visualized by UV light (254 nm), iodine, KMnO₄ solution, or alcoholic solution of phosphomolybdic acid. CC (column chromatography) was performed on silica gel 100-200/, 200–300/, and 300–400 mesh obtained from Qingdao Haiyang Chemical. ¹H NMR (300 MHz or 600 MHz), ¹³C NMR (75 MHz or 150 MHz), and ¹⁹F NMR (282 MHz) spectra were recorded in CDCl₃ (¹H NMR: δ 7.26, ¹³C NMR: δ 77.16) or CD₃OD (¹H NMR: δ 3.30, ¹³C NMR: δ 49.00) on Bruker AVANCE 300 or 600 instruments. The chemical shifts (δ) are reported in ppm using TMS as an internal standard, and coupling constants (*J*) are given in Hz. The high-resolution mass spectrometry (HRMS) spectra were obtained on an Ultimate 3000 UHPLC-Thermo QE Focus MS instrument. IR spectra were obtained on a Bruker Mobile-IR instrument, and the photoreactor is SSSTECH-AF1 from Shanghai 3S Technology Co., Ltd.

2. Substrates preparation

Procedure for the synthesis of substrate 1 (Method A)¹:

To a solution of cinnamyl alcohol (22.4 mmol, 1.0 equiv) in dry THF (150 mL) was added triphenylphosphine (24.7 mmol, 1.1 equiv) and N-hydroxylphthalimide (24.7 mmol, 1.1 equiv). After the solution was cooled to 0 °C, the diisopropylazodicarboxylate (24.7 mmol, 1.1 equiv) was added dropwise. The solution was allowed to warm to room temperature and stirred over 3 h. Reaction progress was monitored by TLC. The hydrazine monohydrate (85%, 1.1 equiv) was then added, and the solution was stirred for another 30 min. The resulting reaction mixture was filtered to remove the white precipitate. The filtrate was concentrated, and the resulting product was dissolved in ether and treated with HCl (2 M solution in ether) to afford the HCl salt of the O-cinnamylhydroxylamine (55% overall yield, white power).

Procedure for the synthesis of substrates 2 and 3 (Method B):

NaBH₄ (24.0 mmol, 1.2 equiv) was added to a stirred solution of benzylidene acetone (20.0 mmol,

1.0 equiv) in MeOH (20 mL) at 0 °C, and the mixture was stirred at 0 °C for 30 min. After that, the reaction was quenched by adding saturated aqueous NH₄Cl and extracting with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure to obtain secondary allyl alcohol in the form of a yellow liquid in an almost quantitative yield, which was used in the subsequent step without further purification². The corresponding HCl salt of the O-cinnamylhydroxylamine was synthesized by the same **method A**.

Procedure for the synthesis of substrates 1a, 1s and 1t (Method C):

Step A. A solution of isopropyltriphenylphosphinium iodide (32.0 mmol, 2.0 equiv) and potassium tertbutoxide (48.0 mmol, 3.0 equiv) in THF (120 mL) was stirred at room temperature for 1.5 h. 2-formylbenzoic acid (16.0 mmol, 1.0 equiv) was added, and the solution was refluxed overnight. Until the reaction was completed, as monitored by TLC, the resulting mixture was quenched with water, basified with aqueous NaOH (3 M), and washed with diethyl ether. The resulting aqueous phase was acidified with aqueous HCl (3 M) until pH = 1-2 and extracted twice with ethyl acetate. The combined organic layers were washed with water, and brine, dried with Na₂SO₄, filtered, and concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 2/1 to 5/1) to afford the desired unsaturated benzoic acid derivatives (white solid 95%)³.

Step B. To a solution of 2-(2-methylprop-1-en-1-yl) benzoic acid (13.0 mmol, 1.0 equiv) in CH₂Cl₂ (90 mL) was added the corresponding HCl salt of the O-cinnamylhydroxylamine (19.5 mmol, 1.5 equiv), EDCI (26.0 mmol, 2.0 equiv) and DMAP (26.0 mmol, 2.0 equiv) successively. The resulting mixture was stirred at room temperature overnight. The reaction was quenched by adding HCl (3 M). The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂. The combined extracts were washed with brine, dried over Na₂SO₄, and filtrated. The filtrate was concentrated and purified by column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 1/3 to 1/2) to yield the product (white solid 91%)⁴⁻⁶.

Procedure for the synthesis of substrates 1b-1r (Method D):

To a solution of phthalides (12.0 mmol, 1.0 equiv) in 60 mL 1, 2-dichloroethane was added NBS (13.2 mmol, 1.1 equiv) and AIBN (0.6 mmol, 0.05 equiv) was added at room temperature. Then the mixture was refluxed at 85 °C overnight. It was cooled to room temperature and purified by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 1/5 to 1/4). The product was then suspended in 100 mL H₂O and heated to 100 °C. After 1 h, the mixture was cooled

to room temperature and extracted with EtOAc (3×30 mL). The combined extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. To give a corresponding 2-formylbenzoic acid as a solid^{7,8}. From the benzoic acid derivative, the corresponding benzamide derivate was synthesized by the same **method C**.

Procedure for the synthesis of substrates 3a-3q (Method E):

To a stirred solution of 2-iodobenzoic acid (10.0 mmol, 1.0 equiv) and THF (30 mL) at -30 °C in an oven-dried flask under argon was added MeMgBr (1.0 equiv, 1 M in THF) and stirred for 5 min. ¹PrMgCl (1.2 equiv, 2 M in THF) was added slowly, and the reaction was stirred at -30 °C for 1 h or until the reaction was complete by TLC (an aliquot was quenched with water before analysis). The reaction was then cooled to -40 °C, and a solution of CuCN·2LiCl in THF (0.09 mL, 0.05 mol) was added slowly and stirred for 10 min while warming to -30 °C. 3, 3-Dimethylallyl bromide (30.0 mmol, 3.0 equiv) was added at once, and the reaction was allowed to warm to ambient temperature overnight. The reaction was diluted with EtOAc, acidified with 1 M HCl to pH = 3, and extracted with EtOAc. The combined organic layers were washed with brine and dried over Na₂SO₄. The crude mixture was concentrated and purified by column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 1/2 to 1/1) to yield 2-(3-methylbut-2-en-1-yl) benzoic acid (white solid 48%)⁹. The corresponding benzamide derivate was synthesized by the same **method C (Step B)**.

3. General experimental procedure

Typical experimental procedure for the cascade annulations:

To a Schlenk tube were added **1a** (61.4 mg, 0.2 mmol, 1.0 equiv), $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (3.0 mg, 0.004 mmol, 2 mol%), KHCO₃ (6.0 mg, 0.06 mmol, 30 mol%). The tube was degassed and refilled with N₂ three times, and anhydrous MeOH (3 mL) was added. The mixture was then placed around the Blue LEDs (450 nm, 100% light intensity) and stirred until the substrate was consumed (monitored by TLC), the solvent was removed by rotary evaporation, and the resulting residue was purified directly by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum)

To a Schlenk tube were added **3a** (64.3 mg, 0.2 mmol, 1.0 equiv), $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (3.0 mg, 0.004 mmol, 2 mol%), KHCO₃ (6.0 mg, 0.06 mmol, 30 mol%). The tube was degassed and refilled with N₂ three times, and anhydrous MeOH (3 mL) was added. The mixture was then placed around the Blue LEDs (450 nm, 100% light intensity) and stirred until the substrate was consumed (monitored by TLC), the solvent was removed by rotary evaporation, and the resulting residue was purified directly by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 1/3 to 1/2) to give the desired product **4a** (53.0 mg, 83% yield, dr = 4.3:1).

4. Mechanistic Studies

Luminescence quenching experiments

Figure S1. The UV absorption spectra of [Ru(bpy)₃]Cl₂•6H₂O

Figure S2. The luminescence spectra under different conditions of [Ru(bpy)₃]Cl₂•6H₂O

The maximum excitation wavelength of $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ in solvent MeOH was determined to be 450 nm by UV absorption spectrum (**Figure S1**). Fluorescence spectra were collected on Cary Eclipse Fluorescence Spectrophotometer. The solution of $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ in MeOH was excited at 450 nm, and the emission intensity at 606 nm was observed. In a typical experiment, the emission spectrum of a 1×10^{-4} M solution of $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ was collected. The decrease of $Ru(bpy)_3^{2+}$ luminescence couldn't be observed in the presence of substrate **1a** (**Figure S2-(a**)). Under essential conditions (KHCO₃, 0.06 mmol), a significant decrease of $Ru(bpy)_3^{2+}$ luminescence was successfully observed in the presence of **1a** (**Figure S2-(b**)).

¹H NMR Study on the effect of the base with 1a

Under the essential condition (KHCO₃ in MeOH), the signal of N-H disappeared in proton nuclear magnetic resonance (1 H NMR) spectra after stirring at room temperature for 2 h. These results suggested that the KHCO₃ can abstract the proton of the N-H bond of **1a** to generate the corresponding nitrogen anion intermediate (**Figure S3**).

Radical trapping experiments

To a Schlenk tube were added **1a** (61.4 mg, 0.2 mmol, 1.0 equiv), $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (3.0 mg, 0.004 mmol, 2 mol%), KHCO₃ (6.0 mg, 0.06 mmol, 30 mol%) and TEMPO (32.6 mg, 0.2 mmol, 1.0 equiv.). The tube was degassed and refilled with N₂ three times, and anhydrous MeOH (3 mL) was added. The mixture was then placed around the Blue LEDs (450 nm, 100% light intensity) and stirred until the substrate was consumed (monitored by TLC), the solvent was removed by rotary evaporation, and the resulting residue was purified directly by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 1/5 to 1/2) to give the product **2a** (27.0 mg, 44% yield) and the desired products **2u** (17.0 mg, 19% yield) and **2v** (30.0 mg, 33% yield) as white solids. When the amount of TEMPO is increased to 2.0 equivalents, almost no product **2a** is generated. However, the yields of **2u** and **2v** increased from 19% to 48% and 33% to 51%, respectively, which indicates that the reaction is likely to involve a free radical process.

H/D exchange experiments

To a Schlenk tube were added **1a** (61.4 mg, 0.2 mmol, 1.0 equiv), $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (3.0 mg, 0.004 mmol, 2 mol%), KHCO₃ (6.0 mg, 0.06 mmol, 30 mol%). The tube was degassed and refilled with N₂ three times, and anhydrous CD₃OD/MeOH (1:1) (3 mL) was added. The mixture was then placed around the Blue LEDs (450 nm, 100% light intensity) and stirred until the substrate was consumed (monitored by TLC), the solvent was removed by rotary evaporation, and the resulting residue was purified directly by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 1/3 to 1/2) to give the mixture of **2a** and **2aa** (47.0 mg, 77% yield) as white solids. When the solvent becomes anhydrous CD₃OD, only **2aa** (39.0 mg, 62% yield) is detected in the mixture. The products were analyzed by ¹H NMR spectroscopy (**Figure S4**).

S9

Figure S4. The ¹H NMR spectrum of the H/D exchange experiments

5. Density functional theory (DFT) calculation

Investigation of regioselectivity for N-amidyl radical by DFT calculation:

Figure S5. 2D Structures of all stationary points

All calculations were carried out with the density functional theory (DFT) at the M06-2X level¹⁰ theory using the Gaussian 16 series of programs¹¹. The def2-TZVP basis set was used for all the atoms. The gas-phase geometries of all intermediates and transition states were fully optimized without any symmetry restriction, following harmonic frequency calculations to ensure that the local minima had zero imaginary frequencies and the transition state one and to derive the thermal corrections for Gibbs free energies. The transition states were verified by intrinsic reaction coordinate (IRC) calculation and imaginary vibration modes, which linked reactants and products. Double hybrid functional (B2PLYPD3 method)¹², which could give more accurate energetic

information, was used to calculate single point energies with a jul-cc-pvtz basis set. Gibbs free energies of all stationary points were obtained by the thermal correction to Gibbs free energy in the gas phase and single point energy in the gas phase.

Geometry ^[a]	E _(gas-B2PLYP) ^[b] (Hartree)	$G_{(corr-M062X)}{}^{[c]}$ (Hartree)	$\mathrm{IF}^{[d]}$	$\Delta G^{[e]}(\text{kcal/mol})$
1a-1	-978.81942166381	0.299178	-	0.0
1a-1-TS	-978.81031403032	0.298789	-396.72	5.47
2a-1	-978.83651361468	0.299116	-	-10.76
1a-2	-978.81444949752	0.302333	-	0.0
1a-2-TS	-978.77796202461	0.300163	-513.42	21.52
2a-2	-978.82394077394	0.302330	-	-5.95

Table S1. Gibbs free energies of all stationary points

[a] **1a-1** and **1a-2** have the same 2D structures and different 3D geometries. [b] The electronic energy calculated by B2PLYPD3 in the gas phase. [c] The thermal correction to Gibbs free energy calculated by M062X in the gas phase. [d] The M062X calculated imaginary frequencies for the transition states. [e] $\Delta G = [G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for transition state) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for reactant) or $\Delta G = [G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for the product) - $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$

Figure S6. Plots of total energy and root-mean-squared (RMS) gradient norm along IRC for 1a-1-TS

Figure S7. Plots of total energy and root-mean-squared (RMS) gradient norm along IRC for 1a-2-TS

Investigation of diastereoselectivity for target product 2a by DFT calculation:

Figure S8. 2D Structures of all stationary points

DFT calculations to determine the barrier to rotation around the C-O bond to be -2.66 kcal/mol, 0.47 kcal/mol, 45.51 kcal/mol, and 1.65 kcal/mol, which correspond to **1a-56RR-p1/1a-56RR-r2**, **1a**-

56SS-p1/1a-56SS-r2, 1a-56RS-p1/1a-56RS-r2, 1a-56SR-p1/1a-56SR-r2 (Figure S8 and Table S2). The free energy changes for 1a-56RR-p2 vs. 1a-56RR-r1, 1a-56SS-p2 vs. 1a-56SS-r1, 1a-56RS-p2 vs. 1a-56RS-r1, 1a-56SR-p2 vs. 1a-56SR-r1 are -26.24 kcal/mol, -21.92 kcal/mol, 19.26 kcal/mol, -14.83 kcal/mol, respectively (Table S2). Rotational barrier and free energy changes for the major product (1a-56RR-p2 and 1a-56SS-p2, red numbers in Table S2) are lower than the minor product (1a-56RS-p2 and 1a-56SR-p2, green numbers in Table S2).

		11-[e]	Barrier of Rotation ^[d]
Geometry ^[a]	$\Delta G^{[v]}$ (kcal/mol)	IF ^[C]	(kcal/mol)
1a-56RR-r1	0.00	-	-
1a-56RR-TS1	5.47	396.72	-
1a-56RR-p1	-10.76	-	-
1a-56RR-r2	-13.42	-	-2.66
1a-56RR-TS2	-3.02	489.25	-
1a-56RR-p2	-26.24	-	-
1a-56SS-r1	0.00	-	-
1a-56SS-TS1	4.35	420.24	-
1a-56SS-p1	-12.87	-	-
1a-56SS-r2	-12.40	-	0.47
1a-56SS-TS2	0.20	514.97	-
1a-56SS-p2	-21.92	-	-
1a-56RS-r1	0.00	-	-
1a-56RS-TS1	2.92	387.06	-
1a-56RS-p1	-12.37	-	-
1a-56RS-r2	33.14	-	45.51
1a-56RS-TS2	43.67	493.60	-
1a-56RS-p2	19.26	-	-
1a-56SR-r1	0.00	-	-
1a-56SR-TS1	7.39	438.25	-
1a-56SR-p1	-7.49	-	-
1a-56SR-r2	-5.84	-	1.65

 Table S2. Gibbs free energies of all stationary points

1a-56SR-TS2	5.65	497.56	-
1a-568R-p2	-14.83	-	-

[a] 1a-56RR-p1 and 1a-56RR-r2, 1a-56SS-p1 and 1a-56SS-r2, 1a-56RS-p1 and 1a-56RS-r2, 1a-56SR-p1 and 1a-56RR-r2, have the same 2D structures and different 3D geometries. [b] $G_{(corr-M062X)}$ is the thermal correction to Gibbs free energy calculated by M062X in gas phase. $E_{(gas-B2PLYPD3)}$ is the electronic energy calculated by B2PLYPD3 in the gas phase. $\Delta G = [G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for 1a-56RR-TS1/1a-56RR-p1/1a-56RR-r2/1a-56RR-r2/1a-56RR-r1). Similarly, ΔG for 1a-56SS/1a-56RS/1a-56SR can be obtained. [c] The M062X calculated imaginary frequencies for the transition states. [d] Barrier of Rotation = $[G_{(corr-M062X)} + E_{(gas-B2PLYPD3)}]$ (Sum of electronic and thermal free energies for 1a-56RR-r2/1a-56RS-r2/1a-56SR-r2/1a-56SS-r2/1a-56SS-r2/1a-56SR-r2/1a-56SS-r2/1

Optimized Geometries for All the Compounds and Transition State

1a-1			
С	-4.53750900	1.56128100	-0.55694400
С	-5.74570800	1.03308100	-0.12951400
С	-5.80085700	-0.25158500	0.40089700
С	-4.64343600	-1.00537800	0.48081800
С	-3.43191200	-0.48336100	0.02909300
С	-3.35620100	0.82273800	-0.47083100
Н	-4.49650100	2.57139200	-0.94729000
Н	-6.64739800	1.62869400	-0.20129200
Н	-6.74254800	-0.66359000	0.74003100
Н	-4.66812900	-2.01458200	0.87317500
С	-2.24252000	-1.37402200	0.08262700
0	-2.07647400	-2.21294200	0.95255200
Ν	-1.43830100	-1.27938800	-1.05651800
0	-0.21855400	-1.75932500	-0.99627600
С	0.53137600	-1.83286500	0.26147100
Н	0.12835800	-1.11136200	0.96794700
Н	0.40275300	-2.84390100	0.64750200
С	-1.05105300	1.73293800	-0.07381600
С	-1.03581500	1.47742400	1.40425600
Н	-0.11781300	0.95937700	1.69393200
Н	-1.02725900	2.43515200	1.93417000
Н	-1.89156200	0.90370000	1.75698400
С	0.18684700	2.38973800	-0.60734700
Н	1.05040400	1.73188300	-0.46528400
Н	0.10013700	2.62351200	-1.66804300
Н	0.39967800	3.31113400	-0.05781600
С	4.01420400	-0.16402800	0.26302500

С	4.90407100	-0.96587100	-0.45860300
С	4.47588400	1.04895900	0.77828000
С	6.21055800	-0.55523400	-0.66734800
Н	4.57807100	-1.92132200	-0.85073000
С	5.78460500	1.46147400	0.56769600
Н	3.79596900	1.67392400	1.34668100
С	6.65602500	0.66069100	-0.15748600
Н	6.88870100	-1.18837200	-1.22618400
Н	6.12339500	2.40717400	0.97232200
Н	7.67877000	0.97670500	-0.32109600
С	1.94697900	-1.53397200	-0.08430500
Н	2.41086600	-2.17786700	-0.82487200
С	2.61243800	-0.53919700	0.49815400
Н	2.08374400	0.08090700	1.21890400
С	-2.07903100	1.45083500	-0.88016500
Н	-2.01497100	1.74942500	-1.92337900
1a-1-TS			
С	-4.62933600	-1.38956400	0.44454300
С	-5.79824400	-0.90404100	-0.12835300
С	-5.84323900	0.37352300	-0.68048700
С	-4.71548900	1.17914200	-0.65466500
С	-3.55289900	0.69398900	-0.07102600
С	-3.49238100	-0.59061700	0.46621200
Н	-4.59601600	-2.39000600	0.85889800
Н	-6.68151300	-1.53028400	-0.15188800
Н	-6.75982500	0.73728900	-1.12686100
Н	-4.73006600	2.17764800	-1.07456200
С	-2.30535800	1.48788200	0.01677500
0	-2.07125300	2.50148400	-0.63604200
Ν	-1.50194000	0.97052500	0.99486400
0	-0.18917200	1.27715900	0.99720400
С	0.50186600	1.21191000	-0.27592500
Н	0.15181300	0.33406200	-0.82337700
Н	0.26487000	2.10986200	-0.84732800
С	-1.25513100	-1.71819000	0.27952800
С	-1.37087800	-1.90871700	-1.19685300
Н	-0.39538700	-1.80424800	-1.67727800
Н	-1.71514600	-2.92814400	-1.40438900
Н	-2.07416600	-1.21639700	-1.65902500
С	-0.02742600	-2.25474900	0.93027400
Н	0.84561500	-1.68067600	0.59746700
Н	-0.08171100	-2.20326900	2.01681700
Н	0.14735100	-3.29068700	0.62515600

С	4.20218100	0.07416400	-0.29664000
С	4.95977600	1.01547400	0.40816300
С	4.85466600	-1.03858300	-0.83122000
С	6.32331900	0.83937000	0.57679200
Н	4.48362100	1.89449600	0.82453400
С	6.22157100	-1.21544900	-0.66288700
Н	4.27872900	-1.77290200	-1.38315200
С	6.96086400	-0.27693800	0.04317200
Н	6.89502800	1.57835200	1.12474100
Н	6.70776000	-2.08646100	-1.08470100
Н	8.02734000	-0.40967600	0.17612000
С	1.95736000	1.13636100	0.02437800
Н	2.34639100	1.91552200	0.67300400
С	2.75014800	0.20167300	-0.49387400
Н	2.30384900	-0.55851700	-1.13143100
С	-2.19177800	-1.04731100	1.02084900
Н	-2.11911900	-1.11474900	2.10137000
2a-1			
С	4.76330800	1.01181200	0.52179000
С	5.94413200	0.35116600	0.19683100
С	5.94109200	-0.98815800	-0.19370900
С	4.75048600	-1.69860700	-0.27312400
С	3.58206200	-1.03127700	0.05303500
С	3.58054900	0.29861400	0.45348100
Н	4.77093500	2.05397600	0.81884900
Н	6.88420500	0.88653800	0.24605700
Н	6.87636900	-1.47397600	-0.44091700
Н	4.72946600	-2.73664100	-0.58167200
С	2.18761500	-1.53221600	0.04448700
0	1.76686900	-2.65226100	-0.22052100
Ν	1.44091600	-0.46453000	0.39811300
0	0.10105900	-0.56189800	0.61896800
С	-0.65071500	-0.34109300	-0.60032200
Н	-0.52941200	0.69657900	-0.91721600
Н	-0.24780000	-1.00904600	-1.36640200
С	1.72443700	1.95675900	-0.03906500
С	1.96182000	1.99516700	-1.50972900
Н	1.06294200	2.31945100	-2.04316100
Н	2.75354000	2.70932800	-1.76870700
Н	2.25905600	1.02035500	-1.90428200
С	0.84463400	2.97774600	0.58734000
Н	-0.21522900	2.77849300	0.36870400
Н	0.95580500	3.00084000	1.67241200

Н	1.05826400	3.97544000	0.19274300
С	-4.47824200	0.02034700	-0.17278700
С	-5.02253000	-1.24673200	0.06083900
С	-5.33455600	1.12332900	-0.17368400
С	-6.37896600	-1.39794300	0.29765700
Н	-4.38502700	-2.12211100	0.04960400
С	-6.69400900	0.97240800	0.06425900
Н	-4.92438500	2.10945500	-0.36001200
С	-7.22061100	-0.28942900	0.30247700
Н	-6.78514600	-2.38620200	0.47505100
Н	-7.34106300	1.84090100	0.06190800
Н	-8.28067600	-0.41244500	0.48637000
С	-2.07144200	-0.65887300	-0.29540200
Н	-2.27359600	-1.67700600	0.02276800
С	-3.04477100	0.24126300	-0.41501300
Н	-2.77888000	1.25174400	-0.71684100
С	2.17229100	0.76693300	0.74336100
Н	2.04129900	0.95200900	1.81404700
1a-2			
С	1.91538200	-2.33775000	-0.12904000
С	1.59594000	-3.02724700	-1.28662100
С	1.03200600	-2.35391700	-2.36476000
С	0.76264800	-1.00196100	-2.25159100
С	1.05187100	-0.31096100	-1.07180500
С	1.67846700	-0.96502400	0.00151000
Н	2.38019500	-2.86199800	0.69795400
Н	1.79679500	-4.08942400	-1.35271100
Н	0.78824000	-2.88218800	-3.27751800
Н	0.28837600	-0.46890300	-3.06663800
С	0.53812000	1.08567500	-1.03883700
0	0.64070100	1.85871200	-1.97387400
С	2.81447300	0.82151700	1.37344500
С	3.25616500	1.69080100	0.23423400
Н	2.64004300	2.59507300	0.18470100
Н	4.28412900	2.02120500	0.40208400
Н	3.21032400	1.19109500	-0.73253100
С	3.20139800	1.33192300	2.72948000
Н	2.79021400	2.33478800	2.88208600
Н	2.84198000	0.68380600	3.52816200
Н	4.28811200	1.42361400	2.81008200
С	2.12610600	-0.31630000	1.24768700
Н	1.91331300	-0.88390500	2.15005600
С	-1.89079000	2.50482100	-1.06083400

Н	-2.76942000	2.98953100	-0.63413300
Н	-1.38852500	3.21078500	-1.71727200
Ν	-0.08262200	1.43144600	0.16732700
0	-1.05383600	2.31333900	0.12238200
С	-2.43679100	0.02091300	-1.35884600
Н	-2.60737300	-0.74997900	-2.10538000
С	-2.24648700	1.25967000	-1.81321900
Н	-2.31138000	1.41582800	-2.88479300
С	-2.38968900	-0.46220400	0.03318100
С	-2.94755100	0.25832700	1.09005600
С	-1.77132900	-1.68498500	0.30372800
С	-2.86552500	-0.22012900	2.38939700
Н	-3.45278000	1.19653800	0.89206300
С	-1.67520200	-2.15656400	1.60530400
Н	-1.34786200	-2.25870900	-0.51443900
С	-2.22035700	-1.42340900	2.65239300
Н	-3.30593100	0.34731300	3.19997500
Н	-1.17711100	-3.09844000	1.80129700
Н	-2.15105400	-1.79174400	3.66843100
1a-2-TS			
С	-2.79602300	1.02323800	-1.75836700
С	-3.53537900	0.02136200	-2.36337200
С	-3.51563500	-1.26709900	-1.84182300
С	-2.73543400	-1.53476700	-0.73073300
С	-1.97060500	-0.53221600	-0.13129800
С	-2.01309000	0.78248000	-0.62269100
Н	-2.83020700	2.03063000	-2.15710100
Н	-4.13268600	0.24660000	-3.23824900
Н	-4.09293400	-2.05732900	-2.30437900
Н	-2.68946000	-2.53859900	-0.32519800
С	-1.08995600	-0.99871900	0.98463900
0	-1.50172700	-1.73624100	1.87062500
С	-1.26365400	2.30463800	1.25153100
С	-1.92224400	1.56592000	2.37748000
Н	-1.17484500	1.01777400	2.96132400
Н	-2.39347900	2.27840500	3.05901400
Н	-2.68033500	0.85937100	2.04170200
С	-0.50296100	3.52777100	1.67000700
Н	0.26675100	3.25706400	2.39965000
Н	-0.02212500	4.01905700	0.82447200
Н	-1.16592200	4.24318400	2.16459300
С	-1.31108100	1.94022600	-0.03227300
Н	-0.83631600	2.59322300	-0.76032600

С	1.28963600	-2.53610200	1.44374300
Н	2.29280900	-2.79907100	1.78618400
Н	0.56794900	-3.17300500	1.95676700
Ν	0.21044000	-0.55308400	0.88122200
0	1.06827300	-1.15954700	1.78745600
С	1.17831800	-1.51815200	-0.82602900
Н	0.55944600	-1.51551800	-1.72050100
С	1.07304000	-2.64423600	-0.03335700
Н	0.53073700	-3.50449100	-0.40481900
С	2.24527200	-0.50654700	-0.84503400
С	3.40589900	-0.61387500	-0.07841700
С	2.09703600	0.58474000	-1.70517400
С	4.38335300	0.36834200	-0.15095600
Н	3.56044300	-1.47220400	0.56186900
С	3.07112500	1.56702100	-1.77207600
Н	1.20579300	0.65725500	-2.31854000
С	4.21638300	1.46297100	-0.98993900
Н	5.28183800	0.27493700	0.44612500
Н	2.94131300	2.41148200	-2.43729100
Н	4.98178500	2.22715700	-1.04366500
2a-2			
С	1.85172500	-2.32444400	-0.68430800
С	2.93456700	-2.17585800	-1.53395500
С	3.53439000	-0.93064700	-1.68569100
С	3.02303100	0.15654200	-0.99873700
С	1.91672100	0.01202400	-0.16135400
С	1.32891000	-1.24544300	0.03832500
Н	1.39853400	-3.30067400	-0.55503100
Н	3.31707700	-3.03339900	-2.07349600
Н	4.38577500	-0.80659600	-2.34246600
Н	3.46445800	1.13850600	-1.12168700
С	1.41219800	1.27868500	0.45961800
0	2.10980000	1.97011900	1.19169800
С	0.07365000	-1.16717200	2.23273200
С	1.10694000	-0.42700200	3.02752100
Н	0.76913200	0.59168300	3.24240100
Н	1.24610800	-0.92269900	3.99179500
Н	2.07179500	-0.37020400	2.52668100
С	-1.17008700	-1.51742200	2.99564400
Н	-1.67022900	-0.60446700	3.33565000
Н	-1.87156100	-2.09036300	2.38933600
Н	-0.92433700	-2.09332300	3.89215100
С	0.19534200	-1.51392700	0.94916200

Н	-0.60293000	-2.10706700	0.50862600
С	-0.70028400	3.61592700	-0.42342000
Н	-1.48258100	4.29571100	-0.08449100
Н	0.17802200	4.19956900	-0.73247300
Ν	0.13243800	1.59836000	0.15151600
0	-0.35057300	2.78531400	0.69633500
С	-0.56359400	1.29932000	-1.11761900
Н	0.18129500	0.97746800	-1.84997900
С	-1.12751700	2.64318500	-1.45493300
Н	-1.52957500	2.89147200	-2.42351900
С	-1.61628100	0.21835900	-0.98723700
С	-2.56983800	0.28485900	0.02510800
С	-1.62178500	-0.85283400	-1.86955300
С	-3.50788000	-0.72614400	0.16437800
Н	-2.56237000	1.12244300	0.71530700
С	-2.56847600	-1.86346800	-1.73667200
Н	-0.87201500	-0.90635200	-2.65177800
С	-3.50744400	-1.80467900	-0.71631500
Н	-4.23924400	-0.67762300	0.96194200
Н	-2.56436100	-2.70023900	-2.42436900
Н	-4.23960000	-2.59499200	-0.60563300

1a-56RR-r1

С	-4.53750900	1.56128100	-0.55694400
С	-5.74570800	1.03308100	-0.12951400
С	-5.80085700	-0.25158500	0.40089700
С	-4.64343600	-1.00537800	0.48081800
С	-3.43191200	-0.48336100	0.02909300
С	-3.35620100	0.82273800	-0.47083100
Н	-4.49650100	2.57139200	-0.94729000
Н	-6.64739800	1.62869400	-0.20129200
Н	-6.74254800	-0.66359000	0.74003100
Н	-4.66812900	-2.01458200	0.87317500
С	-2.24252000	-1.37402200	0.08262700
0	-2.07647400	-2.21294200	0.95255200
Ν	-1.43830100	-1.27938800	-1.05651800
0	-0.21855400	-1.75932500	-0.99627600
С	0.53137600	-1.83286500	0.26147100
Н	0.12835800	-1.11136200	0.96794700
Н	0.40275300	-2.84390100	0.64750200
С	-1.05105300	1.73293800	-0.07381600
С	-1.03581500	1.47742400	1.40425600
Н	-0.11781300	0.95937700	1.69393200
Н	-1.02725900	2.43515200	1.93417000

Н	-1.89156200	0.90370000	1.75698400
С	0.18684700	2.38973800	-0.60734700
Н	1.05040400	1.73188300	-0.46528400
Н	0.10013700	2.62351200	-1.66804300
Н	0.39967800	3.31113400	-0.05781600
С	4.01420400	-0.16402800	0.26302500
С	4.90407100	-0.96587100	-0.45860300
С	4.47588400	1.04895900	0.77828000
С	6.21055800	-0.55523400	-0.66734800
Н	4.57807100	-1.92132200	-0.85073000
С	5.78460500	1.46147400	0.56769600
Н	3.79596900	1.67392400	1.34668100
С	6.65602500	0.66069100	-0.15748600
Н	6.88870100	-1.18837200	-1.22618400
Н	6.12339500	2.40717400	0.97232200
Н	7.67877000	0.97670500	-0.32109600
С	1.94697900	-1.53397200	-0.08430500
Н	2.41086600	-2.17786700	-0.82487200
С	2.61243800	-0.53919700	0.49815400
Н	2.08374400	0.08090700	1.21890400
С	-2.07903100	1.45083500	-0.88016500
Н	-2.01497100	1.74942500	-1.92337900

1a-56RR-TS1

С	-4.62933600	-1.38956400	0.44454300
С	-5.79824400	-0.90404100	-0.12835300
С	-5.84323900	0.37352300	-0.68048700
С	-4.71548900	1.17914200	-0.65466500
С	-3.55289900	0.69398900	-0.07102600
С	-3.49238100	-0.59061700	0.46621200
Н	-4.59601600	-2.39000600	0.85889800
Н	-6.68151300	-1.53028400	-0.15188800
Н	-6.75982500	0.73728900	-1.12686100
Н	-4.73006600	2.17764800	-1.07456200
С	-2.30535800	1.48788200	0.01677500
0	-2.07125300	2.50148400	-0.63604200
N	-1.50194000	0.97052500	0.99486400
0	-0.18917200	1.27715900	0.99720400
С	0.50186600	1.21191000	-0.27592500
Н	0.15181300	0.33406200	-0.82337700
Н	0.26487000	2.10986200	-0.84732800
С	-1.25513100	-1.71819000	0.27952800
С	-1.37087800	-1.90871700	-1.19685300
Н	-0.39538700	-1.80424800	-1.67727800

Н	-1.71514600	-2.92814400	-1.40438900
Н	-2.07416600	-1.21639700	-1.65902500
С	-0.02742600	-2.25474900	0.93027400
Н	0.84561500	-1.68067600	0.59746700
Н	-0.08171100	-2.20326900	2.01681700
Н	0.14735100	-3.29068700	0.62515600
С	4.20218100	0.07416400	-0.29664000
С	4.95977600	1.01547400	0.40816300
С	4.85466600	-1.03858300	-0.83122000
С	6.32331900	0.83937000	0.57679200
Н	4.48362100	1.89449600	0.82453400
С	6.22157100	-1.21544900	-0.66288700
Н	4.27872900	-1.77290200	-1.38315200
С	6.96086400	-0.27693800	0.04317200
Н	6.89502800	1.57835200	1.12474100
Н	6.70776000	-2.08646100	-1.08470100
Н	8.02734000	-0.40967600	0.17612000
С	1.95736000	1.13636100	0.02437800
Н	2.34639100	1.91552200	0.67300400
С	2.75014800	0.20167300	-0.49387400
Н	2.30384900	-0.55851700	-1.13143100
С	-2.19177800	-1.04731100	1.02084900
Н	-2.11911900	-1.11474900	2.10137000
1a-56RR-p1			
С	4.76330800	1.01181200	0.52179000
С	5.94413200	0.35116600	0.19683100
С	5.94109200	-0.98815800	-0.19370900
С	4.75048600	-1.69860700	-0.27312400
С	3.58206200	-1.03127700	0.05303500
С	3.58054900	0.29861400	0.45348100
Н	4.77093500	2.05397600	0.81884900
Н	6.88420500	0.88653800	0.24605700
Н	6.87636900	-1.47397600	-0.44091700
Н	4.72946600	-2.73664100	-0.58167200
С	2.18761500	-1.53221600	0.04448700
0	1.76686900	-2.65226100	-0.22052100
Ν	1.44091600	-0.46453000	0.39811300
0	0.10105900	-0.56189800	0.61896800
9			
C	-0.65071500	-0.34109300	-0.60032200
Н	-0.65071500 -0.52941200	-0.34109300 0.69657900	-0.60032200 -0.91721600
С Н Н	-0.65071500 -0.52941200 -0.24780000	-0.34109300 0.69657900 -1.00904600	-0.60032200 -0.91721600 -1.36640200
С Н Н С	-0.65071500 -0.52941200 -0.24780000 1.72443700	-0.34109300 0.69657900 -1.00904600 1.95675900	-0.60032200 -0.91721600 -1.36640200 -0.03906500

Н	1.06294200	2.31945100	-2.04316100
Н	2.75354000	2.70932800	-1.76870700
Н	2.25905600	1.02035500	-1.90428200
С	0.84463400	2.97774600	0.58734000
Н	-0.21522900	2.77849300	0.36870400
Н	0.95580500	3.00084000	1.67241200
Н	1.05826400	3.97544000	0.19274300
С	-4.47824200	0.02034700	-0.17278700
С	-5.02253000	-1.24673200	0.06083900
С	-5.33455600	1.12332900	-0.17368400
С	-6.37896600	-1.39794300	0.29765700
Н	-4.38502700	-2.12211100	0.04960400
С	-6.69400900	0.97240800	0.06425900
Н	-4.92438500	2.10945500	-0.36001200
С	-7.22061100	-0.28942900	0.30247700
Н	-6.78514600	-2.38620200	0.47505100
Н	-7.34106300	1.84090100	0.06190800
Н	-8.28067600	-0.41244500	0.48637000
С	-2.07144200	-0.65887300	-0.29540200
Н	-2.27359600	-1.67700600	0.02276800
С	-3.04477100	0.24126300	-0.41501300
Н	-2.77888000	1.25174400	-0.71684100
С	2.17229100	0.76693300	0.74336100
Н	2.04129900	0.95200900	1.81404700
1a-56RR-r2			
С	3.10806400	-2.03108300	-0.53779000
С	4.18224300	-2.40862400	0.26068000
С	4.76212700	-1.51809700	1.16616400
С	4.27515200	-0.22502200	1.29456100
С	3.20554400	0.14015800	0.49298600
С	2.63391700	-0.73640100	-0.41875300
Н	2.65953100	-2.72938300	-1.23469200
Н	4.57756400	-3.41366400	0.18011900
Н	5.59618700	-1.84386600	1.77442200
Н	4.70953300	0.47735200	1.99544500
С	2.50500400	1.43834900	0.40153600
0	2.78198000	2.50621300	0.92754300
Ν	1.44839300	1.21496200	-0.42852100
0	0.84606500	2.28805900	-1.03137900
С	-0.32426500	2.73215400	-0.31620500
Н	-0.06803300	2.89381600	0.73225400
Н	-0.54232600	3.69477000	-0.78319100
С	1.48628200	-0.07308500	-1.14921500

Н	1.76417300	0.13524600	-2.18726900
С	0.19637800	-0.82675900	-1.09942900
С	-0.22440100	-1.43605700	0.19116600
Н	-1.31193500	-1.52531700	0.24490800
Н	0.18598500	-2.44894500	0.30870800
Н	0.11578600	-0.84807600	1.04809800
С	-0.48293600	-1.23048400	-2.35859300
Н	-1.56781900	-1.26381200	-2.22049400
Н	-0.25617700	-0.54654200	-3.17862900
Н	-0.17990700	-2.23812100	-2.67922600
С	-3.30199600	0.40654300	0.52417600
С	-3.76156300	-0.15881100	1.71564400
С	-3.94518700	0.06019900	-0.66896200
С	-4.82265100	-1.05417800	1.71961300
Н	-3.27252500	0.10486300	2.64684100
С	-5.00390100	-0.83386300	-0.66553400
Н	-3.62404000	0.49675100	-1.60666900
С	-5.44654400	-1.39670800	0.52779400
Н	-5.16174500	-1.48347400	2.65432800
Н	-5.49185600	-1.09022100	-1.59798900
Н	-6.27567900	-2.09328500	0.52614600
С	-1.47008900	1.79206800	-0.46724600
Н	-1.73684900	1.53274100	-1.48807700
С	-2.14817500	1.31575300	0.57433600
Н	-1.82099600	1.59394600	1.57373200
1a-56RR-TS2			
С	2.85314700	-2.16893400	-0.44297100
С	4.10493900	-2.57481800	0.01002400
С	5.03765100	-1.65474800	0.48848600
С	4.73818700	-0.29919800	0.52258200
С	3.49134400	0.09465700	0.06837800
С	2.55870000	-0.81710200	-0.41232400
Н	2.13762500	-2.89233500	-0.81344000
Н	4.36114600	-3.62683500	-0.01062600
Н	6.00225600	-2.00327100	0.83461200
Н	5.45040900	0.42973700	0.88959500
С	2.92205800	1.46069500	-0.01635500
0	3.43776600	2.53412500	0.26957000
Ν	1.67947900	1.27474600	-0.50820800
0	0.88701200	2.31876500	-0.87005600
С	-0.28896500	2.40760600	-0.04998300
Н	-0.00053200	2.43654800	1.00362600
Н	-0.70628300	3.37755200	-0.32718500

С	1.28307800	-0.09659300	-0.79649000
Н	1.06727300	-0.19546900	-1.86462500
С	0.08531800	-0.51614800	0.02074100
С	0.24765100	-0.51408300	1.50529500
Н	-0.72875900	-0.51414000	1.99472800
Н	0.77442300	-1.41964400	1.83304300
Н	0.81681400	0.34680400	1.86274700
С	-0.73386700	-1.62248800	-0.55142000
Н	-1.68335200	-1.71321900	-0.02019300
Н	-0.93380500	-1.47566200	-1.61487800
Н	-0.21271100	-2.58325400	-0.43984100
С	-3.52799600	0.35396300	0.25764300
С	-4.41449100	0.09277600	1.31234400
С	-3.85733500	-0.14159400	-1.01419900
С	-5.57319600	-0.64206000	1.11161800
Н	-4.17969500	0.47268000	2.30052200
С	-5.01422000	-0.87527900	-1.21233800
Н	-3.20337600	0.05379800	-1.85522000
С	-5.87919700	-1.13305600	-0.15164300
Н	-6.23954300	-0.83229900	1.94427400
Н	-5.24834100	-1.24728400	-2.20252500
Н	-6.78363700	-1.70635300	-0.31185800
С	-1.28339800	1.31894100	-0.33458900
Н	-1.36608100	1.03032200	-1.37895000
С	-2.32198200	1.12335500	0.52112400
Н	-2.24297100	1.54063800	1.52201500
1a-56RR-p2			
С	2.90433100	-2.11958200	-0.39515600
С	4.17580400	-2.45820900	0.05957100
С	5.07630900	-1.48629500	0.49262600
С	4.72621900	-0.14280800	0.46767800
С	3.46031200	0.18297600	0.01420400
С	2.54713700	-0.78182100	-0.40245500
Н	2.22546000	-2.88839900	-0.73993100
Н	4.47275200	-3.49953100	0.07333400
Н	6.05739800	-1.78317900	0.84059700
Н	5.41622600	0.62935700	0.78537400
С	2.85141400	1.52629000	-0.13720200
0	3.30819400	2.62438900	0.15527700
Ν	1.65516900	1.27961300	-0.71123900
0	0.74953700	2.26420700	-0.97606700
С	-0.37618400	2.13590200	-0.09127600
Н	-0.05401400	2.35186700	0.93074300

Н	-1.07060000	2.90649400	-0.42185200
С	1.25522400	-0.11723400	-0.80367500
Н	0.97542800	-0.34755300	-1.83598800
С	0.03445300	-0.37583100	0.12233200
С	0.44744200	-0.34418100	1.59377700
Н	-0.43217300	-0.42568800	2.23379400
Н	1.10082400	-1.18776300	1.82165400
Н	0.97707700	0.57219700	1.86383300
С	-0.56477000	-1.73646700	-0.21386600
Н	-1.45846100	-1.91490500	0.38723900
Н	-0.84193600	-1.79702500	-1.26881300
Н	0.14369100	-2.53709600	0.00396300
С	-3.48330200	0.18586300	0.30327200
С	-4.54947600	0.27217200	1.23355000
С	-3.75545300	-0.43505800	-0.93974800
С	-5.80163900	-0.22552100	0.93812100
Н	-4.36386300	0.74284500	2.19241600
С	-5.01400400	-0.93052000	-1.22444600
Н	-2.97100700	-0.52896900	-1.67933400
С	-6.04655200	-0.83186400	-0.29403700
Н	-6.59769300	-0.14404300	1.66837000
Н	-5.19658000	-1.40178800	-2.18274900
Н	-7.02919000	-1.22284600	-0.52512900
С	-1.00290100	0.74823500	-0.21009400
Н	-1.28442500	0.61435400	-1.25882700
С	-2.21606400	0.70839600	0.65565800
Н	-2.12675600	1.14896500	1.64330300
1a-56SS-r1			
С	3.67088000	1.74352200	-0.63780200
С	5.03174300	1.47736800	-0.63670600
С	5.50000000	0.19818500	-0.35830400
С	4.59339700	-0.80905400	-0.07695400
С	3.22804900	-0.53549300	-0.05027800
С	2.73769000	0.74856300	-0.33723700
Н	3.31832900	2.73181600	-0.90500100
Н	5.73096700	2.27035800	-0.87183100
Н	6.56191000	-0.01071400	-0.36519400
Н	4.93316800	-1.81353800	0.14398200
С	2.30944400	-1.64889800	0.28695600
0	2.50345800	-2.81024400	-0.02621600
Ν	1.26806300	-1.27670500	1.14852000
0	0.18662300	-2.02478000	1.13331300
С	-0.33268100	-2.55079600	-0.11154000

Н	0.34046800	-2.31692700	-0.93525200
Н	-0.37587200	-3.63557400	0.00032500
С	0.63152900	2.07189100	0.05491700
С	1.25317500	3.15247200	0.88834200
Н	1.33874400	4.07832600	0.31150800
Н	0.60398800	3.37308100	1.73957000
Н	2.24012500	2.88826400	1.26337000
С	-0.83943600	2.23720100	-0.18477200
Н	-1.04028800	3.21952200	-0.62314300
Н	-1.23615100	1.46972800	-0.84921600
Н	-1.38532000	2.20085500	0.76263200
С	-3.55271800	-0.37186700	0.06779600
С	-4.34821100	-0.70924600	-1.03204600
С	-4.02926900	0.59039100	0.96055300
С	-5.58070500	-0.10615800	-1.22371300
Н	-4.00265300	-1.44487000	-1.74788700
С	-5.26459100	1.19525300	0.76938900
Н	-3.42152900	0.86122900	1.81662100
С	-6.04556300	0.84860900	-0.32420000
Н	-6.18261200	-0.37895500	-2.08192600
Н	-5.61555300	1.93764500	1.47560100
Н	-7.00872700	1.31881000	-0.47871200
С	-1.68551700	-1.97271100	-0.36429000
Н	-2.20150600	-2.43700800	-1.19904800
С	-2.23418300	-0.97487400	0.32227500
Н	-1.68706300	-0.54625300	1.15714000
С	1.28726400	1.01261100	-0.43387100
Н	0.71071600	0.26951800	-0.98103500
1a-56SS-TS1			
С	3.81056900	1.55938000	-0.94652400
С	5.15315700	1.22395300	-1.05600200
С	5.60611600	-0.03992200	-0.68245000
С	4.71467700	-0.97478000	-0.18171300
С	3.37532800	-0.62837300	-0.05918200
С	2.90544100	0.62310400	-0.45594000
Н	3.46180600	2.53694600	-1.25764900
Н	5.85500100	1.95112000	-1.44522100
Н	6.65563000	-0.28721800	-0.77803800
Н	5.04700700	-1.95843000	0.12734400
С	2.35149400	-1.53121800	0.50228800
0	2.43822300	-2.75433900	0.56602700
Ν	1.30385300	-0.79724900	0.99899400
0	0.13620900	-1.45375900	1.17056700

С	-0.36688500	-2.18899200	0.04347400
Н	0.28573900	-2.03562600	-0.81925200
Н	-0.34114900	-3.25346400	0.29173400
С	0.86373000	1.93092000	0.24690500
С	1.60940700	2.82444700	1.17704000
Н	1.69054100	3.82856800	0.74782800
Н	1.04971300	2.93140700	2.11067700
Н	2.61034600	2.46183000	1.40311000
С	-0.59274500	2.20169800	0.09901700
Н	-0.75481100	3.25145100	-0.16467300
Н	-1.05825800	1.56703500	-0.65373400
Н	-1.09771700	2.04403700	1.05834200
С	-3.78019500	-0.31698100	0.02218300
С	-4.59612500	-0.91517000	-0.94385200
С	-4.27534400	0.79171300	0.71254300
С	-5.86047800	-0.41464900	-1.20901400
Н	-4.24497000	-1.78145200	-1.49089000
С	-5.54211400	1.29492000	0.44655000
Н	-3.65515600	1.26125800	1.46811100
С	-6.33987700	0.69350400	-0.51653400
Н	-6.47882000	-0.89227000	-1.95925600
Н	-5.90502500	2.15627900	0.99381700
Н	-7.32908300	1.08075100	-0.72661800
С	-1.75771800	-1.75658300	-0.28497000
Н	-2.19964700	-2.30405400	-1.11236900
С	-2.42422900	-0.79139100	0.34129700
Н	-1.93965200	-0.27318400	1.16221900
С	1.44378700	0.85593800	-0.37886600
Н	0.83810500	0.31144200	-1.09869300
1a-56SS-p1			
С	-2.64898000	-2.08530300	-0.83927900
С	-3.94169200	-2.26553100	-1.32032400
С	-4.84018700	-1.20088500	-1.40644200
С	-4.46252000	0.07517200	-1.01199600
С	-3.17343700	0.24374600	-0.53390200
С	-2.27658700	-0.81214300	-0.44360700
Н	-1.95807100	-2.91725800	-0.77672800
Н	-4.25888900	-3.25226900	-1.63445600
Н	-5.83907200	-1.37515800	-1.78537900
Н	-5.14586000	0.91331900	-1.07388700
С	-2.51375000	1.47076800	-0.03836400
0	-2.97831400	2.59083500	0.11885000
Ν	-1.23135600	1.10187800	0.21722900

0	-0.43894700	1.93119600	0.96111000
С	0.40768000	2.74018400	0.13427800
Н	-0.16325800	3.08495200	-0.73056400
Н	0.63913100	3.61412900	0.74856400
С	-0.65930900	-0.93842200	1.48515900
С	-1.57329900	-0.65111700	2.62394400
Н	-2.41052200	-1.36362600	2.64964000
Н	-1.04635700	-0.75013300	3.57577500
Н	-2.00074700	0.35267300	2.57174100
С	0.18762300	-2.15995000	1.52609500
Н	-0.42102000	-3.07254100	1.44678600
Н	0.91230400	-2.17770200	0.70928400
Н	0.72545000	-2.22983900	2.47564000
С	3.37824800	0.24054900	-0.14149900
С	4.10728600	0.56351200	-1.29073100
С	3.85153300	-0.78749700	0.67716300
С	5.27743700	-0.11195600	-1.59780700
Н	3.75413200	1.34133700	-1.95670100
С	5.02464200	-1.46433300	0.37039500
Н	3.29184800	-1.05053800	1.56808300
С	5.74331400	-1.12767100	-0.76832700
Н	5.82813100	0.15023600	-2.49298300
Н	5.37551700	-2.25568600	1.02140600
Н	6.65693500	-1.65484200	-1.01337400
С	1.66609000	2.05462800	-0.29327500
Н	2.20990700	2.57214000	-1.07815000
С	2.13677500	0.93171500	0.24133000
Н	1.58160900	0.46427600	1.05108400
С	-0.96323900	-0.34042500	0.14556000
Н	-0.13935300	-0.53310700	-0.54630400
1a-56SS-r2			
С	-2.56434700	-2.24932400	-0.22866800
С	-3.87568600	-2.62779800	-0.49632900
С	-4.87391200	-1.67864700	-0.72288600
С	-4.58001400	-0.32276700	-0.68674100
С	-3.27127400	0.04335000	-0.41746600
С	-2.27572000	-0.89607600	-0.18770200
Н	-1.79547900	-2.99225700	-0.05404700
Н	-4.12923800	-3.68021500	-0.52843200
Н	-5.88485000	-2.00655000	-0.92828300

-1.79547900	-2.99225700	-0.05404700
-4.12923800	-3.68021500	-0.52843200
-5.88485000	-2.00655000	-0.92828300
-5.34174700	0.42726800	-0.86126600
-2.68634600	1.39607100	-0.29893100
-3.24380100	2.48338400	-0.33401300

Н

С

0

Ν	-1.35207800	1.19269700	-0.12713900
0	-0.59687500	2.21185500	0.38198100
С	0.38829400	2.68673400	-0.56434500
Н	-0.13332700	3.03894000	-1.45546200
Н	0.84032400	3.53121400	-0.04534800
С	-0.42831200	-0.43267700	1.48391200
С	-1.24146000	0.01909900	2.64523900
Н	-1.92742000	-0.77200400	2.98039600
Н	-0.60030700	0.26120000	3.49637800
Н	-1.84669400	0.89798300	2.41173100
С	0.61593600	-1.47105400	1.68775500
Н	0.17228900	-2.44404400	1.94430600
Н	1.22661700	-1.61329000	0.79368200
Н	1.27348300	-1.20348500	2.52015800
С	-0.95798500	-0.20910100	0.10327700
Н	-0.20688500	-0.50982800	-0.63172900
С	2.47745000	1.44354400	-0.11928400
Н	2.63176300	2.11119500	0.72606500
С	1.40663000	1.63760500	-0.88741500
Н	1.21272100	1.00977000	-1.75083700
С	3.49731500	0.39692500	-0.27959600
С	3.39287800	-0.62240900	-1.23231000
С	4.60805400	0.40644800	0.56649800
С	4.37585000	-1.59271600	-1.33690800
Н	2.53606100	-0.66244200	-1.89366900
С	5.59387000	-0.56597300	0.46199700
Н	4.69547700	1.18790300	1.31308100
С	5.48096600	-1.56874200	-0.49079100
Н	4.27960500	-2.37594000	-2.07881900
Н	6.44834300	-0.54066200	1.12695700
Н	6.24610400	-2.33050200	-0.57446500
1- 5688 782			
1a-3055-152	2 00017200	2 06505000	0 57610700
C C	-3.0001/200	-2.00282800	-0.32048/00
C	-4.23440400	-2.4439/300	-0.00/20300
C	-3.00202800	-1.32042100	0.04003000
	-4.0/4/0300	-0.20083900	0.7/958100
U	-3.44239300	0.16426600	0.26416200

С	-5.06262800	-1.52642100	0.64005000
С	-4.67470300	-0.20083900	0.77958100
С	-3.44239300	0.16426600	0.26416200
С	-2.60823500	-0.74722200	-0.37016300
Н	-2.37002700	-2.78434300	-1.03553800
Н	-4.56034500	-3.47173100	-0.10865900
Н	-6.01753400	-1.85348600	1.03107300
Н	-5.30906700	0.52724200	1.27015500
С	-2.78161800	1.48712500	0.27671500

0	-3.12478600	2.51755100	0.84156700
Ν	-1.66712700	1.32972300	-0.48021200
0	-0.67127800	2.26882800	-0.33349200
С	0.32772300	2.13061300	-1.35257200
Н	-0.16385200	2.00599700	-2.31823100
Н	0.83108200	3.09646800	-1.33994400
С	-0.08871800	-0.50868800	-0.09173100
С	-0.00222800	-0.24951900	1.37599400
Н	-0.57248900	-1.00702000	1.92972400
Н	1.03626500	-0.32257000	1.70904300
Н	-0.38364400	0.73293700	1.65806800
С	0.48738000	-1.80310600	-0.56114200
Н	-0.09665900	-2.64565300	-0.16686600
Н	0.49235100	-1.88172600	-1.65028300
Н	1.50700800	-1.92486000	-0.19084800
С	-1.33263200	-0.06216400	-0.80677300
Н	-1.19178600	-0.17438000	-1.88640600
С	2.32272800	1.21896000	-0.18445000
Н	2.23503200	2.06794000	0.48984000
С	1.31710800	1.01554600	-1.08191600
Н	1.42763700	0.27686500	-1.86785400
С	3.48316000	0.36917100	0.02993900
С	3.83934600	-0.67500200	-0.83885400
С	4.30496800	0.60566800	1.14209800
С	4.96018900	-1.45034900	-0.59461800
Н	3.23817700	-0.87729400	-1.71679500
С	5.42547800	-0.17323900	1.38580300
Н	4.04947800	1.41253000	1.81997000
С	5.75873000	-1.20791300	0.51978600
Н	5.21716500	-2.24932900	-1.27953300
Н	6.04119500	0.02824700	2.25396400
Н	6.63393900	-1.81726000	0.70706800
1a-56SS-p2			
С	-2.96952600	-2.08600200	-0.41067200
С	-4.21767200	-2.43726700	0.09289500
C	-5.08347500	-1.48072800	0.62443100
С	-4.72053800	-0.14187900	0.65556000
С	-3.47384600	0.19651500	0.15595500
С	-2.59550600	-0.75300400	-0.35397400
Н	-2.31480400	-2.83779100	-0.83233300
Н	-4.52534900	-3.47529000	0.07005800
Н	-6.04844900	-1.78820800	1.00658300
Н	-5.38432700	0.61708700	1.05111400

С	-2.83621800	1.52705300	0.07293700	
0	-3.19828600	2.59346900	0.55226800	
Ν	-1.71003900	1.32934400	-0.66033200	
0	-0.70542800	2.27394500	-0.52998900	
С	0.42980600	1.85284800	-1.28812100	
Н	0.12357300	1.71981600	-2.32808500	
Н	1.11946100	2.69247600	-1.23030700	
С	-0.03320600	-0.33541000	-0.02742100	
С	-0.23135200	0.01904900	1.44758300	
Н	-1.05744400	-0.56202500	1.86347600	
Н	0.66579500	-0.23264700	2.01516900	
Н	-0.44050100	1.07862900	1.60291200	
С	0.37492700	-1.79931900	-0.13973500	
Н	-0.31381500	-2.43937300	0.41453000	
Н	0.39916900	-2.12898800	-1.18114800	
Н	1.37114900	-1.93650800	0.28640600	
С	-1.33209700	-0.08322900	-0.81835300	
Н	-1.14908500	-0.30633200	-1.87369800	
С	2.20791200	0.86389200	0.16820000	
Н	2.05814800	1.65258700	0.89876600	
С	1.05683100	0.55859800	-0.72689100	
Н	1.40222100	-0.00788800	-1.59375400	
С	3.47584300	0.23712100	0.15451600	
С	3.82350300	-0.81298100	-0.73139300	
С	4.47054500	0.66793900	1.06948200	
С	5.08204900	-1.38295800	-0.69756900	
Н	3.09799100	-1.18227500	-1.44464500	
С	5.72290300	0.09032400	1.09422400	
Н	4.22879400	1.46983900	1.75792900	
С	6.04226600	-0.94082100	0.21043900	
Н	5.32158200	-2.18450800	-1.38600400	
Н	6.46156000	0.44154800	1.80461900	
Н	7.02543500	-1.39331000	0.22992600	
1a-56RS-r1				
С	-4.05687700	1.93850000	-0.27922500	
С	-5.37016100	1.51377900	-0.16099400	
С	-5.65750600	0.16152300	-0.00592900	
С	-4.62220100	-0.75477700	0.00712000	
С	-3.30025000	-0.33064500	-0.13454900	
С	-2.99429900	1.03168700	-0.24919500	
Н	-3.83787500	2.99528800	-0.37764000	
Н	-6.17331300	2.24010200	-0.18195400	
Н	-6.68205200	-0.17363800	0.09122300	

Н	-4.82522500	-1.81415100	0.10281800
С	-2.26145700	-1.39019700	-0.19799400
0	-2.36930200	-2.46726400	0.36459900
Ν	-1.24985000	-1.11975000	-1.12497800
0	-0.15192700	-1.83894100	-1.05196000
С	0.39951700	-2.27841600	0.21221800
Н	-0.22573900	-1.95003500	1.03895600
Н	0.39612100	-3.36994900	0.19309700
С	-0.68056900	1.47870700	0.63751000
С	-0.85245100	0.75805000	1.94055700
Н	-0.04380400	0.03517500	2.08072900
Н	-0.76885300	1.47463900	2.76360200
Н	-1.80770100	0.24336800	2.03392900
С	0.63375000	2.18674900	0.48811500
Н	1.46444700	1.50211800	0.67721800
Н	0.75228300	2.62331300	-0.50343900
Н	0.71251400	2.98547400	1.23225400
С	3.67506300	-0.23605400	-0.26785000
С	4.64125100	-0.77798100	0.58557500
С	4.00202800	0.90647200	-1.00146900
С	5.88787500	-0.18534500	0.70662300
Н	4.42298100	-1.67469900	1.15253800
С	5.25063400	1.50155200	-0.87965900
Н	3.26307700	1.33082200	-1.67214300
С	6.19809900	0.95832300	-0.02304000
Н	6.62529600	-0.61990300	1.37042200
Н	5.48294400	2.38868500	-1.45595200
Н	7.17408200	1.41736700	0.07347400
С	1.78340600	-1.73969800	0.35461300
Н	2.32624500	-2.16311200	1.19438900
С	2.32781900	-0.80774000	-0.42196200
Н	1.74294200	-0.39366900	-1.23833300
С	-1.61682400	1.57049400	-0.31299200
Н	-1.40065700	2.18079200	-1.18629700
1a-56RS-TS1			
C	4.47847400	-1.54273800	-0.38627700
С	5.73149000	-0.97033300	-0.20506700
C	5.86815400	0.40434100	-0.02995600
C	4.74694900	1.21957100	-0.04497800
C	3.49843100	0.64459500	-0.23914300
С	3.34933500	-0.73283000	-0.39308500
H	4.37683000	-2.61473800	-0.50544600
Н	6.61054700	-1.60277900	-0.19192600

Н	6.85054900	0.83538100	0.11453900
Н	4.83142800	2.29184000	0.08417900
С	2.24562600	1.43291400	-0.29373200
0	2.11600000	2.58102000	0.12080500
Ν	1.28569300	0.71284800	-0.95162000
0	-0.00642000	1.07095800	-0.80322800
С	-0.45977500	1.36495900	0.52611500
Н	0.11053000	0.76030100	1.23937400
Н	-0.26883600	2.41526400	0.75554300
С	1.20820400	-1.64582700	0.54719900
С	1.62916600	-1.42241700	1.96217300
Н	0.77766400	-1.11573100	2.57370200
Н	1.99383300	-2.36611400	2.38325700
Н	2.42446100	-0.68373000	2.05704400
С	-0.12243100	-2.28214700	0.34150200
Н	-0.90802300	-1.63460000	0.74698400
Н	-0.33136300	-2.47074900	-0.71094300
Н	-0.18300800	-3.22449300	0.89514100
С	-4.10024600	0.20213400	-0.20169600
С	-4.91549800	0.73470900	0.80231100
С	-4.68148100	-0.64604700	-1.14682600
С	-6.26189700	0.41326300	0.86427900
Н	-4.49884000	1.41582200	1.53421000
С	-6.03040700	-0.96961000	-1.08491100
Н	-4.06260100	-1.05726500	-1.93645900
С	-6.82596300	-0.44260200	-0.07694000
Н	-6.87835400	0.83754900	1.64741400
Н	-6.45942800	-1.63239400	-1.82641800
Н	-7.87911300	-0.68948100	-0.02647800
С	-1.91757600	1.07383700	0.63304400
Н	-2.35122700	1.38058700	1.58031100
С	-2.66147100	0.49486800	-0.30525500
Н	-2.19146300	0.18008200	-1.23164800
С	1.96803700	-1.26358400	-0.52805300
Н	1.67718800	-1.63283600	-1.50588000
1a-56RS-p1			
С	-4.59642800	0.91757000	-0.84534000
С	-5.79257200	0.22093900	-0.70325500
С	-5.81169900	-1.10487800	-0.26946500
С	-4.62949500	-1.76504800	0.03883700
С	-3.44547600	-1.06208600	-0.10602800
С	-3.41977700	0.25399800	-0.54976400
Н	-4.58764500	1.94895000	-1.17781100

Н	-6.72764100	0.71699300	-0.93224500
Н	-6.75872800	-1.61937200	-0.16827300
Н	-4.62723400	-2.79153500	0.38442800
С	-2.05749100	-1.50767800	0.15924000
0	-1.64856500	-2.60672800	0.51212200
Ν	-1.30044700	-0.41174500	-0.07070800
0	0.05982900	-0.46660700	-0.10153600
С	0.61296900	-0.20999600	1.19675600
Н	0.22224100	0.74105900	1.57348800
Н	0.29566900	-1.00232700	1.88209600
С	-1.72635400	2.01813700	0.14860900
С	-2.25751500	2.16640500	1.53341100
Н	-1.46561000	2.47009000	2.22589200
Н	-3.02856100	2.94502500	1.58347700
Н	-2.70042000	1.24077100	1.90746900
С	-0.68362900	2.96141600	-0.33434500
Н	0.30014200	2.71994400	0.09653800
Н	-0.57889100	2.93188600	-1.42020200
Н	-0.91143000	3.98724000	-0.03180200
С	4.26647200	-0.21739800	-0.13328200
С	5.11827200	-0.17453500	0.97558800
С	4.83829100	-0.21137900	-1.40744100
С	6.49258100	-0.11846200	0.80940100
Н	4.70837300	-0.19191900	1.97797400
С	6.21556300	-0.15446800	-1.57506200
Н	4.18999200	-0.24968900	-2.27561300
С	7.04882200	-0.10658500	-0.46633000
Н	7.13618400	-0.08799800	1.68014800
Н	6.63623200	-0.14898600	-2.57314300
Н	8.12356500	-0.06417200	-0.59170400
С	2.09701000	-0.15987500	1.10334900
Н	2.58635600	-0.01389500	2.06113500
С	2.79933200	-0.27005600	-0.02107300
Н	2.27342400	-0.40398000	-0.96102300
С	-2.00004800	0.76592000	-0.61596700
Н	-1.68598200	0.88917100	-1.65759000
1a-56RS-r2			
С	3.29675000	-2.08200000	-0.20837200
С	4.66236800	-2.16832900	0.04309900
С	5.44626300	-1.02358600	0.19186300
С	4.87796700	0.23949500	0.09446200
С	3.51857700	0.31369900	-0.15865900
С	2.73558800	-0.82221700	-0.31719800

Н	2.69320000	-2.97533900	-0.31668200
Н	5.12721000	-3.14285000	0.12706900
Н	6.50585900	-1.12465600	0.38893900
Н	5.47057800	1.13843300	0.21287400
С	2.65980800	1.51035400	-0.30848500
0	2.96540100	2.69606200	-0.27612300
Ν	1.41529300	1.01828700	-0.49410700
0	0.38074300	1.83769300	-0.82302500
С	-0.32553600	2.35175800	0.31975100
Н	0.27506800	2.18512400	1.21709600
Н	-0.39981300	3.43232700	0.16990600
С	1.28754800	-0.44274700	-0.55611000
Н	0.97217000	-0.72829800	-1.56428000
С	0.33721600	-0.99117400	0.45906400
С	0.56682300	-0.70012300	1.90026900
Н	-0.36727100	-0.40881100	2.39351200
Н	0.93547500	-1.58823200	2.43049400
Н	1.29453200	0.10043200	2.04866100
С	-0.61918000	-2.06479600	0.08380600
Н	-1.55829500	-1.95758700	0.63659100
Н	-0.84343300	-2.05659400	-0.98439000
Н	-0.22654300	-3.06113600	0.33211000
С	-3.55652400	0.24505000	-0.20564200
С	-4.40933800	0.49605000	0.87462600
С	-3.99012500	-0.63460000	-1.20025000
С	-5.65431000	-0.10754400	0.94760800
Н	-4.09819600	1.16340100	1.66891900
С	-5.23776400	-1.24006500	-1.12800000
Н	-3.33695800	-0.84176200	-2.04071000
С	-6.07599600	-0.97780400	-0.05331600
Н	-6.30043200	0.09886300	1.79217200
Н	-5.55359000	-1.91736800	-1.91199600
Н	-7.04917500	-1.44856900	0.00857400
С	-1.68844500	1.76147800	0.47324000
Н	-2.24071200	2.15639300	1.32122500
С	-2.22166800	0.85061200	-0.33499300
Н	-1.63601900	0.49712000	-1.17874300
1a-56RS-TS2			
С	-2.57679700	2.21471000	-0.39281400
С	-3.91032600	2.61217200	-0.37488000
С	-4.94631300	1.67893000	-0.34235800
С	-4.66950800	0.31822500	-0.33165200
С	-3.34031600	-0.06707800	-0.35208400
С	-2.30281900	0.85783100	-0.38341500
------------	-------------	-------------	-------------
Н	-1.78177200	2.94919400	-0.42156400
Н	-4.14901600	3.66842700	-0.38823300
Н	-5.97308200	2.02121100	-0.32766600
Н	-5.46094700	-0.42104400	-0.30945800
С	-2.77009500	-1.43480600	-0.35757500
0	-3.34696000	-2.51544000	-0.34832500
Ν	-1.43506300	-1.24180400	-0.39687200
0	-0.56910300	-2.28742400	-0.49077900
С	0.22903600	-2.41075000	0.70046700
Н	-0.42540300	-2.39441400	1.57200600
Н	0.66910200	-3.40536300	0.61452000
С	-0.97033600	0.14066400	-0.35418200
Н	-0.36880700	0.35276600	-1.24328500
С	-0.16836400	0.43272900	0.89231200
С	-0.84792000	0.22821700	2.20909300
Н	-0.12199100	-0.01811300	2.98864900
Н	-1.34796100	1.15416700	2.52187200
Н	-1.60343100	-0.55836400	2.17991100
С	0.75287400	1.60126400	0.80346900
Н	1.44278000	1.61628100	1.65002000
Н	1.33065200	1.59445300	-0.12242800
Н	0.18429100	2.54033000	0.83651900
С	3.34375300	-0.33807100	-0.28330700
С	3.90961500	0.20118000	0.88304600
С	4.00334600	-0.10476800	-1.49863000
С	5.07626900	0.94454500	0.82780000
Н	3.43562900	0.03519500	1.84256700
С	5.17147200	0.64040600	-1.55208800
Н	3.58382400	-0.51734200	-2.40943500
С	5.71441000	1.17193000	-0.38878200
Н	5.49520600	1.34997400	1.74092200
Н	5.65946100	0.80672400	-2.50482700
Н	6.62633000	1.75445000	-0.42627200
С	1.30103500	-1.35500600	0.77513000
Н	1.60591800	-1.07584400	1.77786800
С	2.12327400	-1.13073200	-0.28497100
Н	1.83941500	-1.54669500	-1.24822900
1a-56RS-p2			
С	2.65208100	-2.12378000	-0.57004900
С	3.99449000	-2.48414500	-0.49670800
С	4.99524600	-1.52989100	-0.31785000
С	4.67318400	-0.18294700	-0.21979600

С	3.33564600	0.16484400	-0.29301600
С	2.32831400	-0.78239400	-0.45271200
Н	1.89045300	-2.87740400	-0.72268900
Н	4.26770500	-3.52841400	-0.58446800
Н	6.02989100	-1.84359700	-0.26492200
Н	5.43665200	0.57533400	-0.09544100
С	2.72799300	1.51551800	-0.23946600
0	3.26296400	2.60167300	-0.05543600
Ν	1.41511500	1.29521700	-0.47007500
0	0.48830600	2.29650000	-0.41401200
С	-0.31366900	2.14908300	0.77316900
Н	0.32112700	2.29669400	1.64856400
Н	-1.04014500	2.95767100	0.71224900
С	0.98651700	-0.09918300	-0.46807600
Н	0.43041900	-0.31333900	-1.38523800
С	0.07411100	-0.35891700	0.76047200
С	0.88122100	-0.33209300	2.06048100
Н	0.20130800	-0.33286900	2.91501500
Н	1.51401900	-1.21798500	2.13377300
Н	1.52604200	0.54416800	2.14674100
С	-0.59730700	-1.72072900	0.62371100
Н	-1.31433900	-1.86355200	1.43519100
Н	-1.12942100	-1.82015700	-0.32400100
Н	0.14155700	-2.52058800	0.69115600
С	-3.28945300	0.18680100	-0.28197100
С	-3.84857800	-0.38812900	0.88478000
С	-4.10531900	0.22570700	-1.44055700
С	-5.13873800	-0.88517400	0.88288900
Н	-3.26409500	-0.44401900	1.79392400
С	-5.39107700	-0.27423100	-1.43111000
Н	-3.69845900	0.66094200	-2.34637300
С	-5.92100400	-0.83469700	-0.26880000
Н	-5.54324900	-1.31958000	1.78921900
Н	-5.99085200	-0.23014700	-2.33216900
Н	-6.93005600	-1.22659400	-0.26144400
С	-0.99892000	0.78286000	0.78282600
Н	-1.52109000	0.69783900	1.73851500
С	-1.97554300	0.71067500	-0.34526900
Н	-1.65860000	1.11862500	-1.29917700
1a-56SR-r1			
C	-2,84855900	-2.44334100	-0.38541200
С	-4.18534400	-2.51349400	-0.73908200
С	-4.96007000	-1.35846600	-0.78114600

С	-4.37605900	-0.13888600	-0.49094400
С	-3.02226800	-0.06287000	-0.16122700
С	-2.24148600	-1.22450700	-0.06568700
Н	-2.25646500	-3.34946400	-0.33085000
Н	-4.62901500	-3.47301000	-0.97453900
Н	-6.00682400	-1.40986300	-1.05167100
Н	-4.95490600	0.77517800	-0.54287700
С	-2.46138800	1.29777600	0.04274000
0	-3.05683700	2.18633600	0.62499200
Ν	-1.22556400	1.48703400	-0.59322600
0	-0.71517400	2.63780200	-0.21714300
С	0.53019400	2.91536100	-0.91354600
Н	0.35735400	2.75929400	-1.97766900
Н	0.70302600	3.97105300	-0.70991700
С	-0.32515800	-0.66472900	1.47609800
С	-1.10223600	0.15695100	2.46092100
Н	-0.81686300	-0.12596300	3.47696700
Н	-0.85327400	1.21884300	2.35106900
Н	-2.18096300	0.04298400	2.36375800
С	1.12658200	-0.82307000	1.81486000
Н	1.23592500	-1.32536500	2.78064000
Н	1.66659500	-1.39194900	1.05794500
Н	1.59919300	0.15882900	1.91735100
С	3.27881000	0.21088400	-0.71883700
С	4.09442300	0.47920400	0.38416000
С	3.47568900	-0.97719400	-1.42501100
С	5.05958500	-0.43150700	0.78306600
Н	3.97880500	1.40897100	0.92822100
С	4.44001200	-1.89159600	-1.02336400
Н	2.85473700	-1.18783100	-2.28850800
С	5.23182000	-1.62325200	0.08520500
Н	5.68537300	-0.21030600	1.63896600
Н	4.57331200	-2.81286500	-1.57686900
Н	5.98683700	-2.33274400	0.40020900
С	2.19829300	1.11207800	-1.14088900
Н	1.82515500	0.95674100	-2.15061800
С	-0.83613000	-1.24515900	0.38320100
Н	-0.17569000	-1.86989600	-0.21337600
С	1.62822200	2.05403000	-0.39242400
Н	1.93314700	2.22575400	0.63545600

1a-56SR-TS1

С	-2.43462400	-2.44988000	0.20191300
С	-3.67953600	-2.90178200	-0.21763900

С	-4.62067600	-2.01941700	-0.74460600
С	-4.31761700	-0.67233900	-0.87020700
С	-3.06632100	-0.23079200	-0.46420700
С	-2.13167900	-1.09833100	0.09216700
Н	-1.71452800	-3.13764700	0.62854800
Н	-3.92441800	-3.95270800	-0.12578300
Н	-5.58714100	-2.38944600	-1.06215600
Н	-5.03088900	0.02795800	-1.28769900
С	-2.58906200	1.16319000	-0.57789000
0	-3.30458900	2.15799100	-0.64317000
Ν	-1.21886700	1.15965600	-0.63688100
Ο	-0.69988700	2.37708900	-0.32646200
С	0.51537000	2.61838800	-1.06046000
Н	0.34164600	2.37644300	-2.10984200
Н	0.67104800	3.69279800	-0.95490300
С	-0.74314700	0.11136300	1.80773300
С	-1.92085900	0.61212300	2.57002900
Н	-1.75477900	0.50984600	3.64407200
Н	-2.04193300	1.68571000	2.37058000
Н	-2.85129200	0.11312100	2.30323700
С	0.59649400	0.44283200	2.36387200
Н	0.69444300	0.02258500	3.36982700
Н	1.40774700	0.06732600	1.74135100
Н	0.70125800	1.52874400	2.47248900
С	3.38000400	0.04009600	-0.67719600
С	4.06572000	0.32071200	0.50976900
С	3.77181200	-1.07247900	-1.42463500
С	5.10247400	-0.49393400	0.93476900
Н	3.79511000	1.18682400	1.10126400
С	4.81039900	-1.88969000	-0.99869000
Н	3.25071500	-1.29648400	-2.34860700
С	5.47853100	-1.60365000	0.18376800
Н	5.62470000	-0.26115100	1.85469100
Н	5.09741800	-2.74913500	-1.59192700
Н	6.29058900	-2.23700000	0.51857600
С	2.25921600	0.85973100	-1.16137800
Н	1.88637500	0.59886100	-2.14951600
С	-0.86124400	-0.49535300	0.57169600
Н	0.05170300	-0.86444500	0.11444100
С	1.66376400	1.84977200	-0.50028000
Н	1.98598400	2.13620600	0.49540000
1a-56SR-p1			
С	2.30723900	1.94774000	1.35047600

С	3.25044400	2.88555800	0.94253900
С	3.90804200	2.76693200	-0.28255100
С	3.63652900	1.70110600	-1.12979200
С	2.69495700	0.77452800	-0.71380700
С	2.03706900	0.88815800	0.50340200
Н	1.80436700	2.04212200	2.30566600
Н	3.48194700	3.72330900	1.58862500
Н	4.63757900	3.51289900	-0.57076100
Н	4.14130200	1.59091700	-2.08180100
С	2.23789300	-0.46028500	-1.39044400
0	2.63502100	-0.96367800	-2.43307100
Ν	1.25351000	-0.94689400	-0.59631900
0	0.79327500	-2.21979000	-0.77356300
С	-0.43327900	-2.23677600	-1.53969100
Н	-0.26352500	-1.73184300	-2.49239900
Н	-0.59778500	-3.30084100	-1.71571300
С	1.40713100	-1.16406700	1.85644200
С	2.73341300	-1.83948100	1.86590000
Н	3.05041400	-2.06761000	2.88615300
Н	2.68565100	-2.79656100	1.32655000
Н	3.50863300	-1.23585600	1.38883200
С	0.30016600	-1.74564600	2.66123700
Н	0.62345600	-1.94627200	3.68614200
Н	-0.57014800	-1.08778200	2.69232800
Н	-0.02659600	-2.70951200	2.24292900
С	-3.35299900	0.11136700	-0.55901600
С	-3.82290000	-0.26761900	0.70307000
С	-3.96955800	1.18601800	-1.20294000
С	-4.87605400	0.40919000	1.29573200
Н	-3.36469600	-1.09671700	1.22808400
С	-5.02646100	1.86381100	-0.61003700
Н	-3.61305500	1.49034200	-2.18053700
С	-5.48329800	1.47752100	0.64209700
Н	-5.22709800	0.10331000	2.27364500
Н	-5.49162500	2.69403500	-1.12697200
Н	-6.30670300	2.00348300	1.10894000
С	-2.23312400	-0.56591200	-1.23004800
Н	-1.94265900	-0.14015200	-2.18797500
С	1.08262300	-0.26634600	0.70396900
Н	0.05394700	0.09403200	0.78636600
С	-1.56106300	-1.62450100	-0.78274700
Н	-1.80497500	-2.09307700	0.16644100

1a-56SR-r2

С	-2.39611100	-2.30327600	-0.13295600
С	-3.63376900	-2.78573800	-0.54505200
С	-4.64099600	-1.92310100	-0.98107900
С	-4.43110600	-0.55164600	-1.01291900
С	-3.19583300	-0.08168100	-0.59732600
С	-2.19184400	-0.93442500	-0.16118000
Н	-1.61960600	-2.97927700	0.20440000
Н	-3.82191800	-3.85210700	-0.52633900
Н	-5.59292300	-2.33087600	-1.29618000
Н	-5.20101400	0.13202900	-1.34918200
С	-2.71188100	1.31237800	-0.50520300
0	-3.32349200	2.35309100	-0.70074400
Ν	-1.40780000	1.21210400	-0.13394000
0	-0.80212200	2.32211600	0.38678500
С	0.39216200	2.68474700	-0.33271000
Н	0.18791400	2.66616900	-1.40457700
Н	0.56908300	3.71432800	-0.01586600
С	-0.59733700	-0.24241900	1.68874500
С	-1.58572900	0.19039800	2.71307200
Н	-2.21874700	-0.64945400	3.03307400
Н	-1.08037300	0.56243300	3.60781400
Н	-2.24878900	0.97554200	2.34257600
С	0.52546900	-1.13251700	2.08437800
Н	0.16924700	-2.13730400	2.35396900
Н	1.25334100	-1.24741000	1.27826600
Н	1.04000200	-0.74176600	2.96739800
С	3.42204000	0.27943300	-0.60634800
С	3.93711200	0.06675100	0.67736500
С	4.03113200	-0.36935800	-1.68241400
С	5.02347300	-0.77035400	0.87143500
Н	3.48885300	0.55851600	1.53196700
С	5.12104800	-1.20775300	-1.48858100
Н	3.64122400	-0.21169900	-2.68171000
С	5.62083900	-1.41154700	-0.21015000
Н	5.40957700	-0.92377100	1.87171200
Н	5.57881300	-1.70086700	-2.33724300
Н	6.47058700	-2.06427400	-0.05368700
С	2.26302500	1.14582500	-0.86952500
Н	1.97753100	1.22877200	-1.91607400
С	-0.96541700	-0.14477800	0.24371100
Н	-0.11322100	-0.43686300	-0.37375800
С	1.54597200	1.81097400	0.03321200
Н	1.77643700	1.76000600	1.09385200

1a-56SR-TS2

С	-2.53583600	-2.21821600	-0.49507800
С	-3.80997500	-2.74875100	-0.31848100
С	-4.90341700	-1.93263400	-0.02684500
С	-4.74689500	-0.55832900	0.09052700
С	-3.47409000	-0.04090000	-0.08161500
С	-2.37904200	-0.84921800	-0.35901500
Н	-1.69709500	-2.86073300	-0.73168800
Н	-3.95706900	-3.81767400	-0.41108300
Н	-5.88162000	-2.37760000	0.10300900
Н	-5.58593500	0.09190500	0.30594300
С	-3.02356300	1.36560200	-0.01014400
0	-3.65083100	2.36227900	0.32475900
Ν	-1.72343600	1.33648500	-0.39272700
0	-0.94789800	2.42671800	-0.06896800
С	0.31461900	2.38457900	-0.73980700
Н	0.16360600	2.14404500	-1.79513100
Н	0.67237600	3.41281500	-0.66472800
С	-0.09965500	-0.21971100	0.59558500
С	-0.46846000	0.15750300	1.99462800
Н	-1.14700000	-0.59304400	2.42319200
Н	0.42113100	0.18197000	2.62777500
Н	-0.96305500	1.12761500	2.05700600
С	0.71314000	-1.46058300	0.44117600
Н	0.13119700	-2.33603400	0.75693100
Н	1.02494300	-1.61860200	-0.59332900
Н	1.60348000	-1.42325300	1.07153800
С	3.47030400	0.21573700	-0.41404100
С	3.87555500	0.21063600	0.93021500
С	4.28321100	-0.44487300	-1.34640200
С	5.03792700	-0.43379300	1.31848000
Н	3.27650800	0.71577900	1.67807200
С	5.44698500	-1.08913200	-0.95564000
Н	3.98723000	-0.44937100	-2.38954100
С	5.83074300	-1.08903900	0.38002200
Н	5.33103700	-0.42521600	2.36133400
Н	6.05611600	-1.59381400	-1.69571500
Н	6.73887500	-1.59160700	0.68840300
С	2.25496200	0.86792300	-0.87354300
Н	2.08426700	0.83744300	-1.94698400
С	-1.13096700	-0.00363700	-0.47744500
Н	-0.66505700	-0.14904400	-1.45745500
С	1.30476300	1.45519100	-0.09299900
Н	1.49808500	1.64693000	0.95773900

1a-56SR-p2			
С	-2.57994400	-2.17169300	-0.51576400
С	-3.84943700	-2.68555300	-0.27214600
С	-4.91659200	-1.85563700	0.07325000
С	-4.73762900	-0.48338800	0.17348100
С	-3.46877500	0.01735900	-0.06678600
С	-2.39411200	-0.80448300	-0.38769300
Н	-1.76580900	-2.82760000	-0.79582500
Н	-4.01395700	-3.75276200	-0.35452300
Н	-5.89222000	-2.28816000	0.25459200
Н	-5.55675900	0.17891400	0.42533100
С	-3.00001700	1.41808700	-0.02619300
0	-3.58099000	2.42132300	0.36711000
Ν	-1.73543700	1.37688300	-0.51834100
0	-0.90889600	2.44356200	-0.20561200
С	0.40656600	2.16879500	-0.68813000
Н	0.34998000	1.97829900	-1.76342500
Н	0.96010300	3.09055300	-0.52313200
С	-0.02657700	-0.08677400	0.45425900
С	-0.55166700	0.22813100	1.85561300
Н	-1.35662900	-0.45665700	2.13219500
Н	0.25715400	0.10347800	2.57859900
Н	-0.91972800	1.25185000	1.94151900
С	0.54500400	-1.50036300	0.44707900
Н	-0.17688300	-2.20094000	0.86973000
Н	0.80487600	-1.83361000	-0.55983000
Н	1.44683200	-1.54104700	1.06089800
С	3.43589600	0.05354700	-0.37549800
С	3.83125000	0.05926300	0.98367000
С	4.38300600	-0.40104200	-1.32603400
С	5.09515400	-0.35811800	1.35679500
Н	3.13628200	0.38760700	1.74602500
С	5.64180900	-0.81594000	-0.94221100
Н	4.10147100	-0.41700700	-2.37287200
С	6.01066500	-0.79725400	0.40277100
Н	5.37320800	-0.34479300	2.40376900
Н	6.34594900	-1.15795500	-1.69103000
Н	6.99844900	-1.12265000	0.70325200
С	2.15460500	0.46690600	-0.81485600
Н	1.94871500	0.37977900	-1.87742100
С	-1.15698700	0.02664200	-0.58860700
Н	-0.73608900	-0.14928600	-1.58312700
С	1.05874800	0.98839900	0.04974700

6. Sunlight-catalyzed reaction

Sunlight-catalyzed reaction:

To a Schlenk tube were added **1a** (61.4 mg, 0.2 mmol, 1.0 equiv), $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (3.0 mg, 0.004 mmol, 2 mol%), KHCO₃ (6.0 mg, 0.06 mmol, 30 mol%). The tube was degassed and refilled with N₂ three times, and anhydrous MeOH (3 mL) was added. The mixture was placed in the sunlight and stirred until the substrate was consumed (monitored by TLC), the solvent was removed by rotary evaporation, and the resulting residue was purified directly by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 1/3 to 1/2) to give the desired product **2a** (42.0 mg, 68% yield, dr = 5.5:1).

7. Procedure for the follow-up transformations of 2a

Procedure for the transformation of 2a to product 2w¹:

A round-bottom flask was charged with the mixture of 2a (61.4 mg, 0.2 mmol, 1.0 equiv). The flask was degassed and refilled with N₂ three times. Then SmI₂ (0.1 M in THF, 8 mL, 0.8 mmol, 4.0 equiv) was added dropwise under N₂. The resulting mixture was stirred at room temperature for 1 h, and then the reaction was quenched by the addition of a saturated aqueous solution of Na₂S₂O₃. The organic layer was separated, and the aqueous layer was extracted with EtOAc. The combined organic solvent was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure. Purification by column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 1/1 to 2/1) to give the desired product **2w** as a white solid (61.3 mg, 99 % yield).

Procedure for the transformation of 2a to product 2x^{13}:

A round-bottom flask was charged 2a (61.4 mg, 0.2 mmol, 1.0 equiv). The flask was degassed and refilled with N₂ three times, and anhydrous dry THF (5 mL) and LiAlH₄ (0.2 mmol, 1.0 equiv) were

added. After 10 min, AlCl₃ (0.4 mmol, 2.0 equiv) was added. The mixture was stirred for 30 min until TLC analysis of the reaction mixture showed complete conversion of the precursor to the corresponding amine. The reaction mixture was hydrolyzed with saturated Na₂CO₃ solution (4 mL), and the aqueous phase was extracted with ether (3 x 5 mL). The combined organic phase was washed with brine and dried with Na₂SO₄. The solvent was removed by rotary evaporation, and the resulting residue was purified directly by flash column chromatography on silica gel (gradient eluent of EtOAc/petroleum ether: 1/15 to 1/10) to give the desired product **2x** (53.1 mg, 91% yield).

8. References

- C.-H. Ye, X.-Z. Kou, J.-Z. Xia, G.-Q. Yang, L. Kong, Q.-H. Wei and W.-B. Zhang, Pd^{II}-Catalyzed Oxidative Tandem aza-Wacker/Heck Cyclization for the Construction of Fused 5,6-Bicyclic N,O-Heterocycles, *Chem. Asian J.*, 2018, **13**, 1897–1901.
- 2 F.-D. Lu, L.-Q. Lu, G.-F. He, J.-C. Bai and W.-J. Xiao, Enantioselective Radical Carbocyanation of 1,3-Dienes via Photocatalytic Generation of Allylcopper Complexes, *J. Am. Chem. Soc.*, 2021, **143**, 4168–4173.
- 3 B. N. Hemric, K. Shen and Q. Wang, Copper-Catalyzed Amino Lactonization and Amino Oxygenation of Alkenes Using O-Benzoylhydroxylamines, J. Am. Chem. Soc., 2016, 138, 5813–5816.
- 4 K. Shen and Q. Wang, Copper-Catalyzed Diamination of Unactivated Alkenes with Hydroxylamines, *Chem. Sci.*, 2015, **6**, 4279–4283.
- 5 K. Shen and Q. Wang, Copper-Catalyzed Aminotrifluoromethylation of Alkenes: A Facile Synthesis of CF₃-Containing Lactams, *Org. Chem. Front.*, 2016, **3**, 222–226.
- 6 D. J. Wardrop, E. G. Bowen, R. E. Forslund, A. D. Sussman and S. L. Weerasekera, Intramolecular Oxamidation of Unsaturated O-Alkyl Hydroxamates: A Remarkably Versatile Entry to Hydroxy Lactams, *J. Am. Chem. Soc.*, 2010, **132**, 1188–1189.
- Y.-W. He, C.-Y. Cheng, B. Chen, K. Duan, Y. Zhuang, B. Yuan, M.-S. Zhang, Y.-G. Zhou, Z.-H. Zhou, Y.-J. Su, R.-H. Cao and L.-Q. Qiu, Highly Enantioselective Synthesis of 2,3-Dihydro-1H-Imidazo [2,1-a] Isoindol-5(9bH)-Ones via Catalytic Asymmetric Intramolecular Cascade Imidization-Nucleophilic Addition-Lactamization, *Org. Lett.*, 2014, 16, 6366–6369.
- 8 S.-C. Wu, N. Liu, G.-Q. Dong, L. Ma, S.-Z. Wang, W.-C. Shi, K. Fang, S.-Q. Chen, J. Li, W.-N. Zhang, C.-Q. Sheng and W. Wang, Facile Construction of Pyrrolo[1,2-b] Isoquinolin-10(5H)-ones via a Redox-Amination-Aromatization-Friedel-Crafts Acylation Cascade Reaction and Discovery of Novel Topoisomerase Inhibitors, *Chem. Commun.*, 2016, **52**, 9593–9596.
- 9 F. Kopp, S. Wunderlich and P. Knochel, Halogen-Magnesium Exchange on Unprotected Aromatic and Heteroaromatic Carboxylic Acids, *Chem. Commun.*, 2007, No. 20, 2075–2077.
- 10 Y. Zhao and D. G. Truhlar, The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06 Functionals and 12 Other Functionals, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 11 Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F.

Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng,
A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa M., Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J.
Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J.
Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M.
Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,
J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT. 2016.

- 12 S. Grimme, Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation, J. Chem. Phys., 2006, **124**, 034108.
- 13 M. L. D. Gioia, A. Leggio, A. L. Pera, A. Liguori, F. Perri and M. C. Viscomi, Reduction of N-Methoxy-N-Methylamides to the Corresponding Amines with AlCl₃/LiAlH₄, *Lett. Org. Chem.*, 2006, 3, 468–469.

9. Analytical data for substrates

N-(cinnamyloxy)-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.63$ (2:1 petroleum ether/ethyl acetate); 2763.0 mg, 90% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.64 (s, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.44 – 7.24 (m, 7H), 7.18 (d, J = 7.7 Hz, 1H), 6.69 (d, J = 15.9 Hz, 1H), 6.41 (d, J = 9.5 Hz, 2H), 4.66 (d, J = 6.8 Hz, 2H), 1.84 (d, J = 1.4 Hz, 3H), 1.70 (d, J = 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 138.5, 136.5, 136.2, 136.1, 131.9, 130.5, 130.5, 128.8, 128.7, 128.3, 126.8, 126.7, 123.1, 26.2, 19.5. HRMS (ESI) m/z calcd for C₂₀H₂₁NO₂ [M+H]⁺: 308.1645, found: 308.1644. IR (neat): v_{max} 3178, 2972, 2931, 1648, 1596, 1494, 1471, 1444, 1374, 1302, 1097, 1017, 967, 910, 831, 743, 693, 645 cm⁻¹

N-(cinnamyloxy)-5-methyl-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.65$ (2:1 petroleum ether/ethyl acetate); 453.0 mg, 94% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.64 (s, 1H), 7.53 (s, 1H), 7.44 – 7.38 (m, 2H), 7.36 – 7.26 (m, 3H), 7.20 (dd, J = 7.9, 1.8 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 6.69 (d, J = 15.9 Hz, 1H), 6.38 (d, J = 22.5 Hz, 2H), 4.66 (d, J = 6.8 Hz, 2H), 2.33 (s, 3H), 1.83 (d, J = 1.5 Hz, 3H), 1.68 (d, J = 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.3, 138.3, 136.6, 136.3, 136.1, 133.5, 131.7, 131.4, 130.5, 129.5, 128.8, 128.4, 126.8, 123.1, 123.1, 26.2, 21.0, 19.5. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1802. IR (neat): v_{max} 3174, 3024, 2970, 2923, 2856, 1646, 1607, 1493, 1446, 1375, 1304, 1022, 967, 859, 745, 693 cm⁻¹

N-(cinnamyloxy)-4-methyl-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.78$ (2:1 petroleum ether/ethyl acetate); 193.0 mg, 49% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.67 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.36 – 7.26 (m, 3H), 7.09 (dd, J = 8.0, 1.7 Hz, 1H), 6.97 (d, J = 1.7 Hz, 1H), 6.68 (d, J = 15.9 Hz, 1H), 6.39 (d, J = 15.0 Hz, 2H), 4.65 (d, J = 6.8 Hz, 2H), 2.34 (s, 3H), 1.83 (d, J = 1.5 Hz, 3H), 1.68 (d, J = 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 141.0, 138.5, 136.5, 136.3, 136.2, 131.1, 129.2, 129.0, 128.8, 128.4, 127.6, 126.8, 123.5, 123.2, 26.1, 21.5, 19.5. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1797. IR (neat): v_{max} 3186, 3026, 2972, 2924, 2858, 1647, 1495, 1447, 1373, 1300, 1156, 1105, 1017, 966, 881, 826, 780, 743, 692, 649, 606 cm⁻¹

N-(cinnamyloxy)-2-methoxy-6-(2-methylprop-1-en-1-yl)benzamide

Colorless oil; $R_f = 0.51$ (2:1 petroleum ether/ethyl acetate); 429.0 mg, 85% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.23 (s, 1H), 7.41 (d, J = 7.5 Hz, 2H), 7.35 – 7.25 (m, 4H), 6.85 (d, J = 7.7 Hz, 1H), 6.81 – 6.57 (m, 2H), 6.40 (dt, J = 15.2, 6.8 Hz, 1H), 6.29 (s, 1H), 4.68 (d, J = 6.8 Hz, 2H), 3.78 (s, 3H), 1.84 (d, J = 1.5 Hz, 3H), 1.80 – 1.69 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 156.8, 139.0, 138.0, 136.2, 136.2, 130.4, 128.7, 128.3, 126.8, 123.2, 122.4, 122.2, 121.8, 108.8, 55.9, 26.6, 19.8. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₃ [M+H]⁺: 338.1751, found: 338.1751. IR (neat): v_{max} 3190, 2967, 2933, 1653, 1594, 1573, 1489, 1467, 1435, 1374, 1271, 1196, 1149, 1089, 1048, 1016, 966, 934, 888, 834, 795, 742, 692, 608 cm⁻¹

N-(cinnamyloxy)-3-methoxy-2-(2-methylprop-1-en-1-yl)benzamide

Colorless oil; $R_f = 0.56$ (2:1 petroleum ether/ethyl acetate); 274.0 mg, 54% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.64 (s, 1H), 7.42 – 7.37 (m, 2H), 7.36 – 7.23 (m, 5H), 6.99 – 6.92 (m, 1H), 6.67 (d, *J* = 15.9 Hz, 1H), 6.37 (dt, *J* = 15.1, 6.7 Hz, 1H), 6.16 (p, *J* = 1.4 Hz, 1H), 4.62 (d, *J* = 6.7 Hz, 2H), 3.79 (s, 3H), 1.90 (d, *J* = 1.5 Hz, 3H), 1.54 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.6, 157.2, 140.4, 136.2, 136.1, 133.9, 128.8, 128.3, 128.2, 126.8, 125.4, 123.2, 121.1, 118.1, 113.0, 55.9, 25.9, 19.9. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₃ [M+H]⁺: 338.1751, found: 338.1749. IR (neat): v_{max} 3190, 2965, 2934, 2911, 1648, 1591, 1572, 1493, 1460, 1435, 1374, 1305, 1256, 1203, 1181, 1071, 1051, 1020, 966, 944, 911, 861, 823, 783, 731, 693, 645, 609, 531 cm⁻¹

N-(cinnamyloxy)-4,5-dimethoxy-2-(2-methylprop-1-en-1-yl)benzamide

Colorless oil; $R_f = 0.33$ (2:1 petroleum ether/ethyl acetate); 536.0 mg, 97% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.83 (s, 1H), 7.43 – 7.38 (m, 3H), 7.36 – 7.26 (m, 3H), 6.68 (d, J = 15.9 Hz, 1H), 6.57 (s, 1H), 6.45 – 6.32 (m, 2H), 4.64 (dd, J = 6.8, 1.2 Hz, 2H), 3.88 (s, 3H), 3.87 (s, 3H), 1.81 (d, J = 1.5 Hz, 3H), 1.66 (d, J = 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 150.6, 147.7, 138.9, 136.2, 136.1, 129.8, 128.7, 128.4, 126.8, 123.8, 123.6, 123.2, 113.0, 112.0, 77.1, 56.0, 25.9, 19.5. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₄ [M+H]⁺: 368.1856, found: 368.1855. IR (neat): v_{max} 3178, 2963, 2934, 2910, 2849, 1645, 1600, 1569, 1507, 1463, 1443, 1349, 1333, 1263, 1216, 1174, 1102, 1070, 1054, 1022, 988, 967, 911, 876, 831, 803, 769, 731, 693, 646, 608, 576 cm⁻¹

N-(cinnamyloxy)-5-fluoro-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.71$ (2:1 petroleum ether/ethyl acetate); 363.0 mg, 74% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.82 (s, 1H), 7.40 (ddd, J = 7.9, 4.2, 1.9 Hz, 3H), 7.36 – 7.26 (m, 3H), 7.11 (qd, J = 8.5, 5.7 Hz, 2H), 6.68 (d, J = 15.9 Hz, 1H), 6.48 – 6.26 (m, 2H), 4.63 (d, J = 6.8 Hz, 2H), 1.82 (d, J = 1.4 Hz, 3H), 1.66 (d, J = 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 161.2 (d, J = 247.4 Hz), 139.1, 136.4, 136.0, 133.7 (d, J = 6.6 Hz), 132.5 (d, J = 3.6 Hz), 132.4 (d, J = 7.3 Hz), 128.8, 128.4, 126.8, 122.9, 122.2, 117.6 (d, J = 21.0 Hz), 115.8 (d, J = 23.4 Hz), 77.2, 26.0, 19.4. ¹⁹F NMR (282 MHz, CDCl₃) δ - 114.8 (q, J = 7.8 Hz). HRMS (ESI) m/z calcd for C₂₀H₂₀FNO₂ [M+H]⁺: 326.1551, found: 326.1541. IR (neat): v_{max} 3177, 2975, 2930, 2911, 1648, 1604, 1578, 1483, 1447, 1409, 1375, 1304, 1269, 1230, 1203, 1175, 1138, 1090, 1070, 1055, 1020, 964, 921, 862, 845, 815, 800, 744, 692, 675, 608, 569 cm⁻¹

N-(cinnamyloxy)-4-fluoro-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.71$ (2:1 petroleum ether/ethyl acetate); 321.0 mg, 66% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.67 (s, 1H), 7.69 (dd, J = 8.6, 5.9 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.37 – 7.27 (m, 3H), 7.00 – 6.84 (m, 2H), 6.68 (d, J = 15.9 Hz, 1H), 6.37 (d, J = 17.6 Hz, 2H), 4.64 (d, J = 6.8 Hz, 2H), 1.83 (d, J = 1.4 Hz, 3H), 1.71 (d, J = 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 163.8 (d, J = 251.4 Hz), 139.9, 139.3 (d, J = 8.6 Hz), 136.4, 136.1, 131.3 (d, J = 9.5 Hz), 128.8, 128.5, 128.2 (d), 126.9, 123.0, 122.4 (d, J = 1.7 Hz), 117.3 (d, J = 21.7 Hz), 113.9 (d, J = 21.7 Hz), 77.3, 26.2, 19.6. ¹⁹F NMR (282 MHz, CDCl₃)

δ -109.3 (d, J = 9.6 Hz). HRMS (ESI) m/z calcd for C₂₀H₂₀FNO₂ [M+H]⁺: 326.1551, found: 326.1544. IR (neat): v_{max} 3170, 3026, 2974, 2932, 1645, 1601, 1577, 1477, 1447, 1413, 1375, 1304, 1270, 1233, 1161, 1095, 1054, 1017, 967, 884, 829, 783, 745, 692, 647, 608 cm⁻¹

2-chloro-N-(cinnamyloxy)-6-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.70$ (2:1 petroleum ether/ethyl acetate); 284.0 mg, 56% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.21 (s, 1H), 7.46 – 7.37 (m, 2H), 7.36 – 7.27 (m, 4H), 7.26 – 7.19 (m, 2H), 7.14 (dd, J = 7.5, 1.5 Hz, 1H), 6.73 (d, J = 15.9 Hz, 1H), 6.39 (dt, J = 15.9, 6.9 Hz, 1H), 6.26 (d, J = 2.0 Hz, 1H), 4.71 (dd, J = 6.9, 1.1 Hz, 2H), 1.86 (d, J = 1.5 Hz, 3H), 1.75 (d, J = 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 139.6, 139.1, 136.8, 136.1, 131.8, 130.4, 128.8, 128.5, 128.3, 127.3, 126.9, 122.8, 121.0, 26.6, 19.8. HRMS (ESI) m/z calcd for C₂₀H₂₀CINO₂ [M+H]⁺: 342.1255, found: 342.1260. IR (neat): v_{max} 3151, 3024, 2973, 2931, 2855, 1651, 1588, 1558, 1494, 1447, 1375, 1292, 1196, 1175, 1131, 1070, 1017, 965, 910, 897, 833, 781, 743, 719, 692, 674 cm⁻¹

3-chloro-N-(cinnamyloxy)-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.40(2:1 \text{ petroleum ether/ethyl acetate})$; 645.0 mg, 63% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.87 (s, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.47 (dd, J = 8.0, 1.3 Hz, 1H), 7.41 – 7.36 (m, 2H), 7.36 – 7.27 (m, 3H), 7.24 – 7.18 (m, 1H), 6.66 (d, J = 15.9 Hz, 1H), 6.36 (dt, J = 15.0, 6.7 Hz, 1H), 6.17 (t, J = 1.6 Hz, 1H), 4.60 (d, J = 6.9 Hz, 2H), 1.89 (d, J = 1.5 Hz, 3H), 1.50 (d, J = 1.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 140.9, 136.0, 136.0, 135.0, 134.7, 131.7, 128.7, 128.3, 128.1, 127.3, 126.8, 123.0, 120.0, 77.6, 77.2, 76.7, 25.4, 19.7. HRMS (ESI) m/z calcd for C₂₀H₂₀ClNO₂ [M+H]⁺: 342.1255, found: 342.1259. IR (neat): v_{max} 3182, 2974, 2934, 1652, 1583, 1494, 1441, 1376, 1300, 1127, 1025, 967, 910, 815, 794, 735, 693, 647 cm⁻¹

5-chloro-N-(cinnamyloxy)-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.76$ (2:1 petroleum ether/ethyl acetate); 220.0 mg, 43% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.79 (s, 1H), 7.70 – 7.56 (m, 1H), 7.43 – 7.37 (m, 2H), 7.37 – 7.26 (m, 4H), 7.10 (d, J = 8.3 Hz, 1H), 6.68 (d, J = 15.9 Hz, 1H), 6.35 (d, J = 25.6 Hz, 2H), 4.63 (d, J = 6.8 Hz, 2H), 1.82 (d, J = 1.5 Hz, 3H), 1.67 (d, J = 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 139.5, 136.5, 136.0, 135.0, 133.4,

132.6, 131.9, 130.6, 128.8, 128.5, 126.8, 122.9, 122.0, 26.2, 19.5. HRMS (ESI) m/z calcd for $C_{20}H_{20}CINO_2 [M+H]^+$: 342.1255, found: 342.1259. IR (neat): v_{max} 3173, 2973, 2932, 1648, 1589, 1494, 1469, 1446, 1375, 1295, 1202, 1159, 1110, 1069, 1017, 965, 918, 859, 808, 740, 692, 664, 594, 532 cm⁻¹

4-chloro-N-(cinnamyloxy)-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.75$ (2:1 petroleum ether/ethyl acetate); 236.0 mg, 82% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.74 (s, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.36 – 7.26 (m, 3H), 7.23 (dd, J = 8.3, 2.2 Hz, 1H), 7.16 (d, J = 2.1 Hz, 1H), 6.67 (d, J = 15.9 Hz, 1H), 6.47 – 6.27 (m, 2H), 4.63 (d, J = 6.8 Hz, 2H), 1.82 (d, J = 1.5 Hz, 3H), 1.70 (d, J = 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 140.1, 138.3, 136.7, 136.5, 136.0, 130.4, 128.8, 128.5, 126.9, 126.9, 123.0, 122.1, 26.2, 19.6. HRMS (ESI) m/z calcd for C₂₀H₂₀ClNO₂ [M+H]⁺: 342.1255, found: 342.1260. IR (neat): v_{max} 3177, 2973, 2933, 1645, 1587, 1555, 1494, 1446, 1374, 1299, 1210, 1156, 1087, 1016, 965, 913, 892, 825, 742, 692, 584, 537, 505 cm⁻¹

2-bromo-N-(cinnamyloxy)-6-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.74$ (2:1 petroleum ether/ethyl acetate); 217.0 mg, 37% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.47 (s, 1H), 7.42 – 7.35 (m, 3H), 7.34 – 7.26 (m, 3H), 7.26 – 7.20 (m, 1H), 7.20 – 7.09 (m, 2H), 6.71 (d, J = 15.9 Hz, 1H), 6.38 (dt, J = 15.9, 6.8 Hz, 1H), 6.25 (p, J = 1.4 Hz, 1H), 4.68 (dd, J = 6.8, 1.2 Hz, 2H), 1.84 (d, J = 1.5 Hz, 3H), 1.73 (d, J = 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.4, 139.5, 139.2, 136.5, 136.1, 130.5, 130.3, 128.7, 128.7, 128.3, 126.8, 122.9, 121.1, 120.6, 26.5, 19.7. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0750. IR (neat): v_{max} 3154, 2975, 2931, 1654, 1584, 1552, 1494, 1445, 1376, 1282, 1122, 1018, 966, 909, 776, 735, 695 cm⁻¹

3-bromo-N-(cinnamyloxy)-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.73$ (2:1 petroleum ether/ethyl acetate); 452.0 mg, 78% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.67 (s, 1H), 7.73 – 7.58 (m, 2H), 7.40 (d, J = 6.7 Hz, 2H), 7.36 – 7.27 (m, 3H), 7.16 (t, J = 7.9 Hz, 1H), 6.68 (d, J = 15.9 Hz, 1H), 6.37 (dt, J = 15.9, 7.1 Hz, 1H), 6.17 (s, 1H), 4.61 (d, J = 6.9 Hz, 2H), 1.90 (d, J = 1.5 Hz, 3H), 1.51 (d, J = 1.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 140.8, 136.8,

136.2, 136.1, 135.1, 134.8, 128.8, 128.5, 128.1, 126.8, 123.0, 122.4, 77.3, 25.4, 19.7. HRMS (ESI) m/z calcd for $C_{20}H_{20}BrNO_2$ [M+H]⁺: 386.0750, found: 386.0749. IR (neat): v_{max} 3172, 2973, 2933, 1646, 1494, 1441, 1373, 1299, 1206, 1159, 1112, 1021, 965, 910, 792, 731, 692, 646 cm⁻¹

5-bromo-N-(cinnamyloxy)-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.46$ (4:1 petroleum ether/ethyl acetate); 204.0 mg, 36% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.68 (s, 1H), 7.81 (d, J = 2.1 Hz, 1H), 7.50 (dd, J = 8.3, 2.2 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.37 – 7.27 (m, 3H), 7.05 (d, J = 8.3 Hz, 1H), 6.69 (d, J = 15.9 Hz, 1H), 6.45 – 6.26 (m, 2H), 4.64 (d, J = 6.8 Hz, 2H), 1.82 (d, J = 1.4 Hz, 3H), 1.68 (d, J = 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 139.4, 136.5, 136.0, 135.5, 133.7, 133.5, 132.1, 131.6, 128.8, 128.4, 126.8, 122.9, 122.1, 120.4, 26.2, 19.5. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0748. IR (neat): v_{max} 3154, 2970, 2932, 1648, 1581, 1554, 1494, 1467, 1448, 1377, 1295, 1203, 1159, 1104, 1053, 1021, 966, 909, 859, 806, 732, 692, 647, 522 cm⁻¹

4-bromo-N-(cinnamyloxy)-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.37$ (4:1 petroleum ether/ethyl acetate); 188.0 mg, 32% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.81 (s, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.42 – 7.24 (m, 7H), 6.67 (d, J = 15.8 Hz, 1H), 6.34 (d, J = 27.8 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 1.82 (d, J = 1.5 Hz, 3H), 1.69 (d, J = 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 139.7, 138.5, 136.2, 136.0, 133.1, 130.9, 130.2, 129.6, 128.7, 128.4, 126.8, 124.9, 123.0, 121.9, 26.2, 19.5. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0746. IR (neat): v_{max} 3175, 2972, 2932, 1651, 1582, 1552, 1495, 1447, 1377, 1299, 1208, 1079, 1018, 967, 906, 826, 734, 693 cm⁻¹

N-(cinnamyloxy)-5-cyano-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.67$ (2:1 petroleum ether/ethyl acetate); 453.0 mg, 91% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.83 (s, 1H), 7.86 (s, 1H), 7.62 (dd, J = 8.0, 1.8 Hz, 1H), 7.40 (dd, J = 8.0, 1.7 Hz, 2H), 7.36 – 7.26 (m, 4H), 6.69 (d, J = 15.9 Hz, 1H), 6.39 (d, J = 10.2 Hz, 2H), 4.65 (d, J = 6.9 Hz, 2H), 1.85 (d, J = 1.4 Hz, 3H), 1.72 (d, J = 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.1, 141.7, 141.4, 136.7, 135.9, 133.6, 133.3, 132.5, 131.3, 128.8, 128.6, 126.8, 122.7, 121.7, 118.1, 110.4, 26.6, 19.8. HRMS (ESI) m/z

calcd for $C_{21}H_{20}N_2O_2$ [M+H]⁺: 333.1598, found: 333.1599. IR (neat): v_{max} 3185, 2977, 2935, 2229, 1651, 1599, 1482, 1447, 1376, 1303, 1203, 1102, 1055, 1019, 967, 909, 864, 817, 731, 692, 647, 612, 558 cm⁻¹

N-(cinnamyloxy)-4-cyano-2-(2-methylprop-1-en-1-yl)benzamide

White solid; $R_f = 0.55$ (2:1 petroleum ether/ethyl acetate); 327.0 mg, 64% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.62 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.56 – 7.45 (m, 2H), 7.45 – 7.27 (m, 5H), 6.69 (d, J = 15.9 Hz, 1H), 6.49 – 6.22 (m, 2H), 4.66 (d, J = 6.9 Hz, 2H), 1.85 (d, J = 1.4 Hz, 3H), 1.71 (d, J = 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.3, 141.2, 137.7, 136.7, 136.2, 135.8, 134.0, 123.0, 129.5, 128.8, 128.6, 126.8, 122.7, 121.0, 114.2, 77.4, 26.3, 19.6. HRMS (ESI) m/z calcd for C₂₁H₂₀N₂O₂ [M+H]⁺: 333.1598, found: 333.1598. IR (neat): v_{max} 3179, 2975, 2934, 2231, 1652, 1599, 1554, 1495, 1448, 1376, 1295, 1206, 1185, 1104, 1057, 1016, 967, 909, 835, 731, 693, 648, 610, 560 cm⁻¹

(E)-2-(2-methylprop-1-en-1-yl)-N-((4-phenylbut-3-en-2-yl)oxy)benzamide

White solid; $R_f = 0.61$ (2:1 petroleum ether/ethyl acetate); 206.0 mg, 43% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.50 (s, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.40 – 7.21 (m, 7H), 7.16 (d, J = 7.7 Hz, 1H), 6.61 (d, J = 15.9 Hz, 1H), 6.38 (s, 1H), 6.23 (dd, J = 16.0, 8.2 Hz, 1H), 4.72 (d, J = 10.4 Hz, 1H), 1.80 (d, J = 1.5 Hz, 3H), 1.67 (d, J = 1.4 Hz, 3H), 1.49 (d, J = 6.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 138.5, 136.5, 136.0, 134.3, 130.6, 128.8, 128.3, 126.8, 123.2, 83.0, 26.2, 19.5, 19.5. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1802. IR (neat): v_{max} 3178, 2976, 2930, 1644, 1595, 1494, 1442, 1374, 1301, 1151, 1045, 1015, 966, 903, 821, 786, 746, 693, 634, 515 cm⁻¹

(E)-N-((2-methyl-3-phenylallyl)oxy)-2-(2-methylprop-1-en-1-yl)benzamide

Colorless oil; $R_f = 0.59$ (2:1 petroleum ether/ethyl acetate); 780.0 mg, 97% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.66 (s, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.43 – 7.15 (m, 8H), 6.55 (s, 1H), 6.41 (s, 1H), 4.55 (s, 2H), 2.02 (s, 3H), 1.84 (s, 3H), 1.70 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.0, 138.6, 136.9, 136.5, 132.9, 130.9, 130.6, 130.6, 129.0, 128.9, 128.3, 127.1, 126.8, 123.2, 83.0, 26.3, 19.5, 15.9. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1797. IR (neat): v_{max} 3175, 2968, 2911, 1645, 1596, 1491, 1442, 1376, 1302, 1015, 982, 918, 894, 855, 746, 699, 518 cm⁻¹

N-(cinnamyloxy)-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.65$ (2:1 petroleum ether/ethyl acetate); 1648.0 mg, 81% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.36 (s, 1H), 7.44 – 7.14 (m, 9H), 6.70 (d, J = 15.9 Hz, 1H), 6.40 (dt, J = 15.6, 6.9 Hz, 1H), 5.23 (ddt, J = 8.7, 7.1, 1.5 Hz, 1H), 4.68 (d, J = 6.9 Hz, 2H), 3.49 (d, J = 7.2 Hz, 2H), 1.77 – 1.64 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.9, 140.5, 136.5, 136.0, 133.4, 132.7, 130.8, 130.1, 128.7, 128.4, 127.6, 126.9, 126.0, 123.0, 122.8, 31.8, 25.9, 18.1. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1802. IR (neat): v_{max} 3153, 3024, 2965, 2925, 2855, 1644, 1598, 1496, 1447, 1374, 1302, 1280, 1017, 967, 928, 892, 745, 693, 668 cm⁻¹

N-(cinnamyloxy)-3-methyl-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.67$ (2:1 petroleum ether/ethyl acetate); 215.0 mg, 65% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.30 (s, 1H), 7.47 – 7.03 (m, 9H), 6.70 (d, J = 15.8 Hz, 1H), 6.39 (dt, J = 16.0, 6.7 Hz, 1H), 5.04 (s, 1H), 4.67 (d, J = 7.0 Hz, 2H), 3.43 (d, J = 6.4 Hz, 2H), 2.28 (s, 3H), 1.69 (d, J = 15.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 138.3, 138.0, 136.4, 136.1, 133.6, 132.8, 132.6, 128.8, 128.4, 126.9, 126.1, 125.5, 123.1, 122.5, 29.5, 25.8, 19.8, 18.2. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1960. IR (neat): v_{max} 3171, 2965, 2918, 2855, 1644, 1589, 1495, 1448, 1375, 1304, 1100, 1041, 1001, 966, 908, 826, 782, 739, 693, 645 cm⁻¹

N-(cinnamyloxy)-4,5-dimethyl-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.27$ (4:1 petroleum ether/ethyl acetate); 205.0 mg, 39% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.36 (s, 1H), 7.46 – 7.37 (m, 2H), 7.36 – 7.26 (m, 3H), 7.11 (s, 1H), 6.98 (s, 1H), 6.69 (d, J = 15.9 Hz, 1H), 6.38 (dt, J = 15.1, 7.0 Hz, 1H), 5.22 (ddt, J = 8.6, 7.2, 1.4 Hz, 1H), 4.66 (d, J = 6.8 Hz, 2H), 3.43 (d, J = 7.1 Hz, 2H), 2.23 (s, 3H), 2.18 (s, 3H), 1.70 (d, J = 1.4 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 139.7, 137.9, 136.5, 136.1, 134.3, 133.0, 131.5, 130.0, 128.9, 128.8, 128.4, 126.9, 123.4, 123.0, 31.6, 25.9, 19.9, 19.2, 18.1. HRMS (ESI) m/z calcd for C₂₃H₂₇NO₂ [M+H]⁺: 350.2115, found: 350.2113. IR (neat): v_{max} 3185, 2970, 2920, 2857, 1642, 1494, 1448, 1373, 1305, 1274, 1238, 1205, 1142, 1100, 1068, 965, 910, 882, 844, 798, 733, 692, 645, 606, 581 cm⁻¹

N-(cinnamyloxy)-2-methoxy-6-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.41$ (2:1 petroleum ether/ethyl acetate); 336.0 mg, 34% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.40 (s, 1H), 7.40 (d, J = 7.5 Hz, 2H), 7.29 (dt, J = 18.7, 7.6 Hz, 4H), 6.82 (d, J = 7.8 Hz, 1H), 6.77 – 6.61 (m, 2H), 6.41 (dt, J = 15.2, 6.9 Hz, 1H), 5.29 – 5.15 (m, 1H), 4.68 (d, J = 6.7 Hz, 2H), 3.76 (s, 3H), 3.37 (d, J = 7.2 Hz, 2H), 1.68 (d, J = 11.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 156.7, 142.3, 136.3, 136.1, 133.1, 131.0, 128.7, 128.3, 126.9, 123.2, 122.5, 121.8, 108.4, 55.8, 31.5, 25.9, 18.0. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₃ [M+H]⁺: 352.1907, found: 352.1917. IR (neat): v_{max} 3179, 2965, 2925, 2855, 1649, 1596, 1581, 1494, 1468, 1450, 1436, 1374, 1263, 1151, 1104, 1069, 1016, 966, 938, 908, 889, 845, 790, 743, 693, 647, 525 cm⁻¹

N-(cinnamyloxy)-4,5-dimethoxy-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.21$ (2:1 petroleum ether/ethyl acetate); 153.0 mg, 40% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.57 (s, 1H), 7.30 (dt, J = 23.5, 7.8 Hz, 5H), 6.84 (s, 1H), 6.74 – 6.54 (m, 2H), 6.36 (dt, J = 15.1, 7.0 Hz, 1H), 5.32 – 5.02 (m, 1H), 4.62 (d, J = 6.8 Hz, 2H), 3.82 (d, J = 2.0 Hz, 3H), 3.69 (s, 3H), 3.39 (d, J = 6.9 Hz, 2H), 1.67 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 150.7, 146.9, 136.5, 136.0, 133.5, 133.5, 128.7, 128.4, 126.8, 124.4, 123.3, 123.0, 112.7, 111.0, 56.0, 31.8, 25.8, 18.1. HRMS (ESI) m/z calcd for C₂₃H₂₇NO₄ [M+H]⁺: 382.2013, found: 382.2018. IR (neat): v_{max} 3171, 2962, 2933, 2850, 1641, 1603, 1579, 1511, 1463, 1448, 1345, 1303, 1261, 1208, 1187, 1086, 1019, 966, 913, 864, 805, 781, 731, 692, 646, 603 cm⁻¹

N-(cinnamyloxy)-4,5-dimethoxy-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.37$ (4:1 petroleum ether/ethyl acetate); 231.0 mg, 35% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.35 (s, 1H), 7.48 – 7.37 (m, 2H), 7.37 – 7.27 (m, 4H), 7.02 (d, J = 7.7 Hz, 1H), 6.91 (t, J = 8.8 Hz, 1H), 6.73 (d, J = 15.9 Hz, 1H), 6.39 (dt, J = 15.8, 6.9 Hz, 1H), 5.21 (td, J = 6.9, 3.4 Hz, 1H), 4.82 – 4.55 (m, 2H), 3.42 (d, J = 7.3 Hz, 2H), 1.71 (d, J = 1.5 Hz, 3H), 1.67 (d, J = 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.0, 159.6 (d, J = 247.4 Hz), 143.3, 137.0, 136.1, 133.9, 131.5 (d, J = 8.8 Hz), 128.8, 128.4, 126.9, 125.3 (d, J = 3.0 Hz), 122.6, 121.9, 121.2 (d, J = 17.3 Hz), 113.2 (d, J = 21.9 Hz), 31.5, 31.5, 25.9, 18.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -115.7 (dd, J = 9.3, 5.8 Hz). HRMS (ESI) m/z calcd for C₂₁H₂₂FNO₂ [M+H]⁺: 340.1707, found: 340.1713. IR (neat): v_{max} 3152, 2967, 2919, 2856, 1651, 1614,

1577, 1495, 1459, 1375, 1297, 1247, 1148, 1104, 1069, 1019, 967, 927, 892, 847, 790, 769, 745, 693, 639 cm⁻¹

N-(cinnamyloxy)-4,5-difluoro-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.57$ (2:1 petroleum ether/ethyl acetate); 251.0 mg, 36% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.45 (s, 1H), 7.44 – 7.27 (m, 5H), 7.16 (dd, J = 10.1, 7.8 Hz, 1H), 7.02 (dd, J = 11.4, 7.7 Hz, 1H), 6.69 (d, J = 15.9 Hz, 1H), 6.49 – 6.23 (m, 1H), 5.16 (tdt, J = 7.2, 2.9, 1.4 Hz, 1H), 4.65 (d, J = 6.6 Hz, 2H), 3.41 (d, J = 7.2 Hz, 2H), 1.72 (d, J = 1.4 Hz, 3H), 1.66 (d, J = 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 153.1 (d, J = 12.4 Hz), 149.8 (d, J = 4.9 Hz), 149.7 (d, J = 5.5 Hz), 146.4 (d, J = 13.0 Hz), 138.3 (q), 136.8, 135.9, 134.8, 128.8, 128.6, 126.9, 122.7, 121.6, 118.9 (d, J = 17.6 Hz), 117.0 (d, J = 18.3 Hz), 77.6, 77.2, 76.7, 31.1, 25.8, 18.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -133.7 (d, J = 19.5 Hz), -138.1 – -145.8 (m). HRMS (ESI) m/z calcd for C₂₁H₂₁F₂NO₂ [M+H]⁺: 358.1613, found: 358.1610. IR (neat): v_{max} 3167, 3028, 2970, 2927, 2856, 1647, 1604, 1498, 1449, 1407, 1375, 1357, 1320, 1188, 1155, 1074, 1010, 967, 933, 883, 831, 808, 781, 745, 692, 622 cm⁻¹

N-(cinnamyloxy)-3-fluoro-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.72$ (2:1 petroleum ether/ethyl acetate); 504.0 mg, 74% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.35 (s, 1H), 7.35 (dt, J = 24.4, 8.2 Hz, 5H), 7.22 – 7.07 (m, 3H), 6.70 (d, J = 15.8 Hz, 1H), 6.47 – 6.32 (m, 1H), 5.23 – 5.10 (m, 1H), 4.68 (d, J = 6.8 Hz, 2H), 3.49 (d, J = 7.0 Hz, 2H), 1.74 (s, 3H), 1.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 161.2 (d, J = 246.9 Hz), 136.4, 136.0, 134.8 (d, J = 4.2 Hz), 133.2, 128.7, 128.4, 127.5 (d, J = 8.7 Hz), 126.8, 123.4 (d, J = 3.6 Hz), 122.9, 121.8, 117.7 (d, J = 22.9 Hz), 25.8, 25.2, 17.9. ¹⁹F NMR (282 MHz, CDCl₃) δ -115.2 (d, J = 8.7 Hz). HRMS (ESI) m/z calcd for C₂₁H₂₂FNO₂ [M+H]⁺: 340.1707, found: 340.1710. IR (neat): v_{max} 3167, 3028, 2970, 2927, 2856, 1647, 1604, 1498, 1449, 1407, 1375, 1357, 1320, 1188, 1155, 1074, 1010, 967, 933, 883, 831, 808, 781, 745, 692, 622 cm⁻¹

5-chloro-N-(cinnamyloxy)-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.62$ (2:1 petroleum ether/ethyl acetate); 396.0 mg, 58% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.74 (s, 1H), 7.39 (d, J = 7.5 Hz, 2H), 7.35 – 7.21 (m, 5H), 7.13 (d, J = 8.2 Hz, 1H), 6.67 (d, J

= 15.8 Hz, 1H), 6.36 (dt, J = 15.0, 6.9 Hz, 1H), 5.15 (t, J = 7.4 Hz, 1H), 4.63 (d, J = 6.8 Hz, 2H), 3.39 (d, J = 7.1 Hz, 2H), 1.69 (s, 3H), 1.64 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 139.0, 136.7, 135.9, 134.1, 134.0, 131.6, 131.5, 130.7, 128.8, 128.5, 127.5, 126.9, 122.8, 122.2, 31.2, 25.9, 18.0. HRMS (ESI) m/z calcd for C₂₁H₂₂ClNO₂ [M+H]⁺: 356.1412, found: 356.1411. IR (neat): v_{max} 3153, 2967, 2926, 1645, 1593, 1565, 1495, 1447, 1375, 1303, 1160, 1110, 1018, 966, 933, 856, 820, 744, 692, 651 cm⁻¹

3-chloro-N-(cinnamyloxy)-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.52$ (2:1 petroleum ether/ethyl acetate); 205.0 mg, 58% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.34 (s, 1H), 7.42 (td, J = 8.3, 1.6 Hz, 3H), 7.36 – 7.27 (m, 3H), 7.23 (dd, J = 7.6, 1.5 Hz, 1H), 7.14 (t, J = 7.7 Hz, 1H), 6.70 (d, J = 15.8 Hz, 1H), 6.38 (dt, J = 15.2, 6.8 Hz, 1H), 5.16 – 5.06 (m, 1H), 4.67 (d, J = 6.8 Hz, 2H), 3.59 (d, J = 6.6 Hz, 2H), 1.74 (d, J = 1.3 Hz, 3H), 1.68 (d, J = 1.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.0, 137.8, 136.6, 136.0, 135.6, 133.7, 131.9, 128.8, 128.5, 127.3, 126.9, 126.5, 122.8, 121.3, 30.0, 25.9, 18.3. HRMS (ESI) m/z calcd for C₂₁H₂₂ClNO₂ [M+H]⁺: 356.1412, found: 356.1418. IR (neat): v_{max} 3158, 2966, 2926, 2856, 1644, 1588, 1495, 1436, 1374, 1279, 1206, 1158, 1119, 1100, 1070, 1019, 966, 944, 922, 858, 832, 799, 779, 734, 692, 549 cm⁻¹

5-bromo-N-(cinnamyloxy)-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.71$ (2:1 petroleum ether/ethyl acetate); 223.0 mg, 58% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.39 (s, 1H), 7.48 – 7.38 (m, 4H), 7.37 – 7.27 (m, 3H), 7.13 – 7.07 (m, 1H), 6.71 (d, *J* = 15.9 Hz, 1H), 6.39 (dd, *J* = 15.2, 8.0 Hz, 1H), 5.22 – 5.13 (m, 1H), 4.67 (d, *J* = 6.9 Hz, 2H), 3.41 (d, *J* = 7.1 Hz, 2H), 1.72 – 1.65 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 139.6, 136.8, 135.9, 134.4, 134.1, 133.7, 131.8, 130.4, 128.8, 128.5, 126.9, 122.7, 122.0, 119.4, 31.3, 25.9, 18.0. HRMS (ESI) m/z calcd for C₂₁H₂₂BrNO₂ [M+H]⁺: 400.0907, found: 400.0892. IR (neat): v_{max} 3149, 2965, 2922, 2854, 1646, 1588, 1562, 1495, 1476, 1447, 1375, 1302, 1159, 1100, 1018, 967, 929, 909, 856, 818, 744, 692 cm⁻¹

3-bromo-N-(cinnamyloxy)-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.61$ (2:1 petroleum ether/ethyl acetate); 231.0 mg, 60% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.33 (s, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.35 (dt, J = 22.3, 7.2 Hz, 6H), 7.06 (t, J = 7.8 Hz, 1H), 6.70 (d, J = 15.9 Hz, 1H), 6.38 (dt, J = 15.7, 6.9 Hz, 1H), 5.11 (d, J = 7.7 Hz, 1H), 4.66 (d, J = 6.8 Hz,

2H), 3.61 (d, J = 6.5 Hz, 2H), 1.72 (d, J = 18.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.0, 139.4, 136.5, 136.0, 135.3, 135.2, 133.7, 128.8, 128.5, 127.5, 127.1, 126.9, 126.2, 122.9, 121.4, 32.6, 25.9, 18.4. HRMS (ESI) m/z calcd for C₂₁H₂₂BrNO₂ [M+H]⁺: 400.0907, found: 400.0892. IR (neat): v_{max} 3151, 2924, 2854, 1644, 1586, 1495, 1434, 1374, 1301, 1105, 1017, 966, 937, 778, 742, 707, 693 cm⁻¹

N-(cinnamyloxy)-2-(3-methylbut-2-en-1-yl)-5-(trifluoromethyl)benzamide

White solid; $R_f = 0.78$ (2:1 petroleum ether/ethyl acetate); 368.0 mg, 36% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.51 (s, 1H), 7.59 (dd, J = 10.3, 2.5 Hz, 2H), 7.45 – 7.27 (m, 6H), 6.71 (d, J = 15.9 Hz, 1H), 6.40 (dd, J = 15.5, 7.8 Hz, 1H), 5.19 (tdd, J = 7.3, 3.0, 1.5 Hz, 1H), 4.83 – 4.50 (m, 2H), 3.51 (d, J = 7.2 Hz, 2H), 1.72 (d, J = 1.4 Hz, 3H), 1.68 (d, J = 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 144.9, 137.0, 135.9, 134.7, 133.4, 130.7, 128.8, 128.6, 127.4, 126.9, 124.6, 122.6, 121.6, 31.8, 25.9, 18.1. ¹⁹F NMR (282 MHz, CDCl₃) δ -62.5. HRMS (ESI) m/z calcd for C₂₂H₂₂F₃NO₂ [M+H]⁺: 390.1675, found: 390.1675. IR (neat): v_{max} 3151, 2972, 2926, 1650, 1618, 1581, 1494, 1449, 1414, 1335, 1305, 1272, 1154, 1125, 1077, 1021, 967, 935, 906, 859, 833, 745, 692, 632 cm⁻¹

N-(cinnamyloxy)-2-(3-methylbut-2-en-1-yl)-3-(trifluoromethyl)benzamide

White solid; $R_f = 0.47$ (2:1 petroleum ether/ethyl acetate); 362.0 mg, 46% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.43 (s, 1H), 7.71 (dd, J = 8.0, 1.4 Hz, 1H), 7.47 (dd, J = 7.6, 1.4 Hz, 1H), 7.41 (d, J = 6.9 Hz, 2H), 7.32 (dt, J = 9.9, 6.7 Hz, 4H), 6.70 (d, J = 15.9 Hz, 1H), 6.38 (dt, J = 15.9, 6.8 Hz, 1H), 5.11 – 5.01 (m, 1H), 4.64 (d, J = 6.8 Hz, 2H), 3.67 (d, J = 6.3 Hz, 2H), 1.73 (s, 3H), 1.68 (d, J = 1.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 139.4, 136.5, 136.1, 136.0, 133.7, 131.7, 128.8, 128.5, 128.3, 126.9, 126.4, 122.8, 122.6, 28.7, 25.9, 18.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -59.3. HRMS (ESI) m/z calcd for C₂₂H₂₂F₃NO₂ [M+H]⁺: 390.1675, found: 390.1677. IR (neat): v_{max} 3162, 2968, 2930, 1647, 1591, 1495, 1448, 1375, 1321, 1282, 1246, 1177, 1151, 1120, 1099, 1020, 965, 856, 813, 784, 742, 689, 579, 545 cm⁻¹

(E)-2-(3-methylbut-2-en-1-yl)-N-((4-phenylbut-3-en-2-yl)oxy)benzamide

White solid; $R_f = 0.58$ (2:1 petroleum ether/ethyl acetate); 151.0 mg, 31% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 7.47 – 7.09 (m, 9H), 6.63 (d, J = 15.9 Hz, 1H), 6.24 (dd, J = 15.9, 8.4 Hz, 1H),

5.22 (t, J = 7.4 Hz, 1H), 4.75 (q, J = 7.0 Hz, 1H), 3.46 (d, J = 7.2 Hz, 2H), 1.68 (d, J = 9.0 Hz, 6H), 1.51 (d, J = 6.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.7, 140.5, 136.0, 134.5, 133.4, 132.9, 130.7, 130.0, 128.8, 128.3, 127.5, 126.8, 126.0, 122.8, 83.2, 31.7, 25.9, 19.5, 18.0. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1956. IR (neat): v_{max} 3171, 3059, 3025, 2974, 2928, 1642, 1598, 1576, 1495, 1445, 1374, 1301, 1152, 1102, 1045, 1015, 966, 923, 899, 854, 820, 777, 747, 692, 671, 602, 545 cm⁻¹

(E)-N-((2-methyl-3-phenylallyl)oxy)-2-(3-methylbut-2-en-1-yl)benzamide

White solid; $R_f = 0.63$ (2:1 petroleum ether/ethyl acetate); 784.0 mg, 93% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.33 (s, 1H), 7.26 (ddt, J = 28.5, 21.3, 7.7 Hz, 9H), 6.58 (s, 1H), 5.25 (t, J = 7.4 Hz, 1H), 4.58 (s, 2H), 3.51 (d, J = 7.1 Hz, 2H), 2.03 (s, 3H), 1.71 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.9, 140.5, 136.9, 133.5, 132.8, 131.2, 130.8, 130.1, 129.1, 128.3, 127.7, 127.1, 126.0, 122.9, 83.3, 31.9, 25.9, 18.1, 16.0. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1963. IR (neat): v_{max} 3167, 3023, 2965, 2916, 2856, 1643, 1599, 1493, 1444, 1376, 1344, 1304, 1015, 983, 919, 890, 851, 747, 699, 668 cm⁻¹

2-allyl-N-(cinnamyloxy)benzamide

White solid; $R_f = 0.66$ (2:1 petroleum ether/ethyl acetate); 169.0 mg, 58% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.39 (s, 1H), 7.45 – 7.26 (m, 7H), 7.22 (dd, J = 9.4, 6.5 Hz, 2H), 6.71 (d, J = 15.9 Hz, 1H), 6.40 (dd, J = 15.1, 7.9 Hz, 1H), 5.97 (ddt, J = 16.6, 10.1, 6.3 Hz, 1H), 5.13 – 4.90 (m, 2H), 4.68 (d, J = 6.8 Hz, 2H), 3.55 (d, J = 6.3 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 167.7, 138.5, 137.5, 136.6, 136.1, 132.9, 130.9, 130.7, 128.8, 128.5, 127.8, 126.9, 126.5, 123.0, 116.4, 37.4. HRMS (ESI) m/z calcd for C₁₉H₁₉NO₂ [M+H]⁺: 294.1489, found: 294.1491. IR (neat): v_{max} 3167, 3024, 2975, 2930, 1642, 1598, 1496, 1445, 1303, 1016, 967, 915, 747, 693 cm⁻¹

10. Analytical data for products

3-benzyl-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 52.0 mg, 85% yield, dr = 5.4:1;

2a (major): $R_f = 0.57$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.89 (dt, J = 7.2, 1.2 Hz, 1H), 7.51 (dtd, J = 14.0, 6.9, 3.3 Hz, 3H), 7.33 (dd, J = 8.0, 6.4 Hz, 2H), 7.27 – 7.22 (m, 1H), 7.20 – 7.08 (m, 2H), 4.35 (s, 1H), 4.01 – 3.86 (m, 2H), 2.97 (dd, J = 13.6, 2.4 Hz, 1H), 2.23 (tdd, J = 10.5, 5.1, 2.4 Hz, 1H), 2.07 (dd, J = 13.7, 11.2 Hz, 1H), 1.54 (s, 3H), 0.54 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 139.6, 139.4, 131.4, 131.3, 128.9, 128.9, 128.6, 126.7, 124.3, 123.1, 72.8, 65.8, 47.1, 37.8, 31.7, 24.8, 13.5. HRMS (ESI) m/z calcd for C₂₀H₂₁NO₂ [M+H]⁺: 308.1645, found: 308.1650. IR (neat): v_{max} 3025, 2969, 2930, 2874, 1707, 1616, 1495, 1469, 1390, 1372, 1299, 1258, 1199, 1169, 1089, 1030, 998, 925, 789, 769, 749, 725, 701, 684, 652, 618, 586, 533 cm⁻¹

2a (minor): $R_f = 0.58$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.86 (m, 1H), 7.60 – 7.42 (m, 3H), 7.38 – 7.29 (m, 2H), 7.25 (dd, J = 7.3, 3.1 Hz, 3H), 4.71 (s, 1H), 4.17 (dt, J = 11.7, 1.7 Hz, 1H), 3.84 (dd, J = 11.7, 1.5 Hz, 1H), 3.17 – 3.00 (m, 2H), 1.65 – 1.59 (m, 1H), 1.55 (s, 3H), 0.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 140.3, 140.0, 131.4, 129.5, 128.8, 128.6, 126.6, 124.3, 123.0, 70.3, 61.9, 47.2, 36.8, 32.0, 25.6, 21.8. HRMS (ESI) m/z calcd for C₂₀H₂₁NO₂ [M+H]⁺: 308.1645, found: 308.1642. IR (neat): v_{max} 3025, 2970, 2882, 1704, 1618, 1493, 1468, 1371, 1297, 1204, 1088, 1049, 992, 951, 911, 825, 803, 774, 727, 699, 683, 645, 592, 554, 510 cm⁻¹

3-benzyl-4,4,7-trimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 55.0 mg, 86% yield, dr = 5.3:1;

2b (major): $R_f = 0.58$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (s, 1H), 7.41 – 7.27 (m, 4H), 7.27 – 7.19 (m, 1H), 7.19 – 7.08 (m, 2H), 4.29 (s, 1H), 4.00 – 3.81 (m, 2H), 2.96 (dd, J = 13.7, 2.4 Hz, 1H), 2.42 (s, 3H), 2.21 (tdd, J = 10.6, 5.1, 2.4 Hz, 1H), 2.05 (dd, J = 13.7, 11.2 Hz, 1H), 1.50 (s, 3H), 0.52 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 139.5, 138.6, 136.7, 132.3, 131.3, 128.8, 128.6, 124.5, 122.9, 65.6, 47.1, 37.7, 31.7, 24.8, 21.5, 13.5. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1806. IR (neat): v_{max} 3024, 2965, 2924, 2876, 1698, 1490, 1469, 1429, 1391, 1370, 1287, 1197, 1108, 1033, 1011, 998, 97, 911, 842, 780, 764, 744, 729, 701, 615, 549, 527, 511 cm⁻¹

2b (minor): $R_f = 0.59$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.72 (s, 1H), 7.38 – 7.29 (m, 4H), 7.24 (dd, J = 9.0, 4.1 Hz, 4H), 4.65 (s, 1H), 4.15 (dt, J = 11.8, 1.7 Hz, 1H), 3.81 (dd, J = 11.7, 1.5 Hz, 1H), 3.17 – 2.97 (m, 2H), 2.43 (s, 3H), 1.60 (dd, J = 10.8, 4.9 Hz, 1H), 1.51 (s, 3H), 0.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.5, 140.1, 138.7, 137.4, 132.3, 129.6, 128.8, 126.6, 124.7, 122.7, 70.3, 61.8, 47.2, 36.8, 32.1, 25.6, 21.9, 21.6. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1803. IR (neat): v_{max} 3026, 2970, 2925, 1709, 1625, 1601, 1488, 1455, 1371, 1285, 1205, 1140, 1105, 1049, 1008, 968, 927, 844, 813, 772, 750, 728, 702, 554, 532, 515 cm⁻¹

3-benzyl-4,4,6-trimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 53.0 mg, 83% yield, dr = 4.7:1;

2c (major): $R_f = 0.55$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 1H), 7.31 (d, J = 7.9 Hz, 3H), 7.25 (d, J = 7.2 Hz, 2H), 7.15 (d, J = 7.3 Hz, 2H), 4.30 (s, 1H), 4.00 – 3.82 (m, 2H), 2.97 (dd, J = 13.6, 2.4 Hz, 1H), 2.46 (s, 3H), 2.21 (tdd, J = 10.6, 5.1, 2.2 Hz, 1H), 2.06 (dd, J = 13.6, 11.1 Hz, 1H), 1.52 (s, 3H), 0.54 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.9, 142.0, 140.0, 139.5, 129.5, 128.9, 128.9, 128.7, 126.7, 124.1, 123.8, 72.7, 65.7, 47.2, 37.8, 31.7, 24.9, 22.3, 13.6. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1804. IR (neat): v_{max} 3019, 2969, 2920, 2866, 1695, 1619, 1492, 1450, 1392, 1370, 1217, 1193, 1103, 1035, 1006, 970, 918, 833, 782, 764, 740, 700, 682, 584, 552, 535 cm⁻¹

2c (minor): $R_f = 0.56$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 7.7 Hz, 1H), 7.31 (d, J = 7.0 Hz, 2H), 7.27 (s, 1H), 7.26 – 7.21 (m, 4H), 4.65 (s, 1H), 4.16 (d, J = 12.0 Hz, 1H), 3.81 (dd, J = 11.7, 1.5 Hz, 1H), 3.19 – 2.97 (m, 2H), 2.47 (s, 3H), 1.60 (dd, J = 11.1, 4.7 Hz, 1H), 1.53 (s, 3H), 0.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.6, 142.0, 140.6, 140.1, 129.5, 129.5, 128.8, 128.6, 126.6, 124.2, 123.5, 70.2, 61.9, 47.2, 36.8, 32.1, 25.7, 22.3, 21.9. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1805. IR (neat): v_{max} 3025, 2970, 2927, 1709, 1620, 1493, 1455, 1371, 1289, 1239, 1207, 1105, 1049, 994, 951, 914, 895, 830, 782, 728, 701, 688, 644, 554, 514 cm⁻¹

3-benzyl-8-methoxy-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 49.0 mg, 73% yield, dr = 5.8:1;

2d (major): $R_f = 0.58$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.46 (dd, J = 8.4, 7.5 Hz, 1H), 7.34 – 7.25 (m, 2H), 7.24 – 7.17 (m, 1H), 7.16 – 7.08 (m, 2H), 7.04 (dt, J = 7.6, 0.7 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 4.24 (s, 1H), 3.93 (s, 3H), 3.90 – 3.78 (m, 2H), 2.92 (dd, J = 13.6, 2.3 Hz, 1H), 2.16 (dddd, J = 11.7, 9.3, 5.7, 2.3 Hz, 1H), 2.03 (dd, J = 13.6, 11.1 Hz, 1H), 1.47 (s, 3H), 0.51 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.1, 157.8, 142.3, 139.5, 133.0, 128.8, 128.7, 126.6, 115.3, 111.0, 72.3, 65.1, 55.9, 47.0, 37.8, 31.7, 24.6, 13.5. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₃ [M+H]⁺: 338.1751, found: 338.1753. IR (neat): v_{max} 2969, 2936, 2874, 1702, 1607, 1593, 1485, 1456, 1440, 1392, 1371, 1332, 1310, 1284, 1268, 1195, 1167, 1084, 1067, 1030, 997, 953, 913, 864, 845, 809, 756, 729, 702, 687, 645, 618, 588, 556, 520 cm⁻¹

2d (minor): $R_f = 0.58$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.48 (dd, J = 8.4, 7.5 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.22 (dt, J = 6.0, 1.6 Hz, 3H), 6.99 (d, J = 7.5 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 4.62 (s, 1H), 4.11 (dt, J = 11.6, 1.7 Hz, 1H), 3.96 (s, 3H), 3.78 (dd, J = 11.7, 1.5 Hz, 1H),

3.13 - 2.98 (m, 2H), 1.60 - 1.54 (m, 1H), 1.49 (s, 3H), 0.66 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.9, 158.0, 143.1, 140.1, 133.0, 129.5, 128.7, 126.5, 118.2, 115.2, 110.9, 69.9, 61.4, 56.0, 47.2, 36.9, 32.0, 25.6, 22.0. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₃ [M+H]⁺: 338.1751, found: 338.1754. IR (neat): v_{max} 3025, 2968, 2928, 1702, 1607, 1593, 1485, 1455, 1440, 1390, 1370, 1355, 1325, 1284, 1267, 1197, 1179, 1081, 1067, 1050, 992, 970, 946, 914, 809, 769, 731, 701, 685, 644, 619, 592, 580, 517 cm⁻¹

3-benzyl-5-methoxy-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 50.0 mg, 74% yield, dr = 6.7:1;

2e (major): $R_f = 0.49$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.49 (dd, J = 7.5, 1.1 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.31 (dd, J = 8.0, 6.4 Hz, 2H), 7.27 – 7.18 (m, 1H), 7.15 (dd, J = 6.9, 1.8 Hz, 2H), 7.05 (dd, J = 8.1, 1.1 Hz, 1H), 4.47 (s, 1H), 3.87 (d, J = 12.5 Hz, 5H), 2.98 (dd, J = 13.7, 2.4 Hz, 1H), 2.27 – 2.15 (m, 1H), 2.02 (dd, J = 13.7, 11.2 Hz, 1H), 1.58 (s, 3H), 0.49 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.2, 154.5, 139.8, 133.4, 130.1, 128.9, 128.8, 127.9, 126.6, 116.4, 113.9, 72.4, 65.3, 55.5, 47.1, 39.0, 31.9, 25.7, 14.6. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₃ [M+H]⁺: 338.1751, found: 338.1753. IR (neat): v_{max} 3022, 2969, 2940, 1700, 1594, 1489, 1460, 1431, 1385, 1373, 1338, 1265, 1186, 1160, 1073, 1062, 1035, 1001, 966, 948, 910, 852, 829, 795, 745, 732, 702, 670, 622, 566, 548, 529, 517 cm⁻¹

2e (minor): $R_f = 0.50$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.52 (dd, J = 7.5, 0.9 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.24 (d, J = 7.1 Hz, 3H), 7.05 (dd, J = 8.1, 1.0 Hz, 1H), 4.81 (s, 1H), 4.13 (dt, J = 11.6, 1.8 Hz, 1H), 3.90 (s, 3H), 3.78 (dd, J = 11.6, 1.6 Hz, 1H), 3.19 – 3.01 (m, 2H), 1.61 – 1.55 (m, 1H), 1.53 (s, 3H), 0.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 162.0, 154.5, 140.3, 133.2, 130.0, 129.5, 128.8, 128.5, 126.5, 116.5, 113.6, 69.9, 61.6, 55.4, 47.7, 38.1, 31.9, 27.5, 22.8. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₃ [M+H]⁺: 338.1751, found: 338.1750. IR (neat): v_{max} 3025, 2968, 2931, 2841, 1707, 1596, 1490, 1455, 1392, 1372, 1356, 1272, 1180, 1074, 1062, 1031, 1009, 994, 968, 909, 846, 825, 802, 786, 769, 730, 700, 644, 614, 576, 548, 516 cm⁻¹

3-benzyl-6,7-dimethoxy-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 51.0 mg, 69% yield, dr = 5.4:1;

2f (major): $R_f = 0.2$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.28 (m, 3H), 7.27 – 7.21 (m, 1H), 7.16 (dd, J = 6.9, 1.8 Hz, 2H), 6.94 (s, 1H), 4.26 (s, 1H), 4.01 – 3.83 (m, 8H), 2.96 (dd, J = 13.5, 2.3 Hz, 1H), 2.21 (tdd, J = 10.3, 4.9, 2.3 Hz, 1H), 2.07 (dd, J = 13.6, 11.2 Hz, 1H), 1.51 (s, 3H), 0.55 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 152.2, 149.9, 139.5, 133.0, 128.9, 128.8, 126.7, 123.7, 106.2, 105.9, 72.7, 65.5, 56.5, 56.3, 47.0, 37.8, 31.7, 24.9, 13.6. HRMS (ESI) m/z calcd

for C₂₂H₂₅NO₄ [M+H]⁺: 368.1856, found: 368.1859. IR (neat): v_{max} 2968, 2935, 2875, 1699, 1614, 1495, 1466, 1422, 1373, 1293, 1256, 1193, 1101, 1011, 984, 912, 864, 822, 769, 727, 701, 683, 648, 601, 528 cm⁻¹

2f (minor): $R_f = 0.21$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 7.40 (s, 1H), 7.33 (dd, J = 8.2, 7.0 Hz, 2H), 7.26 – 7.21 (m, 3H), 6.87 (s, 1H), 4.62 (s, 1H), 4.14 (dt, J = 11.6, 1.8 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.81 (dd, J = 11.7, 1.5 Hz, 1H), 3.12 – 3.03 (m, 2H), 1.62 – 1.59 (m, 1H), 1.52 (s, 3H), 0.68 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.0, 152.3, 140.0, 133.7, 129.6, 128.8, 126.6, 106.3, 105.6, 70.2, 61.7, 56.5, 56.4, 47.2, 36.9, 32.0, 25.7, 22.0. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₄ [M+H]⁺: 368.1856, found: 368.1864. IR (neat): v_{max} 2967, 2931, 1705, 1615, 1499, 1460, 1371, 1294, 1254, 1226, 1207, 1103, 1049, 1009, 864, 769, 728, 702, 685 cm⁻¹

3-benzyl-7-fluoro-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 50.0 mg, 76% yield, dr = 5.0:1;

2g (major): $R_f = 0.69$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.56 (dd, J = 7.6, 2.5 Hz, 1H), 7.47 (dd, J = 8.4, 4.4 Hz, 1H), 7.32 (t, J = 7.1 Hz, 2H), 7.27 – 7.20 (m, 2H), 7.19 – 7.09 (m, 2H), 4.32 (s, 1H), 4.00 – 3.84 (m, 2H), 2.96 (dd, J = 13.7, 2.5 Hz, 1H), 2.22 (tdd, J = 10.5, 5.4, 2.6 Hz, 1H), 2.06 (dd, J = 13.6, 11.2 Hz, 1H), 1.51 (s, 3H), 0.53 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.0 (d, J = 248.8 Hz), 159.6 (d, J = 3.3 Hz), 139.3, 135.1 (d, J = 2.9 Hz), 133.6 (d, J = 8.5 Hz), 128.9 (d, J = 2.4 Hz), 126.8, 124.8 (d, J = 8.1 Hz), 118.8 (d, J = 23.2 Hz), 111.4 (d, J = 23.7 Hz), 72.9, 65.6, 47.0, 37.9, 31.6, 24.8, 13.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -111.5 (td, J = 8.2, 4.3 Hz). HRMS (ESI) m/z calcd for C₂₀H₂₀FNO₂ [M+H]⁺: 326.1551, found: 326.1553. IR (neat): v_{max} 3054, 2968, 2939, 2874, 1704, 1621, 1600, 1482, 1389, 1371, 1269, 1241, 1196, 1170, 1138, 1094, 1070, 1032, 1003, 968, 873, 853, 816, 781, 767, 746, 701, 615, 572, 554, 537, 515 cm⁻¹</sup>

2g (minor): $R_f = 0.70$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.60 (dd, J = 7.6, 2.5 Hz, 1H), 7.41 (dd, J = 8.4, 4.5 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.28 (d, J = 2.5 Hz, 1H), 7.25 – 7.20 (m, 3H), 4.68 (s, 1H), 4.17 (dt, J = 11.8, 1.7 Hz, 1H), 3.84 (dd, J = 11.8, 1.5 Hz, 1H), 3.15 – 2.99 (m, 2H), 1.64 (s, 1H), 1.53 (s, 3H), 0.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.0 (d, J = 248.8 Hz), 160.3 (d, J = 3.2 Hz), 139.8, 135.7 (d, J = 2.8 Hz), 133.5 (d, J = 8.8 Hz), 129.5, 128.9, 126.7, 124.6 (d, J = 8.1 Hz), 118.9 (d, J = 23.3 Hz), 111.5 (d, J = 23.8 Hz), 70.5, 61.8, 47.1, 36.9, 32.0, 25.6, 21.8. ¹⁹F NMR (282 MHz, CDCl₃) δ -111.5 (td, J = 8.2, 4.3 Hz). HRMS (ESI) m/z calcd for C₂₀H₂₀FNO₂ [M+H]⁺: 326.1551, found: 326.1550. IR (neat): v_{max} 3027, 2970, 2930, 1715, 1621, 1601, 1483, 1456, 1373, 1270, 1243, 1204, 1135, 1091, 1049, 1003, 927, 877, 853, 813, 778, 750, 730, 702, 672, 559, 515 cm⁻¹

3-benzyl-6-fluoro-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 52.0 mg, 79% yield, dr = 5.0:1;

2h (major): $R_f = 0.68$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.88 (dd, J = 8.3, 5.1 Hz, 1H), 7.34 (dd, J = 8.0, 6.4 Hz, 2H), 7.30 – 7.14 (m, 5H), 4.35 (s, 1H), 4.03 – 3.85 (m, 2H), 2.99 (dd, J = 13.7, 2.4 Hz, 1H), 2.24 (tdd, J = 10.4, 5.2, 2.4 Hz, 1H), 2.09 (dd, J = 13.6, 11.2 Hz, 1H), 1.53 (s, 3H), 0.58 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.8 (d, J = 251.6 Hz), 159.8, 141.8 (d, J = 9.4 Hz), 139.3, 128.8 (d, J = 1.9 Hz), 127.4 (d, J = 2.4 Hz), 126.7, 126.3 (d, J = 9.7 Hz), 116.2 (d, J = 23.0 Hz), 110.9 (d, J = 24.6 Hz), 72.7, 65.6, 65.5, 47.0, 37.8, 31.6, 24.6, 13.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -106.5 (td, J = 8.7, 5.1 Hz). HRMS (ESI) m/z calcd for C₂₀H₂₀FNO₂ [M+H]⁺: 326.1551, found: 326.1552. IR (neat): v_{max} 3022, 2976, 2922, 2869, 1698, 1624, 1594, 1492, 1475, 1396, 1371, 1330, 1270, 1244, 1226, 1180, 1126, 1087, 1034, 1006, 971, 954, 921, 866, 841, 783, 765, 745, 731, 701, 680, 640, 585, 561, 540 cm⁻¹

2h (minor): $R_f = 0.69$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.89 (dd, J = 8.3, 5.1 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.26 – 7.11 (m, 5H), 4.68 (s, 1H), 4.15 (dt, J = 11.7, 1.8 Hz, 1H), 3.82 (dd, J = 11.8, 1.5 Hz, 1H), 3.15 – 2.97 (m, 2H), 1.66 – 1.58 (m, 1H), 1.52 (s, 3H), 0.69 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 164.9 (d, J = 251.7 Hz), 160.4, 142.5 (d, J = 9.5 Hz), 139.8, 129.5, 128.8, 127.3 (d, J = 2.5 Hz), 126.6, 126.4 (d, J = 9.7 Hz), 116.3 (d, J = 23.1 Hz), 110.7 (d, J = 24.5 Hz), 70.3, 61.8, 61.8, 47.1, 36.9, 32.0, 25.46, 21.8. ¹⁹F NMR (282 MHz, CDCl₃) δ -106.6 (td, J = 8.7, 5.1 Hz). HRMS (ESI) m/z calcd for C₂₀H₂₀FNO₂ [M+H]⁺: 326.1551, found: 326.1553. IR (neat): v_{max} 3027, 2971, 2932, 2886, 1707, 1624, 1597, 1493, 1476, 1455, 1373, 1357, 1326, 1272, 1242, 1206, 1180, 1125, 1086, 1068, 1048, 994, 961, 949, 912, 896, 870, 835, 772, 749, 729, 701, 688, 676, 666, 646, 622, 589, 558, 516 cm⁻¹

3-benzyl-8-chloro-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 52.0 mg, 76% yield, dr = 5.3:1;

2i (major): $R_f = 0.57$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.42 (q, J = 5.4 Hz, 3H), 7.32 (dd, J = 8.0, 6.4 Hz, 2H), 7.22 (d, J = 7.3 Hz, 1H), 7.19 – 7.10 (m, 2H), 4.29 (s, 1H), 3.90 (q, J = 5.5, 4.7 Hz, 2H), 2.96 (dd, J = 13.7, 2.4 Hz, 1H), 2.27 – 2.14 (m, 1H), 2.06 (dd, J = 13.6, 11.2 Hz, 1H), 1.51 (s, 3H), 0.54 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 158.8, 142.2, 139.3, 132.3, 132.1, 130.5, 128.9, 126.7, 121.7, 72.6, 64.8, 47.0, 37.9, 31.7, 24.8, 13.6. HRMS (ESI) m/z calcd for C₂₀H₂₀ClNO₂ [M+H]⁺: 342.1255, found: 342.1255. IR (neat): v_{max} 2970, 2932, 2874, 1711, 1604, 1578, 1494, 1461, 1373, 1327, 1267, 1197, 1166, 1136, 1062, 1031, 997, 938, 921, 840, 796, 776, 758, 727, 701, 682, 645, 587, 567, 524 cm⁻¹

2i (minor): $R_f = 0.58$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.49 – 7.40 (m, 2H), 7.32 (ddd, J = 7.5, 5.8, 1.1 Hz, 3H), 7.24 – 7.20 (m, 2H), 4.65 (s, 1H), 4.14 (dt, J = 11.8, 1.8 Hz, 1H), 3.82 (dd, J = 11.8, 1.6 Hz, 1H), 3.16 – 2.96 (m, 2H), 1.64 – 1.60 (m, 1H), 1.52 (s, 3H), 0.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.4, 142.9, 139.9, 132.5, 132.1, 130.4, 129.5, 128.8, 126.6, 121.5, 70.1, 61.05, 47.2, 36.9, 32.0, 25.7, 21.9. HRMS (ESI) m/z calcd for C₂₀H₂₀ClNO₂ [M+H]⁺: 342.1255, found: 342.1255. IR (neat): v_{max} 2971, 2933, 2884, 1714, 1605, 1578, 1493, 1461, 1390, 1373, 1265, 1201, 1049, 997, 947, 916, 900, 801, 777, 758, 733, 702, 677, 646, 569, 527, 508 cm⁻¹

3-benzyl-5-chloro-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 49.0 mg, 71% yield, dr = 10.5:1;

2j (major): $R_f = 0.38$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.78 (dd, J = 7.3, 1.1 Hz, 1H), 7.51 (dd, J = 8.0, 1.1 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.34 – 7.25 (m, 2H), 7.25 – 7.18 (m, 1H), 7.17 – 7.07 (m, 2H), 4.54 (s, 1H), 4.00 – 3.73 (m, 2H), 2.97 (dd, J = 13.9, 2.5 Hz, 1H), 2.30 – 2.18 (m, 1H), 1.99 (dd, J = 13.8, 11.1 Hz, 1H), 1.63 (s, 3H), 0.47 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 139.4, 138.5, 134.3, 133.0, 130.0, 129.3, 128.8, 128.8, 126.6, 122.6, 72.1, 66.0, 46.3, 40.5, 31.7, 26.9, 14.6. HRMS (ESI) m/z calcd for C₂₀H₂₀ClNO₂ [M+H]⁺: 342.1255, found: 342.1257. IR (neat): v_{max} 3025, 2970, 2930, 2875, 1714, 1604, 1574, 1494, 1461, 1395, 1374, 1328, 1258, 1185, 1156, 1129, 1030, 1002, 959, 939, 910, 831, 813, 748, 729, 701, 661, 646, 621, 595, 558, 539, 519 cm⁻¹

2j (minor): $R_f = 0.39$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.83 (dd, J = 7.4, 1.1 Hz, 1H), 7.54 (dd, J = 8.1, 1.1 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.26 – 7.20 (m, 3H), 4.90 (s, 1H), 4.17 (dt, J = 11.7, 1.9 Hz, 1H), 3.78 (dd, J = 11.7, 1.5 Hz, 1H), 3.21 – 3.04 (m, 2H), 1.63 (s, 3H), 1.60 – 1.54 (m, 1H), 0.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.8, 140.0, 139.1, 134.1, 133.0, 130.1, 129.5, 129.4, 128.8, 126.6, 122.8, 69.6, 62.6, 47.8, 39.4, 31.9, 29.2, 22.8. HRMS (ESI) m/z calcd for C₂₀H₂₀ClNO₂ [M+H]⁺: 342.1255, found: 342.1251. IR (neat): v_{max} 3025, 2972, 2931, 1719, 1606, 1575, 1494, 1461, 1394, 1373, 1324, 1260, 1178, 1128, 1092, 1053, 1009, 994, 962, 907, 827, 811, 777, 762, 730, 701, 626 cm⁻¹

3-benzyl-7-chloro-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 53.0 mg, 79% yield, dr = 4.9:1;

2k (major): $R_f = 0.73$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.70 (m, 1H), 7.57 – 7.40 (m, 2H), 7.28 (dq, J = 14.2, 7.3 Hz, 3H), 7.14 (d, J = 7.3 Hz, 2H), 4.32 (s, 1H), 4.02 – 3.81 (m, 2H), 3.06 – 2.86 (m, 1H), 2.29 – 2.14 (m, 1H), 2.13 – 2.00 (m, 1H), 1.51 (s, 3H), 0.53 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.3, 139.3, 137.7, 135.0, 133.2, 131.5, 128.9, 128.8, 126.8, 124.5, 124.4,

72.8, 65.6, 47.0, 37.9, 31.6, 24.8, 13.6. HRMS (ESI) m/z calcd for $C_{20}H_{20}CINO_2$ [M+H]⁺: 342.1255, found: 342.1259. IR (neat): v_{max} 3069, 2964, 2937, 1706, 1600, 1494, 1465, 1429, 1390, 1372, 1261, 1196, 1175, 1116, 1074, 1033, 1015, 975, 942, 914, 885, 867, 852, 832, 809, 774, 755, 715, 702, 610, 563, 542, 518 cm⁻¹

2k (minor): $R_f = 0.74$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 2.0 Hz, 1H), 7.52 (dd, J = 8.1, 2.0 Hz, 1H), 7.41 – 7.29 (m, 3H), 7.23 (dd, J = 7.7, 1.6 Hz, 3H), 4.68 (s, 1H), 4.16 (dt, J = 11.7, 1.9 Hz, 1H), 3.83 (dd, J = 11.8, 1.5 Hz, 1H), 3.16 – 2.98 (m, 2H), 1.65 – 1.59 (m, 1H), 1.53 (s, 3H), 0.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.0, 139.8, 138.4, 135.0, 133.1, 131.6, 129.5, 128.9, 126.7, 124.7, 124.2, 70.4, 61.8, 47.1, 36.9, 32.0, 25.6, 21.8. HRMS (ESI) m/z calcd for C₂₀H₂₀ClNO₂ [M+H]⁺: 342.1255, found: 342.1257. IR (neat): v_{max} 2967, 2926, 1712, 1465, 1426, 1391, 1372, 1263, 1199, 1181, 1116, 1049, 1005, 924, 897, 825, 812, 741, 719, 701, 654, 544, 511 cm⁻¹

3-benzyl-6-chloro-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 51.0 mg, 74% yield, dr = 5.9:1;

21 (major): $R_f = 0.71$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 8.1 Hz, 1H), 7.53 – 7.41 (m, 2H), 7.32 (dd, J = 8.0, 6.3 Hz, 2H), 7.23 (td, J = 5.1, 4.5, 2.4 Hz, 1H), 7.19 – 7.09 (m, 2H), 4.32 (s, 1H), 3.99 – 3.83 (m, 2H), 2.96 (dd, J = 13.6, 2.4 Hz, 1H), 2.21 (tdd, J = 10.3, 5.2, 2.4 Hz, 1H), 2.06 (dd, J = 13.7, 11.2 Hz, 1H), 1.51 (s, 3H), 0.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.7, 141.2, 139.3, 137.8, 129.9, 129.2, 128.9, 128.8, 126.8, 125.5, 123.6, 72.8, 65.5, 47.0, 37.9, 31.6, 24.8, 13.6. HRMS (ESI) m/z calcd for C₂₀H₂₀ClNO₂ [M+H]⁺: 342.1255, found: 342.1259. IR (neat): v_{max} 3019, 2971, 2921, 2868, 1698, 1611, 1579, 1492, 1455, 1422, 1392, 1370, 1258, 1201, 1107, 1072, 1035, 1004, 971, 930, 909, 838, 779, 758, 733, 714, 700, 676, 576, 532, 508 cm⁻¹

21 (minor): $R_f = 0.72$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.33 (dd, J = 8.2, 6.1 Hz, 2H), 7.26 – 7.18 (m, 3H), 4.68 (s, 1H), 4.16 (dt, J = 11.7, 1.8 Hz, 1H), 3.83 (dd, J = 11.7, 1.5 Hz, 1H), 3.15 – 2.98 (m, 2H), 1.65 – 1.60 (m, 1H), 1.54 (s, 3H), 0.70 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.3, 141.8, 139.8, 137.9, 129.8, 129.5, 129.2, 128.9, 126.7, 125.6, 123.4, 70.4, 61.8, 47.2, 36.9, 32.0, 25.6, 21.9. HRMS (ESI) m/z calcd for C₂₀H₂₀ClNO₂ [M+H]⁺: 342.1255, found: 342.1262. IR (neat): v_{max} 2969, 2925, 1712, 1612, 1581, 1493, 1459, 1423, 1374, 1268, 1204, 1095, 1069, 1049, 994, 950, 834, 781, 739, 701, 676, 642, 581, 540, 513 cm⁻¹

3-benzyl-8-bromo-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 59.0 mg, 77% yield, dr = 6.2:1;

2m (major): $R_f = 0.70$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.60 (d, J = 7.8 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.40 – 7.28 (m, 3H), 7.26 – 7.19 (m, 1H), 7.18 – 7.08 (m, 2H), 4.27 (s, 1H), 3.96 – 3.82 (m, 2H), 2.95 (dd, J = 13.6, 2.4 Hz, 1H), 2.21 (dddd, J = 11.6, 8.8, 6.0, 2.4 Hz, 1H), 2.05 (dd, J = 13.6, 11.2 Hz, 1H), 1.50 (s, 3H), 0.52 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 142.4, 139.3, 133.7, 132.2, 129.0, 128.8, 126.7, 122.3, 119.7, 72.5, 64.5, 47.0, 37.9, 31.6, 24.8, 13.6. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0751. IR (neat): v_{max} 3026, 2972, 2876, 1706, 1599, 1569, 1493, 1452, 1392, 1373, 1312, 1267, 1200, 1165, 1121, 1062, 1042, 990, 918, 863, 843, 796, 779, 757, 733, 712, 700, 681, 586, 561, 538, 523, 507 cm⁻¹

2m (minor): $R_f = 0.71$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.66 – 7.57 (m, 1H), 7.42 – 7.28 (m, 4H), 7.26 – 7.19 (m, 3H), 4.63 (s, 1H), 4.14 (dt, J = 11.7, 1.9 Hz, 1H), 3.82 (dd, J = 11.8, 1.5 Hz, 1H), 3.15 – 2.98 (m, 2H), 1.59 (d, J = 4.5 Hz, 1H), 1.52 (s, 3H), 0.66 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.7, 143.1, 139.9, 133.7, 132.2, 129.5, 129.0, 128.8, 126.6, 122.1, 119.9, 70.1, 60.9, 47.2, 36.9, 32.0, 25.7, 21.9. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0746. IR (neat): v_{max} 2970, 2931, 1714, 1601, 1571, 1493, 1458, 1372, 1266, 1200, 1050, 996, 949, 914, 796, 777, 756, 733, 716, 701, 676, 644, 563, 518 cm⁻¹

3-benzyl-5-bromo-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 61.0 mg, 79% yield, dr = 9.3:1;

2n (major): $R_f = 0.71$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, J = 7.4 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.33 (q, J = 7.6 Hz, 3H), 7.22 (d, J = 7.4 Hz, 1H), 7.14 (d, J = 7.3 Hz, 2H), 4.52 (s, 1H), 4.03 – 3.78 (m, 2H), 2.98 (dd, J = 13.8, 2.6 Hz, 1H), 2.26 (tt, J = 11.3, 3.5 Hz, 1H), 2.01 (dd, J = 13.8, 11.1 Hz, 1H), 1.69 (s, 3H), 0.47 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 141.2, 139.5, 136.3, 134.7, 130.3, 128.9, 128.9, 126.8, 123.3, 117.93, 72.09, 67.02, 46.39, 41.15, 31.75, 27.88, 14.76. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0750. IR (neat): v_{max} 2970, 2934, 1714, 1604, 1568, 1494, 1456, 1395, 1374, 1257, 1184, 1155, 1115, 1030, 998, 957, 934, 910, 828, 805, 748, 727, 700, 659, 593, 554, 518 cm⁻¹

2n (minor): $R_f = 0.72$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.88 (dd, J = 7.5, 1.0 Hz, 1H), 7.72 (dd, J = 8.0, 1.0 Hz, 1H), 7.40 – 7.30 (m, 3H), 7.26 – 7.21 (m, 3H), 4.86 (s, 1H), 4.18 (dt, J = 11.7, 1.8 Hz, 1H), 3.78 (dd, J = 11.8, 1.5 Hz, 1H), 3.21 – 3.05 (m, 2H), 1.68 (s, 3H), 1.59 – 1.52 (m, 1H), 0.63 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 162.2, 141.6, 140.0, 136.3, 134.4, 130.3, 129.5, 128.8, 126.6, 123.3, 117.8, 69.5, 63.5, 47.8, 39.8, 31.9, 30.1, 22.8. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0746. IR (neat): v_{max} 2972, 2930, 1715, 1604, 1569, 1493, 1455, 1422, 1393, 1372, 1321, 1259, 1175, 1115, 1093, 1052, 1007, 992, 957, 907, 825, 802, 774, 747, 727, 700, 646, 625, 519, 506 cm⁻¹

3-benzyl-7-bromo-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 61.0 mg, 78% yield, dr = 5.0:1;

20 (major): $R_f = 0.43$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 1.9 Hz, 1H), 7.66 (dd, J = 8.1, 1.9 Hz, 1H), 7.41 – 7.28 (m, 3H), 7.27 – 7.20 (m, 1H), 7.14 (dd, J = 6.9, 1.8 Hz, 2H), 4.30 (s, 1H), 3.99 – 3.84 (m, 2H), 2.96 (dd, J = 13.7, 2.4 Hz, 1H), 2.21 (tdd, J = 10.2, 5.2, 2.5 Hz, 1H), 2.06 (dd, J = 13.7, 11.2 Hz, 1H), 1.51 (s, 3H), 0.53 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 139.2, 138.2, 134.4, 133.4, 128.9, 128.8, 127.4, 126.7, 124.7, 122.8, 72.8, 65.6, 47.0, 37.8, 31.6, 24.8, 13.5. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0747. IR (neat): v_{max} 2966, 2929, 2874, 1706, 1601, 1494, 1459, 1421, 1392, 1371, 1262, 1195, 1171, 1114, 1031, 1002, 972, 935, 908, 865, 850, 809, 774, 753, 729, 703, 687, 667, 646, 604, 558, 538, 517 cm⁻¹

20 (minor): $R_f = 0.44$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 1.9 Hz, 1H), 7.67 (dd, J = 8.1, 1.9 Hz, 1H), 7.37 – 7.29 (m, 3H), 7.22 (dd, J = 7.7, 1.6 Hz, 3H), 4.66 (s, 1H), 4.16 (dt, J = 11.8, 1.8 Hz, 1H), 3.83 (dd, J = 11.8, 1.5 Hz, 1H), 3.14 – 2.98 (m, 2H), 1.63 – 1.58 (m, 1H), 1.52 (s, 3H), 0.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.8, 139.8, 138.9, 134.4, 133.3, 129.5, 128.9, 127.6, 126.7, 124.5, 122.8, 70.4, 61.9, 47.1, 36.9, 32.0, 25.6, 21.8. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0745. IR (neat): v_{max} 2967, 2925, 1708, 1606, 1494, 1459, 1420, 1391, 1372, 1263, 1197, 1181, 1167, 1113, 1093, 1048, 1005, 995, 960, 941, 922, 909, 895, 872, 810, 783, 734, 712, 701, 683, 643, 598, 568, 538, 511 cm⁻¹

3-benzyl-6-bromo-4,4-dimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 58.0 mg, 75% yield, dr = 5.2:1;

2p (major): $R_f = 0.33$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, J = 8.0 Hz, 1H), 7.68 – 7.57 (m, 2H), 7.32 (dd, J = 8.0, 6.4 Hz, 2H), 7.25 (d, J = 6.7 Hz, 1H), 7.19 – 7.08 (m, 2H), 4.32 (s, 1H), 3.98 – 3.83 (m, 2H), 2.97 (dd, J = 13.7, 2.4 Hz, 1H), 2.21 (tdd, J = 10.2, 5.2, 2.4 Hz, 1H), 2.06 (dd, J = 13.7, 11.2 Hz, 1H), 1.52 (s, 3H), 0.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.8, 141.4, 139.3, 132.1, 130.4, 128.9, 128.9, 126.8, 126.5, 126.2, 125.7, 72.8, 65.5, 47.0, 37.9, 31.6, 24.8, 13.6. HRMS (ESI) m/z calcd for C₂₀H₂₀BrNO₂ [M+H]⁺: 386.0750, found: 386.0747. IR (neat): v_{max} 2969, 2921, 1699, 1606, 1574, 1493, 1453, 1418, 1391, 1370, 1200, 1109, 1060, 1032, 1003, 969, 926, 908, 835, 778, 757, 731, 704, 675, 662, 567, 527 cm⁻¹

2p (minor): $R_f = 0.34$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, J = 8.0 Hz, 1H), 7.67 – 7.59 (m, 2H), 7.36 – 7.30 (m, 2H), 7.26 – 7.20 (m, 4H), 4.68 (s, 1H), 4.16 (dt, J = 11.7, 1.8 Hz, 1H), 3.83 (dd, J = 11.8, 1.5 Hz, 1H), 3.14 – 2.98 (m, 2H), 1.67 – 1.61 (m, 1H), 1.54 (s, 3H), 0.70 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.4, 142.0, 139.8, 132.1, 130.3, 129.5, 128.9, 126.7, 126.3,

126.2, 125.8, 70.4, 61.7, 47.1, 36.9, 32.0, 25.6, 21.9. HRMS (ESI) m/z calcd for $C_{20}H_{20}BrNO_2$ [M+H]⁺: 386.0750, found: 386.0746. IR (neat): v_{max} 2970, 2931, 1712, 1608, 1493, 1457, 1418, 1372, 1203, 1108, 1093, 1056, 994, 950, 923, 894, 833, 781, 736, 701, 674, 513 cm⁻¹

3-benzyl-4,4-dimethyl-9-oxo-3,4,4a,9-tetrahydro-2H-[1,2]oxazino[3,2-a]isoindole-7-carbonitrile

White solid; 28.0 mg, 42% yield, dr = 3.7:1;

2q (major): $R_f = 0.61$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, J = 8.0 Hz, 1H), 7.70 – 7.57 (m, 2H), 7.32 (dd, J = 8.0, 6.4 Hz, 2H), 7.25 (d, J = 6.7 Hz, 1H), 7.19 – 7.06 (m, 2H), 4.32 (s, 1H), 3.99 – 3.84 (m, 2H), 2.97 (dd, J = 13.7, 2.4 Hz, 1H), 2.21 (tdd, J = 10.2, 5.2, 2.4 Hz, 1H), 2.06 (dd, J = 13.6, 11.2 Hz, 1H), 1.52 (s, 3H), 0.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 158.4, 143.9, 139.0, 134.9, 132.9, 129.0, 128.8, 128.0, 126.9, 124.3, 117.9, 113.1, 72.9, 66.0, 47.0, 38.1, 31.6, 24.9, 13.7. HRMS (ESI) m/z calcd for C₂₁H₂₀N₂O₂ [M+H]⁺: 333.1598, found: 333.1596. IR (neat): v_{max} 2971, 2927, 2231, 1712, 1624, 1495, 1478, 1454, 1393, 1373, 1200, 1099, 1030, 1006, 966, 909, 868, 844, 816, 781, 762, 730, 701, 647, 616, 586, 570, 543, 527 cm⁻¹

2q (minor): $R_f = 0.62$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.19 (d, J = 1.5 Hz, 1H), 7.84 (dd, J = 7.9, 1.6 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.33 (td, J = 6.8, 1.2 Hz, 2H), 7.23 (dd, J = 8.2, 1.5 Hz, 3H), 4.77 (s, 1H), 4.17 (dd, J = 11.7, 2.0 Hz, 1H), 3.86 (dd, J = 11.8, 1.5 Hz, 1H), 3.16 – 2.98 (m, 2H), 1.68 – 1.62 (m, 1H), 1.56 (s, 3H), 0.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 144.6, 139.5, 134.9, 132.8, 129.5, 128.9, 128.2, 126.8, 124.1, 113.1, 70.5, 62.2, 47.1, 37.1, 32.0, 25.7, 21.8. HRMS (ESI) m/z calcd for C₂₁H₂₀N₂O₂ [M+H]⁺: 333.1598, found: 333.1604. IR (neat): v_{max} 2970, 2932, 2231, 1716, 1624, 1478, 1456, 1391, 1374, 1207, 1098, 1048, 1004, 973, 908, 843, 817, 727, 702, 664, 646, 605, 573 cm⁻¹

3-benzyl-4,4-dimethyl-9-oxo-3,4,4a,9-tetrahydro-2H-[1,2]oxazino[3,2-a]isoindole-6-carbonitrile

White solid; 28.0 mg, 40% yield, dr = 4.6:1;

2r (major): $R_f = 0.51$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.04 – 7.95 (m, 1H), 7.80 (d, J = 7.2 Hz, 2H), 7.34 (dd, J = 8.1, 6.4 Hz, 2H), 7.26 (s, 2H), 7.16 (dd, J = 6.8, 1.9 Hz, 2H), 4.41 (s, 1H), 3.94 (q, J = 5.4, 4.5 Hz, 2H), 2.99 (dd, J = 13.7, 2.5 Hz, 1H), 2.26 (tdd, J = 9.0, 7.5, 2.5 Hz, 1H), 2.08 (dd, J = 13.7, 11.2 Hz, 1H), 1.62 (s, 1H), 1.56 (s, 3H), 0.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 158.6, 140.2, 139.0, 135.7, 132.8, 129.0, 128.9, 126.9, 126.9, 125.2, 115.1, 73.0, 65.7, 47.0, 38.1, 31.6, 24.9, 13.6. HRMS (ESI) m/z calcd for C₂₁H₂₀N₂O₂ [M+H]⁺: 333.1598, found: 333.1596. IR (neat): v_{max} 2970, 2926, 2233, 1704, 1494, 1459, 1393, 1214, 1183, 1105, 1002, 916, 851, 760, 728, 700, 675, 587, 563, 526 cm⁻¹

2r (minor): $R_f = 0.52$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (dd, J = 7.8, 0.8 Hz, 1H), 7.81 (dd, J = 7.8, 1.3 Hz, 1H), 7.74 (dt, J = 1.5, 0.8 Hz, 1H), 7.38 – 7.31 (m, 2H), 7.29 – 7.26 (m, 1H), 7.23 (dd, J = 8.0, 1.4 Hz, 2H), 4.76 (s, 1H), 4.18 (dt, J = 11.7, 1.9 Hz, 1H), 3.87 (dd, J = 11.8, 1.5 Hz, 1H), 3.17 – 2.99 (m, 2H), 1.66 (dt, J = 12.1, 2.1 Hz, 1H), 1.59 (s, 3H), 0.69 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 140.8, 139.5, 135.5, 132.7, 129.5, 128.9, 126.8, 126.7, 125.2, 115.1, 70.6, 61.9, 47.1, 37.1, 32.0, 25.7, 21.8. HRMS (ESI) m/z calcd for C₂₁H₂₀N₂O₂ [M+H]⁺: 333.1598, found: 333.1598. IR (neat): v_{max} 2922, 2851, 2229, 1712, 1494, 1455, 1426, 1373, 1280, 1209, 1185, 1105, 1048, 994, 954, 912, 846, 784, 728, 702, 677, 647, 618, 564, 518 cm⁻¹

3-benzyl-2,4,4-trimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 60.0 mg, 92% yield, dr = 3.6:1.2:1;

2s (major): $R_f = 0.23$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 7.90 (dt, J = 7.5, 1.0 Hz, 1H), 7.56 – 7.46 (m, 3H), 7.35 – 7.29 (m, 2H), 7.26 – 7.19 (m, 3H), 4.39 (s, 1H), 4.14 (dq, J = 10.0, 6.2 Hz, 1H), 2.94 (dt, J = 15.6, 1.5 Hz, 1H), 2.19 (dd, J = 15.6, 7.8 Hz, 1H), 2.09 (ddd, J = 10.1, 7.8, 2.3 Hz, 1H), 1.49 (s, 3H), 1.16 (d, J = 6.2 Hz, 3H), 0.53 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.4, 141.6, 139.8, 131.3, 128.8, 128.7, 128.6, 126.3, 124.3, 123.2, 80.8, 65.8, 52.4, 38.6, 32.5, 25.3, 18.7, 14.4. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1801. IR (neat): v_{max} 2971, 2934, 1709, 1616, 1603, 1496, 1468, 1393, 1372, 1326, 1300, 1202, 1135, 1087, 1063, 991, 966, 946, 913, 781, 736, 700, 685, 564, 525 cm⁻¹

2s (minor 1): $R_f = 0.30$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (dt, J = 7.4, 1.0 Hz, 1H), 7.54 (td, J = 7.5, 1.3 Hz, 1H), 7.49 (td, J = 7.6, 1.1 Hz, 1H), 7.45 (dq, J = 7.5, 0.9 Hz, 1H), 7.33 (dd, J = 8.2, 6.9 Hz, 2H), 7.25 – 7.23 (m, 1H), 7.22 – 7.20 (m, 2H), 4.61 (s, 1H), 4.31 (qd, J = 7.0, 1.5 Hz, 1H), 3.14 (dd, J = 13.5, 3.7 Hz, 1H), 2.90 (dd, J = 13.5, 11.9 Hz, 1H), 1.63 (ddd, J = 11.9, 3.7, 1.5 Hz, 1H), 1.53 (s, 3H), 1.36 (d, J = 7.0 Hz, 3H), 0.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.1, 140.5, 140.2, 131.3, 129.5, 128.9, 128.5, 126.6, 124.2, 123.1, 78.7, 62.0, 51.0, 37.1, 35.0, 27.7, 25.1, 20.7. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1799. IR (neat): v_{max} 2975, 2935, 1704, 1618, 1494, 1467, 1453, 1394, 1382, 1203, 1152, 1117, 1089, 1029, 960, 937, 862, 791, 762, 736, 699, 678, 516 cm⁻¹

2s (minor 2): $R_f = 0.28$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 7.89 (dt, J = 7.5, 1.0 Hz, 1H), 7.55 – 7.52 (m, 2H), 7.50 – 7.47 (m, 1H), 7.35 – 7.31 (m, 2H), 7.26 – 7.23 (m, 1H), 7.21 (dd, J = 7.8, 1.3 Hz, 2H), 4.36 (s, 1H), 4.08 (qd, J = 6.9, 5.1 Hz, 1H), 3.04 (dd, J = 14.0, 3.4 Hz, 1H), 2.46 (ddd, J = 11.9, 5.1, 3.4 Hz, 1H), 2.33 (dd, J = 14.0, 11.9 Hz, 1H), 1.52 (s, 3H), 1.45 (d, J = 6.9 Hz, 3H), 0.64 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.6, 139.3, 131.6, 131.3, 128.9, 128.8, 128.6, 126.7, 124.2, 123.1, 79.3, 65.8, 50.0, 38.0, 31.8, 27.5, 17.6, 14.3. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1806. IR (neat): v_{max} 2972, 2939, 1712, 1616, 1494, 1469, 1386, 1198, 1086, 1048, 982, 950, 746, 698, 681 cm⁻¹

3-benzyl-3,4,4-trimethyl-2,3,4,4a-tetrahydro-9H-[1,2]oxazino[3,2-a]isoindol-9-one

White solid; 55.0 mg, 84% yield, dr = 3.8:1;

2t (major): $R_f = 0.33$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (dt, J = 7.5, 0.9 Hz, 1H), 7.55 (td, J = 7.5, 1.3 Hz, 1H), 7.49 (td, J = 7.5, 1.0 Hz, 1H), 7.46 (dd, J = 7.5, 1.0 Hz, 1H), 7.31 (dd, J = 8.1, 6.5 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.09 – 7.06 (m, 2H), 4.74 (s, 1H), 4.33 – 4.30 (m, 1H), 3.65 (d, J = 11.2 Hz, 1H), 2.70 (d, J = 13.4 Hz, 1H), 2.54 (d, J = 13.4 Hz, 1H), 1.42 (s, 3H), 1.21 (s, 3H), 0.67 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.9, 140.6, 136.8, 131.4, 130.8, 128.5, 128.3, 126.7, 124.3, 123.1, 78.1, 62.4, 40.4, 39.3, 38.5, 20.7, 17.6, 16.2. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1801. IR (neat): v_{max} 2975, 1710, 1617, 1495, 1468, 1383, 1299, 1205, 1120, 1088, 1001, 924, 787, 747, 697, 683, 652, 618, 599, 549 cm⁻¹

2t (minor): $R_f = 0.38$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (dt, J = 7.4, 1.0 Hz, 1H), 7.55 (td, J = 7.5, 1.3 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.33 – 7.28 (m, 4H), 7.26 – 7.23 (m, 1H), 4.95 (s, 1H), 3.81 (dd, J = 11.9, 1.5 Hz, 1H), 3.64 (d, J = 11.9 Hz, 1H), 3.48 (d, J = 12.9 Hz, 1H), 2.66 (dd, J = 12.9, 1.5 Hz, 1H), 1.43 (s, 3H), 0.72 (d, J = 0.8 Hz, 3H), 0.59 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.1, 140.8, 137.4, 131.6, 131.4, 128.5, 128.3, 126.7, 124.4, 123.1, 73.8, 62.0, 40.2, 39.9, 37.6, 20.5, 17.3, 14.7. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1801. IR (neat): v_{max} 2973, 2926, 1707, 1617, 1493, 1468, 1396, 1374, 1299, 1197, 1144, 1095, 996, 938, 911, 805, 762, 729, 708, 685, 645, 531, 511 cm⁻¹

2-(cinnamyloxy)-3-(2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propan-2-yl)isoindolin-1-one

White solid; $R_f = 0.79$ (2:1 petroleum ether/ethyl acetate); 17.2 mg, 19% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (dd, J = 15.8, 7.6 Hz, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.38 – 7.25 (m, 5H), 6.67 (d, J = 15.8 Hz, 1H), 6.43 (dt, J = 16.2, 7.0 Hz, 1H), 5.01 (s, 1H), 4.86 (dd, J = 11.2, 7.2 Hz, 1H), 4.76 (dd, J = 11.0, 6.8 Hz, 1H), 1.59 (d, J = 25.0 Hz, 8H), 1.35 (d, J = 9.2 Hz, 1H), 1.24 (d, J = 4.3 Hz, 6H), 1.19 (s, 3H), 1.15 (s, 3H), 0.93 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 141.9, 136.3, 136.2, 132.0, 128.7, 128.4, 128.3, 126.9, 125.5, 123.5, 122.9, 82.2, 75.8, 67.6, 59.9, 59.6, 41.2, 41.1, 35.5, 34.9, 24.2, 23.9, 22.3, 21.5, 17.3. HRMS (ESI) m/z calcd for C₂₉H₃₈N₂O₃ [M+H]⁺: 463.2955, found: 463.2960. IR (neat): v_{max} 2999, 2974, 2931, 2870, 1713, 1616, 1468, 1450, 1375, 1363, 1257, 1228, 1205, 1181, 1131, 1087, 962, 911, 877, 813, 785, 732, 687, 646, 570 cm⁻¹

4,4-dimethyl-3-(phenyl((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)-2,3,4,4a-tetrahydro-9H-

[1,2]oxazino[3,2-a]isoindol-9-one

White solid; $R_f = 0.71$ (2:1 petroleum ether/ethyl acetate); 30.0 mg, 33% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.93 – 7.86 (m, 1H), 7.46 (tt, J = 4.3, 2.0 Hz, 4H), 7.33 (td, J = 6.4, 5.0, 2.9 Hz, 4H), 4.97 – 4.75 (m, 2H), 4.46 (t, J = 11.7 Hz, 1H), 4.28 (s, 1H), 3.03 (ddd, J = 11.9, 8.1, 4.0 Hz, 1H), 1.53 – 1.09 (m, 12H), 0.91 (s, 3H), 0.84 (s, 3H), 0.63 (s, 3H), -0.01 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.6, 142.1, 139.4, 131.4, 131.2, 130.7, 128.5, 128.3, 127.7, 124.1, 123.2, 81.8, 71.9, 65.8, 61.0, 58.9, 49.3, 40.8, 40.1, 38.2, 35.3, 32.9, 26.2, 21.0, 20.8, 17.0, 14.9. HRMS (ESI) m/z calcd for C₂₉H₃₈N₂O₃ [M+H]⁺: 463.2955, found: 463.2953. IR (neat): v_{max} 2972, 2935, 2876, 1714, 1617, 1466, 1375, 1300, 1240, 1201, 1173, 1131, 1089, 1057, 1000, 954, 927, 878, 854, 789, 757, 730, 702, 686, 644, 603, 560, 527 cm⁻¹

3-(3-benzyl-4-hydroxy-2-methylbutan-2-yl)isoindolin-1-one

White solid; $R_f = 0.16$ (1:2 petroleum ether/ethyl acetate); 61.3 mg, 99% yield; ¹H NMR (300 MHz, CD₃OD) δ 7.82 – 7.75 (m, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.58 (td, J = 7.6, 1.4 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.30 – 7.11 (m, 5H), 4.98 (s, 1H), 3.78 – 3.65 (m, 2H), 2.87 (dd, J = 13.7, 3.4 Hz, 1H), 2.61 (dd, J = 13.7, 10.2 Hz, 1H), 2.02 (dq, J = 8.0, 3.8 Hz, 1H), 1.02 (s, 3H), 0.96 (s, 3H). ¹³C NMR (75 MHz, CD₃OD) δ 173.3, 147.6, 143.1, 134.2, 132.6, 130.3, 129.4, 129.2, 126.9, 126.3, 124.3, 65.4, 61.4, 50.2, 41.7, 34.3, 22.4, 21.6. HRMS (ESI) m/z calcd for C₂₀H₂₃NO₂ [M+H]⁺: 310.1802, found: 310.1802. IR (neat): v_{max} 3456, 3179, 3060, 2973, 2926, 2894, 1669, 1615, 1471, 1370, 1322, 1252, 1207, 1143, 1098, 1056, 1030, 991, 947, 915, 812, 759, 718, 698, 623, 601, 578, 536 cm⁻¹

3-benzyl-4,4-dimethyl-3,4,4a,9-tetrahydro-2H-[1,2]oxazino[3,2-a]isoindole

White solid; $R_f = 0.39$ (10:1 petroleum ether/ethyl acetate); 53.1 mg, 91% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.36 (q, J = 2.9, 2.2 Hz, 1H), 7.31 – 7.14 (m, 8H), 4.27 (d, J = 11.2 Hz, 1H), 3.87 (t, J = 11.4 Hz, 1H), 3.76 (dd, J = 11.2, 1.8 Hz, 1H), 3.67 (dd, J = 11.5, 4.9 Hz, 1H), 3.62 (d, J = 1.7 Hz, 1H), 2.97 (dd, J = 13.8, 2.6 Hz, 1H), 2.11 (dd, J = 13.7, 11.3 Hz, 1H), 1.84 (tdd, J = 11.3, 4.9, 2.6 Hz, 1H), 1.48 (s, 3H), 1.06 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 140.7, 138.7, 137.7, 128.9, 128.6, 127.3, 127.2, 126.2, 123.3, 123.3, 77.8, 71.1, 57.7, 48.5, 36.6, 32.0, 25.3, 15.0. HRMS (ESI) m/z calcd for C₂₀H₂₃NO [M+H]⁺: 294.1852, found: 294.1852. IR (neat): v_{max} 3025, 2961, 2901, 2804, 1602, 1493, 1460, 1390, 1368, 1177, 1051, 1035, 1000, 882, 769, 741, 700, 658, 608, 519 cm⁻¹
3-benzyl-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 53.0 mg, 83% yield, dr = 4.3:1;

4a (major): $R_f = 0.58$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.14 (dd, J = 7.8, 1.4 Hz, 1H), 7.43 (td, J = 7.4, 1.5 Hz, 1H), 7.35 – 7.26 (m, 3H), 7.24 – 7.08 (m, 4H), 4.06 – 3.94 (m, 2H), 3.84 – 3.76 (m, 1H), 3.55 (dd, J = 17.3, 8.6 Hz, 1H), 3.18 (dd, J = 17.3, 2.1 Hz, 1H), 2.87 – 2.76 (m, 1H), 2.10 – 1.98 (m, 2H), 1.18 (s, 3H), 0.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.4, 139.6, 136.2, 132.6, 128.8, 128.7, 128.1, 126.9, 126.8, 126.5, 71.3, 66.0, 48.0, 38.3, 32.5, 27.4, 23.6, 15.2. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1800. IR (neat): v_{max} 2966, 2953, 2934, 1664, 1601, 1581, 1493, 1459, 1413, 1399, 1365, 1342, 1295, 1272, 1243, 1213, 1199, 1181, 1154, 1092, 1053, 1037, 1018, 994, 925, 910, 796, 757, 737, 701, 672, 652, 584, 526 cm⁻¹

4a (minor): $R_f = 0.59$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.19 – 8.12 (m, 1H), 7.47 – 7.41 (m, 1H), 7.37 – 7.27 (m, 3H), 7.24 – 7.14 (m, 4H), 4.33 – 4.21 (m, 2H), 3.79 (dd, J = 12.2, 1.4 Hz, 1H), 3.35 (dd, J = 16.9, 7.4 Hz, 1H), 3.12 (dd, J = 16.9, 5.8 Hz, 1H), 3.03 – 2.90 (m, 2H), 1.57 – 1.50 (m, 1H), 1.21 (s, 3H), 1.02 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 162.8, 140.3, 136.1, 132.6, 129.6, 128.7, 128.5, 127.9, 127.1, 126.9, 126.4, 68.5, 62.0, 47.9, 36.5, 32.1, 27.7, 24.8, 23.4. HRMS (ESI) m/z calcd for C₂₁H₂₃NO₂ [M+H]⁺: 322.1802, found: 322.1799. IR (neat): v_{max} 3026, 2965, 2886, 1669, 1604, 1492, 1460, 1394, 1371, 1351, 1295, 1267, 1238, 1096, 1065, 1043, 999, 945, 792, 740, 705, 502 cm⁻¹

3-benzyl-4,4,6-trimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 49.0 mg, 73% yield, dr = 4.0:1;

4b (major): $R_f = 0.65$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (dd, J = 7.6, 1.5 Hz, 1H), 7.31 – 7.17 (m, 5H), 7.14 – 7.04 (m, 2H), 4.10 – 3.94 (m, 2H), 3.79 (dd, J = 12.1, 3.8 Hz, 1H), 3.22 (qd, J = 17.7, 5.4 Hz, 2H), 2.89 – 2.73 (m, 1H), 2.30 (s, 3H), 2.11 – 1.98 (m, 2H), 1.18 (s, 3H), 0.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.6, 139.6, 134.4, 134.0, 128.9, 128.7, 126.6, 126.5, 126.1, 71.1, 65.4, 48.0, 38.4, 32.6, 24.6, 23.8, 19.3, 15.2. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1952. IR (neat): v_{max} 3026, 2966, 2879, 1666, 1596, 1492, 1467, 1451, 1415, 1399, 1372, 1344, 1303, 1272, 1246, 1215, 1084, 1054, 1041, 1019, 993, 940, 910, 887, 818, 805, 744, 701, 664, 645, 626, 608, 575, 538, 523 cm⁻¹

4b (minor): $R_f = 0.66$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.04 (dd, J = 7.7, 1.5 Hz, 1H), 7.34 – 7.27 (m, 3H), 7.21 (dd, J = 8.0, 6.3 Hz, 4H), 4.35 – 4.21 (m, 2H), 3.78 (dd, J = 12.3, 1.5 Hz, 1H), 3.20 (dd, J = 17.3, 7.7 Hz, 1H), 3.08 – 2.90 (m, 3H), 2.30 (s, 3H), 1.54 (ddt, J = 11.1,

4.1, 1.8 Hz, 1H), 1.22 (s, 3H), 1.01 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.0, 140.4, 134.5, 134.4, 134.1, 129.6, 128.7, 127.9, 126.8, 126.4, 126.4, 68.4, 61.4, 47.9, 36.6, 32.2, 24.9, 24.7, 23.4, 19.3. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1957. IR (neat): v_{max} 3024, 2966, 2879, 1669, 1596, 1493, 1469, 1395, 1351, 1302, 1270, 1241, 1212, 1156, 1069, 1045, 1012, 965, 946, 917, 806, 744, 701, 642, 602, 559, 519 cm⁻¹

3-benzyl-4,4,7,8-tetramethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 47.0 mg, 67% yield, dr = 4.2:1;

4c (major): $R_f = 0.61$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.88 (s, 1H), 7.31 – 7.25 (m, 2H), 7.23 – 7.16 (m, 1H), 7.13 – 7.05 (m, 2H), 6.90 (s, 1H), 4.04 – 3.88 (m, 2H), 3.78 (dd, J = 12.1, 4.0 Hz, 1H), 3.45 (dd, J = 17.2, 8.6 Hz, 1H), 3.09 (dd, J = 17.2, 2.0 Hz, 1H), 2.86 – 2.73 (m, 1H), 2.26 (s, 6H), 2.07 – 1.95 (m, 2H), 1.15 (s, 3H), 0.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.9, 141.9, 139.6, 135.3, 133.5, 128.9, 128.8, 128.6, 128.0, 126.4, 71.2, 66.1, 48.0, 38.2, 32.5, 26.9, 23.6, 12.0, 19.3, 15.2. HRMS (ESI) m/z calcd for C₂₃H₂₇NO₂ [M+H]⁺: 350.2115, found: 350.2114. IR (neat): v_{max} 3024, 2967, 2938, 1664, 1615, 1495, 1453, 1420, 1392, 1371, 1324, 1273, 1227, 1178, 1080, 1050, 1022, 984, 910, 873, 824, 809, 753, 729, 700, 661, 644, 617, 585, 561, 544, 515 cm⁻¹

4c (minor): $R_f = 0.64$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.90 (s, 1H), 7.32 – 7.26 (m, 2H), 7.20 (td, J = 7.0, 1.3 Hz, 3H), 6.91 (s, 1H), 4.29 – 4.19 (m, 2H), 3.77 (dd, J = 12.3, 1.5 Hz, 1H), 3.28 (dd, J = 16.8, 7.5 Hz, 1H), 3.07 – 2.88 (m, 3H), 2.30 – 2.23 (m, 6H), 1.56 – 1.47 (m, 1H), 1.19 (s, 3H), 1.01 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.2, 141.9, 140.4, 135.5, 133.5, 129.6, 129.2, 128.6, 128.1, 126.3, 68.4, 62.2, 47.9, 36.5, 32.1, 27.1, 24.8, 23.4, 20.0, 19.4. HRMS (ESI) m/z calcd for C₂₃H₂₇NO₂ [M+H]⁺: 350.2115, found: 350.2114. IR (neat): v_{max} 3025, 2967, 2884, 1667, 1615, 1495, 1454, 1419, 1390, 1351, 1275, 1251, 1223, 1066, 1022, 993, 955, 937, 911, 808, 730, 701, 644, 615, 562, 519 cm⁻¹

3-benzyl-9-methoxy-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 49.0 mg, 64% yield, dr = 4.9:1;

4d (major): $R_f = 0.13$ (1:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.36 (t, J = 8.0 Hz, 1H), 7.29 (d, J = 6.8 Hz, 2H), 7.19 (t, J = 7.1 Hz, 1H), 7.12 – 7.02 (m, 2H), 6.85 (d, J = 8.4 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 4.02 (td, J = 10.1, 8.8, 3.3 Hz, 1H), 3.96 – 3.86 (m, 4H), 3.80 – 3.72 (m, 1H), 3.53 (dd, J = 17.1, 8.6 Hz, 1H), 3.12 (dd, J = 17.2, 1.8 Hz, 1H), 2.85 – 2.73 (m, 1H), 2.07 – 1.95 (m, 2H), 1.15 (s, 3H), 0.70 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 139.7, 139.5, 133.6, 128.9, 128.7, 126.5, 119.4, 110.9, 71.1, 65.4, 56.4, 48.0, 38.1, 32.6, 28.3, 23.6, 15.5. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₃

 $[M+H]^+$: 352.1907, found: 352.1906. IR (neat): v_{max} 3024, 2965, 2932, 1667, 1595, 1493, 1471, 1455, 1437, 1394, 1370, 1273, 1225, 1100, 1078, 1051, 988, 954, 914, 891, 860, 828, 785, 755, 731, 700, 667, 644, 628, 547, 514 cm⁻¹

4d (minor): $R_f = 0.14$ (1:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.36 (t, J = 8.0 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.24 – 7.14 (m, 3H), 6.86 (d, J = 8.5 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 4.28 – 4.15 (m, 2H), 3.92 (s, 3H), 3.74 (dd, J = 12.3, 1.5 Hz, 1H), 3.36 (dd, J = 16.8, 7.5 Hz, 1H), 3.12 – 2.88 (m, 3H), 1.55 – 1.45 (m, 1H), 1.18 (s, 3H), 0.99 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.9, 161.0, 140.5, 139.4, 133.5, 129.6, 128.6, 126.3, 119.4, 116.0, 110.9, 68.4, 61.4, 56.4, 47.8, 36.4, 32.3, 28.5, 24.6, 23.5. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₃ [M+H]⁺: 352.1907, found: 352.1914. IR (neat): v_{max} 3024, 2962, 2885, 1674, 1595, 1472, 1390, 1275, 1223, 1094, 1001, 956, 929, 783, 753, 732, 701 cm⁻¹

3-benzyl-7,8-dimethoxy-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 69.0 mg, 69% yield, dr = 3.4:1;

4e (major): $R_f = 0.40$ (1:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.60 (s, 1H), 7.31 – 7.25 (m, 2H), 7.22 – 7.17 (m, 1H), 7.12 – 7.06 (m, 2H), 6.58 (s, 1H), 4.06 – 3.88 (m, 9H), 3.78 (dd, J = 12.1, 3.8 Hz, 1H), 3.47 (dd, J = 17.1, 8.6 Hz, 1H), 3.08 (dd, J = 17.2, 2.3 Hz, 1H), 2.86 – 2.76 (m, 1H), 2.08 – 1.98 (m, 2H), 1.17 (s, 3H), 0.71 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.9, 152.5, 147.9, 139.6, 129.8, 128.9, 128.7, 126.5, 110.1, 109.0, 71.1, 66.2, 56.2, 56.2, 48.0, 38.1, 32.6, 27.2, 23.7, 15.3. HRMS (ESI) m/z calcd for C₂₃H₂₇NO4 [M+H]⁺: 382.2013, found: 382.2001. IR (neat): v_{max} 2965, 2937, 1659, 1602, 1511, 1454, 1423, 1391, 1364, 1274, 1237, 1209, 1166, 1092, 1053, 1037, 1010, 985, 913, 882, 783, 755, 728, 700, 671, 645, 623 cm⁻¹

4e (minor): $R_f = 0.41$ (1:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 7.62 (s, 1H), 7.30 (d, J = 7.4 Hz, 2H), 7.19 (d, J = 7.6 Hz, 3H), 6.59 (s, 1H), 4.23 (d, J = 9.9 Hz, 2H), 3.93 (d, J = 2.4 Hz, 6H), 3.78 (d, J = 12.2 Hz, 1H), 3.27 (dd, J = 16.8, 7.3 Hz, 1H), 3.08 – 2.90 (m, 3H), 1.53 (d, J = 11.9 Hz, 1H), 1.20 (s, 3H), 1.05 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.3, 152.6, 148.1, 140.4, 129.9, 129.6, 128.7, 126.4, 120.5, 110.5, 109.1, 68.3, 62.4, 56.3, 56.2, 47.9, 36.3, 32.1, 27.4, 24.8, 23.5. HRMS (ESI) m/z calcd for C₂₃H₂₇NO₄ [M+H]⁺: 382.2013, found: 382.2009. IR (neat): v_{max} 3024, 2967, 2937, 2875, 1659, 1601, 1513, 1464, 1428, 1396, 1365, 1280, 1243, 1222, 1209, 1169, 1097, 1010, 976, 912, 883, 852, 817, 787, 763, 731, 701, 669, 647, 621, 593, 528 cm⁻¹

3-benzyl-9-fluoro-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

4f (minor)

White solid; 49.0 mg, 72% yield, dr = 4.5:1;

4f (major): $R_f = 0.33$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.38 (td, J = 8.0, 4.9 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.23 – 7.17 (m, 1H), 7.11 – 7.06 (m, 2H), 7.03 – 6.93 (m, 2H), 4.04 – 3.90 (m, 2H), 3.81 – 3.74 (m, 1H), 3.58 – 3.48 (m, 1H), 3.18 (dd, J = 17.4, 2.0 Hz, 1H), 2.79 (t, J = 10.0 Hz, 1H), 2.08 – 1.98 (m, 2H), 1.16 (s, 3H), 0.71 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 162.6 (d, J = 264.6 Hz), 158.8 (d, J = 4.4 Hz), 139.4 (d, J = 17.9 Hz), 133.9 (d, J = 10.2 Hz), 128.8, 128.7, 126.5, 122.8 (d, J = 4.1 Hz), 116.0 (d, J = 6.8 Hz), 115.8 (d, J = 11.8 Hz), 71.3, 65.6, 48.0, 38.2, 32.5, 27.8, 23.6, 15.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -110.1 (dd, J = 11.4, 4.8 Hz). HRMS (ESI) m/z calcd for C₂₁H₂₂FNO₂ [M+H]⁺: 340.1707, found: 340.1706. IR (neat): v_{max} 2979, 2963, 2952, 2934, 1671, 1610, 1492, 1465, 1411, 1398, 1370, 1342, 1307, 1256, 1201, 1180, 1162, 1037, 1008, 984, 901, 831, 796, 774, 752, 733, 699, 689, 660, 619, 575, 549, 513 cm⁻¹</sup>

4f (minor): $R_f = 0.34$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.39 (td, J = 8.0, 4.8 Hz, 1H), 7.29 (dd, J = 7.8, 6.3 Hz, 2H), 7.24 – 7.16 (m, 3H), 7.05 – 6.93 (m, 2H), 4.28 – 4.20 (m, 2H), 3.77 (dd, J = 12.3, 1.5 Hz, 1H), 3.36 (dd, J = 17.0, 7.4 Hz, 1H), 3.11 (dd, J = 17.0, 5.3 Hz, 1H), 2.94 (d, J = 9.8 Hz, 2H), 1.58 – 1.50 (m, 1H), 1.20 (s, 3H), 1.02 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 162.7 (d, J = 264.9 Hz), 160.1 (d, J = 4.5 Hz), 140.2, 139.1, 133.9 (d, J = 10.2 Hz), 129.6, 128.7, 126.4, 122.9 (d, J = 4.0 Hz), 116.1 (d, J = 4.6 Hz), 116.0 (d, J = 14.1 Hz), 77.4, 68.6, 61.6, 47.7, 36.4, 32.2, 28.0, 24.6, 23.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -109.9 (dd, J = 11.4, 4.8 Hz). HRMS (ESI) m/z calcd for C₂₁H₂₂FNO₂ [M+H]⁺: 340.1707, found: 340.1706. IR (neat): v_{max} 3025, 2966, 2881, 1672, 1612, 1582, 1493, 1468, 1426, 1392, 1371, 1351, 1305, 1284, 1259, 1231, 1165, 1129, 1095, 1075, 1059, 1033, 1020, 986, 953, 932, 889, 846, 829, 805, 785, 753, 731, 701, 679, 645, 624, 595, 576, 557, 540, 521 cm⁻¹

3-benzyl-7,8-difluoro-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 50.0 mg, 69% yield, dr = 3.4:1;

4g (major): $R_f = 0.51$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.95 (dd, J = 10.6, 8.1 Hz, 1H), 7.27 (d, J = 7.2 Hz, 2H), 7.24 – 7.17 (m, 1H), 7.09 (d, J = 7.3 Hz, 2H), 6.96 (dd, J = 10.1, 7.1 Hz, 1H), 4.03 – 3.90 (m, 2H), 3.79 (dd, J = 12.2, 3.5 Hz, 1H), 3.48 (dd, J = 17.5, 8.6 Hz, 1H), 3.12 (d, J = 17.4 Hz, 1H), 2.80 (t, J = 9.9 Hz, 1H), 2.10 – 1.98 (m, 2H), 1.17 (s, 3H), 0.69 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.6, 154.6 (d, J = 13.4 Hz), 151.2 (dd, J = 13.0, 5.8 Hz), 147.9 (d, J = 12.7 Hz), 139.4, 133.4 (dd, J = 7.0, 4.0 Hz), 128.8 (d, J = 6.4 Hz), 126.6, 125.0 (dd, J = 5.6, 3.4 Hz), 117.5 (dd, J = 19.1, 1.8 Hz), 115.8 (d, J = 18.2 Hz), 71.4, 65.9, 47.9, 38.3, 32.5, 26.7, 23.6, 15.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -131.1 (dt, J = 21.3, 9.1 Hz), -138.6 – -139.8 (m). HRMS (ESI) m/z calcd for C₂₁H₂₁F₂NO₂ [M+H]⁺: 358.1613, found: 358.1613. IR (neat): v_{max} 2964, 2937, 1659, 1620, 1602, 1511, 1492, 1465, 1444, 1406, 1369, 1317, 1297, 1268, 1218, 1175, 1153, 1081, 1051, 1037, 982, 921, 893, 786, 754, 731, 698, 670, 628, 604, 525 cm⁻¹

4g (minor): $R_f = 0.52$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.97 (dd, J = 10.7, 8.1 Hz, 1H), 7.30 (ddd, J = 7.6, 6.2, 1.5 Hz, 2H), 7.24 – 7.16 (m, 3H), 6.97 (dd, J = 10.1, 7.1 Hz,

1H), 4.31 – 4.18 (m, 2H), 3.78 (dd, J = 12.2, 1.5 Hz, 1H), 3.29 (dd, J = 17.1, 7.4 Hz, 1H), 3.06 (dd, J = 17.0, 5.8 Hz, 1H), 2.95 (d, J = 9.2 Hz, 2H), 1.55 (t, J = 8.0 Hz, 1H), 1.21 (s, 3H), 1.03 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 153.8 (d, J = 13.4 Hz), 152.1 (d, J = 13.5 Hz), 150.5 (d, J = 12.8 Hz), 148.8 (d, J = 12.7 Hz), 140.1, 133.3 (dd, J = 7.1, 3.9 Hz), 129.6, 128.7, 126.5, 125.0 (dd, J = 5.5, 3.4 Hz), 117.8 (d, J = 18.5 Hz), 115.9 (d, J = 18.0 Hz), 68.6, 62.0, 47.7, 36.5, 32.1, 27.0, 24.7, 23.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -131.0 (dt, J = 21.4, 9.0 Hz), -139.0 (ddd, J = 21.4, 10.6, 7.3 Hz). HRMS (ESI) m/z calcd for C₂₁H₂₁F₂NO₂ [M+H]⁺: 358.1613, found: 358.1616. IR (neat): v_{max} 3025, 2966, 2881, 1672, 1612, 1582, 1493, 1468, 1426, 1392, 1371, 1351, 1305, 1284, 1259, 1231, 1165, 1129, 1095, 1075, 1059, 1033, 1020, 986, 953, 932, 889, 846, 829, 805, 785, 753, 731, 701, 679, 645, 624, 595, 576, 557, 540, 521 cm⁻¹

3-benzyl-6-fluoro-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 47.0 mg, 69% yield, dr = 3.9:1;

4h (major): $R_f = 0.70$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.94 (dd, J = 7.8, 1.2 Hz, 1H), 7.33 – 7.24 (m, 3H), 7.18 (q, J = 9.3, 8.3 Hz, 2H), 7.12 – 7.05 (m, 2H), 4.00 (td, J = 10.4, 9.0, 4.5 Hz, 2H), 3.80 (dd, J = 12.1, 3.7 Hz, 1H), 3.39 – 3.25 (m, 2H), 2.87 – 2.76 (m, 1H), 2.11 – 1.98 (m, 2H), 1.19 (s, 3H), 0.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.4, 158.7 (d, J = 231.6 Hz), 157.2, 139.4, 129.9, 128.8 (d, J = 9.0 Hz), 128.0 (d, J = 8.0 Hz), 126.5, 123.7, 123.2 (d, J = 17.9 Hz), 119.0 (d, J = 21.5 Hz), 71.3, 65.4, 48.0, 38.4, 32.6, 23.5, 20.2, 14.9. ¹⁹F NMR (282 MHz, CDCl₃) δ - 119.6 (dd, J = 9.2, 5.2 Hz). HRMS (ESI) m/z calcd for C₂₁H₂₂FNO₂ [M+H]⁺: 340.1707, found: 340.1702. IR (neat): v_{max} 3026, 2967, 2929, 2876, 1671, 1616, 1585, 1494, 1472, 1453, 1429, 1400, 1372, 1339, 1306, 1269, 1248, 1217, 1153, 1054, 1037, 1006, 956, 911, 890, 819, 804, 744, 700, 662, 645, 627, 606, 579, 552, 523, 505 cm⁻¹

4h (minor): $R_f = 0.71$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 7.96 (dd, J = 7.8, 1.1 Hz, 1H), 7.30 (td, J = 7.8, 3.2 Hz, 3H), 7.22 – 7.17 (m, 4H), 4.33 (dd, J = 7.8, 5.4 Hz, 1H), 4.24 (ddd, J = 12.2, 2.5, 1.3 Hz, 1H), 3.79 (dd, J = 12.3, 1.5 Hz, 1H), 3.29 (dd, J = 17.5, 7.8 Hz, 1H), 3.17 (dd, J = 17.5, 5.4 Hz, 1H), 2.98 – 2.93 (m, 2H), 1.58 – 1.54 (m, 1H), 1.23 (s, 3H), 1.03 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.6 (d, J = 3.4 Hz), 158.9 (d, J = 245.6 Hz), 140.2, 129.9 (d, J = 3.8 Hz), 129.6, 128.7, 128.1 (d, J = 8.2 Hz), 126.4, 124.1 (d, J = 3.4 Hz), 123.1 (d, J = 17.9 Hz), 119.0 (d, J = 21.4 Hz), 68.6, 61.4, 47.8, 36.6, 32.1, 24.6, 23.1, 20.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -120.0 (dd, J = 9.1, 5.3 Hz). HRMS (ESI) m/z calcd for C₂₁H₂₂FNO₂ [M+H]⁺: 340.1707, found: 340.1703. IR (neat): v_{max} 3026, 2967, 2884, 1675, 1615, 1586, 1493, 1473, 1455, 1431, 1395, 1372, 1352, 1304, 1270, 1247, 1215, 1152, 1095, 1066, 1044, 1006, 985, 949, 926, 878, 834, 805, 746, 721, 701, 665, 643, 603, 583, 528, 506 cm⁻¹

3-benzyl-8-chloro-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 49.0 mg, 68% yield, dr = 3.8:1;

4i (major): $R_f = 0.57$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.12 (d, J = 2.4 Hz, 1H), 7.43 – 7.34 (m, 1H), 7.29 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H), 7.15 – 7.03 (m, 3H), 3.98 (dd, J = 13.8, 9.3 Hz, 2H), 3.79 (dd, J = 12.1, 3.4 Hz, 1H), 3.49 (dd, J = 17.4, 8.7 Hz, 1H), 3.15 (d, J = 17.4 Hz, 1H), 2.81 (d, J = 10.1 Hz, 1H), 2.11 – 1.95 (m, 2H), 1.17 (s, 3H), 0.66 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.1, 139.4, 134.4, 133.1, 132.5, 128.8, 128.7, 128.4, 128.0, 126.6, 71.5, 65.8, 47.9, 38.4, 32.5, 26.8, 23.6, 15.2. HRMS (ESI) m/z calcd for C₂₁H₂₂ClNO₂ [M+H]⁺: 356.1412, found: 356.1413. IR (neat): v_{max} 3026, 2968, 2934, 1671, 1600, 1576, 1480, 1452, 1428, 1394, 1371, 1336, 1296, 1271, 1237, 1181, 1154, 1112, 1079, 1052, 1037, 1000, 984, 940, 909, 872, 812, 768, 752, 730, 700, 676, 652, 640, 575, 536, 520 cm⁻¹

4i (minor): $R_f = 0.59$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.13 (d, J = 2.3 Hz, 1H), 7.38 (dd, J = 8.2, 2.1 Hz, 1H), 7.33 – 7.24 (m, 2H), 7.23 – 7.14 (m, 3H), 7.10 (d, J = 8.1 Hz, 1H), 4.32 – 4.18 (m, 2H), 3.78 (d, J = 12.2 Hz, 1H), 3.31 (dd, J = 17.1, 7.5 Hz, 1H), 3.08 (dd, J = 17.1, 5.5 Hz, 1H), 3.01 – 2.90 (m, 2H), 1.54 (t, J = 7.8 Hz, 1H), 1.20 (s, 3H), 1.00 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.4, 140.1, 134.3, 133.2, 132.5, 129.6, 129.4, 128.7, 128.5, 128.3, 126.4, 68.6, 61.8, 47.7, 36.5, 32.1, 27.0, 24.7, 23.4. HRMS (ESI) m/z calcd for C₂₁H₂₂ClNO₂ [M+H]⁺: 356.1412, found: 356.1410. IR (neat): v_{max} 3026, 2967, 2881, 1667, 1599, 1577, 1479, 1454, 1426, 1391, 1371, 1352, 1296, 1267, 1230, 1172, 1113, 1096, 1063, 1040, 1012, 1002, 963, 948, 906, 869, 817, 765, 725, 701, 684, 643, 612, 580, 553, 519 cm⁻¹

3-benzyl-6-chloro-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 50.0 mg, 69% yield, dr = 3.7:1;

4j (major): $R_f = 0.48$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.33 – 7.16 (m, 4H), 7.09 (d, J = 7.4 Hz, 2H), 4.00 (t, J = 10.1 Hz, 2H), 3.80 (dd, J = 11.9, 3.5 Hz, 1H), 3.50 – 3.27 (m, 2H), 2.82 (d, J = 10.8 Hz, 1H), 2.12 – 1.97 (m, 2H), 1.20 (s, 3H), 0.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.1, 139.4, 133.8, 133.0, 132.2, 129.6, 128.8, 128.7, 127.9, 126.8, 126.5, 71.3, 65.1, 47.9, 38.5, 32.6, 24.9, 23.6, 15.0. HRMS (ESI) m/z calcd for C₂₁H₂₂ClNO₂ [M+H]⁺: 356.1412, found: 356.1403. IR (neat): v_{max} 3026, 2967, 2937, 2875, 1671, 1593, 1572, 1494, 1453, 1402, 1372, 1338, 1299, 1266, 1245, 1222, 1177, 1146, 1121, 1053, 1038, 995, 929, 912, 870, 804, 784, 743, 731, 700, 661, 646, 619, 596, 565, 539, 507 cm⁻¹

4j (minor): $R_f = 0.49$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, J = 7.8 Hz, 1H), 7.50 (dd, J = 8.1, 1.7 Hz, 1H), 7.34 – 7.25 (m, 3H), 7.24 – 7.16 (m, 3H), 4.34 (dd, J = 7.6, 5.6

Hz, 1H), 4.23 (d, J = 12.3 Hz, 1H), 3.83 – 3.75 (m, 1H), 3.39 – 3.20 (m, 2H), 2.97 (d, J = 7.2 Hz, 2H), 1.56 (t, J = 7.9 Hz, 1H), 1.24 (s, 3H), 1.00 (d, J = 2.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.4, 140.2, 133.8, 133.1, 132.3, 129.6, 129.6, 128.7, 128.0, 127.1, 126.4, 68.6, 61.1, 47.7, 36.7, 32.1, 25.0, 24.7, 23.2. HRMS (ESI) m/z calcd for C₂₁H₂₂ClNO₂ [M+H]⁺: 356.1412, found: 356.1403. IR (neat): v_{max} 3026, 2966, 2882, 1674, 1594, 1572, 1493, 1453, 1395, 1371, 1352, 1299, 1266, 1238, 1167, 1119, 1066, 1045, 999, 960, 946, 914, 806, 789, 744, 728, 701 cm⁻¹

3-benzyl-8-bromo-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 53.0 mg, 67% yield, dr = 4.2:1;

4k (major): $R_f = 0.68$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.28 (d, J = 2.2 Hz, 1H), 7.54 (dd, J = 8.1, 2.2 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.24 – 7.18 (m, 1H), 7.12 – 7.01 (m, 3H), 3.99 (ddd, J = 13.2, 8.8, 2.2 Hz, 2H), 3.80 (dd, J = 12.1, 3.9 Hz, 1H), 3.52 – 3.41 (m, 1H), 3.14 (dd, J = 17.5, 2.0 Hz, 1H), 2.80 (dd, J = 10.9, 8.6 Hz, 1H), 2.10 – 1.98 (m, 2H), 1.17 (s, 3H), 0.67 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.0, 139.4, 135.5, 135.0, 131.0, 129.6, 128.9, 128.8, 128.7, 126.6, 120.9, 71.5, 65.8, 48.0, 38.4, 32.6, 27.0, 23.6, 15.3. HRMS (ESI) m/z calcd for C₂₁H₂₂BrNO₂ [M+H]⁺: 400.0907, found: 400.0900. IR (neat): v_{max} 3026, 2968, 2935, 1669, 1594, 1574, 1495, 1475, 1453, 1427, 1395, 1372, 1336, 1295, 1270, 1236, 1181, 1106, 1052, 1037, 999, 984, 937, 909, 868, 811, 751, 731, 702, 674, 651, 615, 573, 533, 513 cm⁻¹

4k (minor): $R_f = 0.69$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.29 (d, J = 2.1 Hz, 1H), 7.54 (dd, J = 8.1, 2.2 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.24 – 7.15 (m, 3H), 7.04 (d, J = 8.1 Hz, 1H), 4.29 (dd, J = 7.6, 5.5 Hz, 1H), 4.26 – 4.18 (m, 1H), 3.78 (dd, J = 12.3, 1.5 Hz, 1H), 3.30 (dd, J = 17.1, 7.6 Hz, 1H), 3.06 (dd, J = 17.1, 5.5 Hz, 1H), 3.00 – 2.88 (m, 2H), 1.55 (t, J = 8.0 Hz, 1H), 1.20 (s, 3H), 1.01 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 140.2, 135.5, 134.9, 131.3, 129.6, 129.6, 128.7, 128.7, 126.5, 68.7, 61.8, 47.7, 36.6, 32.1, 27.1, 24.7, 23.4. HRMS (ESI) m/z calcd for C₂₁H₂₂BrNO₂ [M+H]⁺: 400.0907, found: 400.0892. IR (neat): v_{max} 3025, 2966, 2880, 2239, 1666, 1594, 1574, 1493, 1477, 1454, 1424, 1391, 1371, 1352, 1295, 1268, 1230, 1172, 1107, 1065, 1040, 1012, 1001, 958, 908, 865, 814, 763, 727, 701, 681, 645, 612, 576, 550, 512 cm⁻¹

3-benzyl-6-bromo-4,4-dimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 55.0 mg, 69% yield, dr = 4.1:1;

4l (major): R_f = 0.58 (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.13 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.20 (t, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 7.3 Hz, 2H), 4.00 (dt, *J* = 9.6, 6.4 Hz, 2H), 3.79 (dd, *J* = 11.9, 3.6 Hz, 1H), 3.50 – 3.38 (m, 1H), 3.32 (dd, *J* = 11.9, 3.6 Hz, 1H), 3.50 – 3.38 (m, 1H), 3.32 (dd, *J* = 11.9, 3.6 Hz, 1H), 3.50 – 3.50 (m, 1H), 3.50 (dd, *J* = 11.9, 3.6 Hz, 1H), 3.50 – 3.50 (m, 1H), 3.50 (dd, *J* = 11.9, 3.6 Hz, 1H), 3.50 – 3.50 (m, 1H), 3.50 (dd, *J* = 11.9, 3.6 Hz, 1H), 3.50 (dd, *J* = 11.9, 3.6 Hz, 1H), 3.50 (dd, *J* = 11.9, 3.6 Hz, 1H), 3.50 (dd, *J* = 11.9, 3.50 (dd, *J* = 11.9, 3.50 (dd, *J* = 11.9), 3.50 (dd, J = 11.9), 3.

18.1, 8.5 Hz, 1H), 2.82 (d, J = 10.9 Hz, 1H), 2.11 – 1.97 (m, 2H), 1.20 (s, 3H), 0.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.0, 139.4, 136.3, 135.5, 129.7, 128.8, 128.7, 128.2, 127.5, 126.5, 122.6, 71.3, 65.1, 47.8, 38.5, 32.6, 27.8, 23.7, 15.1. HRMS (ESI) m/z calcd for C₂₁H₂₂BrNO₂ [M+H]⁺: 400.0907, found: 400.0900. IR (neat): v_{max} 2967, 2937, 2875, 1667, 1592, 1566, 1494, 1450, 1399, 1372, 1337, 1298, 1264, 1244, 1222, 1175, 1109, 1053, 1038, 992, 909, 860, 802, 772, 727, 699, 659, 645, 616, 592, 562, 536, 513 cm⁻¹

41 (minor): $R_f = 0.59$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 8.15 (dd, J = 7.8, 1.3 Hz, 1H), 7.68 (dd, J = 8.0, 1.3 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.25 – 7.16 (m, 4H), 4.33 (dd, J = 7.9, 5.2 Hz, 1H), 4.24 (ddd, J = 12.2, 2.5, 1.3 Hz, 1H), 3.79 (dd, J = 12.2, 1.5 Hz, 1H), 3.33 (dd, J = 17.6, 7.8 Hz, 1H), 3.25 (dd, J = 17.6, 5.2 Hz, 1H), 3.01 – 2.94 (m, 2H), 1.57 – 1.54 (m, 1H), 1.24 (s, 3H), 1.01 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.3, 140.2, 136.4, 135.5, 129.6, 128.7, 128.3, 127.9, 126.5, 68.6, 61.2, 47.8, 36.7, 32.2, 28.0, 24.7, 23.2. HRMS (ESI) m/z calcd for C₂₁H₂₂BrNO₂ [M+H]⁺: 400.0907, found: 400.0892. IR (neat): v_{max} 3026, 2965, 2929, 1673, 1592, 1566, 1493, 1449, 1394, 1371, 1299, 1264, 1239, 1167, 1107, 1065, 998, 946, 861, 804, 776, 744, 716, 701, 585, 531, 516 cm⁻¹

3-benzyl-4,4-dimethyl-8-(trifluoromethyl)-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 53.0 mg, 68% yield, dr = 4.0:1;

4m (major): $R_f = 0.68$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.42 (d, J = 2.0 Hz, 1H), 7.66 (dd, J = 8.1, 1.9 Hz, 1H), 7.33 – 7.24 (m, 3H), 7.24 – 7.17 (m, 1H), 7.13 – 7.05 (m, 2H), 4.07 – 3.94 (m, 2H), 3.81 (dd, J = 11.9, 3.7 Hz, 1H), 3.57 (dd, J = 17.7, 8.7 Hz, 1H), 3.25 (dd, J = 17.7, 1.9 Hz, 1H), 2.87 – 2.75 (m, 1H), 2.11 – 1.97 (m, 2H), 1.19 (s, 3H), 0.65 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 140.0, 139.3, 129.0, 129.0, 128.8, 128.7, 128.5, 127.6, 126.6, 125.3, 125.2, 71.5, 65.6, 47.9, 38.4, 32.5, 27.3, 23.5, 15.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -62.5. HRMS (ESI) m/z calcd for C₂₂H₂₂F₃NO₂ [M+H]⁺: 390.1675, found: 390.1680. IR (neat): v_{max} 3028, 2969, 2938, 1669, 1621, 1496, 1469, 1453, 1397, 1373, 1328, 1294, 1272, 1251, 1235, 1167, 1122, 1104, 1068, 1037, 1001, 983, 941, 911, 878, 835, 818, 784, 753, 731, 700, 688, 656, 618, 599, 573, 532, 50 cm⁻¹

4m (minor): $R_f = 0.69$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 8.47 – 8.42 (m, 1H), 7.70 – 7.66 (m, 1H), 7.32 – 7.28 (m, 3H), 7.23 – 7.17 (m, 3H), 4.34 (dd, J = 7.7, 5.3 Hz, 1H), 4.24 (ddd, J = 12.2, 2.5, 1.2 Hz, 1H), 3.81 (dd, J = 12.3, 1.5 Hz, 1H), 3.44 – 3.39 (m, 1H), 3.18 (dd, J = 17.3, 5.3 Hz, 1H), 2.99 – 2.94 (m, 2H), 1.59 – 1.55 (m, 1H), 1.22 (s, 3H), 1.01 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.2, 140.1, 139.8, 129.6, 129.0, 129.0, 128.7, 128.6, 127.7, 126.5, 125.7, 125.7, 68.7, 61.7, 47.7, 36.6, 32.1, 27.5, 24.7, 23.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -62.6. HRMS (ESI) m/z calcd for C₂₂H₂₂F₃NO₂ [M+H]⁺: 390.1675, found: 390.1679. IR (neat): v_{max} 3027, 2969, 2882, 1672, 1621, 1494, 1455, 1394, 1354, 1329, 1293, 1270, 1254, 1230, 1167, 1124, 1105, 1069, 1041, 1013, 965, 950, 924, 875, 832, 783, 765, 715, 701, 680, 646, 626, 599, 547, 515 cm⁻¹

3-benzyl-4,4-dimethyl-6-(trifluoromethyl)-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 54.0 mg, 68% yield, dr = 5.0:1;

4n (major): $R_f = 0.44$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.39 (dd, J = 7.9, 1.3 Hz, 1H), 7.77 (dd, J = 7.8, 1.3 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.23 – 7.18 (m, 1H), 7.11 – 7.07 (m, 2H), 4.04 – 3.96 (m, 2H), 3.84 – 3.77 (m, 1H), 3.51 (d, J = 6.9 Hz, 2H), 2.82 (d, J = 11.3 Hz, 1H), 2.12 – 1.97 (m, 2H), 1.19 (s, 3H), 0.62 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.8, 139.4, 134.9, 134.9, 131.9, 130.0, 129.7, 129.6, 128.8, 128.7, 127.0, 126.6, 71.6, 65.3, 47.9, 38.5, 32.5, 24.4, 24.4, 23.5, 15.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -61.1. HRMS (ESI) m/z calcd for C₂₂H₂₂F₃NO₂ [M+H]⁺: 390.1675, found: 390.1680. IR (neat): v_{max} 3027, 2969, 2940, 1673, 1603, 1495, 1473, 1454, 1411, 1357, 1322, 1265, 1250, 1233, 1155, 1117, 1098, 1055, 1039, 995, 930, 874, 823, 744, 701, 689, 667, 646, 620, 600, 556, 526 cm⁻¹

4n (minor): $R_f = 0.45$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 8.42 – 8.38 (m, 1H), 7.78 (dd, J = 7.8, 1.3 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.30 (t, J = 7.5 Hz, 2H), 7.23 – 7.18 (m, 3H), 4.35 (dd, J = 7.6, 4.6 Hz, 1H), 4.26 – 4.22 (m, 1H), 3.79 (dd, J = 12.3, 1.4 Hz, 1H), 3.46 (dd, J = 17.6, 7.5 Hz, 1H), 3.37 (dd, J = 17.6, 4.6 Hz, 1H), 3.01 – 2.95 (m, 2H), 1.57 – 1.53 (m, 1H), 1.23 (s, 3H), 0.95 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.0, 140.1, 134.9, 132.2, 130.0, 129.7, 129.7, 129.6, 128.7, 127.1, 126.5, 68.8, 61.2, 47.7, 36.8, 32.2, 24.6, 24.5, 24.5, 23.3. ¹⁹F NMR (564 MHz, CDCl₃) δ -60.9. HRMS (ESI) m/z calcd for C₂₂H₂₂F₃NO₂ [M+H]⁺: 390.1675, found: 390.1677. IR (neat): v_{max} 3027, 2968, 2884, 1672, 1601, 1494, 1475, 1455, 1407, 1395, 1373, 1353, 1321, 1269, 1246, 1234, 1156, 1117, 1097, 1080, 1067, 1045, 999, 960, 947, 912, 869, 821, 745, 728, 702, 687, 646, 629, 608, 593, 538, 513 cm⁻¹

3-benzyl-2,4,4-trimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 63.0 mg, 90% yield, dr = 1.2:1;

40 (major): $R_f = 0.32$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 8.08 (dd, J = 7.6, 1.5 Hz, 1H), 7.42 (td, J = 7.4, 1.6 Hz, 1H), 7.37 – 7.27 (m, 3H), 7.19 (ddd, J = 11.3, 7.1, 2.0 Hz, 4H), 4.06 – 3.96 (m, 2H), 3.13 (t, J = 14.5 Hz, 1H), 2.97 (dd, J = 13.8, 5.0 Hz, 1H), 2.84 (dd, J = 15.4, 3.6 Hz, 1H), 2.48 (dd, J = 13.8, 8.7 Hz, 1H), 1.87 (td, J = 8.4, 4.9 Hz, 1H), 1.34 (s, 3H), 1.09 (s, 3H), 0.96 (d, J = 6.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.9, 140.6, 136.7, 132.1, 129.0, 128.8, 128.3, 127.6, 127.3, 126.5, 80.6, 65.6, 47.8, 36.2, 35.0, 30.9, 26.0, 25.3, 19.8. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1960. IR (neat): v_{max} 3026, 2969, 2928, 2879, 1672, 1604, 1494, 1458, 1376, 1348, 1315, 1048, 987, 953, 738, 700, 503 cm⁻¹

40 (minor): $R_f = 0.42$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 8.14 (dd, J = 7.7, 1.4 Hz, 1H), 7.43 (td, J = 7.5, 1.5 Hz, 1H), 7.36 – 7.26 (m, 3H), 7.21 – 7.13 (m, 4H), 4.17 (dq, J = 10.1, 6.2 Hz, 1H), 4.04 (dd, J = 8.8, 1.9 Hz, 1H), 3.57 (dd, J = 17.3, 8.8 Hz, 1H), 3.18 (dd, J = 17.5, 2.0 Hz, 1H), 2.84 – 2.76 (m, 1H), 2.13 (dd, J = 15.4, 8.2 Hz, 1H), 1.91 (ddd, J = 10.3, 8.1, 2.2 Hz, 1H), 1.13 (s, 3H), 1.06 (d, J = 6.2 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.1, 141.9, 136.2, 132.5, 128.7, 128.2, 126.9, 126.9, 126.2, 78.9, 66.0, 53.9, 39.2, 33.3, 27.6, 24.2, 19.1, 15.9 \text{ HRMS} (ESI) m/z calcd for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1951. IR (neat): v_{max} 3027, 2969, 2934, 1669, 1604, 1494, 1461, 1403, 1375, 1341, 1265, 1185, 1137, 1090, 1066, 999, 949, 791, 737, 700, 649, 575, 520, 504 cm⁻¹

3-benzyl-3,4,4-trimethyl-3,4,4a,5-tetrahydro-[1,2]oxazino[2,3-b]isoquinolin-10(2H)-one

White solid; 49.0 mg, 72% yield, dr = 3.7:1;

4p (major): $R_f = 0.56$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (dd, J = 7.7, 1.5 Hz, 1H), 7.43 (td, J = 7.5, 1.5 Hz, 1H), 7.29 (d, J = 18.7 Hz, 2H), 7.25 – 7.17 (m, 2H), 7.14 (d, J = 7.5 Hz, 1H), 7.08 – 6.96 (m, 2H), 4.47 – 4.25 (m, 2H), 3.62 – 3.44 (m, 2H), 3.11 (dd, J = 17.5, 2.3 Hz, 1H), 2.52 (s, 2H), 1.05 (d, J = 7.2 Hz, 6H), 0.85 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.6, 137.0, 132.6, 130.8, 128.3, 128.2, 127.9, 126.9, 126.8, 126.5, 61.5, 40.5, 39.7, 39.1, 27.5, 19.8, 18.1, 18.0. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1954. IR (neat): v_{max} 3027, 2972, 2879, 1668, 1604, 1584, 1493, 1459, 1399, 1384, 1337, 1276, 1252, 1091, 1032, 994, 924, 788, 759, 732, 705, 686, 663, 590, 554, 535, 507 cm⁻¹

4p (minor): $R_f = 0.60$ (2:1 petroleum ether/ethyl acetate); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (dd, J = 7.8, 1.4 Hz, 1H), 7.44 (td, J = 7.5, 1.5 Hz, 1H), 7.31 (dd, J = 17.7, 6.8 Hz, 3H), 7.23 (d, J = 7.2 Hz, 3H), 7.16 (d, J = 7.5 Hz, 1H), 4.64 (dd, J = 8.6, 2.7 Hz, 1H), 3.82 (dd, J = 12.4, 1.5 Hz, 1H), 3.62 – 3.51 (m, 2H), 3.39 (d, J = 12.8 Hz, 1H), 3.14 (dd, J = 17.3, 2.8 Hz, 1H), 2.47 (dd, J = 12.8, 1.6 Hz, 1H), 1.07 (s, 3H), 0.79 (s, 3H), 0.62 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.9, 136.3, 132.6, 131.7, 128.4, 128.2, 127.9, 126.9, 126.8, 126.5, 72.3, 61.2, 40.3, 40.2, 37.7, 27.6, 19.5, 19.0, 15.2. HRMS (ESI) m/z calcd for C₂₂H₂₅NO₂ [M+H]⁺: 336.1958, found: 336.1957. IR (neat): v_{max} 3027, 2972, 2881, 1668, 1604, 1583, 1491, 1460, 1397, 1374, 1342, 1275, 1251, 1216, 1153, 1125, 1091, 1032, 994, 975, 912, 878, 854, 792, 732, 706, 687, 670, 643, 516 cm⁻¹

11. X-ray structure of products 2a (major), 2a (minor), 2s (major), 4a (major), 4a (minor) and 4p (major)

The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out using full-matrix least-squares techniques on F^2 using the program SHELXL. In each case, the locations of the largest peaks in the final difference Fourier map calculations and the magnitude of the residual electron densities were of no chemical

significance. Positional parameters, hydrogen atom parameters, thermal parameters, bond distances, and angles have been deposited as supporting information.

Crystal Structure Report for 2a (major).

A single crystal with approximate dimensions of 0.25 mm x 0.20 mm x 0.18 mm was formed by recrystallization of **2a** (major) from a 2:1 petroleum ether/ethyl acetate mixture at room temperature and was used for the single-crystal X-ray crystallographic analysis. The X-ray intensity data were measured. All structures were solved by using the program SHELXS/T and Olex2. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication no. CCDC 2243178. Copies of the data can be obtained free of charge by application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: deposit@ccdc.cam.ac.uk)

Crystal data and structure refinement for	a.
Identification code	А
Empirical formula	$C_{20}H_{21}NO_2 \\$
Formula weight	307.38
Temperature/K	300
Crystal system	Monoclinic
Space group	$P2_1/c$
a /Å	8.3899(2)
b/Å	17.2182(5)
c/Å	11.7013(3)
a/°	90
β/°	96.7210(10)
γ/ ^o	90
Volume/Å ³	1678.74(8)
Ζ	4
$\rho_{calc}g/cm^3$	1.216
µ/mm ⁻¹	0.618
F(000)	656.0

Crystal size/mm ³
Radiation
2O range for data collection/°
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F ²
Final R indexes [I>=2σ (I)]
Final R indexes [all data]
Largest diff. peak/hole / e Å ⁻³

Bond Lengths for a.

	0	
Atom	Atom	Length/Å
01	C1	1.2144(17)
02	N1	1.3874(13)
02	C7	1.4441(16)
N1	C1	1.3465(18)
N1	C4	1.4522(16)
C1	C2	1.4848(18)
C2	C3	1.385(2)
C2	C20	1.381(2)
C3	C4	1.508(2)
C3	C17	1.3919(19)
C4	C5	1.5567(19)
C5	C6	1.553(2)
C5	C15	1.533(2)

$\begin{array}{l} 0.25\times 0.2\times 0.18\\ CuK\alpha \ (\lambda=1.54178)\\ 9.18 \ to \ 148.906\\ -10\leq h\leq 10, \ -21\leq k\leq 21, \ -14\leq l\leq 14\\ 32515\\ 3418 \ [R_{int}=0.0340, \ R_{sigma}=0.0180]\\ 3418/1/211\\ 1.080\\ R_1=0.0477, \ wR_2=0.1381\\ R_1=0.0497, \ wR_2=0.1400\\ 0.25/-0.20 \end{array}$

Atom	Atom	Length/Å
C5	C16	1.5284(19)
C6	C7	1.5130(19)
C6	C8	1.5447(19)
C8	C9	1.509(2)
C9	C10	1.384(3)
C9	C14	1.387(2)
C10	C11	1.377(2)
C11	C12	1.361(3)
C12	C13	1.371(3)
C13	C14	1.396(3)
C17	C18	1.379(3)
C18	C19	1.379(3)
C19	C20	1.388(3)

Bond Angles for a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	02	C7	107.46(9)	C16	C5	C6	112.06(12)
02	N1	C4	118.90(11)	C16	C5	C15	110.45(13)
C1	N1	02	123.19(10)	C7	C6	C5	112.30(10)
C1	N1	C4	117.88(11)	C7	C6	C8	108.47(12)
01	C1	N1	127.12(12)	C8	C6	C5	114.18(11)
01	C1	C2	129.60(13)	02	C7	C6	111.37(11)
N1	C1	C2	103.26(11)	C9	C8	C6	113.24(12)
C3	C2	C1	109.45(12)	C10	C9	C8	121.21(14)
C20	C2	C1	127.81(15)	C10	C9	C14	117.63(16)
C20	C2	C3	122.71(14)	C14	C9	C8	121.16(17)
C2	C3	C4	110.10(11)	C11	C10	С9	121.59(16)
C2	C3	C17	119.32(16)	C12	C11	C10	120.4(2)
C17	C3	C4	130.58(16)	C11	C12	C13	119.52(19)

N1	C4	C3	99.22(11)	C12	C13	C14	120.50(17)
N1	C4	C5	111.02(11)	C9	C14	C13	120.30(19)
C3	C4	C5	118.22(11)	C18	C17	C3	118.37(19)
C6	C5	C4	106.60(10)	C19	C18	C17	121.58(16)
C15	C5	C4	107.71(13)	C18	C19	C20	120.87(18)
C15	C5	C6	109.32(13)	C2	C20	C19	117.1(2)
C16	C5	C4	110.54(12)	-	-	-	-

Crystal Structure Report for 2a (minor).

A single crystal with approximate dimensions of 0.20 mm x 0.15 mm x 0.13 mm was formed by recrystallization of **2a** (minor) from a 2:1 petroleum ether/ethyl acetate mixture at room temperature and was used for the single-crystal X-ray crystallographic analysis. The X-ray intensity data were measured. All structures were solved by using the program SHELXS/T and Olex2. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication no. CCDC 2244760. Copies of the data can be obtained free of charge by application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: deposit@ccdc.cam.ac.uk)

Identification code	А
Empirical formula	$C_{20}H_{21}NO_2$
Formula weight	307.38
Temperature/K	300
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	8.5000(10)
b/Å	14.8211(17)
c/Å	13.0677(16)
a/°	90
β/°	91.708(5)
γ/°	90
Volume/Å ³	1645.5(3)

Z $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000) Crystal size/mm³ Radiation 2 Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes [I>=2 σ (I)] Final R indexes [all data] Largest diff. peak/hole / e Å⁻³

Bond Lengths for a.

Atom	Length/A
N1	1.391(2)
C20	1.457(2)
C13	1.220(2)
C10	1.458(2)
C13	1.350(3)
C2	1.392(4)
C6	1.374(5)
C3	1.387(3)
C4	1.380(3)
C7	1.505(3)
C5	1.377(4)
C6	1.355(5)
C8	1.538(3)
	Atom N1 C20 C13 C10 C13 C2 C6 C3 C4 C7 C5 C6 C8

Bond Angles for a.

Atom	Atom	Atom	Angle/°
N1	01	C20	108.54(13)
01	N1	C10	118.64(15)
C13	N1	01	123.57(15)
C13	N1	C10	117.16(15)
C6	C1	C2	120.5(3)
C3	C2	C1	119.9(2)
C2	C3	C7	120.1(2)
C4	C3	C2	118.3(2)
C4	C3	C7	121.60(19)

4 1.241 0.630 656.0 0.20 × 0.15 × 0.13 CuKa ($\lambda = 1.54178$) 9.024 to 140.376 -10 ≤ h ≤ 10, -18 ≤ k ≤ 18, -14 ≤ 1 ≤ 13 14313 3002 [R_{int} = 0.0812, R_{sigma} = 0.0515] 3002/0/211 1.096 R₁ = 0.0626, wR₂ = 0.1966 R₁ = 0.0705, wR₂ = 0.2064 0.23/-0.25

Atom	Atom	Length/Å
C8	С9	1.557(3)
C8	C20	1.522(3)
C9	C10	1.552(2)
C9	C18	1.527(3)
С9	C19	1.527(3)
C10	C11	1.507(2)
C11	C12	1.383(3)
C11	C17	1.391(3)
C12	C13	1.486(3)
C12	C14	1.383(3)
C14	C15	1.381(3)
C15	C16	1.378(4)
C16	C17	1.388(3)

Atom	Atom	Atom	Angle/°
C19	С9	C10	111.48(16)
C19	C9	C18	108.42(16)
N1	C10	C9	109.55(14)
N1	C10	C11	99.42(14)
C11	C10	C9	116.21(14)
C12	C11	C10	119.89(18)
C12	C11	C17	110.02(15)
C17	C11	C10	130.10(18)
C11	C12	C13	109.56(16)

C5	C4	C3	121.1(2)	C14	C12	C11	121.80(18)
C6	C5	C4	120.7(3)	C14	C12	C13	128.64(19)
C5	C6	C1	119.5(2)	O2	C13	N1	126.99(18)
C3	C7	C8	113.12(17)	O2	C13	C12	129.56(19)
C7	C8	C9	114.98(16)	N1	C13	C12	103.41(15)
C20	C8	C7	110.08(17)	C15	C14	C12	117.9(2)
C20	C8	C9	110.40(15)	C16	C15	C14	120.9(2)
C10	C9	C8	107.56(13)	C15	C16	C17	121.19(19)
C18	C9	C8	111.24(16)	C16	C17	C11	118.2(2)
C18	C9	C10	108.91(15)	01	C20	C8	110.21(15)
C19	C9	C8	109.26(16)	-	-	-	-

Crystal Structure Report for 2s (major).

A single crystal with approximate dimensions of 0.20 mm x 0.15 mm x 0.10 mm was formed by recrystallization of **2s (major)** from a 2:1 petroleum ether/ethyl acetate mixture at room temperature and was used for the single-crystal X-ray crystallographic analysis. The X-ray intensity data were measured. All structures were solved by using the program SHELXS/T and Olex2. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication **no. CCDC 2244761**. Copies of the data can be obtained free of charge by application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: deposit@ccdc.cam.ac.uk)

Crystal data and structure refinement for cu_0203_5_0m.

Identification code	cu_0203_5_0m
Empirical formula	$C_{21}H_{23}NO_2 \\$
Formula weight	321.40
Temperature/K	150
Crystal system	Monoclinic
Space group	$P2_1/c$
a/Å	10.8205(2)
b/Å	15.6904(4)

c/Å	11.3118(3)
α/°	90
β/°	117.9190(10)
γ/°	90
Volume/Å ³	1696.97(7)
Ζ	4
ρ _{calc} g/cm ³	1.258
µ/mm ⁻¹	0.633
F(000)	688.0
Crystal size/mm ³	$0.20\times0.15\times0.10$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	9.25 to 149.498
Index ranges	$-13 \le h \le 13, -19 \le k \le 19, -14 \le 1$
Reflections collected	17442
Independent reflections	3457 [$R_{int} = 0.0276$, $R_{sigma} = 0.024$
Data/restraints/parameters	3457/0/220
Goodness-of-fit on F ²	1.054
Final R indexes [I>=2σ (I)]	$R_1 = 0.0730, \mathrm{wR}_2 = 0.1799$
Final R indexes [all data]	$R_1 = 0.0742, \mathrm{w}R_2 = 0.1827$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.25

Bond Lengths for cu_0203_5_0m.

Atom	Atom	Length/Å
O001	C004	1.2184(18)
O002	N003	1.3805(15)
O002	C00N	1.4540(17)
N003	C004	1.3573(18)
N003	C00C	1.4563(18)
C004	C007	1.4870(19)
C005	C007	1.3883(19)
C005	C00B	1.387(2)
C006	C00I	1.5322(18)
C007	C009	1.396(2)
C008	C00I	1.5369(18)
C009	C00C	1.5106(19)
C009	C00D	1.391(2)
C00A	C00F	1.5143(19)

10/0.77(7)
4
1.258
0.633
688.0
$0.20\times0.15\times0.10$
$CuK\alpha (\lambda = 1.54178)$
9.25 to 149.498
$\text{-13} \le h \le 13, \text{-19} \le k \le 19, \text{-14} \le l \le 14$
17442
3457 [$R_{int} = 0.0276$, $R_{sigma} = 0.0245$]
3457/0/220
1.054
$R_1 = 0.0730, wR_2 = 0.1799$
$R_1 = 0.0742, wR_2 = 0.1827$
0.34/-0.25
tom Length/Å
1304(2)

Atom	Atom	Length/Å
C00A	C00G	1.394(2)
C00A	C00H	1.398(2)
C00B	C00E	1.395(2)
C00C	C00I	1.5598(18)
C00D	C00E	1.392(2)
C00F	C00K	1.5512(18)
C00G	C00L	1.394(2)
C00H	C00M	1.390(2)
C00I	C00K	1.5538(18)
C00J	C00L	1.388(3)
C00J	C00M	1.382(3)
C00K	C00N	1.5311(19)
C00N	C00O	1.5093(19)
-	-	-

Bond Angles for cu_0203_5_0m.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
------	------	------	---------	------	------	------	---------

S88

N003	O002	C00N	109.29(10)	C009	C00D	C00E	118.34(14)
O002	N003	C00C	119.70(11)	C00D	C00E	C00B	121.42(14)
C004	N003	O002	122.52(11)	C00A	C00F	C00K	115.03(11)
C004	N003	C00C	117.64(12)	C00A	C00G	C00L	120.93(15)
O001	C004	N003	127.07(13)	C00M	C00H	C00A	120.90(16)
O001	C004	C007	129.85(13)	C006	C00I	C008	110.14(11)
N003	C004	C007	103.08(12)	C006	C00I	C00C	107.79(11)
C00B	C005	C007	117.71(14)	C006	C00I	C00K	109.85(11)
C005	C007	C004	127.84(13)	C008	C00I	C00C	110.24(11)
C005	C007	C009	122.30(13)	C008	C00I	C00K	111.65(11)
C009	C007	C004	109.86(12)	C00K	C00I	C00C	107.04(10)
C007	C009	C00C	109.57(12)	C00M	C00J	C00L	119.41(15)
C00D	C009	C007	119.65(13)	C00F	C00K	C00I	113.27(11)
C00D	C009	C00C	130.77(13)	C00N	C00K	C00F	110.04(11)
C00G	C00A	C00F	121.28(13)	C00N	C00K	C00I	112.42(11)
C00G	C00A	С00Н	118.06(14)	C00J	C00L	C00G	120.21(16)
C00H	C00A	C00F	120.61(13)	C00J	C00M	C00H	120.48(16)
C005	C00B	C00E	120.58(14)	O002	C00N	C00K	109.89(11)
N003	C00C	C009	99.74(10)	O002	C00N	C00O	103.36(10)
N003	C00C	C00I	110.09(11)	C00O	C00N	C00K	115.16(12)
C009	C00C	C00I	117.61(11)	-	-	-	-

Crystal Structure Report for 4a (major).

A single crystal with approximate dimensions of 0.20 mm x 0.15 mm x 0.10 mm was formed by recrystallization of **4a (major)** from a 2:1 petroleum ether/ethyl acetate mixture at room temperature and was used for the single-crystal X-ray crystallographic analysis. The X-ray intensity data were measured. All structures were solved by using the program SHELXS/T and Olex2. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication **no. CCDC 2244762**. Copies of the data can be obtained free of charge by application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: deposit@ccdc.cam.ac.uk)

Crysta	l data ai	nd structure refinemen	t for cu_02	.03_3_0 1	m.			
Identif	fication o	code		cu_	cu_0203_3_0m			
Empir	ical forn	nula		C ₂₁	$C_{21}H_{23}NO_2$			
Formu	ıla weigh	it		321	.40			
Tempe	erature/H	K		150				
Crysta	l system			Мо	noclinic			
Space	group			P21	P21			
a/Å					121(3)			
b/Å				9.12	248(3)			
c/Å				11.	9813(4)			
α/°				90				
β/°				101	.4770(10)			
γ/°				90				
Volum	e/Å ³			847	7.71(5)			
Z				2				
ρ _{calc} g/c	2m ³			1.2	1.259			
µ/mm⁻	1			0.6	0.633			
F(000)				344	344.0			
Crysta	l size/mi	m ³		0.2	$0 \times 0.15 \times 0.10$			
Radiat	tion			Cul	Kα (λ = 1.54178)			
20 ran	nge for d	ata collection/°		12.	12.284 to 149.31			
Index	ranges			- 9 <u><</u>	$\leq h \leq 9, -11 \leq k \leq 11, -14 \leq l \leq 14$			
Reflect	tions col	lected		144	14417			
Indepe	endent ro	eflections		339	$02 [R_{int} = 0.0288, R_{sigma} = 0.0309]$			
Data/r	estraints	s/parameters		339	02/1/219			
Goodn	ess-of-fi	t on F ²		1.0	91			
Final F	R indexe	s [I>=2σ (I)]		$R_1 =$	$= 0.0599, wR_2 = 0.1450$			
Final F	R indexe	s [all data]		\mathbf{R}_1	$R_1 = 0.0601, wR_2 = 0.1453$			
Largest diff. peak/hole / e Å ⁻³			0.3	0.31/-0.22				
Flack parameter				0.0	1(7)			
Bond I	Lengths	for cu_0203_3_0m.						
Atom	Atom	Length/Å	Atom	Atom	Length/Å			
O001	C004	1.215(3)	C00A	C00D	1.387(4)			
O002	N003	1.402(2)	C00A	C00E	1.392(4)			

C00C

C00F

1.441(3)

1.364(3)

1.468(3)

1.498(3)

O002

N003

N003

C004

C00H

C004

C00K

C005

C00B C00K 1.532(3)

1.379(5)

1.533(3)

C000

C00G

C00G C00K 1.557(3)

C005	C007	1.387(3)	C00G	C00L	1.560(3)
C005	C009	1.407(3)	C00H	C00L	1.527(3)
C006	C00G	1.535(3)	C00I	C00J	1.393(4)
C007	C00E	1.389(3)	C00I	C00M	1.520(3)
C008	C00C	1.385(4)	C00J	C00N	1.388(4)
C008	C00I	1.380(4)	C00L	C00M	1.535(4)
C009	C00B	1.502(3)	C00N	C00O	1.379(5)
C009	C00D	1.385(3)	-	-	-

Bond Angles for cu_0203_3_0m.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N003	O002	C00H	107.89(16)	C006	C00G	C00K	112.06(19)
O002	N003	C00K	111.99(17)	C006	C00G	C00L	112.11(19)
C004	N003	O002	115.34(18)	C00F	C00G	C006	109.6(2)
C004	N003	C00K	127.66(18)	C00F	C00G	C00K	107.4(2)
O001	C004	N003	123.0(2)	C00F	C00G	C00L	108.62(19)
O001	C004	C005	122.4(2)	C00K	C00G	C00L	106.85(18)
N003	C004	C005	114.62(19)	O002	C00H	C00L	111.5(2)
C007	C005	C004	118.16(19)	C008	C00I	C00J	118.4(2)
C007	C005	C009	120.9(2)	C008	C00I	C00M	121.1(2)
C009	C005	C004	121.0(2)	C00J	C00I	C00M	120.5(2)
C005	C007	C00E	120.0(2)	C00N	C00J	C00I	120.7(3)
C00I	C008	C00C	121.2(3)	N003	C00K	C00B	108.36(18)
C005	C009	C00B	120.16(19)	N003	C00K	C00G	111.12(18)
C00D	C009	C005	118.6(2)	C00B	C00K	C00G	116.77(19)
C00D	C009	C00B	121.2(2)	C00H	C00L	C00G	111.89(18)
C00D	C00A	C00E	120.8(2)	C00H	C00L	C00M	109.1(2)
C009	C00B	C00K	115.04(19)	C00M	C00L	C00G	113.73(19)
C00O	C00C	C008	119.9(3)	C00I	C00M	C00L	114.1(2)
C009	C00D	C00A	120.5(2)	C00O	C00N	C00J	119.9(3)
C007	C00E	C00A	119.3(2)	C00C	C00O	C00N	120.0(2)

Crystal Structure Report for 4a (minor).

A single crystal with approximate dimensions of 0.20 mm x 0.15 mm x 0.10 mm was formed by recrystallization of **4a (minor)** from a 2:1 petroleum ether/ethyl acetate mixture at room temperature and was used for the single-crystal X-ray crystallographic analysis. The X-ray intensity data were measured. All structures were solved by using the program SHELXS/T and Olex2. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication **no. CCDC 2244763**. Copies of the data can be obtained free of charge by application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: deposit@ccdc.cam.ac.uk)

Ci ystai uata anu su ucture reimement ioi	t cu_0919_0_0m.
Identification code	cu_0919_6_0m
Empirical formula	$C_{21}H_{23}NO_2$
Formula weight	321.40
Temperature/K	150
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	9.1681(4)
b/Å	16.0212(8)
c/Å	11.4696(5)
a/o	90
β/°	93.233(2)
$\gamma^{\prime \circ}$	90
Volume/Å ³	1682.02(13)
Z	4
$\rho_{calc}g/cm^3$	1.269
μ/mm ⁻¹	0.638
F(000)	688.0
Crystal size/mm ³	$0.20\times0.15\times0.10$
Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/°	9.662 to 155.602
Index ranges	$\text{-}11 \leq h \leq 11, \text{-}20 \leq k \leq 20, \text{-}14 \leq l \leq 12$
Reflections collected	34118
Independent reflections	3563 [$R_{int} = 0.0368$, $R_{sigma} = 0.0239$]
Data/restraints/parameters	3563/0/219
Goodness-of-fit on F ²	1.073
Final R indexes [I>=2σ (I)]	$R_1 = 0.0656, wR_2 = 0.1668$
Final R indexes [all data]	$R_1 = 0.0676, wR_2 = 0.1709$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.17

Crystal data and structure refinement for cu_0919_6_0m.

Bond Lengths for cu_0919_6_0m.

Atom	Atom	Length/Å
O001	N003	1.4048(14)
O001	C00C	1.4471(16)
O002	C004	1.2232(15)
N003	C004	1.3660(16)
N003	C00A	1.4675(16)
C004	C009	1.4938(18)
C005	C007	1.5368(17)
C006	C007	1.5327(17)
C007	C00A	1.5490(17)
C007	C00K	1.5635(17)
C008	C00A	1.5285(18)
C008	C00H	1.5045(19)
C009	C00E	1.3949(19)
C009	C00H	1.4002(18)

Atom	Atom	Length/Å
C00B	C00D	1.3922(19)
C00B	C00G	1.3972(19)
C00B	C00M	1.5091(19)
C00C	C00K	1.5242(17)
C00D	C00F	1.384(2)
C00E	C00J	1.382(2)
C00F	C00O	1.383(2)
C00G	C00N	1.389(2)
C00H	C00L	1.394(2)
C00I	C00J	1.395(2)
C00I	C00L	1.383(2)
C00K	C00M	1.5475(18)
C00N	C000	1.380(2)
-	-	-

Atom

C00B

C00B

C00B

C00C

C00D

C00E

C00F

C00G

C00H

C00H

C00H

C00I

C00J

C00K

C00K

C00K

C00L

C00N

Atom Angle/°

C00G 117.93(13)

C00M 121.41(12)

C00M 120.63(12)

110.84(10)

121.24(14)

120.26(13)

120.11(14)

120.73(13)

120.17(12)

121.06(12)

118.74(13)

120.52(14)

119.44(14)

110.35(10)

110.24(11)

113.71(10)

120.59(14)

112.98(11)

120.36(14)

119.62(14)

C00K

C00B

C009

C00D

C00B

C008

C008

C009

C00J

C00I

C007

C00M

C007

C00H

C00G

C00M C00K

C000 C00F

Bond Angles for cu_0919_6_0m.

Atom	Atom	Atom	Angle/°	Atom
N003	O001	C00C	107.93(9)	C00D
O001	N003	C00A	112.20(9)	C00D
C004	N003	O001	115.46(9)	C00G
C004	N003	C00A	126.77(11)	O001
O002	C004	N003	122.57(12)	C00F
O002	C004	C009	122.54(12)	C00J
N003	C004	C009	114.89(10)	C000
C005	C007	C00A	111.83(10)	C00N
C005	C007	C00K	109.13(10)	C009
C006	C007	C005	107.53(10)	C00L
C006	C007	C00A	109.67(10)	C00L
C006	C007	C00K	111.02(10)	C00L
C00A	C007	C00K	107.68(10)	C00E
C00H	C008	C00A	114.68(10)	C00C
C00E	C009	C004	118.48(11)	C00C
C00E	C009	C00H	120.44(12)	C00M
C00H	C009	C004	121.05(11)	C00I
N003	C00A	C007	110.14(9)	C00B
N003	C00A	C008	108.64(10)	C000
C008	C00A	C007	117.31(11)	C00N

Crystal Structure Report for 4p (major).

A single crystal with approximate dimensions of 0.20 mm x 0.15 mm x 0.10 mm was formed by recrystallization of **4p (major)** from a 2:1 petroleum ether/ethyl acetate mixture at room temperature and was used for the single-crystal X-ray crystallographic analysis. The X-ray intensity data were measured. All structures were solved by using the program SHELXS/T and Olex2. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication **no. CCDC 2244764**. Copies of the data can be obtained free of charge by application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: deposit@ccdc.cam.ac.uk)

Identification code	cu_0203_4_0ma
Empirical formula	$C_{22}H_{25}NO_2$
Formula weight	335.43
Temperature/K	150
Crystal system	orthorhombic
Space group	Pbca
a/Å	12.8140(4)
b/Å	9.0568(3)
c/Å	30.5543(10)
a/°	90
β/°	90
γ/°	90
Volume/Å ³	3545.9(2)
Ζ	8
ρ _{calc} g/cm ³	1.257
µ/mm ⁻¹	0.626
F(000)	1440.0
Crystal size/mm ³	$0.20 \times 0.15 \times 0.10$
Radiation	$CuK\alpha (\lambda = 1.54178)$
2O range for data collection/°	5.784 to 149.066

Crystal data and structure refinement for cu_0203_4_0ma.

Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F ²
Final R indexes [I>=2σ (I)]
Final R indexes [all data]
Largest diff. peak/hole / e Å ⁻³

Bond Lengths for cu_0203_4_0ma.

Atom	Atom	Length/Å
O001	N003	1.4019(15)
O001	C00E	1.4428(16)
O002	C004	1.2249(18)
N003	C004	1.3625(18)
N003	C007	1.4709(17)
C004	C00F	1.495(2)
C005	C006	1.5131(19)
C005	C00G	1.393(2)
C005	C00I	1.3936(19)
C006	C00A	1.5528(18)
C007	C00D	1.5554(18)
C007	C00H	1.5271(19)
C008	C00D	1.5419(18)
C009	C00F	1.393(2)

Bond Angles for cu_0203_4_0ma.

Atom	Atom	Atom	Angle/°
N003	O001	C00E	108.30(9)
O001	N003	C007	111.90(10)
C004	N003	O001	115.58(11)
C004	N003	C007	127.22(12)
O002	C004	N003	122.38(13)
O002	C004	C00F	122.70(13)
N003	C004	C00F	114.90(12)
C00G	C005	C006	120.29(12)
C00G	C005	C00I	117.88(13)
C00I	C005	C006	121.78(13)
C005	C006	C00A	115.80(11)
N003	C007	C00D	110.94(11)
N003	C007	C00H	108.96(11)
C00H	C007	C00D	116.61(11)

 $\begin{array}{l} -15 \leq h \leq 16, \, -11 \leq k \leq 8, \, -38 \leq l \leq 37 \\ \\ 41144 \\ 3621 \; [R_{int} = 0.0423, \, R_{sigma} = 0.0263] \\ 3621/0/229 \\ \\ 1.084 \\ R_1 = 0.0644, \, wR_2 = 0.1671 \\ R_1 = 0.0678, \, wR_2 = 0.1736 \\ \\ 0.31/-0.17 \end{array}$

Atom	Atom	Length/Å
C009	C00J	1.385(2)
C00A	C00B	1.5389(18)
C00A	C00D	1.5794(19)
C00A	C00E	1.5353(18)
C00C	C00D	1.5397(18)
C00F	C00L	1.400(2)
C00G	C00K	1.386(2)
C00H	C00L	1.502(2)
C00I	C00N	1.389(2)
C00J	C00P	1.385(3)
C00K	C00M	1.388(2)
C00L	C00O	1.394(2)
C00M	C00N	1.383(2)
C00O	C00P	1.384(3)

Atom	Atom	Atom	Angle/°
C008	C00D	C007	110.74(11)
C008	C00D	C00A	111.90(11)
C00C	C00D	C007	107.44(11)
C00C	C00D	C008	108.12(11)
C00C	C00D	C00A	110.83(11)
O001	C00E	C00A	111.45(11)
C009	C00F	C004	118.72(13)
C009	C00F	C00L	120.21(14)
C00L	C00F	C004	121.02(13)
C00K	C00G	C005	121.40(14)
C00L	C00H	C007	115.81(12)
C00N	C00I	C005	121.03(14)
C009	C00J	C00P	119.58(16)
C00G	C00K	C00M	119.91(15)

C00J	C009	C00F	120.35(16)	C00F	C00L	C00H	120.43(13)
C006	C00A	C00D	110.59(10)	C00O	C00L	C00F	118.74(15)
C00B	C00A	C006	109.86(11)	C00O	C00L	C00H	120.81(14)
C00B	C00A	C00D	111.32(11)	C00N	C00M	C00K	119.53(14)
C00E	C00A	C006	107.86(11)	C00M	C00N	C00I	120.24(14)
C00E	C00A	C00B	108.29(11)	C00P	C00O	C00L	120.65(16)
C00E	C00A	C00D	108.84(11)	C00O	C00P	C00J	120.46(15)
C007	C00D	C00A	107.73(10)	-	-	-	-

12. Copies of ¹H, ¹³C and ¹⁹F NMR spectra

S97

Figure S25. ¹³C NMR spectra of 1h (75 MHz, CDCl₃)

Figure S31. ¹H NMR spectra of 1k (300 MHz, CDCl₃)

Figure S33. ¹H NMR spectra of 11 (300 MHz, CDCl₃)

Figure S65. ¹³C NMR spectra of 3g (75 MHz, CDCl₃)

S125

3h

Figure S71. ¹³C NMR spectra of 3i (75 MHz, CDCl₃)

Figure S73. ¹³C NMR spectra of 3j (75 MHz, CDCl₃)

Figure S77. ¹³C NMR spectra of 3l (75 MHz, CDCl₃)

Figure S79. ¹³C NMR spectra of 3m (75 MHz, CDCl₃)

Figure S83. ¹⁹F NMR spectra of 3n (282 MHz, CDCl₃)

Figure S85. ¹³C NMR spectra of 30 (75 MHz, CDCl₃)

Figure S87. ¹³C NMR spectra of 3p (75 MHz, CDCl₃)

Figure S89. ¹³C NMR spectra of 3q (75 MHz, CDCl₃)

Figure S91. ¹³C NMR spectra of 2a (major) (75 MHz, CDCl₃)

Figure S93. ¹³C NMR spectra of 2a (minor) (75 MHz, CDCl₃)

Figure S101. ¹³C NMR spectra of 2c (minor) (75 MHz, CDCl₃)

Figure S103. ¹³C NMR spectra of 2d (major) (75 MHz, CDCl₃)

Figure S105. ¹³C NMR spectra of 2d (minor) (75 MHz, CDCl₃)
0 1

Figure S107. ¹³C NMR spectra of 2e (major) (75 MHz, CDCl₃)

Figure S109. ¹³C NMR spectra of 2e (minor) (75 MHz, CDCl₃)

Figure S113. ¹³C NMR spectra of 2f (minor) (151 MHz, CDCl₃)

Figure S115. ¹³C NMR spectra of 2g (major) (75 MHz, CDCl₃)

Figure S119. ¹⁹F NMR spectra of 2g (minor) (282 MHz, CDCl₃)

Figure S121. ¹³C NMR spectra of 2h (major) (75 MHz, CDCl₃)

Figure S123. ¹H NMR spectra of 2h (minor) (300 MHz, CDCl₃)

Figure S125. ¹⁹F NMR spectra of 2h (minor) (282 MHz, CDCl₃)

Figure S127. ¹³C NMR spectra of 2i (major) (75 MHz, CDCl₃)

Figure S129. ¹³C NMR spectra of 2i (minor) (75 MHz, CDCl₃)

Figure S131. ¹³C NMR spectra of 2j (major) (75 MHz, CDCl₃)

Figure S133. ¹³C NMR spectra of 2j (minor) (75 MHz, CDCl₃)

Figure S135. ¹³C NMR spectra of 2k (major) (75 MHz, CDCl₃)

$\begin{array}{c} 2.3 \\$ -0.68 1.53

Figure S137. ¹³C NMR spectra of 2k (minor) (75 MHz, CDCl₃)

Figure S139. ¹³C NMR spectra of 2l (major) (75 MHz, CDCl₃)

1

Figure S141. ¹³C NMR spectra of 2l (minor) (75 MHz, CDCl₃)

Figure S143. ¹³C NMR spectra of 2m (major) (75 MHz, CDCl₃)

Figure S145. ¹³C NMR spectra of 2m (minor) (75 MHz, CDCl₃)

Figure S147. ¹³C NMR spectra of 2n (major) (75 MHz, CDCl₃)

Figure S149. ¹³C NMR spectra of 2n (minor) (75 MHz, CDCl₃)

Figure S151. ¹³C NMR spectra of 20 (major) (75 MHz, CDCl₃)

Figure S153. ¹³C NMR spectra of 20 (minor) (75 MHz, CDCl₃)

Figure S155. ¹³C NMR spectra of 2p (major) (75 MHz, CDCl₃)

Figure S157. ¹³C NMR spectra of 2p (minor) (75 MHz, CDCl₃)

Figure S159. ¹³C NMR spectra of 2q (major) (75 MHz, CDCl₃)

Figure S161. ¹³C NMR spectra of 2q (minor) (75 MHz, CDCl₃)

Figure S163. ¹³C NMR spectra of 2r (major) (75 MHz, CDCl₃)

Figure S167. ¹³C NMR spectra of 2s (major) (151 MHz, CDCl₃)

Figure S169. ¹³C NMR spectra of 2s (minor 1) (151 MHz, CDCl₃)

Figure S171. ¹³C NMR spectra of 2s (minor 2) (151 MHz, CDCl₃)

Figure S173. ¹³C NMR spectra of 2t (major) (151 MHz, CDCl₃)

Figure S175. ¹³C NMR spectra of 2t (minor) (151 MHz, CDCl₃)

1.631.551.551.341.371.371.120.330.93

Figure S177. ¹³C NMR spectra of 2u (75 MHz, CDCl₃)

Figure S179. ¹³C NMR spectra of 2v (75 MHz, CDCl₃)

Figure S181. ¹³C NMR spectra of 2w (75 MHz, CD₃OD)

Figure S183. ¹³C NMR spectra of 2x (75 MHz, CDCl₃)

Figure S185. ¹³C NMR spectra of 4a (major) (75 MHz, CDCl₃)

Figure S187. ¹³C NMR spectra of 4a (minor) (75 MHz, CDCl₃)

Figure S189. ¹³C NMR spectra of 4b (major) (75 MHz, CDCl₃)

Figure S191. ¹³C NMR spectra of 4b (minor) (75 MHz, CDCl₃)

Figure S193. ¹³C NMR spectra of 4c (major) (75 MHz, CDCl₃)

Figure S195. ¹³C NMR spectra of 4c (minor) (75 MHz, CDCl₃)

Figure S197. ¹³C NMR spectra of 4d (major) (75 MHz, CDCl₃)

√1.48
−1.18
−0.99

Figure S199. ¹³C NMR spectra of 4d (minor) (75 MHz, CDCl₃)

1

Figure S201. ¹³C NMR spectra of 4e (major) (75 MHz, CDCl₃)

Figure S203. ¹³C NMR spectra of 4e (minor) (151 MHz, CDCl₃)

Figure S205. ¹³C NMR spectra of 4f (major) (75 MHz, CDCl₃)

Figure S207. ¹H NMR spectra of 4f (minor) (300 MHz, CDCl₃)

Figure S211. ¹³C NMR spectra of 4g (major) (75 MHz, CDCl₃)

131.04 131.04 131.04 131.04 133.107 133.107 133.107 133.116 133.116 133.116 133.116 133.116 133.116 133.116 133.116 133.116 133.20 133.20 133.20

Figure S213. ¹H NMR spectra of 4g (minor) (300 MHz, CDCl₃)

Figure S215. ¹⁹F NMR spectra of 4g (minor) (282 MHz, CDCl₃)

Figure S217. ¹³C NMR spectra of 4h (major) (75 MHz, CDCl₃)

Figure S219. ¹H NMR spectra of 4h (minor) (600 MHz, CDCl₃)

Figure S221. ¹⁹F NMR spectra of 4h (minor) (282 MHz, CDCl₃)

Figure S223. ¹³C NMR spectra of 4i (major) (75 MHz, CDCl₃)

Figure S225. ¹³C NMR spectra of 4i (minor) (75 MHz, CDCl₃)

Figure S227. ¹³C NMR spectra of 4j (major) (75 MHz, CDCl₃)

Figure S229. ¹³C NMR spectra of 4j (minor) (75 MHz, CDCl₃)

Figure S231. ¹³C NMR spectra of 4k (major) (75 MHz, CDCl₃)

Figure S233. ¹³C NMR spectra of 4k (minor) (75 MHz, CDCl₃)

Figure S235. ¹³C NMR spectra of 4l (major) (75 MHz, CDCl₃)

Figure S237. ¹³C NMR spectra of 4l (minor) (151 MHz, CDCl₃)

Figure S239. ¹³C NMR spectra of 4m (major) (75 MHz, CDCl₃)

Figure S241. ¹H NMR spectra of 4m (minor) (600 MHz, CDCl₃)

Figure S245. ¹³C NMR spectra of 4n (major) (75 MHz, CDCl₃)

Figure S247. ¹H NMR spectra of 4n (minor) (600 MHz, CDCl₃)

Figure S251. ¹³C NMR spectra of 40 (major) (151 MHz, CDCl₃)

Figure S253. ¹³C NMR spectra of 40 (minor) (151 MHz, CDCl₃)

∧1.06 21.03 20.85

Figure S255. ¹³C NMR spectra of 4p (major) (151 MHz, CDCl₃)

Figure S257. ¹³C NMR spectra of 4p (minor) (151 MHz, CDCl₃)