# **Supporting Information**

# Asymmetric catalytic Friedel–Crafts alkylation with arenes and

# heteroarenes: construction of 3,3-disubstituted oxindoles

Tinghui Zhang<sup>1</sup>, Ziwei Zhong<sup>1</sup>, Zi Zeng<sup>1</sup>, Zitong Zhu<sup>1</sup>, Fei Wang<sup>2</sup>, YuXin Zhang<sup>2</sup>, Xiaohua Liu<sup>1</sup>, Maoping Pu<sup>1\*</sup> and Xiaoming Feng<sup>1\*</sup>

<sup>1</sup>Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

<sup>2</sup>Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610064, China

E-mail: xmfeng@scu.edu.cn; pump@scu.edu.cn

# Content

| 1 General Information                                                  | 3   |
|------------------------------------------------------------------------|-----|
| 2 Typical procedure for preparation of products                        | 4   |
| 3 Optimization of the reaction conditions                              | 5   |
| 4 Gram-scale synthesis of <b>C1</b>                                    | 13  |
| 5 Synthetic transformations                                            | 14  |
| 6 Control experiments                                                  | 14  |
| 7 Comparison of nucleophilicity parameters for arenes and heteroarenes | 15  |
| 8 Unsuccessful substrate scopes                                        | 15  |
| 9 Bioactivity Study                                                    | 15  |
| 10 Determination of absolute configuration of products                 | 21  |
| 11 Characterization of the products                                    | 27  |
| 12 Copies of NMR spectra for products                                  | 97  |
| 13 Reference                                                           | 169 |

# **1** General Information

NMR characterization data were collected on bruker ASCEND<sup>™</sup> operating at 400 MHz for <sup>1</sup>H NMR, 101 MHz for <sup>13</sup>C NMR (with complete proton decoupling), and 376 MHz for <sup>19</sup>F NMR (with complete proton decoupling). <sup>1</sup>H NMR and <sup>13</sup>C NMR: chemical shifts  $\delta$ were recorded in ppm relative to tetramethylsilane and internally referenced to the residual solvent signal (for <sup>1</sup>H NMR, CDCl<sub>3</sub>:  $\delta$  = 7.26 ppm, acetone- $d_6$ :  $\delta$  =2.05 ppm; for <sup>13</sup>C NMR: CDCl3:  $\delta$  = 77.0 ppm, acetone-d6:  $\delta$  = 29.8 ppm, 206.1 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz), integration. Ultra Performance Convergence Chromatography (UPC<sup>2</sup>) was performed on using Daicel Chiralcel IB-3, AS-3, ID-3, OD-3 at 23 °C with UV detector at 254 nm, and enantiomeric excesses were determined in comparison with the authentic racemates. High resolution mass spectra (HRMS) were performed on Thermo Q-Exactive Focus (FTMS+c ESI) and data were reported as (m/z). Infrared spectra (IR) were recorded on Bruker Tensor II spectrometer with Plantium ATR accessory and the peaks are reported as absorption maxima (v, cm<sup>-1</sup>). Optical rotations were measured on Rudolph Research Analytic Automatic Polarimeter, and reported as follows:  $[\alpha]_D^T$  (c: g/100 mL, in CH<sub>2</sub>Cl<sub>2</sub>). Melting point ranges were determined on OptiMelt. X-ray crystallographic data were collected by a Bruker D8 Venture Photon II. The experiments requiring substrates 3-Bromo-3-substituted oxindoles<sup>1</sup> and chiral N,N<sup>-</sup>dioxide ligands<sup>2</sup> were synthesized according to known procedures and purified by recrystallization prior to use. All of the starting materials including the metal salts were purchased from TCI, Aladdin, Adamas, Acros, Aldrich and other companies, and used without further purification. The 3/4/5Å MS and inorganic base was purchased from Acros and oven-dried by the muffle furnace for 4 h prior to use. All the solvents were pre-dried over appropriate desiccants, and distilled prior to use. other commercial reagents were used without further purification. Reactions were monitored using thin-layer chromatography (TLC) on GF254 silica gel. Visualization of the developed plates was performed under UV light (254 nm) or using iodine, cobalt thiocyanate or KMnO<sub>4</sub>. The products were purified by flash column chromatography with silicycle 300-400 mesh silica gel.

# 2 Typical procedure for preparation of products

The corresponding racemic products were obtained by using racemic N,N-dioxide (±)-L<sub>2</sub>-**PiPr**<sub>2</sub> as the ligand under the respective catalytic reaction conditions.

#### 2.1 Typical procedure for preparation of products (condition A)



An oven-dried test tube was charged with metal salt Ni(OTf)<sub>2</sub> (3.6 mg, 0.01 mmol, 10 mol %),  $L_2$ -PiPr<sub>2</sub> (6.3 mg, 0.01 mmol, 10 mol %) 3-Bromo-3-substituted oxindoles A1 (0.10 mmol),  $K_2CO_3$  (16.6 mg, 0.12 mmol, 1.2 equiv.) under N<sub>2</sub> atmosphere. Anhydrous DCE (1.0 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, the arenes B1 (0.15 mmol 1.5 equiv.) were added and the reaction was performed at 0 °C for 24 hours. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 3:1 to 1:1) to afford the corresponding products C1

#### 2.2 Typical procedure for preparation of products (condition B)



An oven-dried test tube was charged with metal salt Ni(acac)<sub>2</sub> (1.3 mg, 0.005 mmol, 5 mol %),  $L_2$ -PiEt<sub>2</sub> (3.5 mg, 0.006 mmol, 6 mol %) 3-Bromo-3-substituted oxindoles A1 (22.6 mg, 0.10 mmol, 1 equiv.), 4 Å molecular sieves (30 mg) under N<sub>2</sub> atmosphere. Anhydrous DCE (1.0 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, the arenes B23 (0.12 mmol 1.2 equiv.), *i*Pr<sub>2</sub>NEt (16.5 mg, 0.10 mmol, 1.0 equiv.) was added at 0 °C and the reaction was performed at 0 °C for 12 hours. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 4:1 to 2:1) to afford the corresponding products C27.

# 2.3 Typical procedure for preparation of products (condition C)



An oven-dried test tube was charged with metal salt Ni(OTf)<sub>2</sub> (3.6 mg, 0.01 mmol, 10 mol %),  $L_3$ -PiEt<sub>2</sub>Me (6.2 mg, 0.01 mmol, 10 mol %) 3-Bromo-3-substituted oxindoles A8 (0.10 mmol), K<sub>2</sub>CO<sub>3</sub> (16.6 mg, 0.12 mmol, 1.2 equiv.) under N<sub>2</sub> atmosphere. Anhydrous DCE (1.0 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, the arenes B1 (20.7 mg, 0.15 mmol 1.5 equiv.) were added and the reaction was performed at 0 °C for 24 hours. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 3:1 to 1:1) to afford the corresponding products C54.

# 3 Optimization of the reaction conditions

# 3.1 Optimization of the reaction conditions (condition A)

Table S1. Screening of metal salts



| entry <sup>a</sup>     | metal salts                                           | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|------------------------|-------------------------------------------------------|------------------------|---------------------|
| 1                      | Mg(OTf) <sub>2</sub>                                  | 34                     | 20                  |
| 2                      | Sc(OTf) <sub>3</sub>                                  | 41                     | 11                  |
| 3                      | Fe(OTf) <sub>2</sub>                                  | 52                     | 25                  |
| 4                      | Co(OTf) <sub>2</sub>                                  | 35                     | 37                  |
| 5                      | Ni(OTf) <sub>2</sub>                                  | 60                     | 85                  |
| 6                      | Cu(OTf) <sub>2</sub>                                  | 53                     | 38                  |
| 7                      | Zn(OTf) <sub>2</sub>                                  | 44                     | 67                  |
| 8                      | Y(OTf) <sub>3</sub>                                   | 10                     | 0                   |
| 9                      | La(OTf) <sub>3</sub>                                  | trace                  | 0                   |
| 10                     | Dy(OTf) <sub>3</sub>                                  | trace                  | 0                   |
| 11                     | NiCl <sub>2</sub>                                     | trace                  | 0                   |
| 12                     | Ni(BF <sub>4</sub> ) <sub>2</sub> .6H <sub>2</sub> O  | 21                     | 35                  |
| 13                     | Ni(ClO <sub>4</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 33                     | 18                  |
| 14                     | Ni(acac) <sub>2</sub>                                 | 78                     | 68                  |
| 15 <sup>d</sup>        | Ni(OTf) <sub>2</sub>                                  | 62                     | 80                  |
| 16 <sup>e</sup>        | Ni(OTf) <sub>2</sub>                                  | 66                     | 88                  |
| 17 <sup>f</sup>        | Ni(OTf) <sub>2</sub>                                  | 53                     | 89                  |
| 18 <sup>g</sup>        | Ni(OTf) <sub>2</sub>                                  | 60                     | 88                  |
| 19 <sup><i>h</i></sup> | Ni(OTf) <sub>2</sub>                                  | 66                     | 88                  |
| 20 <sup><i>i</i></sup> | Ni(OTf) <sub>2</sub>                                  | 9                      | 39                  |

<sup>a</sup>The reactions were performed with A1 (0.10 mmol), B1 (0.15 mmol), K<sub>2</sub>CO<sub>3</sub> (0.12 mmol) and metal salt/L<sub>3</sub>-PiEt<sub>2</sub>Me (1:1, 10 mol %)

in DCE (1.0 mL) at 20 °C for 24 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase. <sup>d</sup>The reaction was performed at 10 °C. <sup>e</sup>The reaction was performed at 0 °C. <sup>f</sup>The reaction was performed at -10 °C <sup>g</sup>0.12 mmol **B1** was added. <sup>h</sup>0.20 mmol **B1** was added. <sup>i</sup>4 Å molecular sieves (20.0 mg) was added.

# Table S2. Screening of ligands





 $\begin{array}{l} \textbf{L_3-PrMe_2: R = 2,6-Me_2C_6H_3 m = 1} \\ \textbf{L_3-PrEt_2Me: R = 2,6-Et_2-MeC_6H_2 m = 1} \end{array}$ 



 $L_2$ -PiPr<sub>2</sub>: R = 2,6-*i*Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> m = 0



R H - H R **L<sub>3</sub>-RaMe<sub>2</sub>:** R = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> m = 1 **L<sub>3</sub>-RaEt<sub>2</sub>Me**: R = 2,6-Et<sub>2</sub>-MeC<sub>6</sub>H<sub>2</sub> m = 1

entry<sup>a</sup> Ligands yield (%)<sup>b</sup> ee (%)<sup>c</sup> 1 L<sub>3</sub>-PrMe<sub>2</sub> 41 64 2 L<sub>3</sub>-PrEt<sub>2</sub>Me 73 45 3 L<sub>3</sub>-RaMe<sub>2</sub> 76 35 L<sub>3</sub>-RaEt<sub>2</sub>Me 71 40 4 5 L<sub>3</sub>-PiMe<sub>2</sub> 58 74 6 L<sub>3</sub>-PiEt<sub>2</sub> 70 90 7 L<sub>3</sub>-PiEt<sub>2</sub>Me 66 88 8 L<sub>3</sub>-PiPr<sub>2</sub> 86 84 9 L<sub>4</sub>-PiPr<sub>2</sub> 77 54 L<sub>2</sub>-PiMe<sub>2</sub> 78 91 10 L<sub>2</sub>-PiEt<sub>2</sub> 61 93 11 12 L<sub>2</sub>-PiPr<sub>2</sub> 80 94

<sup>a</sup>The reactions were performed with A1 (0.10 mmol), B1 (0.15 mmol),  $K_2CO_3$  (0.12 mmol) and Ni(OTf)<sub>2</sub>/Ligand (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 24 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

#### Table S3. Screening of base



| entry <sup>a</sup> | base                            | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|--------------------|---------------------------------|------------------------|---------------------|
| 1                  | Na <sub>2</sub> CO <sub>3</sub> | 27                     | 77                  |
| 2                  | K <sub>2</sub> CO <sub>3</sub>  | 80                     | 94                  |
| 3                  | Cs <sub>2</sub> CO <sub>3</sub> | 26                     | 34                  |
| 4                  | Et <sub>3</sub> N               | N.D.                   | -                   |
| 5                  | Pr <sub>3</sub> N               | N.D.                   | -                   |
| 6                  | DMAP                            | N.D.                   | -                   |

<sup>a</sup>The reactions were performed with **A1** (0.10 mmol), **B1** (0.15 mmol), base (0.12 mmol) and Ni(OTf)<sub>2</sub>/L<sub>2</sub>-**PiPr**<sub>2</sub> (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 24 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

#### Table S4. Solvent Screening.



| entry <sup>a</sup> | solvent           | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|--------------------|-------------------|------------------------|---------------------|
| 1                  | $CH_2CI_2$        | 78                     | 94                  |
| 2                  | CHCl₃             | 75                     | 86                  |
| 3                  | DCE               | 80                     | 94                  |
| 4                  | THF               | trace                  | 14                  |
| 5                  | Et <sub>2</sub> O | N.R.                   | -                   |
| 6                  | toluene           | N.R.                   | -                   |

<sup>a</sup>The reactions were performed with **A1** (0.10 mmol), **B1** (0.15 mmol), K<sub>2</sub>CO<sub>3</sub> (0.12 mmol) and Ni(OTf)<sub>2</sub>/**L**<sub>2</sub>-**PiPr**<sub>2</sub> (1:1, 10 mol %) in solvent (1.0 mL) at 0 °C for 24 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

# Table S5. Screening of the amount of base



| entry <sup>a</sup> | the amount of $K_2CO_3$ (x mmol) | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|--------------------|----------------------------------|------------------------|---------------------|
| 1                  | 0.10                             | 78                     | 91                  |
| 2                  | 0.12                             | 81                     | 94                  |
| 3                  | 0.15                             | 81                     | 91                  |
| 4                  | 0.20                             | 80                     | 89                  |
| 5                  | 0.30                             | 79                     | 86                  |

<sup>a</sup>The reactions were performed with **A1** (0.10 mmol), **B1** (0.15 mmol), K<sub>2</sub>CO<sub>3</sub> (x mmol) and Ni(OTf)<sub>2</sub>/L<sub>2</sub>-**PiPr**<sub>2</sub> (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 24 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

# 3.2 Optimization of the reaction conditions (condition B)

 Table S6.
 Screening of metal salts.



| entry <sup>a</sup>     | metal salts          | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|------------------------|----------------------|------------------------|---------------------|
| 1                      | Mg(OTf) <sub>2</sub> | 92                     | 0                   |
| 2                      | Sc(OTf) <sub>3</sub> | 98                     | 0                   |
| 3                      | Fe(OTf) <sub>2</sub> | 95                     | 0                   |
| 4                      | Co(OTf) <sub>2</sub> | 91                     | 12                  |
| 5                      | Ni(OTf) <sub>2</sub> | 96                     | 51                  |
| 6                      | Cu(OTf) <sub>2</sub> | 95                     | 23                  |
| 7                      | Zn(OTf) <sub>2</sub> | 92                     | 0                   |
| 8                      | Y(OTf) <sub>3</sub>  | 90                     | 0                   |
| 9                      | La(OTf) <sub>3</sub> | 99                     | 0                   |
| 10                     | Tb(OTf) <sub>3</sub> | 94                     | 0                   |
| 11 <sup><i>d</i></sup> | Ni(OTf) <sub>2</sub> | 96                     | 43                  |
| 12 <sup>e</sup>        | Ni(OTf) <sub>2</sub> | 96                     | 51                  |
| 13 <sup>f</sup>        | Ni(OTf) <sub>2</sub> | 55                     | 51                  |
| 14 <sup><i>g</i></sup> | Ni(OTf) <sub>2</sub> | 25                     | 43                  |

<sup>e</sup>The reactions were performed with **A1** (0.10 mmol), **B12** (0.12 mmol),  $K_2CO_3$  (0.12 mmol) and metal salt/L<sub>3</sub>-**PiEt<sub>2</sub>Me** (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 12 h. <sup>b</sup>Yield of the isolated product. <sup>o</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase. <sup>o</sup>The reaction was performed at 10 °C. <sup>e</sup>The reaction was performed at 0 °C. <sup>f</sup>The reaction was performed at -10 °C <sup>g</sup>0.12 mmol **B1** was added. <sup>o</sup>The reaction was performed at 10 °C. <sup>e</sup>The reaction was performed at -30 °C <sup>g</sup>The reaction was performed at -30 °C

Table S7. Screening of ligands.



łm.



**L<sub>3</sub>-PiEt<sub>2</sub>**: R = 2,6-Et<sub>2</sub>C<sub>6</sub>H<sub>3</sub> m = 1 L<sub>3</sub>-PiEt<sub>2</sub>Me: R = 2,6-Et<sub>2</sub>-4-MeC<sub>6</sub>H<sub>2</sub> m = 1 L<sub>3</sub>-PiEt<sub>2</sub>Br: R = 2,6-Et<sub>2</sub>-4-BrC<sub>6</sub>H<sub>2</sub> m = 1  $L_3$ -PiPr<sub>2</sub>: R = 2,6-*i*Pr<sub>2</sub> $C_6H_3$  m = 1  $L_4$ -PiPr<sub>2</sub>: R = 2,6-*i*Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> m = 2  $L_2$ -PiMe<sub>2</sub>: R = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> m = 0  $L_2$ -**PiEt**<sub>2</sub>: R = 2,6-Et<sub>2</sub> $C_6$ H<sub>3</sub> m = 0  $L_2$ -PiPr<sub>2</sub>: R = 2,6-*i*Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> m = 0



L<sub>3</sub>-RaMe<sub>2</sub>: R = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> m = 1 **L<sub>3</sub>-RaEt<sub>2</sub>Me**: R = 2,6-Et<sub>2</sub>-MeC<sub>6</sub>H<sub>2</sub> m = 1

| entry <sup>a</sup> | Ligands                              | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|--------------------|--------------------------------------|------------------------|---------------------|
| 1                  | L <sub>3</sub> -PrMe <sub>2</sub>    | 91                     | 33                  |
| 2                  | L₃-PrEt₂Me                           | 92                     | 43                  |
| 3                  | L <sub>3</sub> -RaMe <sub>2</sub>    | 96                     | 10                  |
| 4                  | L₃-RaEt₂Me                           | 95                     | 47                  |
| 5                  | L <sub>3</sub> -PiMe <sub>2</sub>    | 97                     | 53                  |
| 6                  | L <sub>3</sub> -PiMe <sub>3</sub>    | 92                     | 58                  |
| 7                  | L <sub>3</sub> -PiEt <sub>2</sub>    | 66                     | 54                  |
| 8                  | L <sub>3</sub> -PiEt <sub>2</sub> Me | 83                     | 51                  |
| 9                  | L <sub>3</sub> -PiEt <sub>2</sub> Br | 90                     | 20                  |
| 10                 | L <sub>3</sub> -PiPr <sub>2</sub>    | 98                     | 49                  |
| 11                 | L <sub>4</sub> -PiPr <sub>2</sub>    | 97                     | 29                  |
| 12                 | L <sub>2</sub> -PiPr <sub>2</sub>    | 95                     | 55                  |
| 13                 | L <sub>2</sub> -PiMe <sub>2</sub>    | 90                     | 41                  |
| 14                 | L <sub>2</sub> -PiEt <sub>2</sub>    | 92                     | 59                  |

"The reactions were performed with A1 (0.10 mmol), B12 (0.12 mmol), K2CO3 (0.12 mmol) and Ni(OTf)2/Ligand (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 24 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

Table S8. Screening of Counterion of Ni(II) salts.



| entry <sup>a</sup> | NiX <sub>2</sub>      | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|--------------------|-----------------------|------------------------|---------------------|
| 1                  | NiCl <sub>2</sub>     | 95                     | 0                   |
| 2                  | NiBr <sub>2</sub>     | 95                     | 0                   |
| 3                  | Ni(acac) <sub>2</sub> | 91                     | 80                  |

| 4 | Ni(OTf) <sub>2</sub>                                  | 92 | 59 |
|---|-------------------------------------------------------|----|----|
| 5 | Ni(BF <sub>4</sub> ) <sub>2</sub> .6H <sub>2</sub> O  | 99 | 30 |
| 6 | Ni(ClO <sub>4</sub> ) <sub>2</sub> .6H <sub>2</sub> O | 96 | 28 |
| 7 | NiC <sub>2</sub> O <sub>4</sub> ·6H <sub>2</sub> O    | 92 | 0  |

<sup>a</sup>The reactions were performed with **A1** (0.10 mmol), **B12** (0.12 mmol), K<sub>2</sub>CO<sub>3</sub> (0.12 mmol) and NiX<sub>2</sub>/L<sub>2</sub>-**PiEt**<sub>2</sub> (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 12 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

Table S9. Solvent Screening.



<sup>a</sup>The reactions were performed with A1 (0.10 mmol), B12 (0.12 mmol), K<sub>2</sub>CO<sub>3</sub> (0.12 mmol) and Ni(acac)<sub>2</sub>/L<sub>2</sub>-PiEt<sub>2</sub> (1:1, 10 mol %) in solvent (1.0 mL) at 0 °C for 12 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

#### Table S10. Screening of base



| entry <sup>a</sup> | base                            | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|--------------------|---------------------------------|------------------------|---------------------|
| 1                  | Na <sub>2</sub> CO <sub>3</sub> | 89                     | 36                  |
| 2                  | K <sub>2</sub> CO <sub>3</sub>  | 91                     | 80                  |
| 3                  | Cs <sub>2</sub> CO <sub>3</sub> | 90                     | 60                  |
| 4                  | Et <sub>3</sub> N               | 87                     | 86                  |
| 5                  | Pr <sub>3</sub> N               | 85                     | 84                  |
| 6                  | <i>i</i> Pr <sub>2</sub> NEt    | 86                     | 90                  |
| 7                  | DMAP                            | complex                | -                   |

<sup>a</sup>The reactions were performed with **A1** (0.10 mmol), **B1** (0.12mmol), base (0.12 mmol) and Ni(acac)<sub>2</sub>/L<sub>2</sub>-**PiEt**<sub>2</sub> (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 12 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.



| entry <sup>a</sup> | the amount of <i>i</i> Pr <sub>2</sub> NEt (x mmol) | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|--------------------|-----------------------------------------------------|------------------------|---------------------|
| 1                  | 0.10                                                | 90                     | 90                  |
| 2                  | 0.12                                                | 86                     | 90                  |
| 3                  | 0.15                                                | 82                     | 88                  |
| 4                  | 0.20                                                | 76                     | 82                  |

<sup>a</sup>The reactions were performed with **A1** (0.10 mmol), **B12** (0.12 mmol), *i*Pr<sub>2</sub>NEt (x mmol) and Ni(acac)<sub>2</sub>/L<sub>2</sub>-**PiEt**<sub>2</sub> (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 12 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

#### Table S12. Screening of the amount of catalyst



١

| entry <sup>a</sup> | the amount of catalyst (x mmol %) | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|--------------------|-----------------------------------|------------------------|---------------------|
| 1                  | 10                                | 90                     | 90                  |
| 2                  | 5                                 | 90                     | 87                  |
| 3                  | 2                                 | 72                     | 88                  |

<sup>a</sup>The reactions were performed with A1 (0.10 mmol), B12 (0.12 mmol), *i*Pr<sub>2</sub>NEt (0.12 mmol) and Ni(acac)<sub>2</sub>/L<sub>2</sub>-PiEt<sub>2</sub> (1:1, x mol %) in DCE (1.0 mL) at 0 °C for 12 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

# Table S13. Screening of the ratio of Ni(acac)<sub>2</sub> and L<sub>2</sub>-PiEt<sub>2</sub>

|                    | Br<br>NH<br>H<br>A1 | Ni(acac) <sub>2</sub> /L <sub>2</sub> -PiEt <sub>2</sub><br>(1:x, 5 mol %)<br>/Pr <sub>2</sub> NEt (1.0 equiv.)<br>DCE, 0 °C<br>B27 |                     |  |
|--------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| entry <sup>a</sup> | x                   | yield (%) <sup>b</sup>                                                                                                              | ee (%) <sup>c</sup> |  |
| 1                  | 0.8                 | 91                                                                                                                                  | 81                  |  |
| 2                  | 1.0                 | 90                                                                                                                                  | 87                  |  |
| 3                  | 1.2                 | 90                                                                                                                                  | 91                  |  |
| 3                  | 1.6                 | 85                                                                                                                                  | 91                  |  |

<sup>a</sup>The reactions were performed with **A1** (0.10 mmol), **B12** (0.12 mmol), *i*Pr<sub>2</sub>NEt (0.10 mmol) Ni(acac)<sub>2</sub> (0.005 mmol) and L<sub>2</sub>-PiEt<sub>2</sub> (0.005y mmol) in DCE (1.0 mL) at 0 °C for 12 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.



<sup>a</sup>The reactions were performed with A1 (0.10 mmol), B12 (0.12 mmol), *i*Pr<sub>2</sub>NEt (0.10 mmol), Ni(acac)<sub>2</sub> (0.005 mmol), L<sub>2</sub>-PiEt<sub>2</sub> (0.006 mmol) and additive in DCE (1.0 mL) at 0 °C for 12 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

# 3.3 Optimization of the reaction conditions (condition C)

Table S15. Screening of metal salts.



| entry <sup>a</sup> | metal salts          | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|--------------------|----------------------|------------------------|---------------------|
| 1                  | Mg(OTf) <sub>2</sub> | 68                     | 20                  |
| 2                  | Sc(OTf) <sub>3</sub> | 34                     | 0                   |
| 3                  | Fe(OTf) <sub>2</sub> | 62                     | 35                  |
| 4                  | Co(OTf) <sub>2</sub> | 88                     | 17                  |
| 5                  | Ni(OTf) <sub>2</sub> | 89                     | 70                  |
| 6                  | Cu(OTf) <sub>2</sub> | 68                     | 28                  |

<sup>a</sup>The reactions were performed with **A8**(0.10 mmol), **B1** (0.15 mmol), K<sub>2</sub>CO<sub>3</sub> (0.12 mmol) and metal salt/L<sub>2</sub>-**PiPr**<sub>2</sub> (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 24 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase.

Table S16. Screening of ligands.









 $L_3$ -PrEt<sub>2</sub>Me: R = 2,6-Et<sub>2</sub>-MeC<sub>6</sub>H<sub>2</sub> m = 1

 $\begin{array}{l} \textbf{L_3-PiMe_2: } R = 2,6-Me_2C_6H_3\ m = 1\\ \textbf{L_3-PiEt_2: } R = 2,6-Et_2C_6H_3\ m = 1\\ \textbf{L_3-PiEt_2Me: } R = 2,6-Et_2-4-MeC_6H_2\ m = 1\\ \textbf{L_3-PiPr_2: } R = 2,6-iPr_2C_6H_3\ m = 1\\ \textbf{L_2-PiMe_2: } R = 2,6-Me_2C_6H_3\ m = 0\\ \textbf{L_2-PiEt_2: } R = 2,6-Et_2C_6H_3\ m = 0\\ \textbf{L_2-PiEt_2: } R = 2,6-iPr_2C_6H_3\ m = 0\\ \textbf{L_2-PiEt_2: } R = 2,6-iPr_2C_6H_3\ m = 0\\ \end{array}$ 

L<sub>3</sub>-RaEt<sub>2</sub>Me: R = 2,6-Et<sub>2</sub>-MeC<sub>6</sub>H<sub>2</sub> m = 1

| entry <sup>a</sup>    | Ligands                              | yield (%) <sup>b</sup> | ee (%) <sup>c</sup> |
|-----------------------|--------------------------------------|------------------------|---------------------|
| 1                     | L <sub>2</sub> -PiMe <sub>2</sub>    | 91                     | 50                  |
| 2                     | .L <sub>2</sub> -PiEt <sub>2</sub>   | 76                     | 91                  |
| 3                     | L <sub>2</sub> -PiPr <sub>2</sub>    | 89                     | 70                  |
| 4 <sup><i>d</i></sup> | L <sub>2</sub> -PiPr <sub>2</sub>    | N.D.                   | -                   |
| 5                     | L <sub>3</sub> -PiMe <sub>2</sub>    | 58                     | 52                  |
| 6                     | L <sub>3</sub> -PiEt <sub>2</sub>    | 89                     | 90                  |
| 7                     | L <sub>3</sub> -PiEt <sub>2</sub> Me | 93                     | 93                  |
| 8                     | L <sub>3</sub> -PiPr <sub>2</sub>    | 78                     | 83                  |
| 9                     | L <sub>3</sub> -PrEt <sub>2</sub> Me | 91                     | 85                  |
| 10                    | L <sub>3</sub> -RaEt <sub>2</sub> Me | 88                     | 47                  |

<sup>a</sup>The reactions were performed with **A1** (0.10 mmol), **B12** (0.15mmol),  $K_2CO_3$  (0.12 mmol) and Ni(OTf)<sub>2</sub>/Ligand (1:1, 10 mol %) in DCE (1.0 mL) at 0 °C for 24 h. <sup>b</sup>Yield of the isolated product. <sup>c</sup>Determined by UPC<sup>2</sup> analysis on a chiral stationary phase. <sup>d</sup><sub>i</sub>Pr<sub>2</sub>NEt instead of K<sub>2</sub>CO<sub>3</sub>

# 4 Gram-scale synthesis of C1



An oven-dried test tube was charged with metal salt Ni(OTf)<sub>2</sub> (3.6 mg, 0.5 mmol, 10 mol %),  $L_2$ -PiPr<sub>2</sub> (6.3 mg, 0.5 mmol, 10 mol %) 3-Bromo-3-substituted oxindoles A1 (5.0 mmol), K<sub>2</sub>CO<sub>3</sub> (16.6 mg, 6.0 mmol, 1.2 equiv.) under N<sub>2</sub> atmosphere. Anhydrous DCE (15 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, the arenes B1 (1.0 mL 1.5 equiv.) was added and the reaction was performed at 0 °C for 24 hours. The reaction mixture was filtered (solvent: DCM), and concentrated under reduced pressure, the crude product was subjected to flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (6/1 to 1/1) to afford the corresponding product C1 (1.06 g, 75% yield, 94% ee).

# **5** Synthetic transformations

#### 5.1 Procedure for the synthesis of D1



Compound **C40**: An oven-dried test tube was charged with metal salt Ni(OTf)<sub>2</sub> (7.2 mg, 0.02 mmol, 10 mol %), **L<sub>3</sub>-PiEt<sub>2</sub>Me** (12.4 mg, 0.02 mmol, 10 mol %) 3-Bromo-3-substituted oxindoles **A16** (56.8 mg, 0.20 mmol, 1.0 equiv.), K<sub>2</sub>CO<sub>3</sub> (33.2 mg, 0.24 mmol, 1.2 equiv.) under N<sub>2</sub> atmosphere. Anhydrous DCE (2.0 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, the arenes **B1** (41.2  $\mu$ L, 0.30 mmol 1.5 equiv.) was added and the reaction was performed at 0 °C for 24 hours. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 4/1 to 2/1, v/v) to afford the corresponding product **C40** (45.1 mg, 66% yield, 97% ee).

Compound **D1**: An oven-dried test tube was charged with **C40** (43.1 mg, 0.13 mmol, 1.0 equiv.) and Cs<sub>2</sub>CO<sub>3</sub> (84.7 mg, 0.26 mmol, 2.0 equiv.) and iodomethane (39.9  $\mu$ L, 0.65 mmol, 5.0 equiv.). Anhydrous THF (1.0 mL) was added and the mixture was stirred at room temperature for 12 hours. Then the mixture was filtered and concentrated under reduced pressure. The residue was dissolved in dry THF under N<sub>2</sub> atmosphere. Anhydrous THF (1.0 mL) was added, the LiAlH<sub>4</sub> (1 M in THF, 0.39 mL, 0.39 mmol, 3.0 equiv.) was added in 0 °C and the mixture was stirred at 0 °C for 4 hours and then treated with several drops of NaSO<sub>4</sub>·10H<sub>2</sub>O until the evolution of H<sub>2</sub> ceased. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 19/1 to 9/1, v/v) to afford the corresponding product **D2** (35.9 mg, 87% yield, 97% ee). in 95% yield with 97% ee.

#### 5.2 Procedure for the synthesis of D2



Compound **C1**: An oven-dried test tube was charged with metal salt Ni(OTf)<sub>2</sub> (7.2 mg, 0.02 mmol, 10 mol %), **L<sub>2</sub>-PiPr**<sub>2</sub> (12.6 mg, 0.02 mmol, 10 mol %) 3-Bromo-3-substituted oxindoles **A1** (45.2 mg, 0.20 mmol, 1.0 equiv.), K<sub>2</sub>CO<sub>3</sub> (33.2 mg, 0.24 mmol, 1.2 equiv.) under N<sub>2</sub> atmosphere. Anhydrous DCE (2.0 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, the arenes **B1** (39.0  $\mu$ L, 0.30 mmol 1.5 equiv.) was added and the reaction was performed at 0 °C for 24 hours. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 3/1 to 1/1, v/v) to afford the corresponding product **C1** (46.1 mg, 80% yield, 94% ee).

Compound **D2**: An oven-dried test tube was charged with **C1** (28.8 mg, 0.10 mmol, 1.0 equiv.) and BBr<sub>3</sub> (1 M in DCM, 0.30 mL, 0.30 mmol, 3.0 equiv.). Anhydrous DCM (1.0 mL) was added and the mixture was stirred at room temperature for 12 hours. Then 0.2 mL

water was added in 0 °C to quench the reaction. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2/1 to 1/2, v/v) to afford the corresponding product **D2** (23.2 mg, 91% yield, 94% ee).

#### 5.3 Procedure for the synthesis of D4



Compound **C40**: An oven-dried test tube was charged with metal salt  $Zn(OTf)_2$  (10.8 mg, 0.03 mmol, 20 mol %), **L**<sub>3</sub>-**PiPr**<sub>2</sub> (18.0 mg, 0.03 mmol, 20 mol %), NaBAr <sup>F</sup><sub>4</sub> (13.3 mg, 0.015 mmol, 10 mol%) 3-Bromo-3-substituted oxindoles **A1** (33.9 mg, 0.15 mmol, 1.0 equiv.), K<sub>2</sub>CO<sub>3</sub> (24.9 mg, 0.18 mmol, 1.2 equiv.) under N<sub>2</sub> atmosphere. Anhydrous DCE (1.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, the arenes **B1** (57.3 µL, 0.30 mmol 3.0 equiv.) was added and the reaction was performed at 10 °C for 24 hours. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 4/1 to 2/1, v/v) to afford the corresponding product **C18** (34.2 mg, 79% yield, 76% ee).

Compound **D3**: An oven-dried test tube was charged with **C18** (22.8 mg, 0.079 mmol, 1.0 equiv.) and NaH (3.8 mg, 0.158 mmol, 2.0 equiv.) and iodomethane (19.6  $\mu$ L, 0.158 mmol, 2.0 equiv.). Anhydrous DMF (1.0 mL) was added and the mixture was stirred at room temperature for 12 hours. Then the reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 9/1 to 4/1, v/v) to afford the corresponding product **D3** (25.6 mg, 92% yield, 76% ee).

Compound **D4**: An oven-dried test tube was charged with **D3** (25.6 mg, 0.073 mmol, 1.0 equiv.) and BBr<sub>3</sub> (1 M in DCM, 0.22 mL, 0.22 mmol, 3.0 equiv.). Anhydrous DCM (1.0 mL) was added and the mixture was stirred at room temperature for 12 hours. Then 0.2 mL water was added in 0 °C to quench the reaction. The resulting mixture was extracted with DCM. The organic layer was washed with brine, dried over anhydrous Na<sub>2</sub>SO4, filtered and concentrated under reduced pressure. The crude product is directly used for the next step. An oven-dried test tube was charged with crude product,  $Cs_2CO_3$  (71.7 mg, 0.22 mmol, 3.0 equiv.) and  $CH_2I_2$  (17.7 µL, 0.22 mmol, 3.0 equiv.). Anhydrous DMF (1.0 mL) was added and the mixture was stirred at 80 °C for 12 hours. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 19/1 to 9/1, v/v) to afford the corresponding product **C4** (18.5 mg, 75% yield, 76% ee).

# **6** Control experiments



An oven-dried test tube was charged with corresponding catalyst,  $K_2CO_3$  (0.12 mmol, 1.2 equiv.) 3-Bromo-3-substituted oxindoles **A1** (0.10 mmol, 1 equiv.), under N<sub>2</sub> atmosphere. Anhydrous DCE (1.0 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, the arenes **B1** (0.30 mmol 3.0 equiv.), *i*Pr<sub>2</sub>NEt (0.10 mmol, 1.0 equiv.) was added at 0 °C and the reaction was performed at 0 °C for 12 hours. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 3:1 to 1:1) to afford the corresponding products **C1**.

An oven-dried test tube was charged with corresponding catalyst, 3-Bromo-3-substituted oxindoles **A1** (0.10 mmol, 1 equiv.), under N<sub>2</sub> atmosphere. Anhydrous DCE (1.0 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, the arenes **B23** (0.30 mmol 3.0 equiv.), *i*Pr<sub>2</sub>NEt (0.10 mmol, 1.0 equiv.) was added at 20 °C and the reaction was performed at 20 °C for 12 hours. The reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 4:1 to 2:1) to afford the corresponding products **C23**.

# 7 Comparison of nucleophilicity parameters for arenes and heteroarenes



The nucleophilicity of arenes and heteroarenes derived from Mayr's Database.

# 8 Unsuccessful substrate scopes



# 9 Bioactivity Study

# Cell Culture

Hepatocellular carcinoma cell line HCCLM3 (obtained from Procell) were cultured with DMEM (Hyclone, Utah) supplemented with 10 % (v/v) FBS (Gibco, New York), 1 % (v/v) penicillin/streptomycin (Beyotime, Shanghai). All cells were cultured in incubator with 5% CO<sub>2</sub> at 37 °C.

### Cell Viability Assay

Cells of logarithmic growth stage were inoculated in 96-well plate with density of 1.5\*104 per well. Overnight all cells which density at 80 %, were treated with 1 % DMSO (negative control) and other compounds with different concentrations at 37 °C for 24h. No FBS DMEM with 10 % (v/v) CCK-8 (Selleck, Houston) was added to each well and incubated for 1h at 37 °C. The absorbance was determined at 450 nm to calculated cell viability (%). IC<sub>50</sub> was detected using Graphpad Prism. Each experiment was repeated three times.

# Synthetic compounds inhibit hepatocellular carcinoma viability screening

To study the anti-hepatocellular carcinoma (HCCLM3) of synthetic compounds. We measured the HCCLM3 cell viability after exposed to each compound with 25  $\mu$ M for 24h. The results showed that **C38** and **C55** had strong inhibitory effect on the proliferation and viability of HCCLM3 and the IC<sub>50</sub> concentrations of **C38** and **C55** treated HCCLM3 cells for 24 h are 11.63  $\mu$ M and 11.16  $\mu$ M respectively.







# 10 Determination of absolute configuration of products

# 10.1 Determination of absolute configuration of compound C27

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of compound **C27** in ethyl acetate (ca. 0.1 mL) and petroleum ether (0.3 mL) at r.t.. The colourless crystal in block-shape, with approximate dimensions of 0.234 × 0.287 × 0.376 mm<sup>3</sup>, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2) K equipped with micro-focus Cu radiation source ( $K_{\alpha} = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package<sup>3</sup>. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested<sup>4</sup>.





Crystallographic Data for  $C_{17}H_{18}N_2O$ 

| Formula                                           | C <sub>17</sub> H <sub>18</sub> N <sub>2</sub> O |
|---------------------------------------------------|--------------------------------------------------|
| Formula mass (amu)                                | 266.33                                           |
| Space group                                       | P212121                                          |
| <i>a</i> (Å)                                      | 6.4469 (2)                                       |
| <i>b</i> (Å)                                      | 9.2442 (3)                                       |
| <i>c</i> (Å)                                      | 24.0016 (7)                                      |
| $\alpha$ (deg)                                    | 90                                               |
| $\beta$ (deg)                                     | 90                                               |
| γ (deg)                                           | 90                                               |
| $V(\text{\AA}^3)$                                 | 1430.41 (8)                                      |
| Ζ                                                 | 4                                                |
| $\lambda$ (Å)                                     | 1.54178                                          |
| <i>T</i> (K)                                      | 173                                              |
| $\rho_{\text{calcd}}$ (g cm <sup>-3</sup> )       | 1.237                                            |
| $\mu (\mathrm{mm}^{-1})$                          | 0.612                                            |
| Transmission factors                              | 0.859–0.933                                      |
| $2\theta_{\max}(\text{deg})$                      | 68.228                                           |
| No. of unique data, including $F_0^2 < 0$         | 2611                                             |
| No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$ | 2593                                             |
| No. of variables                                  | 189                                              |
| $R(F)$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$   | 0.0237                                           |
| $R_{\rm w}(F_{\rm o}^2)^{b}$                      | 0.0640                                           |
| Goodness of fit                                   | 1.106                                            |

 $^{a} R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$ 

<sup>b</sup>  $R_{\rm w}(F_{\rm o}^2) = \left[\sum [w(F_{\rm o}^2 - F_{\rm c}^2)^2] / \sum wF_{\rm o}^4\right]^{1/2}; w^{-1} = [\sigma^2(F_{\rm o}^2) + (Ap)^2 + Bp], \text{ where } p = \left[\max(F_{\rm o}^2, 0) + 2F_{\rm c}^2\right] / 3.$ 

# 10.2 Futher transformation of compound C23'



Compound **C23'**: An oven-dried test tube was charged with **C23** (18.0 mg, 0.071 mmol, 1.0 equiv.) and NaH (8.5 mg, 0.335 mmol, 5.0 equiv.) and BnBr (42.2  $\mu$ L, 0.335 mmol, 5.0 equiv.). Anhydrous THF (1.0 mL) was added and the mixture was stirred at room temperature for 12 hours. Then the reaction mixture was directly subjected to flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 9/1 to 4/1, v/v), the product was recrystallized with dichloromethane and petroleum ether to afford the corresponding product **C23'** (24.6 mg, 80% yield, 95% ee).

#### 10.3 Determination of absolute configuration of compound C23'

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of compound **C23'** in dichloromethane (ca. 0.1 mL) and petroleum ether (0.3 mL) at r.t.. The colourless crystal in block-shape, with approximate dimensions of 0.216 × 0.219 × 0.266 mm<sup>3</sup>, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 173(2) K equipped with micro-focus Cu radiation source ( $K_{\alpha} = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package<sup>3</sup>. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested<sup>4</sup>.





Crystallographic Data for  $C_{30}H_{27}NO_2$ 

| Formula                                                | C <sub>30</sub> H <sub>27</sub> NO <sub>2</sub> |
|--------------------------------------------------------|-------------------------------------------------|
| Formula mass (amu)                                     | 433.52                                          |
| Space group                                            | P212121                                         |
| a (Å)                                                  | 9.7721(2)                                       |
| <i>b</i> (Å)                                           | 12.5443(2)                                      |
| c (Å)                                                  | 19.4584(3)                                      |
| α (deg)                                                | 90                                              |
| $\beta$ (deg)                                          | 90                                              |
| γ (deg)                                                | 90                                              |
| $V(Å^3)$                                               | 2385.41(7)                                      |
| Ζ                                                      | 4                                               |
| λ(Å)                                                   | 1.54178                                         |
| <i>T</i> (K)                                           | 173                                             |
| $\rho_{\text{calcd}}$ (g cm <sup>-3</sup> )            | 1.207                                           |
| $\mu$ (mm <sup>-1</sup> )                              | 0.586                                           |
| Transmission factors                                   | 0.784–0.955                                     |
| $2\theta_{\max}(\deg)$                                 | 68.312                                          |
| No. of unique data, including $F_0^2 < 0$              | 4326                                            |
| No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$      | 4142                                            |
| No. of variables                                       | 301                                             |
| $R(F) \text{ for } F_{o}^{2} > 2\sigma(F_{o}^{2})^{a}$ | 0.0290                                          |
| $R_{\rm w}(F_{ m o}{}^2)^{b}$                          | 0.0705                                          |
| Goodness of fit                                        | 1.038                                           |

 $^{a} R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$ 

<sup>b</sup>  $R_{\rm w}(F_{\rm o}^2) = \left[\sum [w(F_{\rm o}^2 - F_{\rm c}^2)^2] / \sum wF_{\rm o}^4\right]^{1/2}; w^{-1} = [\sigma^2(F_{\rm o}^2) + (Ap)^2 + Bp], \text{ where } p = \left[\max(F_{\rm o}^2, 0) + 2F_{\rm c}^2\right] / 3.$ 

# 11 Characterization of the products

# (S)-3-(2,4-dimethoxyphenyl)-3-methylindolin-2-one (C1)



White solid; 22.6 mg, 80% yield, 94% ee; melting point: 85–87 °C;  $[\alpha]_D^{16.6} = -72.8$  (*c* = 0.12 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 4.67 min, t<sub>R</sub> (minor) = 8.83 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.56 (s, 1H), 7.55 – 7.43 (d, *J* = 8.5 Hz 1H), 7.17 – 7.05 (m, 1H), 6.94 – 6.78 (m, 2H), 6.62 – 6.52 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.38 – 6.33 (d, *J* = 2.5 Hz, 1H), 3.79 (s, 3H), 3.44 (s, 3H), 1.71 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 183.8, 160.7, 158.2, 140.7, 136.8, 128.3, 127.3, 122.5, 122.2, 122.0, 109.3, 104.6, 100.1, 55.7, 55.5, 50.1, 23.93.

**IR**: 2932, 1613, 1504, 1470, 1300, 1209, 1142, 1031, 756, 643 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{17}NO_3Na^+$  306.1101; found 306.1103.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 4.693          | 7334382 | 50.41  |
| 2 | 8.500          | 7215636 | 49.59  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 4.670          | 6829892 | 96.85  |
| 2 | 8.834          | 222370  | 3.15   |

## (S)-3-(2,4-diethoxyphenyl)-3-methylindolin-2-one (C2)



White solid; 26.7 mg, 86% yield, 90% ee; melting point: 131–133 °C;  $[\alpha]_D^{15.2} = -70.1$  (*c* = 0.24 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 4.49 min, t<sub>R</sub> (minor) = 6.77 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.93 (s, 1H), 7.53 – 7.40 (d, *J* = 8.6 Hz, 1H), 7.17 – 7.01 (m, 1H), 6.95 – 6.85 (m, 2H), 6.85 – 6.73 (m, 1H), 6.61 – 6.49 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.37 – 6.28 (d, *J* = 2.5 Hz, 1H), 4.01 (q, *J* = 7.0 Hz, 2H), 3.78 (dq, *J* = 8.9, 7.0 Hz, 1H), 3.56 (dq, *J* = 8.9, 7.0 Hz, 1H), 1.71 (s,

3H), 1.39 (t, J = 7.0 Hz, 3H), 0.94 (t, J = 7.0 Hz, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 184.1, 159.9, 157.3, 141.1, 137.1, 128.2, 127.2, 122.4, 122.1, 121.3, 109.4, 104.6, 100.3, 63.7, 63.6, 50.2, 23.8, 15.0, 13.8.

IR: 2977, 2926, 1613, 1583, 1263, 1188, 1141, 754, 650, 593 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>21</sub>NO<sub>3</sub>Na<sup>+</sup> 334.1414; found 334.1414.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 4.469          | 3749773 | 49.75  |
| 2 | 6.723          | 3787472 | 50.25  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 4.491          | 509538  | 5.23   |
| 2 | 6.769          | 9239624 | 94.77  |

## (S)-3-(2,4-diisopropoxyphenyl)-3-methylindolin-2-one (C3)



White solid; 30.5 mg, 90% yield, 88% ee; melting point: 150–152 °C;  $[\alpha]_D^{16.6} = -23.6$  (*c* = 0.31 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL OX-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 7.59 min, t<sub>R</sub> (minor) = 12.45 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (s, 1H), 7.56 – 7.30 (d, *J* = 8.6 Hz, 1H), 7.17 – 7.06 (m, 1H), 6.98 – 6.83 (m, 2H), 6.84 – 6.73 (m, 1H), 6.57 – 6.42 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, *J* = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.34 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.24 (d, J = 2.4 Hz, 1H), 6.35 – 6.34 (d, J = 2.4 Hz, 1H), 6.35 – 6.34 (d, J = 2.4 Hz, 1H), 6.35

1H), 4.59 – 4.40 (m, 1H), 4.36 – 4.23 (m, 1H), 1.69 (s, 3H), 1.32 (t, *J* = 6.4 Hz, 6H), 1.10 (d, *J* = 6.0 Hz, 3H), 0.59 (d, *J* = 6.0 Hz, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 183.9, 158.8, 155.8, 141.2, 137.4, 128.4, 127.1, 122.5, 122.0, 121.6, 109.2, 105.4, 101.8, 70.0, 69.2, 50.2, 23.7, 22.4, 22.2, 21.4, 20.6.

**IR**: 2976, 1613, 1611, 1581, 1191, 1132, 1101, 952, 754, 652 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>21</sub>H<sub>25</sub>NO<sub>3</sub>Na<sup>+</sup> 362.1727; found 362.1727.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 7.631          | 5804403 | 50.74  |
| 2 | 12.346         | 5634463 | 49.26  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 7.592          | 5655425 | 93.96  |
| 2 | 12.447         | 363808  | 6.04   |

## (S)-3-(2,4-dimethoxy-5-methylphenyl)-3-methylindolin-2-one (C4)



Colorless oil; 26.8 mg, 90% yield, 98% ee;  $[\alpha]_D^{14.6} = -70.3$  (c = 0.16 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 4.34 min, t<sub>R</sub> (minor) = 9.71 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.73 (s, 1H), 7.30 (s, 1H), 7.17 – 7.07 (m, 1H), 6.93 – 6.81 (m, 3H), 6.35

(s, 1H), 3.78 (s, 3H), 3.43 (s, 3H), 2.22 (s, 3H), 1.71 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 184.2, 158.1, 156.3, 140.8, 137.1, 129.5, 127.2, 122.6, 122.2, 121.1,

118.6, 109.4, 97.0, 56.2, 55.6, 50.0, 23.8, 15.9.

**IR**: 2931, 1614, 1512, 1581, 1469,1310, 1209, 869, 755, 677 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>19</sub>NO<sub>3</sub>Na<sup>+</sup> 320.1257; found 320.1260.



|   | <b>Retention Time</b> | Area    | % Area |
|---|-----------------------|---------|--------|
| 1 | 4.441                 | 7830543 | 50.19  |
| 2 | 9.345                 | 7772395 | 49.81  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 4.343          | 23584971 | 99.16  |
| 2 | 9.705          | 198825   | 0.84   |

# (S)-3-(5-ethyl-2,4-dimethoxyphenyl)-3-methylindolin-2-one (C5)



White soild; 28.9 mg, 93% yield, 99% ee; melting point: 132–135 °C;  $[\alpha]_D^{14.9} = -66.2$  (*c* = 0.23 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL AD-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 5.07 min, t<sub>R</sub> (minor) = 12.11 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.79 (s, 1H), 7.32 (s, 1H), 7.16 – 7.08 (m, 1H), 6.93 – 6.81 (m, 3H), 6.35 (s, 1H), 3.78 (s, 3H), 3.43 (s, 3H), 2.64 (dq, J = 7.5, 2.0 Hz, 2H), 1.72 (s, 3H), 1.23 (t, J = 7.5 Hz, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 184.2, 158.1, 156.3, 140.8, 137.1, 129.5, 127.2, 122.6, 122.2, 121.1, 118.6, 109.4, 97.0, 56.2, 55.6, 50.0, 23.8, 15.9.

**IR**: 2965, 1615, 1504, 1308, 1207, 1136, 1107, 1034, 754, 676 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>21</sub>NO<sub>3</sub>Na<sup>+</sup> 334.1414; found 334.1415.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 5.167          | 3968763 | 50.79  |
| 2 | 11.659         | 3845984 | 49.21  |



|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 5.069                 | 27227599 | 99.05  |
| 2 | 12.105                | 261493   | 0.95   |

## (S)-3-(5-isopropyl-2,4-dimethoxyphenyl)-3-methylindolin-2-one (C6)



White soild; 29.3 mg, 90% yield, 99% ee; melting point: 167–169 °C;  $[\alpha]_D^{14.3} = -67.4$  (*c* = 0.29 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL AD-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 3.38 min, t<sub>R</sub> (minor) = 9.05 min.

 $^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCI}_{3}) \delta 8.79 \text{ (s, 1H)}, 7.37 \text{ (s, 1H)}, 7.16 - 7.08 \text{ (m, 1H)}, 6.93 - 6.79 \text{ (m, 3H)}, 6.93 - 6.79 \text{ (m, 3H)}, 6.93 - 6.79 \text{ (m, 3H)}, 7.16 - 7.08 \text{ (m, 1H)}, 7.16 - 7.08 \text{ (m, 2H)}, 7.16 - 7.16 \text{ ($ 

6.35 (s, 1H), 3.78 (s, 3H), 3.44 (s, 3H), 3.28 (m, 1H), 1.73 (s, 3H), 1.27 (dd, *J* = 6.9, 5.1 Hz, 6H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 184.3, 157.3, 155.9, 140.8, 137.0, 129.0, 127.2, 125.0, 122.6, 122.2, 121.2, 109.4, 97.1, 56.1, 55.7, 50.2, 26.9, 23.8, 23.1, 23.0.

**IR**: 2960, 1615, 1504, 1469, 1206, 1156, 1123, 1034, 750, 674 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>20</sub>H<sub>23</sub>NO<sub>3</sub>Na<sup>+</sup> 348.1570; found 348.1573.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.424          | 4994348 | 50.37  |
| 2 | 8.765          | 4920281 | 49.63  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 3.377          | 26726428 | 99.72  |
| 2 | 9.050          | 75418    | 0.28   |

# (S)-3-(5-benzyl-2,4-dimethoxyphenyl)-3-methylindolin-2-one (C7)



Colorless oil; 34.7 mg, 93% yield, 99% ee;  $[\alpha]_D^{14.6} = -65.4$  (c = 0.29 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 8.30 min, t<sub>R</sub> (minor) = 13.84 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.90 (s, 1H), 7.34 – 7.15 (m, 5H), 7.13 – 7.07 (m, 1H), 6.92 – 6.83 (m,

1H), 6.82 - 6.76 (m,2H), 6.37 (s, 1H), 3.96 (m, 2H), 3.75 (s, 3H), 3.44 (s, 3H), 1.63 (s, 3H).

**C7** <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 184.2, 157.9, 156.7, 141.5, 140.8, 136.9, 129.4, 128.9, 128.4, 127.2, 125.9, 122.5, 122.2, 121.5, 121.3, 109.4, 97.1, 56.1, 55.7, 50.0, 35.7, 23.7.

 $\textbf{IR}: 2929,\,1614,\,1505,\,1468,\,1207,\,1132,\,1104,\,1032,\,736,\,701,\,67~cm^{-1}.$ 

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>23</sub>NO<sub>3</sub>Na<sup>+</sup> 396.1570; found 396.1564.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 8.196          | 8736500 | 50.29  |
| 2 | 13.058         | 8636538 | 49.71  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 8.299          | 12615482 | 99.44  |
| 2 | 13.839         | 70835    | 0.56   |

# (S)-3-(6-methoxybenzo[d][1,3]dioxol-5-yl)-3-methylindolin-2-one (C8)



Colorless oil; 33.6 mg, 90% yield, 88% ee;  $[\alpha]_{D}^{14.3} = -77.1$  (c = 0.28 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 5.76 min, t<sub>R</sub> (minor) = 11.56 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.97 (s, 1H), 7.18 – 7.08 (m, 2H), 6.95 – 6.87 (m, 2H), 6.88 – 6.79 (m,

1H), 6.44 (s, 1H), 5.94 (m, 2H), 3.35 (s, 3H), 1.68 (s, 3H).

<sup>C8</sup> <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 183.95, 152.5, 147.7, 141.8, 140.8, 136.7, 127.4, 122.4, 122.3, 109.5, 101.5, 96.7, 56.8, 50.3, 24.1

107.9, 101.5, 96.7, 56.8, 50.3, 24.1.

**IR**: 3209, 1618, 1504, 1278, 1195, 1165, 1117, 870, 756, 662 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{15}NO_4Na^+$  320.0893; found 320.0895.



|   | <b>Retention Time</b> | Area    | % Area |
|---|-----------------------|---------|--------|
| 1 | 5.740                 | 6547126 | 50.11  |
| 2 | 11.146                | 6519579 | 49.89  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 5.759          | 9498867 | 93.83  |
| 2 | 11.564         | 624503  | 6.17   |

# (S)-3-methyl-3-(2,4,6-trimethoxyphenyl)indolin-2-one (C9)



White soild; 29.4 mg, 94% yield, 96% ee; melting point: 148–151 °C;  $[\alpha]_D^{13.1} = -184.7$  (*c* = 0.18 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 5.16 min, t<sub>R</sub> (minor) = 13.68 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.28 (s, 1H), 7.16 – 7.06 (m, 2H), 6.94 – 6.83 (m, 2H), 6.14 (s, 2H), 3.77 (s, 3H), 3.69 (s, 6H), 1.88 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 185.0, 160.4, 140.1, 137.6, 127.1, 123.2, 122.2, 110.0, 109.1, 92.7, 56.0,

55.4, 50.9, 25.9.

IR: 2934, 1703, 1607, 1585, 1469, 1413, 1326, 1227, 1053, 814, 755 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>19</sub>NO<sub>4</sub>Na<sup>+</sup> 336.1206; found 336.1206.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.037          | 14506559 | 50.72  |
| 2 | 12.859         | 14093880 | 49.28  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 5.162          | 5508266 | 97.91  |
| 2 | 13.684         | 117820  | 2.09   |

## (S)-3-(5-hydroxy-2,4-dimethoxyphenyl)-3-methylindolin-2-one (C10)



Colorless oil; 17.9 mg, 60% yield, 83% ee;  $[\alpha] D^{12.7} = -50.3$  (c = 0.12 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AD-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 7.34 min, t<sub>R</sub> (minor) = 10.51 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.50 (s, 1H), 7.25 - 7.14 (m, 1H), 7.09 - 6.89 (m, 3H), 6.64 - 6.59 (d, J

= 2.7 Hz, 1H), 6.49 – 6.43 (d, *J* = 2.8 Hz, 1H), 6.22 – 6.17 (m, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 1.79 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 183.3, 153.1, 148.0, 140.6, 138.2, 135.4, 127.8, 126.1, 123.6, 122.6, 109.9, 104.5, 98.7, 56.2, 56.0, 51.3, 23.5.

**IR**: 2924, 2358, 1712, 1618, 1471, 1261, 1231, 1202, 1155, 1047 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M - H]<sup>-</sup> calcd for C<sub>17</sub>H<sub>17</sub>NO<sub>4</sub>Na<sup>+</sup> 299.1085; found 299.1088.



0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 Minutes

|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 7.338          | 7775904 | 91.78  |
| 2 | 10.506         | 696338  | 8.22   |
# (S)-3-(2,4-dimethoxy-6-methylphenyl)-3-methylindolin-2-one (C11)

## (S)-3-(2,6-dimethoxy-4-methylphenyl)-3-methylindolin-2-one (C11')



White soild; 25.9 mg, 87% yield, 93% ee<sub>1</sub>, 99% ee<sub>2</sub>; melting point: 135–137 °C;  $[\alpha]p^{12.7} = -121.0$  (*c* = 0.19 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major-major) = 5.16 min, t<sub>R</sub> (major-minor) = 15.37 min, t<sub>R</sub> (minor-major) = 4.41 min, t<sub>R</sub> (minor-minor) = 12.12 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) **(C11)** δ 8.85 (s, 1H), 7.17 – 7.10 (m, 1H), 7.06 – 6.98 (m, 1H), 6.95 – 6.88 (m, 2H), 6.36 – 6.27 (m, 2H), 3.76 (s, 6H), 3.54 (s, 3H), 1.89

(s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) **(C11)** δ 185.5, 159.2, 140.1, 139.8, 137.4, 127.3, 123.2, 122.8, 122.3, 109.6, 107.1, 98.3, 55.8, 55.3, 55.3, 53.0, 27.3.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) **(C11')** *δ* 8.77 (s, 1H), 7.09 – 7.06 (m, 2H), 6.87 – 6.83 (m, 2H), 6.39 (s, 2H), 3.69 (s, 6H), 2.29 (s, 3H), 1.90 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) **(C11')** *δ* 185.4, 140.3, 138.9, 137.3, 127.1, 123.2, 122.8, 122.3, 114.5, 110.6, 109.3, 56.0, 51.1, 25.9, 21.8.

**IR**: 3197, 2925, 1712, 1606, 1579, 1468, 1320, 1234, 1154, 755 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>19</sub>NO<sub>3</sub>Na<sup>+</sup> 320.1257; found 320.1259.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 4.361          | 1708662 | 9.26   |
| 2 | 5.094          | 7551145 | 40.94  |
| 3 | 11.767         | 1682350 | 9.12   |
| 4 | 14.412         | 7502567 | 40.68  |



|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 4.410                 | 3162620  | 21.70  |
| 2 | 5.161                 | 11008270 | 75.54  |
| 3 | 12.120                | 15685    | 0.11   |
| 4 | 15.372                | 386837   | 2.65   |

# (R)-3-(3,4-dimethoxyphenyl)-3-methylindolin-2-one (C12)



Colorless oil; 22.4 mg, 79% yield, 77% ee;  $[\alpha]_{D}^{18.6} = 118.6$  (c = 0.11 in CH<sub>2</sub>Cl<sub>2</sub>). UPCC DAICEL CHIRALCEL OX-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 17.96 min, t<sub>R</sub> (minor) = 10.47 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.51 (s, 1H), 7.29 – 7.20 (m, 1H), 7.19 – 7.12 (m, 1H), 7.12 – 7.02 (m, 1H), 7.00 – 6.94 (m, 1H), 6.89 – 6.76 (m, 3H), 3.84 (s, 3H), 3.81 (s, 3H), 1.80 (s, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl<sub>3</sub> )  $\delta$  181.8, 148.7, 148.2, 140.1, 135.3, 132.8, 127.9, 124.3, 122.6, 118.8, 110.8, 110.0, 109.9, 55.7, 55.7, 52.0, 23.6.

**IR**: 3291, 2931, 2561, 1710, 1618, 1515, 1470, 1260, 1026, 751 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>NO<sub>3</sub>Na<sup>+</sup> 306.1101; found 306.1099.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 10.453         | 19230932 | 49.96  |
| 2 | 18.644         | 19265111 | 50.04  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 10.472         | 5196158  | 11.52  |
| 2 | 17.957         | 39926279 | 88.48  |

#### (R)-3-(3,4-diethoxyphenyl)-3-methylindolin-2-one (C13)



White solid; 22.1 mg, 71% yield, 78% ee; melting point: 69–75 °C;  $[\alpha]_D^{12.4} = 65.6$  (*c* = 0.43 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 7.21 min, t<sub>R</sub> (minor) = 5.50 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (s, 1H), 7.26 – 7.20 (m, 1H), 7.16 – 7.13 (m, 1H), 7.08 – 7.03 (m, 1H), 6.98 – 6.94 (m, 1H), 6.87 – 6.77 (m, 3H), 4.08 – 3.98 (m, 5H), 1.78 (s, 3H), 1.44 – 1.35 (m, 7H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 182.0, 148.4, 148.0, 140.1, 135.4, 127.8, 124.2, 122.5, 119.0, 113.0, 112.6, 109.9, 64.5, 64.3, 52.0, 23.6, 14.6, 14.6.

**IR**: 3182, 2979, 1361, 1710, 1619, 1513, 1473, 1144, 1042, 751 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + H]^+$  calcd for  $C_{19}H_{21}N_2ONa^+$  312.1594; found 312.1595.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.383          | 16605069 | 50.07  |
| 2 | 7.222          | 16559768 | 49.93  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.500          | 1322804  | 11.10  |
| 2 | 7.211          | 10593774 | 88.90  |

#### (S)-3-(2-methoxy-4-(methylthio)phenyl)-3-methylindolin-2-one (C14)



White solid; 20.3 mg, 68% yield, 50% ee; melting point: 115–120 °C;  $[\alpha]_D^{19.1} = -23.0$  (*c* = 0.28 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL OD-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 9.95 min, t<sub>R</sub> (minor) = 6.79 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.59 (s, 1H), 7.55 – 7.46 ((d, *J* = 8.1 Hz, 1H), 7.17 – 7.11 (m, 1H), 6.97 – 6.87 (m, 3H), 6.83 – 6.80 (m, 1H), 6.71 – 6.69 (m, 1H), 3.45 (s, 3H), 2.47 (s, 3H), 1.72 (s, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl\_3)  $\delta$  183.1, 157.0, 140.4, 139.1, 136.0, 127.8, 127.1, 126.4, 122.2, 122.0,

118.5, 110.6, 109.1, 55.4, 49.9, 23.4, 15.8.

**IR**: 3214, 2360, 1709 1618, 1598, 1470, 1392, 1111, 1029, 769 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{17}N_2OSNa^+$  322.0872; found 322.0872.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 6.791          | 8028886  | 24.92  |
| 2 | 9.946          | 24194081 | 75.08  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 6.791          | 8028886  | 24.92  |
| 2 | 9.946          | 24194081 | 75.08  |

# (S)-3-(furan-2-yl)-3-methylindolin-2-one (C15)



Colorless oil; 10.0 mg, 47% yield, 95% ee;  $[\alpha]_D^{18.4} = 12.5$  (c = 0.11 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 95/5, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 3.59 min, t<sub>R</sub> (minor) = 4.09 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.82 (s, 1H), 7.37 – 7.32 (m, 1H), 7.29 – 7.20 (m, 2H), 7.09 – 7.01 (m, 1H),

7.00 – 6.93 (m, 1H), 6.34 – 6.27 (m, 1H), 6.25 – 6.19 (m, 1H), 1.79 (s, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl\_3)  $\delta$  179.6, 153.1, 142.7, 140.2, 133.0, 128.5, 124.0, 122.8, 110.2, 106.7, 49.5,

22.3.

**IR**: 3250, 2561, 1713, 1620, 1472, 1261, 1224, 1013, 751 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{13}H_{11}NO_2Na^+$  236.0682; found 236.0680.



|   | <b>Retention Time</b> | Area    | % Area |
|---|-----------------------|---------|--------|
| 1 | 3.629                 | 2872568 | 50.02  |
| 2 | 4.128                 | 2870055 | 49.98  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 3.588          | 12916335 | 74.84  |
| 2 | 4.093          | 4341181  | 25.16  |

# (S)-3-methyl-3-(5-methylfuran-2-yl)indolin-2-one (C16)



White solid; 15.9 mg, 70% yield, 95% ee; melting point: 108–110 °C;  $[\alpha]_D^{12.4} = 52.4$  (*c* = 0.21 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL OD-3, CO<sub>2</sub>/MeOH = 90/10 flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 3.39 min, t<sub>R</sub> (minor) = 3.02 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.60 (s, 1H), 7.26 – 7.19 (m, 2H), 7.09 – 7.00 (m, 1H), 6.99 – 6.92 (d, J = 7.7 Hz, 1H), 6.12 – 6.06 (d, J = 3.1 Hz, 1H), 5.90 – 5.85 (m, 1H), 2.24 – 2.19 (m, 3H), 1.77 – 1.73 (m, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl\_3)  $\delta$  179.9, 152.6, 151.3, 140.2, 133.5, 128.4, 124.2, 122.8, 110.2, 107.6, 106.3,

49.5, 22.4, 13.8.

**IR**: 3219, 2360, 1619, 1471, 1326, 1222, 1145, 1021, 752, 684 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{14}H_{13}NO_2Na^+$  250.0838; found 250.0836.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 2.997          | 15224388 | 50.08  |
| 2 | 3.360          | 15177064 | 49.92  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.022          | 113504  | 2.47   |
| 2 | 3.385          | 4477880 | 97.53  |

# (S)-3-(5-ethylfuran-2-yl)-3-methylindolin-2-one (C17)



Colorless oil; 17.4 mg, 72% yield, 95% ee;  $[\alpha]_{D}^{18.0} = 42.4$  (c = 0.24 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10 flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 3.29 min, t<sub>R</sub> (minor) = 4.08 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.30 (s, 1H), 7.25 – 7.20 (m, 2H), 7.08 – 7.00 (m, 1H), 6.96 – 6.91 (m, 1H), 6.10 – 6.04 (d, J = 3.1 Hz, 1H), 5.91 – 5.85 (m, 1H), 2.57 (q, J = 7.5 Hz, 1H), 1.75 (s, 3H), 1.16 (t, J = 7.5

# Hz, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  179.6, 158.3, 151.1, 140.1, 133.5, 128.4, 124.2, 122.9, 110.1, 107.3, 104.6,

49.5, 22.5, 21.5, 12.0.

**IR**: 3217, 2361, 1715, 1472, 1261, 1191, 1015, 751 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{15}H_{15}NO_2Na^+$  264.0995; found 264.0993.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 3.289          | 10012601 | 97.75  |
| 2 | 4.077          | 230082   | 2.25   |

# (S)-3-(4,5-dimethylfuran-2-yl)-3-methylindolin-2-one (C18)



Colorless oil; 20.0 mg, 83% yield, 86% ee;  $[\alpha]_{D}^{19.0} = -36.8$  (c = 0.38 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL ID-3, CO<sub>2</sub>/MeOH = 95/5 flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 4.80 min, t<sub>R</sub> (minor) = 6.34 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.87 (s, 1H), 7.25 – 7.17 (m, 2H), 7.03 (m, 1H), 6.98 – 6.92 (m, 1H), 5.98 (s, 1H), 2.12 (s, 3H), 1.87 (s, 3H), 1.73 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 180.2, 150.0, 147.8, 140.3, 133.6, 128.4, 124.1, 122.8, 114.6, 110.3,

110.1, 49.5, 22.3, 11.6, 10.0.

**IR**: 2923, 2361, 1712, 1619, 1472, 1261, 1221, 751, 750 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>15</sub>NO<sub>2</sub>Na<sup>+</sup> 264.0995; found 264.0992.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 4.796          | 7180151 | 92.92  |
| 2 | 6.335          | 547454  | 7.08   |

## (S)-3-(5-methoxyfuran-2-yl)-3-methylindolin-2-one (C19)



White solid; 14.4 mg, 59% yield, 77% ee; melting point: 119–121 °C;  $[\alpha]_D^{18.2} = 32.5$  (c = 0.20 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL OD-3, CO<sub>2</sub>/MeOH = 90/10 flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 5.46 min, t<sub>R</sub> (minor) = 3.67 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.51 (s, 1H), 7.24 – 7.18 (m, 2H), 7.08 – 7.01 (m, 1H), 6.97 – 6.89 (m, 1H), 6.12 – 6.07 (m, 1H), 5.08 – 5.01 (d, J = 3.3 Hz, 1H), 3.77 (s, 3H), 1.71 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 179.5, 161.6, 142.9, 140.2, 133.1, 128.5, 124.1, 122.9, 110.2, 108.1, 80.0, 57.7, 49.3, 22.0.

**IR**: 3250, 2361, 1713, 1616, 1582, 1472, 1261, 1047, 942, 751 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>14</sub>H<sub>13</sub>NO<sub>3</sub>Na<sup>+</sup> 266.0788; found 266.0787.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.639          | 1323787 | 50.07  |
| 2 | 5.488          | 1320042 | 49.93  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 3.667          | 2012735  | 11.32  |
| 2 | 5.457          | 15764838 | 88.68  |

# (R)-3-(5-methoxythiophen-2-yl)-3-methylindolin-2-one (C20)



Colorless oil; 23.3 mg, 90% yield, 96% ee;  $[\alpha]_{D}^{19.2} = 171.4$  (c = 0.41 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10 flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 9.56 min, t<sub>R</sub> (minor) = 5.62 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.72 (s, 1H), 7.31 – 7.17 (m, 2H), 7.11 – 7.05 (m, 1H), 6.99 – 6.95 (m, 1H), 6.50 – 6.49 (d, J = 3.9 Hz, 1H), 6.02 – 5.98 (d, J = 3.9 Hz, 1H), 3.82 (s, 3H), 1.77 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  180.7, 166.1, 140.3, 134.2, 130.2, 128.7, 124.5, 122.9, 122.5, 110.4, 103.5,

60.4, 50.6, 25.1.

**IR**: 3214, 2361, 1618, 1556, 1501, 1471, 1325, 1203, 1061, 752 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>14</sub>H<sub>13</sub>NO<sub>2</sub>SNa<sup>+</sup> 282.0559; found 282.0558.



### (S)-3-methyl-3-(1-octyl-1H-pyrrol-2-yl)indolin-2-one (C21)



White solid; 27.9 mg, 86% yield, 91% ee; melting point: 110–115 °C;  $[\alpha]_D^{18.4} = 21.4$  (c = 0.31 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10 flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 9.56 min, t<sub>R</sub> (minor) = 5.62 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.81 (s, 1H), 7.25 – 7.19 (m, 1H), 7.05 – 6.92 (m, 3H), 6.63 – 6.58 (m, 1H), 6.38 – 6.34 (m, 1H), 6.19 – 6.12 (m, 1H), 3.32 (m, 1H), 3.13 (m, 1H), 1.78 (s, 3H), 1.50 – 1.31 (m, 1H), 1.31 – 1.16 (m, 3H), 1.18 – 0.94 (m, 7H), 0.92 – 0.79 (m, 4H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 181.7, 139.6, 135.1, 129.9, 128.3, 124.0, 123.2, 122.4, 110.3, 109.0, 107.2, 49.0, 46.8, 31.8, 31.1, 29.2, 29.1, 26.9, 25.8, 22.7, 14.2.

**IR**: 3213, 2926, 2855, 2361, 1619, 1469, 1262, 1222, 751, 720 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>21</sub>H<sub>28</sub>N<sub>2</sub>ONa<sup>+</sup> 347.2094; found 347.2098.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 6.297          | 68487   | 4.74   |
| 2 | 11.183         | 1377000 | 95.26  |

### (R)-3-(4-(dimethylamino)phenyl)-3-methylindolin-2-one (C22)



Colorless oil; 22.4 mg, 70% yield, 87% ee;  $[\alpha]p^{20.1} = 31.4$  (c = 0.32 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL OJ-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 3.27 min, t<sub>R</sub> (minor) = 5.03 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.73 (s, 1H), 7.21 – 7.04 (m, 4H), 7.02 – 6.85 (m, 3H), 6.74 – 6.67 (m, 2H), 6.53 – 6.40 (m, 2H), 6.20 – 6.16 (m, 1H), 4.52 – 4.34 (m, 2H), 1.78 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 181.2, 139.6, 137.6, 134.5, 130.4, 128.4, 127.4, 127.0, 124.0, 123.9, 123.1,

110.4, 109.9, 107.5, 50.4, 49.0, 25.8.

**IR**: 3206, 1701, 1618, 1470, 1292, 1214, 1187, 1108, 755, 715 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{20}H_{18}N_2ONa^+$  325.1311; found 325.1308.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.274          | 5197889 | 93.67  |
| 2 | 5.034          | 351243  | 6.33   |

### (R)-3-(4-hydroxy-2-methylphenyl)-3-methylindolin-2-one (C23)



Colorless oil; 13.4 mg, 53% yield, 89% ee;  $[\alpha]_{D}^{19.0} = 340.0$  (c = 0.12 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL ID-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 6.49 min, t<sub>R</sub> (minor) = 9.68 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.45 (s, 1H), 8.32 (s, 1H), 7.32 – 7.27 (m, 2H), 7.20 – 7.15 (m, 1H), 7.00 – 6.91 (m, 2H), 6.83 – 6.78 (m, 1H), 6.63 – 6.56 (m, 1H), 2.26 (s, 3H), 1.87 (s, 3H).

<sup>23</sup> <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 184.6, 156.1, 139.7, 139.5, 133.5, 128.4, 127.8, 125.8, 123.1, 122.2, 121.0, 10.6, 52.9, 22.6, 20.8

120.2, 110.6, 52.9, 22.6, 20.8.

**IR**: 3251, 2360, 1691, 1618, 1472, 1276, 1208, 750 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{20}H_{22}N_2O_3Na^+$  361.1523; found 361.1524.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 6.488          | 4187461 | 94.31  |
| 2 | 9.679          | 252469  | 5.69   |

#### (R)-3-(2-ethyl-4-hydroxyphenyl)-3-methylindolin-2-one (C24)



Colorless oil; 8.3 mg, 31% yield, 79% ee;  $[\alpha] p^{17.9} = 401.2$  (c = 0.10 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 8.02 min, t<sub>R</sub> (minor) = 6.52 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.49 (s, 1H), 8.28 (s, 1H), 7.34 – 7.27 (m, 2H), 7.22 – 7.14 (m, 1H), 7.02 –

6.90 (m, 2H), 6.87 – 6.81 (m, 1H), 6.66 – 6.58 (m, 1H), 2.62 – 2.51 (m, 2H), 1.88 (s, 3H), 1.24 – 1.13 (m, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  184.5, 156.3, 150.7, 139.5, 133.4, 128.4, 127.8, 126.0, 123.1, 122.3,

118.3, 117.7, 110.6, 53.0, 33.5, 23.8, 22.5.

**IR**: 3251, 2966, 2360, 1691, 1618, 1472, 1332, 1209, 1131, 751 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{17}NO_2Na^+$  290.1151; found 290.1151.



|   |   | Retention Time | Area    | % Area |
|---|---|----------------|---------|--------|
| ſ | 1 | 6.518          | 716350  | 10.53  |
|   | 2 | 8.016          | 6086319 | 89.47  |

### (R)-3-(4-hydroxy-2-isopropylphenyl)-3-methylindolin-2-one (C25)



Colorless oil; 6.7 mg, 24% yield, 76% ee;  $[\alpha]_D^{18.2} = 272.1$  (c = 0.21 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 7.14 min, t<sub>R</sub> (minor) = 5.86 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.55 (s, 1H), 8.22 (s, 1H), 7.33 – 7.27 (m, 2H), 7.21 – 7.16 (m, 1H), 7.01 - 6.93 (m, 2H), 6.89 – 6.86 (m, 1H), 6.67 – 6.62 (m, 1H), 2.87 – 2.77 (m, 1H), 1.89 (s, 3H), 1.22 –

1.18 (m, 6H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl\_3)  $\delta$  184.6, 156.4, 150.8, 139.6, 133.5, 128.5, 127.9, 126.1, 123.3, 118.5,

117.9, 110.7, 53.1, 33.6, 24.0, 23.8, 22.6.

**IR**: 3249, 2961, 2360, 1693, 1617, 1472, 1276, 751 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{18}H_{19}NO_2Na^+$  304.1308; found 304.1309.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 5.858          | 786376  | 11.98  |
| 2 | 7.140          | 5778501 | 88.02  |

## (R)-3-(4-hydroxy-3,5-dimethylphenyl)-3-methylindolin-2-one (C26)



Colorless oil; 19.0 mg, 71% yield, 70% ee;  $[\alpha]_D^{19.3} = 55.8$  (c = 0.33 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 11.18 min, t<sub>R</sub> (minor) = 9.72 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.91 (s, 1H), 7.24 - 7.18 (m, 1H), 7.11 - 7.07 (m, 1H), 7.06 - 7.00 (m,

1H), 6.98 – 6.93 (m, 1H), 6.86 (s, 2H), 2.15 (s, 6H), 1.76 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 182.9, 151.6, 140.3, 136.3, 131.8, 127.9, 126.8, 124.2, 123.3, 122.8,

110.2, 52.1, 23.3, 16.1.

**IR**: 3260, 2360, 1702, 1619, 1472, 1261, 1184, 750 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>NO<sub>2</sub>Na<sup>+</sup> 304.1308; found 304.1309.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 9.720          | 894950  | 14.88  |
| 2 | 11.167         | 5119528 | 85.12  |

### (R)-3-(4-(dimethylamino)phenyl)-3-methylindolin-2-one (C27)



White solid; 25.3 mg, 95% yield, 95% ee; melting point: 129–133 °C;  $[\alpha]_D^{12.4} = 148.4$  (*c* = 0.63 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 5.62 min, t<sub>R</sub> (minor) = 8.25 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.42 (s, 1H), 7.26 – 7.10 (m, 4H), 7.08 – 7.00 (m, 1H), 6.97 – 6.91 (d, J = 7.8 Hz, 1H), 6.71 – 6.62 (m, 2H), 2.90 (s, 6H), 1.77 (s, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  182.5, 149.9, 140.5, 136.2, 128.3, 127.9, 127.5, 124.6, 122.7, 112.8,

110.0, 52.0, 40.7, 23.6.

**IR**: 3207, 1613, 1520, 1471, 1353, 1201, 948, 809, 751, 629 cm<sup>-1</sup>.

**HRMS** (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>ONa<sup>+</sup> 289.1311; found 289.1311. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.04 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H).



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.913          | 19243212 | 49.40  |
| 2 | 8.434          | 19709772 | 50.60  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.616          | 20220628 | 97.41  |
| 2 | 8.248          | 538014   | 2.59   |

### (R)-3-(4-(diethylamino)phenyl)-3-methylindolin-2-one (C28)



White solid; 28.0 mg, 90% yield, 86% ee; melting point: 163–167 °C;  $[\alpha]_D^{13.6} = 106.3$  (*c* = 0.27 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 5.42 min, t<sub>R</sub> (minor) = 7.76 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.97 (s, 1H), 7.24 – 7.16 (m, 1H), 7.18 – 7.09 (m, 3H), 7.09 – 6.96 (m, 1H), 6.98 – 6.91 (d, *J* = 7.7 Hz, 1H), 6.59 (d, *J* = 8.6 Hz, 2H), 3.30 (q, *J* = 7.1 Hz, 4H), 1.77 (s, 3H), 1.11 (t, *J* = 7.0 Hz, 6H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 183.1, 147.0, 140.7, 136.3, 127.8, 127.7, 126.9, 124.5, 122.6, 111.7, 110.2, 52.0, 44.4, 23.6, 12.7. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)

**IR**: 3205, 2969, 1614, 1518, 1470, 1201, 1154, 809, 750, 676 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{19}H_{22}N_2ONa^+$  317.1624; found 317.1624.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.371          | 17465684 | 49.93  |
| 2 | 7.378          | 17515441 | 50.07  |



|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 5.422                 | 32678876 | 92.85  |
| 2 | 7.757                 | 2514753  | 7.15   |

### (R)-3-(4-(dipropylamino)phenyl)-3-methylindolin-2-one (C29)



Colorless oil; 28.5 mg, 95% yield, 64% ee;  $[\alpha]_D^{12.2} = 82.8$  (c = 0.24 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 3.91 min, t<sub>R</sub> (minor) = 7.00 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.09 (s, 1H), 7.23 – 7.07 (m, 4H), 7.06 – 6.98 (m, 1H), 6.97 – 6.91 (d, J = 7.7 Hz, 1H), 6.59 – 6.50 (m, 2H), 3.18 (t, J = 7.4 Hz 4H), 1.76 (s, 3H), 1.56 (m, 4H), 0.88 (t, J = 7.4 Hz, 6H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 183.1, 147.3, 140.6, 136.2, 127.7, 127.5, 126.6, 124.4, 122.5, 111.6, 110.1, 52.9, 51.9, 23.4, 20.4, 11.5.

**IR**: 3205, 2960, 2872, 1615, 1516, 1200, 1154, 806, 745, 640 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{21}H_{26}N_2ONa^+$  345.1937; found 345.1940.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.911          | 5833522 | 81.18  |
| 2 | 7.001          | 1352285 | 18.82  |

# (R)-3-(4-(dimethylamino)-3-methylphenyl)-3-methylindolin-2-one (C30)



Colorless oil; 25.8 mg, 92% yield, 98% ee;  $[\alpha]_D^{11.2} = 100.9$  (c = 0.25 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 3.78 min, t<sub>R</sub> (minor) = 6.97 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.95 (s, 1H), 7.24 – 7.18 (m, 1H), 7.16 – 7.11 (m, 1H), 7.09 – 6.99 (m, 3H), 6.99 – 6.91 (m, 2H), 2.65 (s, 6H), 2.26 (s, 3H), 1.79 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 182.8, 152.0, 140.6, 136.1, 134.3, 132.2, 129.5, 128.0, 124.7, 124.5, 122.8, 118.5, 110.3, 52.3, 44.2, 23.5, 18.8.

**IR**: 3207, 2934, 2872, 1618, 1503, 1471, 1322, 817, 750, 640 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{18}H_{20}N_2ONa^+$  303.1468; found 303.1468.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.777          | 5338215 | 99.13  |
| 2 | 6.967          | 46755   | 0.87   |

# (R)-3-(4-(dimethylamino)-2-methylphenyl)-3-methylindolin-2-one (C31)



Colorless oil; 26.6 mg, 95% yield, 89% ee;  $[\alpha]_{D}^{14.3} = -30.2$  (c = 0.36 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 12.39 min, t<sub>R</sub> (minor) = 6.60 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.43 (s, 1H), 7.54 - 7.48 (d, J = 8.7 Hz, 1H), 7.19 - 7.11 (m, 1H), 6.97 -6.83 (m, 3H), 6.69 - 6.62 (m, 1H), 6.49 - 6.43 (m, 1H), 2.92 (s, 6H), 1.77 (s, 3H), 1.70 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  183.9, 150.2, 140.3, 137.8, 136.7, 128.4, 127.6, 125.6, 123.2, 122.8, 116.1, 110.2, 110.0, 52.4, 40.6, 26.2, 20.00.

**IR**: 3209, 1610, 1509, 1470, 1409, 1371, 1219, 1182, 756, 613 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>ONa<sup>+</sup> 303.1468; found 303.1469.





|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 6.601          | 1094884  | 5.74   |
| 2 | 12.394         | 17974983 | 94.26  |

## (S)-3-(4-(dimethylamino)-2-methoxyphenyl)-3-methylindolin-2-one (C32)



White soild; 29.3 mg, 99% yield, 56% ee; melting point: 179–182 °C;  $[\alpha]_D^{13.0} = -10.1$  (*c* = 0.42 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 6.14 min, t<sub>R</sub> (minor) = 13.11 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.93 (s, 1H), 7.45 – 7.38 (d, *J* = 8.6 Hz, 1H), 7.15 – 7.04 (m, 1H), 6.91 – 6.81 (m, 3H), 6.43 – 6.36 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.19 – 6.14 (d, *J* = 2.4 Hz, 1H), 3.43 (s, 3H), 2.92 (s, 6H), 1.69 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 184.5, 157.9, 151.6, 140.7, 137.3, 128.0, 126.6, 122.4, 122.0, 117.8, 109.2, 105.0, 97.8, 55.5, 49.8, 40.7, 23.6.

**IR**: 2930, 1615, 1566, 1515, 1509, 1470, 1243, 1980, 815, 756 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{18}H_{20}N_2O_2Na^+$  319.1417; found 319.1420.



|   | <b>Retention Time</b> | Area    | % Area |
|---|-----------------------|---------|--------|
| 1 | 6.138                 | 4803837 | 78.14  |
| 2 | 13.114                | 1343974 | 21.86  |

### (S)-3-(2-chloro-4-(dimethylamino)phenyl)-3-methylindolin-2-one (C33)



Colorless oil; 24.9 mg, 83% yield, 88% ee;  $[\alpha]_{D}^{13.8} = -41.4$  (*c* = 0.28 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 19.73 min, t<sub>R</sub> (minor) = 13.18 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.00 (s, 1H), 7.52 (d, *J* = 8.8 Hz, 1H), 7.20 – 7.11 (m, 1H), 6.97 – 6.87 (m, 3H), 6.85 – 6.79 (m, 1H), 6.70 – 6.65 (m, 1H), 6.64 – 6.59 (m, 1H), 2.92 (s, 6H), 1.76 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  183.1, 150.9, 140.9, 136.2, 134.8, 129.6, 127.6, 124.4, 122.6, 122.5, 114.4, 110.6, 110.1, 52.3, 40.4, 25.7.

IR: 3208, 2928, 1613, 1562, 1470, 1356, 1014, 797, 743, 683 cm<sup>-1</sup>.

**HRMS** (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{17}^{34.9689}CIN_2ONa^+$  323.0922; found 323.0923,  $C_{17}H_{17}^{36.9659}CIN_2ONa^+$  328.0892; found 328.0889.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 13.152         | 7987638 | 49.71  |
| 2 | 19.843         | 8081636 | 50.29  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 13.175         | 490960  | 6.05   |
| 2 | 19.727         | 7627211 | 93.95  |

### (S)-3-(2-bromo-4-(dimethylamino)phenyl)-3-methylindolin-2-one (C34)



Colorless oil; 34.5 mg, 94% yield, 88% ee;  $[\alpha]_{D}^{14.1} = -31.6$  (c = 0.28 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 7.53 min, t<sub>R</sub> (minor) = 17.10 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.75 (s, 1H), 7.56 – 7.49 (d, J = 8.8 Hz, 1H), 7.22 – 7.14 (m, 1H), 6.98 – 6.88 (m, 2H), 6.87 – 6.78 (m, 2H), 6.76 – 6.68 (dd, J = 8.8, 2.8 Hz, 1H), 2.93 (s, 6H), 1.77 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  182.8, 150.9, 141.0, 136.3, 130.0, 127.7, 125.7, 124.9, 122.8, 122.6,

117.9, 111.1, 110.1, 53.7, 40.4, 26.4. IR: 3214, 2926, 1606, 1505, 1471, 1218, 1104, 959, 794, 755 cm<sup>-1</sup>.

**HRMS** (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{17}^{78.9183}BrN_2ONa^+$  367.0416; found 367.0419,  $C_{17}H_{17}^{80.9163}BrN_2ONa^+$  369.0369; found 369.0369.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 7.529          | 17109431 | 93.80  |
| 2 | 17.096         | 1131196  | 6.20   |

## (R)-3-(2-acetyl-4-(dimethylamino)phenyl)-3-methylindolin-2-one (C35)



Colorless oil; 22.2 mg, 72% yield, 94% ee;  $[\alpha]_{D}^{11.3} = -32.1$  (c = 0.17 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 9.43 min, t<sub>R</sub> (minor) = 7.52 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (s, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.17 (m, 1H), 6.96 – 6.79 (m, 4H), 6.64 (d, J = 2.8 Hz, 1H), 2.97 (s, 6H), 1.99 (d, J = 4.3 Hz, 3H), 1.74 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  204.0, 183.1, 149.3, 141.7, 141.1, 137.4, 129.9, 127.9, 124.2, 123.0,

122.1, 113.8, 111.3, 109.8, 51.2, 40.6, 29.1, 26.5.

**IR**: 2926, 1711, 1609, 1556, 1472, 1359, 1228, 1164, 806, 757 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{19}H_{20}N_2O_2Na^+$  331.1417; found 331.1417.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 7.420          | 15070474 | 50.03  |
| 2 | 9.778          | 15054182 | 49.97  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 7.516          | 1348950  | 3.06   |
| 2 | 9.431          | 42753767 | 96.94  |

#### (R)-3-methyl-3-(4-(piperidin-1-yl)phenyl)indolin-2-one (C36)



Colorless oil; 30.0 mg, 98% yield, 94% ee;  $[\alpha]_{D}^{10.8} = 87.5$  (c = 0.47 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 7.67 min, t<sub>R</sub> (minor) = 10.98 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.05 (s, 1H), 7.24 – 7.09 (m, 4H), 7.06 – 6.98 (d, J = 7.4, 1H), 6.96 – 6.89 (d, J = 7.8 Hz, 1H), 6.89 – 6.80 (m, 2H), 3.10 (t, J = 5.4 Hz, 4H), 1.77 (s, 3H), 1.71 – 1.61 (m,

4H), 1.59 – 1.49 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 182.9, 151.3, 140.6, 136.1, 130.8, 127.9, 127.4, 124.4, 122.7, 116.4,

110.3, 52.2, 50.5, 25.9, 24.4, 23.6.

**IR**: 3206, 2932, 1616, 1514, 1471, 1384, 1219, 1120, 812, 744 cm<sup>-1</sup>.

**HRMS** (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>20</sub>H<sub>22</sub>N<sub>2</sub>ONa<sup>+</sup> 329.1624; found 329.1626. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.02 (td, *J* = 7.6, 1.1 Hz, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 3.10 (q, 4H).



|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 7.671                 | 16342218 | 97.15  |
| 2 | 10.980                | 479299   | 2.85   |

#### (R)-3-methyl-3-(4-morpholinophenyl)indolin-2-one (C37)



Colorless oil; 29.6 mg, 96% yield, 80% ee;  $[\alpha]_{D}^{10.2} = 81.3$  (c = 0.67 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 12.58 min, t<sub>R</sub> (minor) = 19.24 min. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.85 (s, 1H), 7.25 – 7.17 (m, 3H), 7.15 – 7.10 (m, 1H), 7.08 – 7.00 (m,

1H), 6.98 – 6.92 (m, 1H), 6.87 – 6.79 (m, 2H), 3.83 (t, *J* = 4.9 Hz, 4H), 3.11 (t, *J* = 4.9 Hz, 4H), 1.78 (s, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  182.6, 150.5, 140.6, 135.9, 131.8, 128.1, 127.6, 124.5, 122.8, 115.7,

110.2, 70.0, 52.1, 49.2, 23.6.

**IR**: 3202, 2924, 2853, 1708, 1616, 1514, 1326, 1119, 930, 814 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{19}H_{20}N_2O_2Na^+$  331.1417; found 331.1418.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 12.581         | 9903336 | 89.86  |
| 2 | 19.244         | 1118053 | 10.14  |

# (R)-3-methyl-3-(4-(methyl(phenyl)amino)phenyl)indolin-2-one (C38)



Colorless oil; 29.9 mg, 91% yield, 97% ee;  $[\alpha]_{D}^{11.2} = 43.4$  (c = 0.32 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 19.64 min, t<sub>R</sub> (minor) = 8.92 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.76 (s, 1H), 7.32 - 7.14 (m, 6H), 7.10 - 6.99 (m, 3H), 6.98 - 6.87 (m, 4H), 3.27 (s, 3H), 1.79 (3, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  182.5, 148.8, 148.2, 140.5, 135.9, 132.7, 129.3, 128.1, 127.5, 124.5,

122.8, 121.9, 121.3, 119.7, 110.3, 52.3, 40.3, 23.6.

**IR**: 3209, 1615, 1511, 1471, 1344, 1218, 1211, 699 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{22}H_{20}N_2ONa^+$  351.1468; found 351.1470.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 8.868          | 27373779 | 49.03  |
| 2 | 19.916         | 28459481 | 50.97  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 8.919          | 832949   | 2.77   |
| 2 | 19.638         | 29224671 | 97.23  |

# (R)-3-(4-(benzyl(methyl)amino)phenyl)-3-methylindolin-2-one (C39)



Colorless oil; 33.9 mg, 99% yield, 94% ee;  $[\alpha]_D^{10.2} = 90.2$  (c = 0.12 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 12.80 min, t<sub>R</sub> (minor) = 21.84 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.83 (s, 1H), 7.32 – 7.17 (m, 6H), 7.15 – 7.11 (m, 3H), 7.06 – 6.97 (m, 1H), 6.96 – 6.90 (m, 1H), 6.70 – 6.62 (m, 2H), 4.47 (s, 2H), 2.98 (s, 3H), 1.76 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  182.9, 149.0, 140.6, 139.1, 136.2, 128.7, 128.2, 127.9, 127.6, 127.0,

126.8, 124.5, 122.7, 112.4, 110.2, 56.7, 52.0, 38.7, 23.6.

**IR**: 2926, 1707, 1615, 1519, 1471, 1373, 1201, 1113, 808, 731 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{23}H_{22}N_2ONa^+$  365.1624; found 365.1627.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 12.756         | 17097976 | 50.18  |
| 2 | 20.763         | 16977992 | 49.82  |



|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 12.802                | 24786153 | 96.97  |
| 2 | 21.841                | 774766   | 3.03   |

# ethyl (R)-N-methyl-N-(4-(3-methyl-2-oxoindolin-3-yl)phenyl)glycinate (C40)



Colorless oil; 33.5 mg, 99% yield, 93% ee;  $[\alpha]_D^{12.8} = 88.1$  (c = 0.22 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 5.25 min, t<sub>R</sub> (minor) = 8.95 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.92 (s, 1H), 7.24 – 7.08 (m, 4H), 7.06 – 6.98 (m, 1H), 6.97 – 6.90 (d, J

= 7.7 Hz, 1H), 6.64 – 6.56 (m, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 4.00 (s, 2H), 3.03 (s, 3H), 1.76 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 182.9, 171.1, 148.1, 140.6, 136.1, 129.0, 127.9, 127.6, 124.5, 122.7, 112.4, 110.2, 61.0, 54.5, 52.0, 39.6, 23.6, 14.3.

 $IR: 2977, 1615, 1520, 1471, 1370, 1325, 1118, 948, 808, 640 \ cm^{-1}.$ 

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{20}H_{22}N_2O_3Na^+$  361.1523; found 361.1524.



|   | <b>Retention Time</b> | Area    | % Area |
|---|-----------------------|---------|--------|
| 1 | 5.136                 | 4741279 | 50.16  |
| 2 | 8.413                 | 4710154 | 49.84  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.245          | 23275349 | 96.68  |
| 2 | 8.953          | 800447   | 3.32   |

#### (S)-3-(2,4-dimethoxyphenyl)-5-fluoro-3-methylindolin-2-one (C41)



Colorless oil; 26.2 mg, 87% yield, 94% ee;  $[\alpha]_{D}^{11.4} = -137.5$  (c = 0.21 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 6.33 min, t<sub>R</sub> (minor) = 4.21 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.96 (s, 1H), 7.51 – 7.41 (d, J = 8.6 Hz, 1H), 6.87 – 6.76 (m, 2H), 6.61 – 6.53 (m, 2H), 6.40 – 6.35 (d, J = 2.5 Hz, 1H), 3.80 (s, 3H), 3.45 (s, 3H), 1.71 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 184.0, 160.9(*J*<sub>C-F</sub>= 282.5 Hz), 160.4, 158.0, 138.6(*J*<sub>C-F</sub>= 7.8 Hz),

136.7, 128.3, 121.3, 113.6( $J_{C-F}$ = 23.5 Hz), 110.6( $J_{C-F}$ = 24.6 Hz), 109.9( $J_{C-F}$ = 7.9 Hz), 104.7, 100.0, 55.5, 55.5, 50.7, 23.7. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -121.4.

**IR**: 3218, 2931, 1611, 1505, 1486, 1306, 1263, 1031, 816, 778 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{16}FNO_3Na^+$  324.1006; found 324.1008.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 4.205          | 461392   | 3.04   |
| 2 | 6.328          | 14738106 | 96.96  |

#### (S)-5-chloro-3-(2,4-dimethoxyphenyl)-3-methylindolin-2-one (C42)



Colorless oil; 30.2 mg, 95% yield, 89% ee;  $[\alpha]_D^{11.4} = 155.0$  (*c* = 0.51 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 8.79 min, t<sub>R</sub> (minor) = 5.87 min. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.99 (s, 1H), 7.49 – 7.41 (d, *J* = 8.5 Hz, 1H), 7.13 – 7.05 (dd, *J* = 8.2,

2.2 Hz, 1H), 6.84 - 6.77 (m, 2H), 6.61 - 6.54 (dd, J = 8.5, 2.2 Hz, 1H), 6.40 - 6.35 (d, J = 2.5 Hz, 1H), 3.80 (s, 3H), 3.45 (s, 3H), 1.70 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 183.7, 160.9, 158.0, 139.4, 138.5, 128.3, 127.5, 127.3, 123.0, 121.1, 110.4, 104.7, 100.0, 55.5, 50.4, 23.7. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)

IR: 3218, 2931, 1613, 1505, 1479, 1305, 1210, 1182, 818, 753 cm<sup>-1</sup>.

**HRMS** (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{16}^{34.9689}CINO_3Na^+$  340.0711; found 340.0714,  $C_{17}H_{16}^{36.9659}CINO_3Na^+$  342.0681; found 342.0681



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.851          | 18974606 | 49.89  |
| 2 | 8.924          | 19054497 | 50.11  |



#### (S)-5-bromo-3-(2,4-dimethoxyphenyl)-3-methylindolin-2-one (C43)



Colorless oil; 30.1 mg, 83% yield, 88% ee;  $[\alpha]_D^{11.3} = 86.3$  (c = 0.18 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 10.64 min, t<sub>R</sub> (minor) = 7.06 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.85 (s, 1H), 7.50 – 7.42 (d, *J* = 8.6 Hz, 1H), 7.28 – 7.22 (m, 1H),

6.95 – 6.90 (m, 1H), 6.81 – 6.74 (d, *J* = 2.0 Hz, 1H), 6.61 – 6.54 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.40 – 6.35 (d, *J* = 2.5 Hz, 1H), 3.81 (s, 3H), 3.46 (s, 3H), 1.70 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 183.4, 160.9, 158.0, 139.8, 138.9, 130.1, 128.28, 125.8, 121.0, 114.8, 110.9, 104.6, 99.9, 55.5, 50.3, 23.7.

**IR**: 3206, 1613, 1586, 1505, 1475, 1306, 1210, 1143, 1031, 817 cm<sup>-1</sup>.

**HRMS** (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{16}^{78.9183}BrNO_3Na^+$  384.0206; found 384.0206,  $C_{17}H_{16}^{80.9163}BrNO_3Na^+$  386.0185; found 386.0184



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 6.908          | 19492357 | 49.04  |
| 2 | 10.397         | 20251708 | 50.96  |



|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 7.062                 | 650711   | 5.97   |
| 2 | 10.635                | 10244410 | 94.03  |

### (S)-3-(2,4-dimethoxyphenyl)-5-iodo-3-methylindolin-2-one (C44)



Colorless oil; 34.4 mg, 84% yield, 86% ee;  $[\alpha]_{D}^{13.3} = 137.0$  (c = 0.11 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 13.47min, t<sub>R</sub> (minor) = 9.03 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.86 (s, 1H), 7.48 – 7.41 (m, 2H), 7.11 – 7.06 (m, 1H), 6.72 – 6.65 (d,

*J* = 8.5 Hz, 1H), 6.61 – 6.54 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.40 – 6.35 (d, *J* = 2.5 Hz, 1H), 3.81 (s, 3H), 3.46 (s, 3H), 1.71 – 1.67 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 183.3, 160.9, 158.0, 140.5, 139.2, 136.1, 131.3, 128.3, 121.0, 111.5, 104.6, 99.9, 84.8, 55.6, 50.1, 23.7.

IR: 3236, 1611, 1586, 1472, 1305, 1210, 1143, 1131, 815, 643, 531 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{17}H_{16}NIO_3Na^+$  432.0067; found 432.0072.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 9.031          | 3619821  | 7.02   |
| 2 | 13.468         | 47928385 | 92.98  |

#### (S)-3-(2,4-dimethoxyphenyl)-3,5-dimethylindolin-2-one (C45)



Colorless oil; 23.8 mg, 80% yield, 86% ee;  $[\alpha]_D^{13.3} = -22.3$  (c = 0.17 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 7.04 min, t<sub>R</sub> (minor) = 4.77 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.50 (s, 1H), 7.51 – 7.44 (d, J = 8.6 Hz, 1H), 6.96 – 6.89 (m, 1H), 6.78

(d, *J* = 7.8 Hz, 1H), 6.66 – 6.60 (m, 1H), 6.61 – 6.51 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.40 – 6.35 (d, *J* = 2.5 Hz, 1H), 3.80 (s, 3H), 3.46 (s, 3H), 2.20 (s, 3H), 1.69 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 183.8, 160.6, 158.2, 138.3, 136.8, 131.6, 128.2, 127.6, 123.3, 122.2, 109.0, 104.6, 100.1, 55.7, 55.5, 50.1, 24.0, 21.2.

IR: 3236, 2930, 1611, 1586, 1504, 1210, 1143, 1031, 815, 643, 531 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>19</sub>NO<sub>3</sub>Na<sup>+</sup> 320.1257, found 320.1257.



|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 4.758                 | 15286842 | 49.96  |
| 2 | 7.222                 | 15309021 | 50.04  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 4.765          | 1999238  | 6.66   |
| 2 | 7.041          | 28004409 | 93.34  |

#### (S)-3-(2,4-dimethoxyphenyl)-5-methoxy-3-methylindolin-2-one (C46)



Colorless oil; 20.1 mg, 64% yield, 95% ee;  $[\alpha]_D^{12.0} = 36.7(c = 0.41 \text{ in CH}_2\text{Cl}_2)$ . **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 8.28 min, t<sub>R</sub> (minor) = 5.64 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (s, 1H), 7.50 – 7.42 (d, *J* = 8.6 Hz, 1H), 6.83 – 6.77 (m, 1H), 6.70 – 6.63 (m, 1H), 6.60 – 6.53 (m, 1H), 6.50 – 6.41 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.40 – 6.34 (d, *J* = 2.5 Hz, 1H), 3.80 (s, 3H), 3.68 (s, 3H), 3.46 (s, 3H), 1.70 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 183.7, 160.7, 158.2, 155.7, 138.2, 134.2, 128.3, 121.9, 111.7, 109.8, 109.5, 104.6, 100.0, 55.8, 55.7, 55.5, 50.6, 24.0.

IR: 2932, 1609, 1489, 1306, 1265, 1207, 1143, 1030, 808, 736, 643 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{18}H_{19}NO_4Na^+$  336.1206, found 336.1206.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 5.588          | 8543121 | 49.99  |
| 2 | 8.225          | 8546288 | 50.01  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 5.642          | 416410   | 2.61   |
| 2 | 8.283          | 15528559 | 97.39  |
#### (S)-3-benzyl-3-(4,5-dimethylfuran-2-yl)indolin-2-one (C47)



White solid; 19.0 mg, 60% yield, 71% ee; melting point: 123–126 °C;  $[\alpha]_D^{18.9} = 28.8$  (c = 0.31 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL OD-3, CO<sub>2</sub>/MeOH = 90/10 flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 5.56 min, t<sub>R</sub> (minor) = 3.90 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.90 (s, 1H), 7.24 – 7.13 (m, 2H), 7.11 – 6.99 (m, 4H), 6.92 – 6.84 (m, 2H), 6.73 – 6.66 (d, J = 7.7 Hz, 1H), 5.94 (s, 1H), 3.50 (m, 2H), 2.20 (s, 3H), 1.88 (s, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.9, 148.9, 148.0, 140.7, 135.3, 130.3, 128.5, 127.8, 126.8, 125.5,

122.4, 114.8, 110.8, 109.8, 55.3, 42.0, 11.7, 10.0.

**IR**: 3249, 2361, 1714, 1619, 1472, 1261, 1198, 1009, 751 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{21}H_{19}NO_2Na^+$  340.1308; found 340.1306.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.902          | 2675620 | 49.60  |
| 2 | 5.666          | 2718407 | 50.40  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 3.896          | 3820873  | 14.66  |
| 2 | 5.559          | 22237187 | 85.34  |

#### (S)-3-(5-ethylfuran-2-yl)-5-fluoro-3-methylindolin-2-one (C48)



Colorless oil; 24.4 mg, 94% yield, 92% ee;  $[\alpha]p^{12.4} = 17.4$  (c = 0.42 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL OXH, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.0 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 11.63 min, t<sub>R</sub> (minor) = 10.96 min. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.04 (s, 1H), 7.01 – 6.85 (m, 3H), 6.16 – 6.10 (d, J = 3.2 Hz, 1H), 5.93 –

5.87 (m, 1H), 2.57 (q, J = 7.6 Hz, 2H), 1.75 (s, 3H), 1.16 (t, J = 7.6 Hz, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  180.1, 160.6, 158.5, 158.2, 150.4, 136.2, 135.1(d, J = 8.3 Hz), 135.1(d, J) = 8.3 Hz), 135.1(d, J)

J = 8.3 Hz), 114.9(d, J = 23.6 Hz), 114.7(d, J = 23.6 Hz), 112.2(d, J = 21.8 Hz), 112.0(d, J = 21.8 Hz),

110.9(d, J = 8.1 Hz), 110.9(d, J = 8.1 Hz), 107.5(d, J = 228.0 Hz), 104.7(d, J = 228.0 Hz), 50.1, 22.7, 21.5, 12.0.

 $^{19}\textbf{F}$  NMR (376 MHz, CDCl3 )  $\delta$  -120.28.

 $\textbf{IR}: 3231,\,1613,\,1520,\,1471,\,1353,\,1201,\,948,\,809,\,751,\,629~\text{cm}^{-1}.$ 

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{15}H_{14}FNO_2Na^+$  282.0901 found 282.0901.



|   | Retention Time | Area    | % Area | Height |
|---|----------------|---------|--------|--------|
| 1 | 10.989         | 2523980 | 49.92  | 146467 |
| 2 | 11.735         | 2532103 | 50.08  | 140971 |



|   | Retention Time | % Area | Height  |
|---|----------------|--------|---------|
| 1 | 10.962         | 4.21   | 90331   |
| 2 | 11.628         | 95.79  | 1810000 |

# (S)-3-(5-ethylfuran-2-yl)-5-fluoro-3-methylindolin-2-one (C49)



Colorless oil; 26.2 mg, 95% yield, 95% ee;  $[\alpha]_{D}^{19.0} = 104.4$  (c = 0.52 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 3.69 min, t<sub>R</sub> (minor) = 6.27 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 9.20 (s, 1H), 7.22 – 7.16 (m, 2H), 6.94 – 6.87 (m, 1H), 6.19 – 6.10 (d, J = 3.2 Hz, 1H), 5.96 – 5.89 (m, 1H), 2.57 (q, J = 7.6 Hz, 1H), 1.74 (s, 3H), 1.16 (t, J = 7.6 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 179.9, 158.5, 150.3, 138.9, 135.2, 128.4, 128.2, 124.6, 111.4, 107.6,

104.7, 49.9, 22.3, 21.5, 11.9.

**IR**: 3228, 2975, 1619, 1479, 1187, 1015, 753, 557 cm<sup>-1</sup>.

**HRMS** (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{15}H_{14}^{34.9689}CINO_2Na^+$  298.0606; found 298.0604,  $C_{15}H_{14}^{36.9659}CINO_2Na^+$  300.0576; found 300.0570



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 3.685          | 33750228 | 97.61  |
| 2 | 6.271          | 826780   | 2.39   |

# (S)-4-bromo-3-(5-ethylfuran-2-yl)-3-methylindolin-2-one (C50)



Colorless oil; 22.1 mg, 49% yield, 93% ee;  $[\alpha]_{D}^{18.3} = 178.5$  (c = 0.19 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 3.40 min, t<sub>R</sub> (minor) = 5.55 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.74 (s, 1H), 7.18 – 7.06 (m, 2H), 6.94 – 6.87 (dd, *J* = 7.4, 1.3 Hz, 1H), 6.28 – 6.22 (d, *J* = 3.2 Hz, 1H), 5.97 – 5.91 (m, 1H), 2.53 (q, *J* = 7.6 Hz, 2H), 1.88 (s, 3H), 1.13 (t, *J* = 7.6 Hz, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  179.2, 158.1, 148.9, 142.3, 131.5, 129.9, 127.1, 119.7, 109.3, 109.1, 104.7,

51.3, 21.4, 18.9, 12.0.

**IR**: 3236, 2361, 1722, 1613, 1583, 1448, 1261, 1172, 751 cm<sup>-1</sup>.

**HRMS** (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{15}H_{14}^{78.9183}BrNO_2Na^+$  342.0100; found 342.0100,  $C_{15}H_{14}^{80.9163}BrNO_2Na^+$  344.0008; found 344.0077



# (S)-6-bromo-3-(5-ethylfuran-2-yl)-3-methylindolin-2-one (C51)



Colorless oil; 29.1 mg, 91% yield, 83% ee;  $[\alpha]_D^{18.2} = 22.3$  (c = 0.38 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL AS-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 4.20 min, t<sub>R</sub> (minor) = 5.27 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 9.19 (s, 1H), 7.19 – 7.12 (m, 2H), 7.10 – 7.05 (m, 1H), 6.13 – 6.09 (d, J = 3.1 Hz, 1H), 5.93 – 5.87 (m, 1H), 2.56 (q, J = 7.6 Hz, 2H), 1.73 (s, 3H), 1.16 (t, J = 7.6 Hz, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 180.1, 158.5, 150.3, 141.7, 132.4, 125.8, 125.4, 121.8, 113.8, 107.6, 104.7, 49.4, 22.2, 21.5, 12.0.

 $IR: 3235, 2975, 2361, 1720, 1610, 1480, 1451, 1276, 1015, 749 \text{ cm}^{-1}.$ 

**HRMS** (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{15}H_{14}^{78.9183}BrNO_2Na^+$  342.0100; found 342.0100,  $C_{15}H_{14}^{80.9163}BrNO_2Na^+$  344.0008; found 344.0079





|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 4.197                 | 18849949 | 91.49  |
| 2 | 5.272                 | 1752571  | 8.51   |

# (S)-3-(5-ethylfuran-2-yl)-5-iodo-3-methylindolin-2-one (C52)



Colorless oil; 32.5 mg, 92% yield, 91% ee;  $[\alpha]_D^{19.9} = 56.8$  (c = 0.24 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL OXH, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.0 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 6.36 min, t<sub>R</sub> (minor) = 5.58 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.66 (s, 1H), 7.57 – 7.47 (m, 2H), 6.78 – 6.70 (d, J = 8.1 Hz, 1H), 6.15 – 6.10 (d, J = 3.2 Hz, 1H), 5.93 – 5.87 (m, 1H), 2.57 (q, J = 7.6 Hz, 2H), 1.73 (s, 3H), 1.17 (t, J = 7.6 Hz, 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  179.1, 158.6, 150.3, 139.9, 137.3, 135.9, 133.0, 107.7, 104.7, 85.4, 49.6,

22.3, 21.5, 11.9.

**IR**: 3357, 2361, 1724, 1611, 1353, 1271, 948, 751 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>14</sub>INO<sub>2</sub>Na<sup>+</sup> 389.9961; found 389.9962.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 5.578          | 55613   | 4.59   |
| 2 | 6.359          | 1155068 | 95.41  |

# (S)-3-(5-ethylfuran-2-yl)-3,5-dimethylindolin-2-one (C53)



Colorless oil; 21.4 mg, 84% yield, 95% ee;  $[\alpha]_{D}^{21.7} = 73.3$  (*c* = 0.29 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL OXH, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.0 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major)  $= 21.44 \text{ min}, t_R \text{ (minor)} = 17.96 \text{ min}.$ 

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.69 (s, 1H), 7.05 – 6.97 (m, 2H), 6.87 – 6.78 (m, 1H), 6.10 – 6.03 (d, J = 3.2 Hz, 1H), 5.94 – 5.88 (m, 1H), 2.58 (q, J = 7.6 Hz, 2H), 2.31 (s, 3H), 1.74 (s, 3H), 1.16 (t, J = 7.6 Hz, 2H), 2.31 (s, 3H), 1.74 (s, 3H), 1.16 (t, J = 7.6 Hz, 2H), 2.31 (s, 3H), 3.11 (s, 3H), 3. 3H).

 $^{13}\textbf{C}$  NMR (101 MHz, CDCl\_3)  $\delta$  180.0, 158.2, 151.3, 137.8, 133.6, 132.3, 128.7, 124.8, 109.9, 107.2, 104.6, 49.7, 22.4, 21.5, 21.3, 12.0.

IR: 3216, 2973, 1624, 1492, 1309, 1207, 956, 812, 812, 690 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>16</sub>H<sub>17</sub>NO<sub>2</sub>Na<sup>+</sup> 278.1151; found 278.1152.



| - 6 / |
|-------|
| - 11/ |
|       |
|       |
|       |

|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 17.961                | 1172705  | 2.59   |
| 2 | 21.441                | 44192170 | 97.41  |

#### (S)-3-benzyl-3-(2,4-dimethoxyphenyl)indolin-2-one (C54)



Yellow solid; 32.7 mg, 91% yield, 93% ee; melting point: 147–151 °C;  $[\alpha]_D^{11.8} = -33.7$  (*c* = 0.12 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL OD-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 15.15 min, t<sub>R</sub> (minor) = 20.78 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (s, 1H), 7.62 – 7.54 (d, *J* = 8.7 Hz, 1H), 7.18 – 6.88 (m, 6H), 6.84

- 6.72 (m, 2H), 6.66 - 6.56 (m, 1H), 6.53 - 6.44 (m, 1H), 6.43 - 6.31 (d, J = 2.5 Hz, 1H), 3.80 (s,

3H), 3.52 (s, 2H), 3.41 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 181.2, 160.5, 158.3, 141.6, 135.0, 133.8, 130.4, 128.0, 127.5, 126.6, 123.2, 122.4, 121.9, 108.7, 104.8, 100.3, 55.7, 55.5, 55.4, 42.6.

**IR**: 2926, 1710, 1612, 1503, 1469, 1210, 1139, 1032, 780, 700 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{23}H_{21}NO_3Na^+$  382.1414; found 382.1416.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 15.612         | 2927184 | 50.84  |
| 2 | 20.252         | 2830218 | 49.16  |



|   | Retention<br>Time | Area    | % Area |
|---|-------------------|---------|--------|
| 1 | 15.150            | 6272785 | 96.48  |
| 2 | 20.776            | 228838  | 3.52   |

#### (S)-3-(2,4-dimethoxyphenyl)-3-(3,4-dimethylbenzyl)indolin-2-one (C55)



White solid; 36.0 mg, 93% yield, 93% ee; melting point: 162–165 °C;  $[\alpha]_D^{12.6} = -103.7$  (*c* = 0.62 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 13.89 min, t<sub>R</sub> (minor) = 6.46 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 – 7.55 (d, *J* = 8.6 Hz, 1H), 7.35 (s, 1H), 7.10 – 6.89 (m, 3H), 6.80 – 6.69 (m, 1H), 6.63 – 6.55 (m, 1H), 6.53 – 6.46 (m, 3H), 6.41 – 6.34 (d, *J* = 2.5 Hz, 1H), 3.80 (s, 3H), 3.45 (s, 2H), 3.42 (s, 3H), 2.11 (s, 3H), 2.01 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 180.9, 160.5, 158.2, 141.6, 135.4, 134.6, 134.2, 132.2, 131.6, 128.7, 128.1, 127.7, 127.3, 123.2, 122.5, 121.8, 108.6, 104.7, 100.3, 55.7, 55.5, 55.2, 42.2, 19.6, 19.5.

**IR**: 2925, 1612, 1585, 1489, 1209, 1162, 1083, 824, 751, 643 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>25</sub>NO<sub>3</sub>Na<sup>+</sup> 410.1727; found 410.1729.



Minutes

|   | <b>Retention Time</b> | Area    | % Area | Height |
|---|-----------------------|---------|--------|--------|
| 1 | 6.458                 | 356538  | 3.49   | 24956  |
| 2 | 13.892                | 9845416 | 96.51  | 345723 |

#### (S)-3-(2,4-dimethoxyphenyl)-3-(4-(methylthio)benzyl)indolin-2-one (C56)



White solid; 38.1 mg, 94% yield, 92% ee; melting point: 137–139 °C;  $[\alpha]_{D}^{12.5} = -142.2$  (*c* = 0.64 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 23.20 min, t<sub>R</sub> (minor) = 10.76 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.65 (s, 1H), 7.60 – 7.48 (d, *J* = 8.6 Hz, 1H), 7.10 – 7.00 (m, 1H),

**C56** 7.00 - 6.84 (m, 4H), 6.71 - 6.64 (m, 2H), 6.62 - 6.56 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.52 - 6.45 (d, *J* = 7.7 Hz, 1H), 6.41 - 6.36 (d, *J* = 2.6 Hz, 1H), 3.80 (s, 3H), 3.46 (s, 2H), 3.41 (s, 3H), 2.37 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 181.0, 160.5, 158.2, 141.6, 136.3, 133.7, 131.8, 130.8, 128.0, 127.5, 125.6, 123.1, 122.3, 121.9, 108.9, 104.7, 100.2, 55.6, 55.5, 55.3, 42.0, 15.8.

**IR**: 3192, 2923, 1611, 1585, 1209, 1164, 1035, 830, 752, 642 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>23</sub>NO<sub>3</sub>SNa<sup>+</sup> 404.1326; found 404.1329.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 10.690         | 11752935 | 50.49  |
| 2 | 23.645         | 11523134 | 49.51  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 10.760         | 1046293  | 4.18   |
| 2 | 23.197         | 23971876 | 95.82  |

#### (S)-3-(2,4-dimethoxyphenyl)-3-(thiophen-2-ylmethyl)indolin-2-one (C57)



Yellow solid; 34.7 mg, 95% yield, 96% ee; melting point: 190–193 °C;  $[\alpha]_D^{14.0} = -58.6$  (*c* = 0.42 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 17.14 min, t<sub>R</sub> (minor) = 8.48 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (s, 1H), 7.58 – 7.44 (d, *J* = 8.6 Hz, 1H), 7.17 – 7.08 (m, 1H), 7.01

-6.88 (m, 3H), 6.80 - 6.71 (m, 1H), 6.68 - 6.61 (m, 1H), 6.61 - 6.55 (m, 2H), 6.43 - 6.36 (d, J = 2.5

Hz, 1H), 3.90 - 3.70 (m, 5H), 3.46 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 180.9, 160.5, 158.2, 142.0, 136.4, 133.6, 127.7, 127.6, 126.1, 124.6, 123.2, 122.1, 121.7, 108.8, 104.6, 100.2, 55.5, 55.4, 55.1, 36.8.

**IR**: 3203, 1612, 1585, 1470, 1306, 1210, 1034, 830, 752, 701 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{21}H_{19}NO_3SNa^+$  404.1326; found 404.1329.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 8.475          | 1191058  | 1.80   |
| 2 | 17.138         | 65112504 | 98.20  |

#### (S)-3-(2,4-dimethoxyphenyl)-3-(thiophen-2-ylmethyl)indolin-2-one (C58)



White solid; 38.6 mg, 99% yield, 95% ee; melting point: 130–131 °C;  $[\alpha]_D^{16.0} = -115.3$  (*c* = 0.62 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 16.90 min, t<sub>R</sub> (minor) = 7.88 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 – 7.55 (d, *J* = 8.7 Hz, 1H), 7.43 (s, 1H), 7.10 – 7.01 (m, 1H),

6.99 – 6.88 (m, 2H), 6.72 – 6.65 (m, 2H), 6.62 – 6.48 (m, 4H), 6.42 – 6.36 (d, *J* = 2.5 Hz, 1H),

3.80 (s, 3H), 3.69 (s, 3H), 3.47 (s, 2H), 3.42 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 181.0, 160.4, 158.2, 158.1, 141.4, 133.9, 131.2, 127.9, 127.3, 126.8, 123.1, 122.3, 121.8, 112.8, 108.6, 104.6, 100.1, 55.6, 55.4, 55.2, 55.0, 41.6.

**IR**: 3198, 2934, 1611, 1585, 1510, 1248, 1021, 964, 832, 752 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{24}H_{26}NO_4Na^+$  412.1519; found 412.1522.





|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 7.884          | 613614   | 2.63   |
| 2 | 16.897         | 22712296 | 97.37  |

#### (S)-3-(2,4-dimethoxyphenyl)-3-(2-methylbenzyl)indolin-2-one (C59)



White solid; 36.6 mg, 98% yield, 98% ee; melting point: 167–170 °C;  $[\alpha]_D^{16.0} = -68.1$  (*c* = 0.33 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 14.77 min, t<sub>R</sub> (minor) = 7.31 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (s, 1H), 7.69 – 7.60 (d, *J* = 8.6 Hz, 1H), 7.12 – 7.01 (m, 1H), 7.03 – 6.86 (m, 4H), 6.83 – 6.74 (m, 1H), 6.65 – 6.51 (m, 3H), 6.42 – 6.37 (d, *J* = 2.5 Hz, 1H), 3.81 (s, 3H), 3.63 (m, 2H), 3.42 (s, 3H), 2.15 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 181.7, 160.4, 158.1, 141.7, 137.6, 133.9, 133.3, 130.6, 130.1, 127.9, 127.5, 126.6, 124.7, 123.6, 122.7, 121.7, 108.7, 104.7, 100.3, 55.8, 55.4, 55.0, 38.1, 20.0.

**IR**: 2924, 1613, 1585, 1505, 1469, 1267, 1210, 1139, 1035, 750 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M - H]^{-}$  calcd for  $C_{24}H_{23}NO_3Na^+$  372.1605; found 372.1608.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 7.152          | 17887939 | 49.78  |
| 2 | 15.035         | 18046042 | 50.22  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 7.309          | 688200   | 1.14   |
| 2 | 14.767         | 59558811 | 98.86  |

#### (S)-3-(2,4-dimethoxyphenyl)-3-(naphthalen-1-ylmethyl)indolin-2-one (C60)



White solid; 34.0 mg, 83% yield, 97% ee; melting point: 197–203 °C;  $[\alpha]_D^{16.6} = -70.5$  (*c* = 0.18 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 30.13 min, t<sub>R</sub> (minor) = 15.13 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 – 8.02 (m, 1H), 7.78 – 7.66 (m, 2H), 7.65 – 7.55 (d, J = 8.2 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.13 – 7.04 (m, 2H), 6.99 – 6.93 (m, 2H), 6.91 – 6.81 (m, 2H), 6.68 – 6.59 (dd, J = 8.2, 2.6 Hz, 1H), 6.46 – 6.41 (d, J = 2.6 Hz, 1H), 6.37 – 6.30 (m, 1H), 4.16 (d, J = 12.8 Hz,

1H), 3.96 (d, J = 12.8 Hz, 1H), 3.83 (s, 3H), 3.42 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 181.1, 160.6, 158.3, 141.5, 134.0, 133.5, 132.6, 131.3, 128.5, 128.2, 128.1, 127.5, 125.2, 125.2, 124.8, 124.6, 123.8, 122.7, 121.9, 108.5, 104.8, 100.5, 55.8, 55.6, 55.3, 37.6.

IR: 2927, 1612, 1505, 1470, 1417, 1209, 1139, 1035, 780, 752 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M - H]<sup>-</sup> calcd for C<sub>27</sub>H<sub>23</sub>NO<sub>3</sub>Na<sup>+</sup> 432.1570; found 432.1573.



|   | <b>Retention Time</b> | Area     | % Area |
|---|-----------------------|----------|--------|
| 1 | 15.029                | 23454651 | 50.03  |
| 2 | 30.107                | 23428595 | 49.97  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 15.130         | 643419   | 1.87   |
| 2 | 30.131         | 33812932 | 98.13  |

#### (S)-3-allyl-3-(2,4-dimethoxyphenyl)indolin-2-one (C61)



Yellow solid; 20.1 mg, 65% yield, 94% ee; melting point: 151-153 °C;  $[\alpha]_D^{16.0} = -62.3$  (c = 0.28 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 7.03 min, t<sub>R</sub> (minor) = 4.09 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.54 (s, 1H), 7.54 – 7.44 (d, J = 8.6 Hz, 1H), 7.17 – 7.08 (m, 1H), 6.93 –

**C61** 6.81 (m, 3H), 6.59 – 6.52 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.40 – 6.34 (d, *J* = 2.5 Hz, 1H), 5.54 – 5.40 (m, 1H), 5.08 – 4.99 (m, 1H), 4.95 – 4.89 (m, 1H), 3.79 (s, 3H), 3.44 (s, 3H), 2.98 (d, *J* = 7.2 Hz, 2H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 181.9, 160.5, 158.4, 141.5, 134.4, 131.9, 128.2, 127.4, 122.9, 122.1, 121.9, 119.3, 1089.0, 104.7, 100.2, 55.7, 55.5, 54.0, 41.0.

**IR**: 3209, 1614, 1505, 1470, 1268, 1209, 1141, 1034, 925, 752 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M - H]^{-}$  calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>3</sub>Na<sup>+</sup> 332.1257; found 332.1259.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 4.249          | 6379634 | 50.20  |
| 2 | 7.382          | 6329206 | 49.80  |



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 4.094          | 1034344  | 2.94   |
| 2 | 7.033          | 34153371 | 97.06  |

#### methyl (S)-2-(3-(2,4-dimethoxyphenyl)-2-oxoindolin-3-yl)acetate (C62)



White solid; 22.5 mg, 66% yield, 97% ee; melting point: 186–188 °C;  $[\alpha]_D^{16.8} = -89.0$  (*c* = 0.25 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 12.09 min, t<sub>R</sub> (minor) = 6.04 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.38 (s, 1H), 7.32 – 7.28 (d, *J* = 8.7 Hz, 1H), 7.18 – 7.09 (m, 2H),

**C62** 6.95 - 6.83 (m, 2H), 6.51 - 6.46 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.42 - 6.38 (d, *J* = 2.5 Hz, 1H), 3.77 (s, 3H), 3.59 - 3.55 (m, 4H), 3.48 (s, 3H), 3.28 (d, *J* = 15.1 Hz, 1H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 181.0, 170.3, 160.5, 158.5, 141.5, 133.1, 128.2, 127.9, 123.8, 122.1, 120.6, 109.2, 104.4, 100.2, 55.4, 52.4, 51.7, 40.2.

IR: 2928, 1716, 1613, 1506, 1470, 1263, 1210, 1031, 921, 753 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M - H]^{-}$  calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>5</sub>Na<sup>+</sup> 364.1155; found 364.1158.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 6.019          | 3154376 | 50.07  |
| 2 | 12.406         | 3145448 | 49.93  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 6.036          | 135037  | 1.56   |
| 2 | 12.090         | 8519999 | 98.44  |

#### (S)-3-(2,4-dimethoxyphenyl)-3-isobutylindolin-2-one (C63)



White solid; 30.6 mg, 94% yield, 94% ee; melting point: 157–159 °C;  $[\alpha]_D^{16.2} = -47.2$  (*c* = 0.44 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL ID-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 4.87 min, t<sub>R</sub> (minor) = 6.58 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.09 (s, 1H), 7.54 – 7.47 (d, J = 8.6 Hz, 1H), 7.15 – 7.07 (m, 1H), 6.90 –

**C63** 6.80 (m, 3H), 6.59 – 6.51 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.40 – 6.34 (d, *J* = 2.6 Hz, 1H), 3.78 (s, 3H), 3.42 (s, 3H), 2.32 – 2.14 (m, 2H), 1.53 – 1.41 (m, 1H), 0.92 (d, *J* = 6.7 Hz, 3H), 0.53 (d, *J* = 6.7 Hz, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 183.3, 160.3, 158.2, 142.1, 135.1, 128.1, 127.3, 123.3, 123.1, 122.1, 109.0, 104.6, 100.2, 55.7, 55.5, 53.6, 45.4, 25.1, 24.7, 24.0.

**IR**: 3207, 2955, 1612, 1585, 1469, 1264, 1209, 1036, 752, 646 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M - H]^{-}$  calcd for  $C_{20}H_{23}NO_3Na^+$  348.1570; found 348.1572.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 4.856          | 11127062 | 96.89  |
| 2 | 6.584          | 357077   | 3.11   |

# (S)-3-(2,4-dimethoxyphenyl)-3-phenylindolin-2-one (C64)

# (S)-3-(2,6-dimethoxyphenyl)-3-phenylindolin-2-one (C64')



White soild; 30.4 mg, 88% yield, 84% ee<sub>1</sub>, 99% ee<sub>2</sub>; melting point: 101–105 °C;  $[\alpha]_{D}^{15.3} = -221.0$  (*c* = 0.22 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL OD-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major-major) = 9.61 min, t<sub>R</sub> (major-minor) = 23.26 min, t<sub>R</sub> (minor-major) = 14.36 min, t<sub>R</sub> (minor-minor) = 30.48 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.96 – 8.44 (m, 1H), 7.52 – 7.39 (m, 2H), 7.34 – 7.25 (m, 3H), 7.23 – 7.17 (m, 1H), 7.05 – 6.96 (m, 2H), 6.92 – 6.87 (m, 1H), 6.84

- 6.76 (m, H), 6.45 - 6.34 (m, 2H), 3.76 (m, 3H), 3.51 (m, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 181.6, 160.3, 158.3, 141.3, 138.9, 133.1, 131.0, 129.1, 128.12, 127.9, 127.6, 125.8, 124.3,

121.9, 109.6, 104.6, 100.0, 59.7, 55.7, 55.4.

**IR**: 3211, 1712, 1613, 1503, 1470, 1261, 1209, 1128, 1033, 700 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{22}H_{19}NO_3Na^+$  368.1257; found 368.1263.



|   | <b>Retention Time</b> | Area    | % Area |
|---|-----------------------|---------|--------|
| 1 | 9.607                 | 8256329 | 84.46  |
| 2 | 14.362                | 720973  | 7.38   |
| 3 | 23.263                | 783595  | 8.02   |
| 4 | 30.476                | 14070   | 0.14   |

#### (S)-3-(4-chlorophenyl)-3-(2,4-dimethoxyphenyl)indolin-2-one (C65)



White soild; 36.8 mg, 97% yield, 93% ee; melting point: 180–183 °C;  $[\alpha]_D^{14.8} = 200.0$  (*c* = 0.14 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL ID-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 7.07 min, t<sub>R</sub> (minor) = 10.46 min.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.63 (s, 1H), 7.43 – 7.33 (m, 2H), 7.26 – 7.16 (m, 3H), 7.07 – 6.97

(m, 2H), 6.94 – 6.88 (m, 1H), 6.82 – 6.76 (m, 1H), 6.43 – 6.38 (m, 2H), 3.77 (s, 3H), 3.53 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 181.0, 160.6, 158.3, 141.3, 141.2, 134.2, 132.5, 130.8, 129.4, 129.2, 128.3, 127.9, 127.5, 125.9, 123.8, 122.4, 109.9, 104.7, 100.2, 59.6, 55.8, 55.5.

IR: 2929, 1712, 1613, 1504, 1471, 1263, 1209, 1131, 1035, 696 cm<sup>-1</sup>.

**HRMS** (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{22}H_{18}^{34.9689}CINO_3Na^+$  402.0867; found 402.0871,  $C_{22}H_{18}^{36.9659}CINO_3Na^+$  404.0838; found 404.0839.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 7.056          | 17425775 | 96.43  |
| 2 | 10.464         | 645252   | 3.57   |

#### (S)-3-(2,4-dimethoxyphenyl)-3-(p-tolyl)indolin-2-one (C66)



White soild; 28.0 mg, 78% yield, 81% ee; melting point: 225–231 °C;  $[\alpha]_D^{14.6} = -113.9$  (*c* = 0.11 in CH<sub>2</sub>Cl<sub>2</sub>).

**UPCC** DAICEL CHIRALCEL ID-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 6.79 min, t<sub>R</sub> (minor) = 9.71 min.

 $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (s, 1H), 7.34 – 7.28 (m, 1H), 7.23 – 7.15 (m, 3H), 7.13 – 7.07 (m, 1H), 7.23 – 7.15 (m, 2H), 7.13 – 7.07 (m, 2H)

1H), 7.03 – 6.95 (m, 2H), 6.92 – 6.88 (m, 1H), 6.85 – 6.75 (m, 1H), 6.43 – 6.34 (m, 2H), 3.76 (d, 3H),

3.45 (d, *J* = 46.4 Hz, 3H), 2.29 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 181.7, 160.1, 158.4, 141.3, 138.8, 137.9, 133.4, 131.2, 129.9, 128.5, 128.1, 127.9, 126.3, 125.9, 124.4, 122.0, 109.6, 104.7, 100.0, 59.7, 55.8, 55.5, 21.7.

**IR**: 2924, 1710, 1613, 1504, 1471, 1289, 1209, 1147, 1033, 785 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z:  $[M + Na]^+$  calcd for  $C_{23}H_{21}NO_3Na^+$  382.1414; found 382.1417.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 6.792          | 4749792 | 90.41  |
| 2 | 9.713          | 503758  | 9.59   |

#### (3aS,8aS)-3a-(2,4-dimethoxyphenyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole (D1)



White soild; 34.5 mg, 87% yield, 97% ee; melting point: 97–100 °C;  $[\alpha]_D^{18.8} = 124.7$  (*c* = 0.54 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 95/5, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 3.76 min, t<sub>R</sub> (minor) = 4.36 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.18 – 7.07 (m, 2H), 7.05 – 6.98 (m, 1H), 6.71 – 6.63 (m, 1H), 6.49 – 6.45 (m, 1H), 6.43 – 6.36 (m, 2H), 5.59 (s, 1H), 4.11 – 4.05 (m, 1H), 3.77 (s, 1H), 3.73 (s, 3H), 3.59 – 3.51 (m, 1H), 2.96 (s, 3H), 2.89 – 2.80 (m, 1H), 2.35 – 2.30 (m, 1H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) *δ* 160.0, 158.7, 151.4, 133.3, 128.7, 128.3, 124.8, 124.0, 117.3, 105.4, 103.9, 103.8, 99.9, 67.5, 58.8, 55.5, 39.7, 31.5.

**IR**: 2925, 1607, 1583, 1500, 1465, 1260, 1209, 1158, 953, 834 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>19</sub>NO<sub>3</sub>Na<sup>+</sup> 334.1414; found 334.1416.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.869          | 6746994 | 50.12  |
| 2 | 4.470          | 6714579 | 49.88  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.761          | 33846   | 1.49   |
| 2 | 4.359          | 2238599 | 98.51  |

#### (S)-3-(2,4-dihydroxyphenyl)-3-methylindolin-2-one (D2)



Yellow soild; 23.2 mg, 91% yield, 94% ee; melting point: 81–86 °C;  $[\alpha]_D^{19.0} = 989.3$  (*c* = 0.23 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL ID-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 12.0 min, t<sub>R</sub> (minor) = 22.8 min.

<sup>1</sup>**H NMR** (400 MHz, acetone-*d*<sub>6</sub>) δ 9.64 (s, 1H), 7.22 – 7.15 (m, 1H), 7.14 – 7.06 (m, 2H), 7.04 – 6.93 (m, 2H), 6.36 – 6.28 (m, 2H), 1.69 (s, 3H).

<sup>13</sup>**C NMR** (101 MHz, acetone-*d*<sub>6</sub>) δ 184.1, 158.8, 157.7, 142.2, 136.3, 129.2, 128.3, 124.7, 122.6, 118.9, 110.4, 107.1, 105.1, 51.7, 23.6.

IR: 3265 1680, 1617, 1521, 1470, 1377, 1204, 841, 755, 690 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M - H<sup>-</sup>] calcd for C<sub>15</sub>H<sub>12</sub>NO<sub>3</sub><sup>-</sup> 254.0823; found 254.0825.



4.00 2.00 6.00 14.00 16.00 8.00 10.00 12.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 0.00 Minutes

|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 11.994         | 20088333 | 96.97  |
| 2 | 22.755         | 627655   | 3.03   |

#### (R)-3-(3,4-dimethoxyphenyl)-3-methyl-1-pentylindolin-2-one (D3)



Colorless oil; 25.6 mg, 92% yield, 76% ee;  $[\alpha]_D^{18.5}$  = 31.0 (*c* = 0.17 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL IB-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda$  = 254 nm, t<sub>R</sub> (major) = 3.55 min, t<sub>R</sub> (minor) = 3.01 min.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) 7.33 – 7.28 (m, 1H), 7.22 – 7.16 (m, 1H), 7.10 – 7.05 (m, 1H), 6.95 – 6.90 (m, 1H), 6.88 – 6.84 (m, 1H), 6.83 – 6.74 (m, 2H), 3.83 (s, 3H), 3.81 (s, 3H), 3.79 – 3.62 (m, 2H), 1.75 (s, 3H), 1.73 – 1.65 (m, 2H), 1.43 – 1.27 (m, 4H), 0.90 – 0.82 (m, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  179.6, 149.0, 148.4, 142.7, 135.2, 133.6, 128.1, 124.4, 122.6, 119.0, 111.1, 110.4, 108.7, 56.0, 56.0, 51.7, 40.2, 29.1, 27.2, 24.2, 22.5, 14.1.

IR: 2930, 2361, 1712, 1609, 1515, 1488, 1465, 1354, 1260, 1027 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na<sup>+</sup>] calcd for  $C_{22}H_{27}NO_3Na^+$  376.1883; found 376.1883.



|   | Retention Time | Area   | % Area |
|---|----------------|--------|--------|
| 1 | 2.961          | 211608 | 49.66  |
| 2 | 3.509          | 214505 | 50.34  |



|   | <b>Retention Time</b> | Area    | % Area |
|---|-----------------------|---------|--------|
| 1 | 3.007                 | 168930  | 11.31  |
| 2 | 3.552                 | 1324385 | 88.69  |

#### (S)-3-(2,4-dihydroxyphenyl)-3-methylindolin-2-one (D4)



Colorless oil; 18.5 mg, 75% yield, 76% ee;  $[\alpha]_D^{18.5} = 78.3$  (c = 0.11 in CH<sub>2</sub>Cl<sub>2</sub>). **UPCC** DAICEL CHIRALCEL OX-3, CO<sub>2</sub>/MeOH = 90/10, flow rate = 1.5 mL/min,  $\lambda = 254$  nm, t<sub>R</sub> (major) = 5.10 min, t<sub>R</sub> (minor) = 3.76 min.

<sup>1</sup>H NMR (400 MHz, acetone-*d*<sub>6</sub>)  $\delta$  7.28 – 7.19 (m, 1H), 7.12 – 7.02 (m, 2H), 6.84 – 6.75 (m, 1H), 6.75 – 6.72 (m, 2H), 5.96 – 5.93 (m, 2H), 3.84 – 3.65 (m, 2H), 1.73 – 1.64 (m, 5H), 1.39 – 1.26 (m, 4H), 0.90 – 0.82 (m, 3H).

<sup>13</sup>**C NMR** (101 MHz, acetone-*d*<sub>6</sub>) δ 179.3, 148.7, 147.5, 143.5, 136.3, 136.0, 128.9, 124.9, 123.1, 120.6, 109.6, 108.5, 108.1, 102.0, 52.2, 40.3, 27.8, 24.0, 22.9, 14.2.

IR: 2927, 2361, 1711, 1609, 1488, 1466, 11354, 1354, 1103, 957 cm<sup>-1</sup>.

HRMS (FTMS+c ESI) m/z: [M + Na<sup>+</sup>] calcd for  $C_{21}H_{23}NO_3Na^+$  360.1570; found 360.1568.





|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 3.858          | 221098  | 12.10  |
| 2 | 5.097          | 1606579 | 87.90  |

# 12 Copies of NMR spectra for products















тт (ррш







f1 (ppm)






















































fl (ppm)

















10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)














20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)











210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)









# 





8.08
9.09
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
<li













#### B.8.3 B.6.3 B.





## 



### 



110 100 f1 (ppm) 

 $\begin{array}{c} 1.72\\ 1.72\\ 1.72\\ 1.72\\ 1.72\\ 1.72\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\ 1.73\\$  $\cap$ 0---D3 ļ 9 9 4 2.0 2.9 3.0 2.7 7.5 7.4 7.3 7.1 f1 (ppm) 7.2 7.0 6.7 6.9 6.8 3.95 3.80 3.75 f1 (ppm) 3.90 3.85 3.65 3.70 Willia 2.9 3.0 1 2.1 2 5.5 77 10 77 4.1 g è 7.5 7.0 3.5 f1 (ppm) -0. 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 0.5 0.0 4.0 1.0 179.60  $\lesssim$  <sup>148.98</sup>  $\sim$  <sup>148.39</sup>  $\sim \frac{111.07}{110.37}$  $\sim 108.74$ ---- 40.19 ---- 14.09  $\sum_{-55.97}^{56.00}$ D3 56. 4 56. 2 56. 0 55. 8 55. 6 55. 4 55. 2 55. 0 f1 (ppm) 130 125 f1 (ppm) 150 145 140 135 120 115 110 105 

90 fl (ppm) 180 50 30 170 160 150 140 130 120 70 60 40 20 10 0 110 100 80



#### **13 Reference**

1. (a)W. K. Yang, P. Dong, J. Xu, J. Yang, X. H. Liu, X. M. Feng, Chem. Eur. J., 2021, 27, 9272–9275; (b)J. Xu, R. Z. Li, N. Xu, X. H.

Liu, F. Wang, X. M. Feng, Org. Lett., 2021, 23, 1856-1861.

2. (a) Y. X. Wang, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, *Synlett*, 2005, 2445–2448; (b) X. H. Liu, L. Lin, X. M. Feng, *Acc. Chem. Res.*, **2011**, *44*, 574–587; (c) X. H. Liu, L. Lin, X. M. Feng, *Org. Chem. Front.*, **2014**, *1*, 298–302; (d) Y. S. Chen, Y. Liu, Z. J. Li, S. X. Dong, X. H. Liu, X. M. Feng, *Angew. Chem., Int. Ed.*, **2018**, *57*, 16554–16558.

3. (a) G. M. Sheldrick, Acta Cryst., 2008, 64, 112–122. (b) G. M. Sheldrick, Acta Cryst., 2015, 71, 3–8. (c) G. M. Sheldrick, Acta Cryst., 2015, 71, 3–8. (d) O.V. Dolomanov, Bourhis, L.J., Gildea, R.J., Howard, J. A. K., Puschmann, H. J. Appl. Cryst., 2009, 42, 339–341.

4. A. L. Spek, J. Appl. Cryst., 2003, 36, 7-13.