Electronic Supplementary Information

Palladium-Catalyzed Regio- and Stereoselective Allylic Alkylation of 5-

Vinyloxazolidine-2,4-diones with Azlactones: Synthesis of Chiral (Z)-

Trisubstituted Allylic Amino Acid Derivatives

Kuan Li,[†] Lan Wang,[†] Shuo Zhen,[†] Lihan Zhu,[‡] Songcheng Yu,[§] Yongjun Wu,[§] and Hongchao Guo[†]*

[†] Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
[‡] School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
[§] College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China *E-mail:* hchguo@cau.edu.cn

CONTENTS

General Information	S2
General Procedure for Palladium-Catalyzed Asymmetric Decarboxylative Allylation	S2
General Procedure for Scaled-up Asymmetric Decarboxylative Allylation	S3
General Procedure for Further Transformation	S3
Characterization Data of Products	S4
NMR Spectra of Products	S23
HPLC Chromatograms of All Products	S61
X-Ray Crystallographic Data of 3ak	S99
Density functional calculations (DFT)	S111

General Information

All reactions were performed in Schlenk tubes under an atmosphere of argon using oven-dried glassware. Commercially obtained reagents were used without further purification, unless otherwise noted. Trichloromethane (CHCl₃) was distilled over P_2O_5 and stored over 3Å type molecular sieves. Tetrahydrofuran (THF) and toluene were distilled freshly before use over sodium and benzophenone. m-Xylene, Ethyl acetate (EA), Dichloromethane (DCM) and 1,2dichloroethane (DCE) were distilled from CaH₂. Reactions were checked for completion by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ¹H, ¹³C and ¹⁹F NMR spectra were obtained in CDCl₃ using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 500, 125 and 470 MHz, respectively. Chemical shifts are reported in parts per million (δ value) calibrated against the residual solvent peak. Signal patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (J) are given in hertz (Hz). The infrared spectra were recorded on a Bruker VERTEX 70 IR spectrometer as KBr pellets, with absorption reported in cm⁻¹. High-resolution mass spectra were recorded on a Bruker Impact II UHR TOF LC/MS Mass Spectrometry. Melting points were determined on a Stuard SMP3 melting point apparatus. X-ray crystallographic data were collected using a MM007HF Saturn724+. HPLC analysis was performed on Agilent 1220 series, UV detection monitored at 254 nm, using a Chiralpak AD-H column, Chiralcel OD-H column, Chiralcel OX-H column, Chiralpak IA column, Chiralpak IC column, Chiralpak ID column and Chiralpak IH column with hexane and ⁱPrOH as the eluent.

General Procedure A for Palladium-Catalyzed Asymmetric Decarboxylative Allylation

To an oven-dried 25 mL of Schlenk tube equipped with a stir bar, $Pd_2dba_3 \cdot CHCl_3$ (5 mol%) and (1R,4S,5S,6S)-5,6-dibenzhydrylbicyclo[2.2.1]hept-2-ene (20 mol%) was added along with γ -vinylaminobutyrolactones 1^1 (0.15 mmol), 4-*tert*-butyl-2-phenyloxazol-5(4*H*)-ones $2^{2\cdot3}$ (0.1 mmol) and DCM (1.0 mL). The reaction was stirred at 25 °C under argon atmosphere until complete consumption of 4-*tert*-butyl-2-phenyloxazol-5(4*H*)-ones 2 as monitored by thin layer chromatography. The reaction mixture was directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:10 or 1:5) to afford the desired products 3.

¹ Li, K.; Zhen, S.; Wang, W.; Du, J.; Yu, S.; Wu, Y.; Guo, H. Chem. Sci. 2023, 14, 3024–3029.

² Wang, L.; Liu, M.; Lu, M.; Wang, B.; Han, Q.; Jin, J.; Yu, S.; Wu, Y.; Guo, H. Org. Chem. Front. 2023, 10, 813-818.

³ Wakafuji, K.; Lwasa, S.; Ouchida, K. N.; Cho, H.; Dohi, H.; Yamamoto, E.; Kamachi, T.; Tokunaga, M. ACS Catal. **2021**, *11*, 14067–14075.

General Procedure B for Scaled-up Asymmetric Decarboxylative Allylation

To an oven-dried 100 mL of Schlenk tube equipped with a stir bar, Pd_2dba_3 ·CHCl₃ (5 mol%) and (1*R*,4*S*,5*S*,6*S*)-5,6-dibenzhydrylbicyclo[2.2.1]hept-2-ene (20 mol%) was added along with γ -vinylaminobutyrolactone **1k** (1.5 mmol), 4-*tert*-butyl-2-phenyloxazol-5(4*H*)-one **2a** (1.0 mmol) and DCM (10.0 mL). The reaction was stirred at 25 °C under argon atmosphere until complete consumption of 4-*tert*-butyl-2-phenyloxazol-5(4*H*)-one **2a** as monitored by thin layer chromatography. The reaction mixture was directly purified by silica gel column chromatography (Ethyl acetate/Petroleum ether = 1:5) to afford the desired product **3ak**.

General Procedure C for Further Transformation

To a sealed tube equipped with compound **3ak** (0.1 mmol) in MeOH (1.0 mL) were added K_2CO_3 (2.5 equiv.). The reaction mixture stirred at room temperature for 20 h. After completion, the resulting mixture was concentrated and the residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate = 3:1) to give the corresponding product **4a**.

General Procedure D for Further Transformation

The NaBH₄ (1.0 mmol) was added to a solution of **3ak** (0.1 mmol) in MeOH (1.0 mL) at 0 °C. The reaction was stirring at 0 °C for 3 h, The reaction was quenched with saturated aq. NH₄Cl (10.0 mL) and extracted with ethyl acetate (15.0 mL x 3). The combined organic layers were washed with brine (20.0 mL), dried over Na₂SO₄, filtered, concentrated under the reduced pressure. The residue purified by silica gel column chromatography (Petroleum ether/Ethyl acetate = 2:1) to afford desired adduct **4b**.

General Procedure E for Further Transformation

The NaBH₄ (1.0 mmol) was added to a solution of **3ak** (0.1 mmol) in MeOH (1.0 mL) at 0 °C. The reaction was stirring at 0 °C for 3 h, The reaction was quenched with saturated aqeous NH₄Cl (5.0 mL) and extracted with ethyl acetate (15.0 mL x 3). The combined organic layers were washed with brine (20.0 mL), dried over Na₂SO₄, filtered, concentrated under the reduced pressure. The residue was dissolved in dichloromethane (1.5 mL) at 0 °C, and Dess-Martin periodinane (DMP, 0.15 mmol) was added. The reaction mixture was stirred at room temperature for additional 0.5 h, the residue was purified by column chromatography on silica gel (Petroleum ether/Ethyl acetate = 2:1) to afford **4c**.

Characterization Data of Substrates and Products

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N,2-diphenylbut-2-enamide

white solid, 41.3 mg, 91%, Mp: 138 – 140 °C, 94% *ee*, $[\alpha]^{25}_{D}$ = +104.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.14 (s, 1H), 7.97 – 7.89 (m, 2H), 7.82 – 7.73 (m, 2H), 7.54 – 7.48 (m, 1H), 7.44 – 7.38 (m, 2H), 7.34 – 7.29 (m, 2H), 7.22 – 7.17 (m, 2H), 7.16 – 7.11 (m, 3H), 7.11 – 7.06 (m, 1H), 5.68 – 5.62 (dd, *J* = 9.5, 7.0 Hz, 1H), 3.17 – 3.08 (dd, *J* = 13.5, 9.5 Hz, 1H), 2.97 – 2.90 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.03 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.1, 166.3, 161.5, 144.0, 138.4, 137.0, 133.4, 129.2, 129.2, 128.5, 128.3, 127.9, 126.9, 125.1, 124.4, 123.2, 119.6, 78.7, 37.8, 32.8, 25.0. IR (film) v_{max} 3060, 2968, 1819, 1678, 1648, 1598, 1441, 1296, 1018, 755. HRMS (ESI, *m/z*) calcd for C₂₉H₂₉N₂O₃⁺ [M+H]⁺: 453.2173, found: 453.2171. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 90 : 10, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 12.3 min, t_{minor} = 19.2 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(3-fluorophenyl)-2-phenylbut-2-enamide

Colorless oil, 41.8 mg, 89%, 94% *ee*, $[\alpha]^{25}_{D} = +96.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.36 (s, 1H), 8.05 – 7.95 (m, 2H), 7.85 – 7.76 (m, 1H), 7.65 – 7.56 (m, 1H), 7.54 – 7.44 (m, 3H), 7.38 – 7.29 (m, 1H), 7.28 – 7.17 (m, 5H), 6.91 – 6.81 (m, 1H), 5.78 – 5.70 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.22 – 3.12 (dd, *J* = 13.5, 10.0 Hz, 1H), 3.06 – 2.95 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.11 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.0, 166.4, 163.1 (d, *J* = 243.1 Hz), 161.6, 143.8, 139.8 (d, *J* = 10.6 Hz), 136.8, 133.5, 130.2 (d, *J* = 9.1 Hz), 129.2, 128.5, 128.4, 127.9, 126.9, 125.0, 123.6, 114.8 (d, *J* = 2.9 Hz), 111.2 (d, *J* = 21.3 Hz), 107.1 (d, *J* = 26.1 Hz), 78.7, 37.8, 32.7, 25.0. ¹⁹F NMR (CDCl₃, 470 MHz): δ –111.1. IR (film) ν_{max} 3062, 2969, 1820, 1683, 1647, 1604, 1540, 1019, 889, 774. HRMS (ESI, *m*/*z*) calcd for C₂₉H₂₈FN₂O₃⁺ [M+H]⁺: 471.2078, found: 471.2076. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 90 : 10, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.1 min, t_{minor} = 10.7 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-fluorophenyl)-2-phenylbut-2-enamide

Colorless oil, 45.1 mg, 96%, 95% *ee*, $[\alpha]^{25}_{D}$ = +88.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.20 (s, 1H), 8.04 – 7.96 (m, 2H), 7.85 – 7.77 (m, 2H), 7.63 – 7.55 (m, 1H), 7.53 – 7.45 (t, *J* = 7.0 Hz, 2H), 7.28 – 7.19 (m, 5H), 7.13 – 7.05 (m, 2H), 5.79 – 5.68 (dd, *J* = 9.5, 7.0 Hz, 1H), 3.22 – 3.13 (dd, *J* = 13.5, 9.5 Hz, 1H), 3.07 – 2.96 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.1, 166.2, 161.5, 159.4 (d, *J* = 243.5 Hz), 143.9, 136.9, 134.4 (d, *J* = 2.8 Hz), 133.4, 129.2, 128.5, 128.3, 127.9, 126.9, 125.0, 123.4, 121.1 (d, *J* = 7.7 Hz), 115.8 (d, *J* = 22.3 Hz), 78.8, 37.8, 32.7, 25.0. ¹⁹F NMR (CDCl₃, 470 MHz): δ –117.8. IR (film) ν_{max} 3059, 2970, 1820, 1677, 1652, 1540, 1508, 1295, 1214, 889, 692. HRMS (ESI, *m/z*) calcd for C₂₉H₂₈FN₂O₃⁺ [M+H]⁺: 471.2078, found: 471.2075. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 90 : 10, *v* = 1.0 mL/min, λ = 254.0 nm; t_{maior} = 11.1 min, t_{minor} = 13.5 min).

(S, Z)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(3-chlorophenyl)-2-phenylbut-2-enamide

Colorless oil, 43.3 mg, 89%, 94% *ee*, $[\alpha]^{25}_{D}$ = +112.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.21 (s, 1H), 7.96 – 7.88 (m, 3H), 7.59 – 7.49 (m, 2H), 7.46 – 7.38 (t, *J* = 8.0 Hz, 2H), 7.26 – 7.20 (t, *J* = 8.0 Hz, 1H), 7.19 – 7.12 (m, 5H), 7.09 – 7.03 (dd, *J* = 8.5, 2.0 Hz, 1H), 5.70 – 5.63 (dd, *J* = 10.0, 7.5 Hz, 1H), 3.14 – 3.05 (dd, *J* = 14.0, 10.0 Hz, 1H), 2.97 – 2.89 (dd, *J* = 14.0, 7.5 Hz, 1H), 1.03 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.0, 166.4, 161.6, 143.8, 139.5, 136.8, 134.9, 133.5, 130.1, 129.3, 128.5, 128.4, 127.9, 126.9, 125.0, 124.5, 123.6, 119.7, 117.4, 78.7, 37.8, 32.7, 25.0. IR (film) v_{max} 3060, 2969, 1820, 1677, 1598, 1018, 889, 692, 670. HRMS (ESI, *m*/*z*) calcd for C₂₉H₂₈ClN₂O₃⁺ [M+H]⁺: 487.1783, found: 487.1781. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 95 : 5, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 10.5 min, t_{minor} = 14.6 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-chlorophenyl)-2-phenylbut-2-enamide

Colorless oil, 43.0 mg, 88%, 94% *ee*, $[\alpha]^{25}_{D}$ = +128.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.20 (s, 1H), 7.95 – 7.88 (m, 2H), 7.76 – 7.70 (d, *J* = 8.5 Hz, 2H), 7.56 – 7.49 (m, 1H), 7.47 – 7.37 (t, *J* = 7.0 Hz, 2H), 7.30 – 7.26 (d, *J* = 8.5 Hz, 2H), 7.19 – 7.12 (m, 5H), 5.72 – 5.59 (dd, *J* = 9.5, 7.0 Hz, 1H), 3.14 – 3.04 (dd, *J* = 14.0, 9.5 Hz, 1H), 2.97 – 2.89 (dd, *J* = 14.0, 7.0 Hz, 1H), 1.02 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.1, 166.3, 161.6, 143.8, 137.0, 136.9, 133.5, 129.3, 129.2, 129.2, 128.5, 128.4, 127.9, 126.9, 125.0, 123.5, 120.7, 78.7, 37.8, 32.7, 25.0. IR (film) v_{max} 3034, 2970, 1820, 1681, 1648, 1595, 1527, 1492, 1298, 889, 692. HRMS (ESI, *m/z*) calcd for C₂₉H₂₈ClN₂O₃⁺ [M+H]⁺: 487.1783, found: 487.1781. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 90 : 10, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 9.5 min, t_{minor} = 12.2 min).

(*S*, *Z*)-N-(4-bromophenyl)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-2-phenylbut-2-enamide

Colorless oil, 46.3 mg, 87%, 94% *ee*, $[\alpha]^{25}_{D}$ = +104.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.29 (s, 1H), 8.02 – 7.95 (m, 2H), 7.78 – 7.73 (dd, *J* = 8.5, 2.0 Hz, 2H), 7.63 – 7.58 (m, 1H), 7.53 – 7.47 (m, 4H), 7.27 – 7.19 (m, 5H), 5.78 – 5.68 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.21 – 3.10 (dd, *J* = 13.5, 9.5 Hz, 1H), 3.04 – 2.97 (dd, *J* = 13.5, 7.5 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.0, 166.3, 161.6, 143.9, 137.5, 136.8, 133.5, 132.1, 129.2, 128.5, 128.4, 127.9, 126.9, 125.0, 123.5, 121.1, 117.0, 78.7, 37.8, 32.7, 25.0. IR (film) v_{max} 3033, 2970, 1820, 1681, 1648, 1526, 1488, 1298, 1019, 889. HRMS (ESI, *m*/*z*) calcd for C₂₉H₂₈BrN₂O₃⁺ [M+H]⁺: 531.1278, found: 531.1276. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 95 : 5, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 15.2 min, t_{minor} = 22.8 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-2-phenyl-N-(4-(trifluoro-methyl)phenyl)but-2-enamide

Colorless oil, 45.7 mg, 88%, 92% *ee*, $[\alpha]^{25}_{D}$ = +104.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.48 (s, 1H), 8.03 – 7.95 (m, 4H), 7.69 – 7.58 (m, 3H), 7.54 – 7.47 (t, *J* = 7.5 Hz, 2H), 7.27 – 7.20 (m, 5H), 5.80 – 5.72 (dd, *J* = 10.0, 7.5 Hz, 1H), 3.22 – 3.13 (dd, *J* = 13.5, 10.0 Hz, 1H), 3.07 – 2.98 (dd, *J* = 13.5, 7.5 Hz, 1H), 1.11 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.0, 166.6, 161.7, 143.7, 141.4, 136.8, 133.5, 129.3, 128.6, 128.4, 127.9, 126.9, 126.4 (q, *J* = 3.6 Hz), 126.2 (q, *J* = 32.4 Hz), 125.0, 124.2 (q, *J* = 270.0 Hz), 123.8, 119.2, 78.7, 37.8, 32.7, 25.0. ¹⁹F NMR (CDCl₃, 470 MHz): δ –62.0. IR (film) v_{max} 2970, 1822, 1685, 1653, 1533, 1322, 1120, 1067, 1017, 692. HRMS (ESI, *m/z*) calcd for C₃₀H₂₈F₃N₂O₃⁺ [M+H]⁺: 521.2047, found: 521.2044. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 95 : 5, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.7 min, t_{minor} = 10.9 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-2-phenyl-N-(m-tolyl)but-2-enamide

Colorless oil, 41.9 mg, 90%, 95% *ee*, $[\alpha]^{25}_{D}$ = +88.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.04 (s, 1H), 7.98 – 7.90 (m, 2H), 7.73 – 7.66 (t, *J* = 2.0 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.45 – 7.38 (t, *J* = 7.0 Hz, 2H), 7.21 – 7.16 (m, 3H), 7.15 – 7.11 (m, 3H), 6.93 – 6.88 (d, *J* = 7.5 Hz, 1H), 5.68 – 5.60 (dd, *J* = 9.5, 7.0 Hz, 1H), 3.15 – 3.06 (dd, *J* = 13.5, 9.5 Hz, 1H), 2.98 – 2.89 (dd, *J* = 13.5, 7.0 Hz, 1H), 2.31 (s, 3H), 1.03 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.1, 166.3, 161.4, 144.0, 139.1, 138.3, 137.0, 133.4, 129.2, 128.9, 128.5, 128.2, 127.9, 126.9, 125.2, 125.1, 123.2, 120.3, 116.6, 78.8, 37.8, 32.7, 25.0, 21.7. IR (film) v_{max} 2967, 1820, 1683, 1653, 1541, 1489, 1294, 1260, 1019, 888, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₀H₃₁N₂O₃+ [M+H]⁺: 467.2329, found: 467.2326. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 90 : 10, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 10.4 min, t_{minor} = 15.4 min).

(S, Z)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-2-phenyl-N-(p-tolyl)but-2-enamide

White solid, 41.4 mg, 89%, Mp: 150 – 152 °C, 94% *ee*, $[\alpha]^{25}_{D}$ = +136.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.14 (s, 1H), 8.05 – 7.95 (m, 2H), 7.77 – 7.69 (d, *J* = 8.5 Hz, 2H), 7.62 – 7.56 (m, 1H), 7.52 – 7.45 (t, *J* = 7.5 Hz, 2H), 7.29 – 7.25 (m, 2H), 7.23 – 7.17 (m, 5H), 5.75 – 5.67 (dd, *J* = 10.0, 7.5 Hz, 1H), 3.24 – 3.15 (dd, *J* = 14.0, 10.0 Hz, 1H), 3.04 – 2.96 (dd, *J* = 14.0, 7.5 Hz, 1H), 2.35 (s, 3H), 1.11 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.1, 166.1, 161.4, 144.08, 137.1, 135.8, 134.0, 133.4, 129.6, 129.2, 128.5, 128.2, 127.9, 126.9, 125.1, 123.0, 119.5, 78.7, 37.8, 32.7, 25.0, 21.0. IR (film) v_{max} 2972, 1820, 1772, 1676, 1653, 1540, 1521, 1295, 1276, 1260, 764. HRMS (ESI, *m*/*z*) calcd for C₃₀H₃₁N₂O₃⁺ [M+H]⁺: 467.2329, found: 467.2327. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.3 min, t_{minor} = 14.3 min).

(S, Z)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(3-methoxyphenyl)-2-phenylbut-2-enamide

Colorless oil, 42.3 mg, 88%, 94% *ee*, $[\alpha]^{25}_{D}$ = +96.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.18 (s, 1H), 7.97 – 7.87 (m, 2H), 7.62 – 7.56 (t, *J* = 2.5 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.44 – 7.38 (m, 2H), 7.25 – 7.11 (m, 7H), 6.69 – 6.61 (m, 1H), 5.70 – 5.60 (dd, *J* = 10.0, 7.5 Hz, 1H), 3.76 (s, 3H), 3.18 – 3.07 (dd, *J* = 13.5, 10.0 Hz, 1H), 2.97 – 2.88 (dd, *J* = 13.5, 7.5 Hz, 1H), 1.04 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.0, 166.3, 161.5, 160.3, 144.1, 139.6, 137.1, 133.4, 129.8, 129.2, 128.5, 128.3, 127.9, 126.9, 125.0, 123.3, 111.7, 110.5, 105.2, 78.7, 55.4, 37.8, 32.7, 25.0. IR (film) v_{max} 2967, 1820, 1672, 1600, 1244, 1064, 965, 752, 693. HRMS (ESI, *m/z*) calcd for C₃₀H₃₁N₂O₄⁺ [M+H]⁺: 483.2278, found: 483.2277. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 85 : 15, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 10.2 min, t_{minor} = 15.5 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-phenylbut-2-enamide

White solid, 44.2 mg, 92%, Mp: 106 – 108 °C, 95% *ee*, $[\alpha]^{25}_{D}$ = +112.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.01 (s, 1H), 7.97 – 7.88 (d, *J* = 7.0 Hz, 2H), 7.73 – 7.64 (m, 2H), 7.56 – 7.48 (m, 1H), 7.45 – 7.38 (m, 2H), 7.22 – 7.18 (m, 2H), 7.16 – 7.11 (m, 3H), 6.88 – 6.84 (m, 2H), 5.69 – 5.59 (dd, *J* = 10.0, 7.5 Hz, 1H), 3.75 (s, 3H), 3.16 – 3.06 (dd, *J* = 14.0, 10.0 Hz, 1H), 2.99 – 2.87 (dd, *J* = 14.0, 7.5 Hz, 1H), 1.03 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.1, 165.9, 161.4, 156.4, 144.1, 137.1, 133.4, 131.6, 129.2, 128.5, 128.2, 127.9, 125.1, 123.1, 121.1, 114.3, 78.8, 55.5, 37.8, 32.7, 25.0. IR (film) v_{max} 2966, 1819, 1671, 1652, 1510, 1465, 1245, 1178, 889, 830. HRMS (ESI, *m*/*z*) calcd for C₃₀H₃₁N₂O₄⁺ [M+H]⁺: 483.2278, found: 483.2279. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 12.2 min, t_{minor} = 23.2 min).

(S, Z)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-2-phenyl-N-(4-(trifluoromethoxy)phenyl)but-2-enamide

Colorless oil, 48.9 mg, 91%, 95% *ee*, $[\alpha]^{25}_{D}$ = +96.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.32 (s, 1H), 8.03 – 7.95 (dd, *J* = 8.0, 1.0 Hz, 2H), 7.93 – 7.85 (d, *J* = 9.0 Hz, 2H), 7.63 – 7.57 (m, 1H), 7.53 – 7.46 (m, 2H), 7.28 – 7.20 (m, 7H), 5.79 – 5.72 (dd, *J* = 9.5, 7.0 Hz, 1H), 3.22 – 3.13 (dd, *J* = 13.5, 9.5 Hz, 1H), 3.07 – 2.98 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.11 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.1, 166.4, 161.6, 145.4, 143.8, 137.0, 136.8, 133.5, 129.2, 128.5, 128.4, 127.9, 126.9, 125.0, 123.6, 121.9, 120.6, 120.5 (q, *J* = 256.0 Hz), 78.8, 37.8, 32.7, 25.0. ¹⁹F NMR (CDCl₃, 470 MHz): δ –58.0. IR (film) v_{max} 3060, 2970, 1821, 1683, 1653, 1539, 1508, 1263, 1202, 1019, 889, 692. HRMS (ESI, *m/z*) calcd for C₃₀H₂₈F₃N₂O₄⁺ [M+H]⁺: 537.1996, found: 537.1996. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 95 : 5, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 9.4 min, t_{minor} = 11.9 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-2-(2-fluorophenyl)-N-(4-methoxyphenyl)but-2-enamide

Colorless oil, 44.2 mg, 88%, 96% *ee*, $[\alpha]^{25}_{D}$ = +192.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.39 (s, 1H), 7.95 – 7.88 (dd, *J* = 8.0, 1.0 Hz, 2H), 7.72 – 7.66 (m, 2H), 7.55 – 7.49 (m, 1H), 7.45 – 7.38 (m, 2H), 7.27 – 7.21 (m, 1H), 7.14 – 7.07 (m, 1H), 6.98 – 6.93 (m, 1H), 6.88 – 6.83 (m, 2H), 6.81 – 6.76 (m, 1H), 5.71 – 5.62 (dd, *J* = 10.5, 7.0 Hz, 1H), 3.74 (s, 3H), 3.29 – 3.17 (dd, *J* = 13.5, 10.5 Hz, 1H), 2.98 – 2.87 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.04 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 178.8, 165.0, 161.9, 159.6 (d, *J* = 247.1 Hz), 156.3, 138.8, 133.4, 131.8, 130.6 (d, *J* = 2.9 Hz), 129.8 (d, *J* = 8.4 Hz), 129.1, 128.0, 127.2 (d, *J* = 2.5 Hz), 126.0 (d, *J* = 13.5 Hz), 125.1, 124.1 (d, *J* = 3.5 Hz), 121.0, 115.6 (d, *J* = 21.9 Hz), 114.3, 78.4, 55.5, 37.8, 32.7, 25.0. ¹⁹F NMR (CDCl₃, 470 MHz): δ –114.3. IR (film) v_{max} 3062, 2961, 1820, 1671, 1652, 1540, 1510, 1297, 1245, 1020, 964. HRMS (ESI, *m*/*z*) calcd for C₃₀H₃₀FN₂O₄⁺ [M+H]⁺: 501.2184, found: 501.2184. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.9 min, t_{minor} = 17.1 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-2-(4-fluorophenyl)-N-(4-methoxyphenyl)but-2-enamide

Colorless oil, 45.7 mg, 91%, 96% *ee*, $[\alpha]^{25}_{D}$ = +128.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.20 (s, 1H), 8.03 – 7.97 (dd, *J* = 8.0, 1.0 Hz, 2H), 7.79 – 7.73 (m, 2H), 7.64 – 7.57 (m, 1H), 7.53 – 7.46 (m, 2H), 7.28 – 7.21 (m, 2H), 6.97 – 6.85 (m, 4H), 5.71 – 5.61 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.83 (s, 3H), 3.24 – 3.14 (dd, *J* = 13.5, 10.0 Hz, 1H), 3.04 – 2.94 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.11 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.0, 165.7, 162.7 (d, *J* = 246.5 Hz), 161.5, 156.5, 143.1, 133.5, 133.2 (d, *J* = 3.4 Hz), 131.5, 129.2, 128.7 (d, *J* = 8.0 Hz), 127.9, 125.0, 122.9, 121.1, 115.4 (d, *J* = 21.6 Hz), 114.3, 78.7, 55.5, 37.8, 32.7, 25.0. ¹⁹F NMR (CDCl₃, 470 MHz): δ –113.6. IR (film) v_{max} 2961, 1820, 1671, 1653, 1601, 1508, 1296, 1235, 1019, 833, 765. HRMS (ESI, *m/z*) calcd for C₃₀H₃₀FN₂O₄⁺ [M+H]⁺: 501.2184, found: 501.2184. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.4 min, t_{minor} = 11.4 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-2-(4-chlorophenyl)-N-(4-methoxyphenyl)but-2-enamide

Colorless oil, 46.9 mg, 91%, 97% *ee*, $[\alpha]^{25}_{D}$ = +88.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.21 (s, 1H), 8.03 – 7.96 (m, 2H), 7.80 – 7.71 (m, 2H), 7.64 – 7.55 (m, 1H), 7.54 – 7.46 (m, 2H), 7.21 – 7.13 (m, 4H), 6.97 – 6.90 (m, 2H), 5.74 – 5.66 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.82 (s, 3H), 3.23 – 3.13 (dd, *J* = 13.5, 10.0 Hz, 1H), 3.04 – 2.94 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.0, 165.4, 161.5, 156.5, 143.0, 135.6, 134.2, 133.5, 131.5, 129.3, 128.6, 128.2, 127.8, 125.0, 123.5, 121.1, 114.3, 78.7, 55.5, 37.8, 32.8, 25.0. IR (film) v_{max} 2966, 1820, 1670, 1653, 1540, 1510, 1492, 1246, 1018, 830, 765. HRMS (ESI, *m/z*) calcd for C₃₀H₃₀ClN₂O₄⁺ [M+H]⁺: 517.1889, found: 517.1889. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 85 : 15, $v = 1.0 \text{ mL/min}, \lambda = 254.0 \text{ nm}; t_{major} = 11.9 \text{ min}, t_{minor} = 15.9 \text{ min}$).

(S, Z)-2-(3-bromophenyl)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)but-2-enamide

Colorless oil, 54.5 mg, 97%, 97% *ee*, $[\alpha]^{25}_{D}$ = +80.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.23 (s, 1H), 8.04 – 7.98 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.79 – 7.73 (d, *J* = 9.0 Hz, 2H), 7.64 – 7.58 (m, 1H), 7.54 – 7.48 (m, 2H), 7.40 – 7.36 (t, *J* = 1.5 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.22 – 7.17 (m, 1H), 7.09 – 7.04 (t, *J* = 8.0 Hz, 1H), 6.97 – 6.91 (m, 2H), 5.73 – 5.67 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.83 (s, 3H), 3.23 – 3.14 (dd, *J* = 13.5, 10.0 Hz, 1H), 3.03 – 2.95 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.11 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 178.9, 165.2, 161.6, 156.5, 142.9, 139.2, 133.5, 131.4, 131.2, 130.0, 129.9, 129.3, 127.9, 125.6, 124.9, 124.3, 122.5, 121.1, 114.3, 78.6, 55.5, 37.8, 32.8, 25.0. IR (film) v_{max} 3061, 2960, 1820, 1671, 1653, 1539, 1510, 1245, 1019, 830, 692. HRMS (ESI, *m*/*z*) calcd for C₃₀H₃₀BrN₂O₄⁺ [M+H]⁺: 561.1383, found: 561.1381. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 7.7 min, t_{minor} = 16.0 min).

(*S*, *Z*)-2-(4-bromophenyl)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)but-2-enamide

Colorless oil, 53.8 mg, 96%, 97% *ee*, $[\alpha]^{25}_{D} = +80.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.13 (s, 1H), 7.94 – 7.88 (m, 2H), 7.71 – 7.64 (d, *J* = 9.0 Hz, 2H), 7.55 – 7.49 (m, 1H), 7.45 – 7.38 (t, *J* = 7.0 Hz, 2H), 7.26 – 7.21 (m, 2H), 7.07 – 7.03 (m, 2H), 6.88 – 6.83 (m, 2H), 5.67 – 5.58 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.74 (s, 3H), 3.16 – 3.05 (dd, *J* = 13.5, 10.0 Hz, 1H), 2.96 – 2.84 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.02 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.0, 165.4, 161.5, 156.5, 143.1, 136.0, 133.5, 131.5, 129.3, 128.5, 127.8, 124.9, 123.5, 122.4, 121.1, 114.3, 78.6, 55.5, 37.8, 32.8, 25.0. IR (film) v_{max} 2961, 1820, 1671, 1652, 1539, 1510, 1489, 1296, 1245, 1010, 829. HRMS (ESI, *m/z*) calcd for C₃₀H₃₀BrN₂O₄⁺ [M+H]⁺: 561.1383, found: 561.1381. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 85 : 15, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 12.7 min, t_{minor} = 17.1 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-(p-tolyl)but-2-enamide

Colorless oil, 45.8 mg, 92%, 95% *ee*, $[\alpha]^{25}_{D}$ = +120.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.04 (s, 1H), 8.04 – 7.95 (dd, *J* = 8.0, 1.0 Hz, 2H), 7.79 – 7.72 (m, 2H), 7.62 – 7.55 (m, 1H), 7.51 – 7.45 (t, *J* = 7.5 Hz, 2H), 7.19 – 7.15 (m, 2H), 7.04 – 6.99 (d, *J* = 8.0 Hz, 2H), 6.96 – 6.90 (m, 2H), 5.73 – 5.63 (dd, *J* = 9.5, 7.0 Hz, 1H), 3.82 (s, 3H), 3.24 – 3.13 (dd, *J* = 13.5, 9.5 Hz, 1H), 3.04 – 2.94 (dd, *J* = 13.5, 7.0 Hz, 1H), 2.26 (s, 3H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.2, 166.1, 161.3, 156.4, 143.9, 138.2, 134.2, 133.3, 131.6, 129.2, 127.9, 126.8, 125.1, 122.2, 121.1, 114.3, 78.8, 55.5, 37.8, 32.7, 25.0, 21.1. IR (film) v_{max} 2960, 1820, 1671, 1653, 1510, 1246, 1035, 1019, 889, 829. HRMS (ESI, *m/z*) calcd for C₃₁H₃₃N₂O₄⁺ [M+H]⁺: 497.2435, found: 497.2434. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.5 min, t_{minor} = 14.6 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N,2-bis(4-methoxy-phenyl)but-2-enamide

Colorless oil, 43.4 mg, 85%, 96% *ee*, $[\alpha]^{25}_{D} = +72.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.04 (s, 1H), 8.04 – 7.96 (m, 2H), 7.80 – 7.71 (m, 2H), 7.64 – 7.54 (m, 1H), 7.52 – 7.45 (m, 2H), 7.23 – 7.19 (m, 2H), 6.96 – 6.91 (m, 2H), 6.76 – 6.71 (m, 2H), 5.69 – 5.58 (dd, *J* = 9.5, 7.0 Hz, 1H), 3.82 (s, 3H), 3.73 (s, 3H), 3.21 – 3.12 (dd, *J* = 14.0, 9.5 Hz, 1H), 3.04 – 2.94 (dd, *J* = 14.0, 7.0 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.2, 166.2, 161.3, 159.7, 156.4, 143.5, 133.3, 131.6, 129.5, 129.2, 128.1, 127.9, 125.1, 121.2, 121.1, 114.3, 113.8, 78.8, 55.5, 55.3, 37.8, 32.7, 25.0. IR (film) v_{max} 2959, 1819, 1653, 1603, 1508, 1294, 1246, 1176, 1034, 965, 830. HRMS (ESI, *m*/*z*) calcd for C₃₁H₃₃N₂O₅⁺ [M+H]⁺: 513.2384, found: 513.2385. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OD-H, *n*-hexane/2-propanol = 93 : 7, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 21.3 min, t_{minor} = 27.1 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-(naphthalen-2-yl)but-2-enamide

White solid, 47.5 mg, 89%, Mp: 151 – 153 °C, 96% *ee*, $[\alpha]^{25}_{D}$ = +80.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.14 (s, 1H), 8.04 – 7.98 (m, 2H), 7.82 – 7.78 (m, 2H), 7.75 – 7.69 (m, 2H), 7.69 – 7.64 (m, 2H), 7.59 – 7.54 (m, 1H), 7.50 – 7.45 (t, *J* = 7.5 Hz, 2H), 7.42 – 7.35 (m, 3H), 6.99 – 6.91 (m, 2H), 5.89 – 5.82 (dd, *J* = 9.5, 7.0 Hz, 1H), 3.83 (s, 3H), 3.29 – 3.20 (dd, *J* = 13.5, 9.5 Hz, 1H), 3.11 – 3.02 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.12 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.2, 166.0, 161.4, 156.5, 144.0, 134.3, 133.4, 133.2, 133.0, 131.6, 129.2, 128.3, 128.1, 127.9, 127.5, 126.3, 126.3, 125.1, 124.5, 123.4, 114.3, 78.8, 55.5, 37.8, 32.9, 25.1. IR (film) v_{max} 2971, 1820, 1670, 1653, 1540, 1510, 1275, 1246, 1171, 1035, 963, 888. HRMS (ESI, *m/z*) calcd for C₃₄H₃₃N₂O₄⁺ [M+H]⁺: 533.2435, found: 533.2433. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 50 : 50, *v* = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 10.4 min, t_{minor} = 18.7 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-(thiophen-3-yl)but-2-enamide

Colorless oil, 45.6 mg, 93%, 93% *ee*, $[\alpha]^{25}_{D} = +72.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.07(s, 1H), 8.02 – 7.96 (m, 2H), 7.78 – 7.72 (m, 2H), 7.62 – 7.56 (m, 1H), 7.52 – 7.47 (m, 2H), 7.31 – 7.28 (dd, *J* = 3.0, 1.5 Hz, 1H), 7.17 – 7.13 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.02 – 6.99 (dd, *J* = 5.0, 1.0 Hz, 1H), 6.96 – 6.92 (m, 2H), 5.79 – 5.71 (dd, *J* = 10.0, 7.5 Hz, 1H), 3.82 (s, 3H), 3.22 – 3.11 (dd, *J* = 13.5, 10.0 Hz, 1H), 3.03 – 2.94 (dd, *J* = 13.5, 7.5 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.2, 165.5, 161.4, 156.4, 138.9, 137.6, 133.4, 131.5, 129.2, 127.9, 125.8, 125.7, 125.0, 123.0, 121.4, 121.2, 114.3, 78.8, 55.5, 37.8, 32.5, 25.0. IR (film) ν_{max} 2965, 1819, 1670, 1653, 1510, 1295, 1246, 1019, 830, 764, 750. HRMS (ESI, *m/z*) calcd for C₂₈H₂₉N₂O₄S⁺ [M+H]⁺: 489.1843, found: 489.1842. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, $\lambda = 254.0$ nm; t_{major} = 13.9 min, t_{minor} = 18.3 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-methylbut-2-enamide

Colorless oil, 26.7 mg, 64%, 90% *ee*, $[\alpha]^{25}_{D}$ = +304.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.31(s, 1H), 8.04 – 7.96 (m, 2H), 7.79 – 7.71 (m, 2H), 7.65 – 7.59 (m, 1H), 7.55 – 7.47 (t, *J* = 7.0 Hz, 2H), 6.95 – 6.89 (m, 2H), 5.35 – 5.23 (dd, *J* = 10.5, 7.0 Hz, 1H), 3.82 (s, 3H), 3.13 – 3.03 (dd, *J* = 13.5, 10.5 Hz, 1H), 2.82 – 2.74 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.84 (s, 3H), 1.09 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 178.9, 166.8, 161.5, 156.2, 140.0, 133.4, 131.9, 129.2, 127.9, 125.1, 122.0, 120.8, 114.2, 78.5, 55.5, 37.6, 32.2, 25.0, 21.1. IR (film) v_{max} 2959, 1820, 1671, 1648, 1540, 1510, 1298, 1245, 884, 750. HRMS (ESI, *m/z*) calcd for C₂₅H₂₉N₂O₄⁺ [M+H]⁺: 421.2122, found: 421.2120. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 9.4 min, t_{minor} = 15.1 min).

(*S*, *Z*)-4-(4-(tert-butyl)-2-(2-fluorophenyl)-5-oxo-4,5-dihydrooxazol-4-yl)-N-(4-methox-y-phenyl)-2-phenylbut-2-enamide

White solid, 39.2 mg, 78%, Mp: 90 – 92 °C, 92% *ee*, $[\alpha]^{25}_{D}$ = +136.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.24 (s, 1H), 7.88 – 7.81 (m, 1H), 7.80 – 7.74 (m, 2H), 7.56 – 7.51 (m, 1H), 7.34 – 7.20 (m, 7H), 6.94 – 6.88 (m, 2H), 5.77 – 5.66 (dd, *J* = 11.0, 6.0 Hz, 1H), 3.81 (s, 3H), 3.31 – 3.20 (dd, *J* = 13.5, 11.0 Hz, 1H), 2.98 – 2.89 (dd, *J* = 13.5, 6.0 Hz, 1H), 1.09 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 178.3, 166.0, 161.5 (d, *J* = 260.1 Hz), 157.5 (d, *J* = 6.2 Hz), 156.3, 144.5, 137.1, 134.8 (d, *J* = 9.1 Hz), 131.7, 130.7, 128.5, 128.2, 126.8, 124.8 (d, *J* = 3.8 Hz), 122.2, 121.1 (d, *J* = 2.1 Hz), 117.3 (d, *J* = 21.3 Hz), 114.1, 113.6 (d, *J* = 9.5 Hz), 78.0, 55.5, 37.8, 33.1, 24.9. ¹⁹F NMR (CDCl₃, 470 MHz): δ –108.7. IR (film) v_{max} 2965, 1820, 1670, 1653, 1540, 1511, 1496, 1246, 1021, 964, 890. HRMS (ESI, *m/z*) calcd for C₃₀H₃₀FN₂O₄+ [M+H]⁺: 501.2184, found: 501.2181. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 10.8 min, t_{minor} = 22.5 min).

(*S*, *Z*)-4-(4-(tert-butyl)-2-(4-fluorophenyl)-5-oxo-4,5-dihydrooxazol-4-yl)-N-(4-methox-y-phenyl)-2-phenylbut-2-enamide

Colorless oil, 41.7 mg, 83%, 95% *ee*, $[\alpha]^{25}_{D}$ = +112.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 8.95 (s, 1H), 8.07 – 7.96 (m, 2H), 7.77 – 7.70 (m, 2H), 7.31 – 7.13 (m, 7H), 6.97 – 6.89 (m, 2H), 5.76 – 5.65 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.82 (s, 3H), 3.22 – 3.12 (dd, *J* = 14.0, 9.5 Hz, 1H), 3.07 – 2.98 (dd, *J* = 14.0, 7.5 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.0, 165.9, 165.8 (d, *J* = 254.0 Hz), 160.4, 156.5, 144.0, 137.0, 131.5, 130.3 (d, *J* = 9.3 Hz), 128.5, 128.3, 126.9, 123.1, 121.3 (d, *J* = 3.1 Hz), 121.1, 116.6 (d, *J* = 22.5 Hz), 114.3, 78.9, 55.5, 37.8, 32.7, 25.0. ¹⁹F NMR (CDCl₃, 470 MHz): δ –104.0. IR (film) v_{max} 2966, 1820, 1653, 1602, 1509, 1296, 1276, 1238, 1033, 847, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₀H₃₀FN₂O₄⁺ [M+H]⁺: 501.2184, found: 501.2181. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.2 min, t_{minor} = 13.4 min).

(*S*, *Z*)-4-(4-(tert-butyl)-2-(4-chlorophenyl)-5-oxo-4,5-dihydrooxazol-4-yl)-N-(4-methox-y-phenyl)-2-phenylbut-2-enamide

White solid, 43.9 mg, 85%, Mp: 58 – 60 °C, 93% *ee*, $[\alpha]^{25}_{D}$ = +104.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 8.89 (s, 1H), 7.97 – 7.90 (d, *J* = 7.5 Hz, 2H), 7.76 – 7.69 (d, *J* = 9.0 Hz, 2H), 7.51 – 7.44 (d, *J* = 9.0 Hz, 2H), 7.31 – 7.19 (m, 5H), 6.97 – 6.89 (d, *J* = 8.5 Hz, 2H), 5.75 – 5.66 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.82 (s, 3H), 3.23 – 3.13 (dd, *J* = 14.0, 9.5 Hz, 1H), 3.08 – 2.99 (dd, *J* = 14.0, 7.5 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 178.9, 165.9, 160.5, 156.5, 144.0, 139.8, 137.0, 131.4, 129.6, 129.2, 128.5, 128.3, 126.9, 123.5, 123.0, 121.1, 114.3, 79.0, 55.5, 37.9, 32.7, 25.0. IR (film) v_{max} 2966, 1820, 1650, 1598, 1312, 1244, 1174, 1091, 1021, 964, 888. HRMS (ESI, *m*/*z*) calcd for C₃₀H₃₀ClN₂O₄⁺ [M+H]⁺: 517.1889, found: 517.1889. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 11.0 min, t_{minor} = 20.3 min).

(*S*, *Z*)-4-(2-(3-bromophenyl)-4-(tert-butyl)-5-oxo-4,5-dihydrooxazol-4-yl)-N-(4-methox-y-phenyl)-2-phenylbut-2-enamide

Colorless oil, 41.6 mg, 74%, 92% *ee*, $[\alpha]^{25}_{D} = +72.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 8.74 (s, 1H), 8.19 – 8.14 (t, *J* = 2.0 Hz, 1H), 7.97 – 7.88 (m, 1H), 7.75 – 7.68 (m, 3H), 7.40 – 7.35 (t, *J* = 8.0 Hz, 1H), 7.31 – 7.22 (m, 5H), 6.96 – 6.91 (m, 2H), 5.75 – 5.65 (dd, *J* = 9.5, 8.0 Hz, 1H), 3.82 (s, 3H), 3.22 – 3.12 (dd, *J* = 14.0, 9.5 Hz, 1H), 3.10 – 3.01(dd, *J* = 14.0, 8.0 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 178.9, 165.9, 156.0, 156.5, 144.0, 136.9, 136.3, 131.3, 130.9, 130.7, 128.6, 128.4, 127.0, 126.9, 126.3, 123.2, 122.9, 121.3, 114.3, 79.1, 55.5, 37.9, 32.6, 25.0. IR (film) v_{max} 2965, 1824, 1670, 1653, 1559, 1509, 1300, 1275, 1261, 1035, 892. HRMS (ESI, *m/z*) calcd for C₃₀H₃₀BrN₂O₄⁺ [M+H]⁺: 561.1383, found: 561.1380. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 10.7 min, t_{minor} = 19.8 min).

(*S*, *Z*)-4-(2-(4-bromophenyl)-4-(tert-butyl)-5-oxo-4,5-dihydrooxazol-4-yl)-N-(4-methox-y-phenyl)-2-phenylbut-2-enamide

White solid, 41.6 mg, 74%, Mp: 64 – 66 °C, 94% *ee*, $[\alpha]^{25}_{D}$ = +96.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 8.87 (s, 1H), 7.89 – 7.82 (d, *J* = 8.5 Hz, 2H), 7.75 – 7.68 (d, *J* = 9.0 Hz, 2H), 7.66 – 7.61 (d, *J* = 9.0 Hz, 2H), 7.30 – 7.19 (m, 5H), 6.96 – 6.89 (d, *J* = 9.0 Hz, 2H), 5.73 – 5.67 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.82 (s, 3H), 3.22 – 3.13 (dd, *J* = 13.5, 9.5 Hz, 1H), 3.07 – 2.99 (dd, *J* = 13.5, 7.5 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 178.9, 165.9, 160.6, 156.5, 144.0, 137.0, 132.6, 131.4, 129.3, 128.5, 128.4, 128.3, 126.9, 124.0, 123.0, 121.1, 114.3, 79.0, 55.5, 37.9, 32.6, 25.0. IR (film) v_{max} 2963, 1820, 1671, 1648, 1593, 1510, 1399, 1245, 1068, 1009, 831. HRMS (ESI, *m/z*) calcd for C₃₀H₃₀BrN₂O₄⁺ [M+H]⁺: 561.1383, found: 561.1379. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.5 min, t_{minor} = 14.6 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-(m-tolyl)-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-phenylbut-2-enamide

Colorless oil, 44.5 mg, 90%, 91% *ee*, $[\alpha]^{25}_{D}$ = +96.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.08 (s, 1H), 7.85 – 7.71 (m, 4H), 7.43 – 7.32 (m, 2H), 7.32 – 7.17 (m, 5H), 6.98 – 6.88 (m, 2H), 5.76 – 5.67 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.82 (s, 3H), 3.24 – 3.13 (dd, *J* = 13.5, 9.5 Hz, 1H), 3.06 – 2.97 (dd, *J* = 13.5, 7.5 Hz, 1H), 2.38 (s, 3H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.2, 166.0, 161.5, 156.4, 144.0, 139.1, 137.1, 134.2, 131.6, 129.1, 128.5, 128.4, 128.2, 126.9, 125.0, 125.0, 123.1, 121.1, 114.3, 78.7, 55.5, 37.8, 32.7, 25.0, 21.4. IR (film) v_{max} 2962, 1824, 1699, 1684, 1653, 1509, 1473, 1457, 1275, 906, 764. HRMS (ESI, *m/z*) calcd for C₃₁H₃₃N₂O₄⁺ [M+H]⁺: 497.2435, found: 497.2433. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 11.6 min, t_{minor} = 22.4 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-(p-tolyl)-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-phenylbut-2-enamide

Colorless oil, 43.0 mg, 87%, 95% *ee*, $[\alpha]^{25}_{D}$ = +136.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.18 (s, 1H), 7.91 – 7.85 (d, *J* = 8.5 Hz, 2H), 7.79 – 7.73 (m, 2H), 7.32 – 7.26 (m, 4H), 7.23 – 7.18 (m, 3H), 6.96 – 6.90 (m, 2H), 5.75 – 5.67 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.82 (s, 3H), 3.22 – 3.13 (dd, *J* = 13.5, 10.0 Hz, 1H), 3.03 – 2.95 (dd, *J* = 13.5, 7.0 Hz, 1H), 2.41 (s, 3H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.2, 166.0, 161.5, 156.4, 144.3, 144.0, 137.2, 131.7, 129.9, 128.4, 128.2, 127.9, 126.9, 123.1, 122.3, 121.1, 114.3, 78.6, 55.5, 37.8, 32.7, 25.0, 21.8. IR (film) v_{max} 2961, 1820, 1670, 1653, 1540, 1533, 1260, 968, 830, 724. HRMS (ESI, *m/z*) calcd for C₃₁H₃₃N₂O₄⁺ [M+H]⁺: 497.2435, found: 497.2433. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 9.3 min, t_{minor} = 17.0 min).

(*S*, *Z*)-4-(4-(tert-butyl)-2-(4-ethylphenyl)-5-oxo-4,5-dihydrooxazol-4-yl)-N-(4-methox-yp-henyl)-2-phenylbut-2-enamide

Colorless oil, 38.9 mg, 76%, 93% *ee*, $[\alpha]^{25}_{D}$ = +128.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.21 (s, 1H), 7.94 – 7.88 (d, *J* = 8.5 Hz, 2H), 7.81 – 7.74 (m, 2H), 7.35 – 7.18 (m, 7H), 6.96 – 6.90 (m, 2H), 5.75 – 5.68 (dd, *J* = 10.0, 7.0 Hz, 1H), 3.83 (s, 3H), 3.23 – 3.13 (dd, *J* = 13.5, 10.0 Hz, 1H), 3.03 – 2.95 (dd, *J* = 13.5, 7.0 Hz, 1H), 2.75 – 2.66 (q, *J* = 7.5 Hz, 2H), 1.28 – 1.22 (t, *J* = 7.5 Hz, 3H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.2, 166.0, 161.5, 156.4, 150.4, 144.0, 137.2, 131.7, 128.7, 128.4, 128.2, 128.0, 126.9, 123.1, 122.4, 121.1, 114.3, 78.6, 55.5, 37.8, 32.8, 29.0, 25.0, 15.2. IR (film) v_{max} 2965, 1820, 1699, 1652, 1540, 1473, 966, 830, 735. HRMS (ESI, *m/z*) calcd for C₃₂H₃₅N₂O₄⁺ [M+H]⁺: 511.2591, found: 511.2590. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.2 min, t_{minor} = 14.5 min).

(*S*, *Z*)-4-(4-(tert-butyl)-2-(naphthalen-2-yl)-5-oxo-4,5-dihydrooxazol-4-yl)-N-(4-methox-yphenyl)-2-phenylbut-2-enamide

Colorless oil, 44.2 mg, 83%, 92% *ee*, $[\alpha]^{25}_{D}$ = +104.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.13 (s, 1H), 8.52 – 8.47 (d, *J* = 1.5 Hz, 1H), 8.09 – 8.04 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.95 – 7.85 (m, 3H), 7.83 – 7.77 (m, 2H), 7.64 – 7.54 (m, 2H), 7.30 – 7.25 (m, 2H), 7.19 – 7.13 (m, 3H), 6.99 – 6.93 (m, 2H), 5.82 – 5.70 (dd, *J* =9.5, 7.5 Hz, 1H), 3.83 (s, 3H), 3.29 – 3.18 (dd, *J* = 13.5, 9.5 Hz, 1H), 3.10 – 3.01 (dd, *J* = 13.5, 7.5 Hz, 1H), 1.14 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.2, 166.0, 161.5, 156.5, 144.1, 137.1, 135.5, 132.6, 131.6, 129.9, 129.3, 129.2, 128.8, 128.5, 128.2, 128.0, 127.4, 126.9, 123.1, 122.9, 122.1, 121.2, 114.3, 78.9, 55.5, 37.9, 32.8, 25.1. IR (film) v_{max} 2967, 1824, 1717, 1688, 1652, 1034, 1014, 888, 831. HRMS (ESI, *m/z*) calcd for C₃₄H₃₃N₂O₄⁺ [M+H]⁺: 533.2435, found: 533.2435. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 9.7 min, t_{minor} = 19.1 min).

(*S*, *Z*)-4-(4-(tert-butyl)-2-(furan-2-yl)-5-oxo-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphen-yl)-2-phenylbut-2-enamide

Colorless oil, 37.8 mg, 80%, 92% *ee*, $[\alpha]^{25}_{D}$ = +184.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.30 (s, 1H), 7.85 – 7.79 (d, *J* = 9.0 Hz, 2H), 7.68 – 7.64 (d, *J* = 1.5 Hz, 1H), 7.33 – 7.21 (m, 5H), 7.14 – 7.10 (d, *J* = 3.5 Hz, 1H), 6.96 – 6.89 (m, 2H), 6.61 – 6.56 (dd, *J* = 3.5, 1.5 Hz, 1H), 5.74 – 5.66 (dd, *J* = 10.5, 7.0 Hz, 1H), 3.82 (s, 3H), 3.20 – 3.12 (dd, *J* = 13.5, 10.5 Hz, 1H), 3.00 – 2.93 (dd, *J* = 13.5, 7.0 Hz, 1H), 1.08 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 178.0, 165.8, 156.3, 153.2, 147.6, 144.6, 140.1, 137.1, 131.9, 128.5, 128.2, 126.9, 122.3, 120.9, 117.9, 114.2, 112.4, 78.1, 55.5, 37.8, 32.9, 24.9. IR (film) v_{max} 3127, 2967, 1823, 1666, 1601, 1540, 1510, 1245, 1175, 1034. HRMS (ESI, *m/z*) calcd for C₂₈H₂₉N₂O₅⁺ [M+H]⁺: 473.2071, found: 473.2072. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 70 : 30, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 9.9 min, t_{minor} = 15.9 min).

(*S*, *Z*)-4-(4-(tert-butyl)-5-oxo-2-(thiophen-2-yl)-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-phenylbut-2-enamide

Colorless oil, 43.9 mg, 90%, 93% *ee*, $[\alpha]^{25}_{D}$ = +152.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.28 (s, 1H), 7.83 – 7.77 (m, 2H), 7.72 – 7.68 (dd, *J* = 4.0, 1.5 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.32 – 7.26 (m, 2H), 7.24 – 7.19 (m, 3H), 7.16 – 7.13 (dd, *J* = 5.0, 3.5 Hz, 1H), 6.96 – 6.90 (m, 2H), 5.75 – 5.67 (dd, *J* =10.5, 6.5 Hz, 1H), 3.82 (s, 3H), 3.23 – 3.14 (dd, *J* = 14.0, 10.5 Hz, 1H), 2.99 – 2.91 (dd, *J* = 14.0, 6.5 Hz, 1H), 1.09 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 178.3, 165.9, 157.3, 156.3, 144.5, 137.2, 132.7, 132.4, 131.8, 128.6, 128.4, 128.2, 127.5, 126.9, 122.6, 121.0, 114.2, 78.5, 55.5, 37.9, 33.0, 25.0. IR (film) v_{max} 2960, 1819, 1670, 1646, 1539, 1244, 1034, 956, 830, 750. HRMS (ESI, *m/z*) calcd for C₂₈H₂₉N₂O₄S⁺ [M+H]⁺: 489.1843, found: 489.1845. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 15.9 min, t_{minor} = 31.0 min).

(*R*, *Z*)-4-(4-ethyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-phenylbut-2-enamide

Colorless oil, 28.3 mg, 62%, 89% *ee*, $[\alpha]^{25}_{D} = +136$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 8.78 (s, 1H), 8.03 – 7.96 (m, 2H), 7.71 – 7.64 (m, 2H), 7.62 – 7.56 (m, 1H), 7.52 – 7.46 (m, 2H), 7.36 – 7.29 (m, 2H), 7.28 – 7.22 (m, 3H), 6.95 – 6.87 (m, 2H), 5.87 – 5.80 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.82 (s, 3H), 3.18 – 3.08 (dd, *J* = 14.0, 9.5 Hz, 1H), 3.00 – 2.91 (dd, *J* = 14.0, 7.5 Hz, 1H), 2.07 – 1.98 (m, 2H), 0.98 – 0.88 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.7, 165.9, 161.5, 156.5, 143.6, 136.9, 133.4, 131.4, 129.1, 128.6, 128.4, 128.0, 127.0, 125.1, 123.3, 121.3, 114.3, 74.0, 55.6, 37.3, 31.1, 8.2. IR (film) v_{max} 2925, 1818, 1652, 1510, 1451, 1244, 1036, 1019, 830, 696. HRMS (ESI, *m/z*) calcd for C₂₈H₂₇N₂O₄⁺ [M+H]⁺: 455.1965, found: 455.1968. The *ee* value was determined by the chiral HPLC analysis (CHIRALPAK IC, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 18.6 min, t_{minor} = 21.6 min).

(*S*, *Z*)-4-(4-isopropyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)-N-(4-methoxyphenyl)-2-phenylbut-2-enamide

Colorless oil, 35.5 mg, 76%, 91% *ee*, $[\alpha]^{25}_{D} = +128$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 8.91 (s, 1H), 8.05 – 7.94 (m, 2H), 7.78 – 7.67 (m, 2H), 7.63 – 7.54 (m, 1H), 7.52 – 7.44 (m, 2H), 7.33 – 7.28 (m, 2H), 7.26 – 7.21 (m, 3H), 6.96 – 6.90 (m, 2H), 5.82 – 5.75 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.82 (s, 3H), 3.25 – 3.17 (dd, *J* = 14.0, 9.5 Hz, 1H), 2.96 – 2.89 (dd, *J* = 14.0, 7.5 Hz, 1H), 2.29 – 2.19 (m, 1H), 1.13 – 1.07 (d, *J* = 7.0 Hz, 3H), 1.03 – 0.96 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 179.8, 165.9, 161.6, 156.5, 143.8, 137.0, 133.4, 131.5, 129.1, 128.5, 128.3, 128.0, 126.9, 125.1, 123.1, 121.2, 114.3, 55.5, 35.5, 17.2, 17.0. IR (film) v_{max} 2924, 1819, 1650, 1511, 1294, 1245, 1037, 738, 698. HRMS (ESI, *m/z*) calcd for C₂₈H₂₉N₂O₄⁺ [M+H]⁺: 469.2122, found: 469.2123. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 14.6 min, t_{minor} = 19.0 min).

methyl (S, Z)-2-benzamido-2-(tert-butyl)-6-((4-methoxyphenyl)amino)-6-oxo-5-phenylhex-4-enoate

Colorless oil, 46.5 mg, 90%, 95% *ee*, $[\alpha]^{25}_{D}$ = +56.0 (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.66 (s, 1H), 7.83 – 7.77 (m, 4H), 7.61 (s, 1H), 7.55 – 7.49 (m, 1H), 7.47 – 7.42 (m, 2H), 7.38 – 7.34 (m, 2H), 7.26 – 7.18 (m, 3H), 6.94 – 6.89 (m, 2H), 5.64 – 5.58 (dd, *J* = 9.5, 3.5 Hz, 1H), 4.09 – 3.99 (dd, *J* = 16.5, 9.5 Hz, 1H), 3.88 (s, 3H), 3.80 (s, 3H), 3.27 – 3.18 (dd, *J* = 16.5, 3.5 Hz, 1H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 174.0, 167.3, 166.6, 156.2, 141.2, 137.8, 135.2, 132.2, 131.9, 128.8, 128.4, 127.8, 126.9, 126.6, 125.9, 121.4, 114.2, 71.3, 55.5, 53.3, 40.4, 30.2, 26.8. IR (film) v_{max} 2957, 1724, 1655, 1602, 1511, 1275, 1235, 1179, 829, 764, 750. HRMS (ESI, *m*/*z*) calcd for C₃₁H₃₅N₂O₅⁺ [M+H]⁺: 515.2540, found: 515.2538. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 9.2 min, t_{minor} = 13.0 min).

(*S*, *Z*)-N-(3-(hydroxymethyl)-7-((4-methoxyphenyl)amino)-2,2-dimethyl-7-oxo-6-phenyl-hept-5-en-3-yl)benzamide

Colorless oil, 45.4 mg, 93%, 95% *ee*, $[\alpha]^{25}_{D} = +96.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 7.92 (s, 1H), 7.84 – 7.78 (m, 2H), 7.74 (s, 1H), 7.43 – 7.28 (m, 5H), 7.24 – 7.15 (m, 5H), 6.81 – 6.74 (m, 2H), 6.36 – 6.29 (dd, *J* = 10.0, 7.5 Hz, 1H), 4.94 (s, 1H), 4.41 – 4.32 (d, *J* = 12.5 Hz, 1H), 3.93 – 3.83 (d, *J* = 12.5 Hz, 1H), 3.71 (s, 3H), 3.26 – 3.16 (dd, *J* = 14.0, 10.0 Hz, 1H), 2.43 – 2.34 (dd, *J* = 14.0, 7.5 Hz, 1H), 1.05 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.1, 167.1, 156.7, 139.1, 137.8, 135.4, 135.3, 131.4, 130.8, 128.8, 128.5, 128.2, 127.5, 127.3, 121.7, 114.2, 67.6, 66.5, 55.5, 39.8, 35.5, 26.5. IR (film) v_{max} 2960, 1734, 1700, 1653, 1647, 1533, 1521, 1457, 1275, 1261, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₀H₃₅N₂O₄⁺ [M+H]⁺: 487.2591, found: 487.2590. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 8.6 min, t_{minor} = 13.9 min).

(*S*, *Z*)-N-(3-formyl-7-((4-methoxyphenyl)amino)-2,2-dimethyl-7-oxo-6-phenylhept-5-en-3-yl)benzamide

Colorless oil, 36.3 mg, 75%, 95% *ee*, $[\alpha]^{25}_{D} = +72.0$ (*c* 0.5, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 9.88 (s, 1H), 8.37 (s, 1H), 7.83 – 7.76 (m, 2H), 7.59 – 7.46 (m, 4H), 7.44 – 7.38 (t, *J* = 7.0 Hz, 2H), 7.25 – 7.20 (m, 5H), 6.90 – 6.85 (m, 2H), 5.90 – 5.81 (dd, *J* = 10.0, 5.5 Hz, 1H), 3.80 (s, 3H), 3.60 – 3.49 (dd, *J* = 14.5, 10.0 Hz, 1H), 3.17 – 3.07 (dd, *J* = 14.5, 5.5 Hz, 1H), 1.16 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 200.3, 168.0, 166.7, 156.5, 140.7, 137.4, 134.0, 131.9, 131.2, 129.2, 128.7, 128.6, 128.1, 127.2, 127.0, 121.7, 114.2, 70.9, 55.5, 39.4, 29.8, 26.3. IR (film) v_{max} 2967, 1717, 1653, 1602, 1577, 1511, 1489, 1245, 1178, 1033, 830, 764, 750. HRMS (ESI, *m/z*) calcd for C₃₀H₃₃N₂O₄⁺ [M+H]⁺: 485.2435, found: 485.2433. The *ee* value was determined by the chiral HPLC analysis (CHIRALCEL OX-H, *n*-hexane/2-propanol = 80 : 20, *v* = 1.0 mL/min, λ = 254.0 nm; t_{major} = 12.8 min, t_{minor} = 25.3 min).

NMR Spectra of Products

S24

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of **3ac**

LR-6-12-JCT 10. Lin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 3ad

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 3ai

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 3am

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (470 MHz) spectra of 3an

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 3ao

 ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra of 3aq

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (125 MHz) spectra of 3bk

 ^1H NMR (500 MHz), ^{13}C NMR (125 MHz) and ^{19}F NMR (125 MHz) spectra of 3ck

S47

— 1.096

S57

HPLC Chromatograms of All Products HPLC chromatogram of racemic 3aa

----|-----| 1 8.124 MM 0.3111 3979.28247 213.18013 50.6601 2 10.718 BV 0.5413 3875.57886 108.60440 49.3399

HPLC chromatogram of racemic 3ac

----|-----| 1 8.870 BB 0.3646 4890.48291 205.54852 50.5890 2 11.104 BB 0.5872 4765.24268 123.48866 49.2934

----|-----| 1 8.257 MM 0.3537 6886.24463 324.51385 50.7771 2 14.214 BB 1.0010 6675.47949 101.14153 49.2229

HPLC chromatogram of racemic 3aj

[min] [min] [mAU*s] [mAU] %

----|-----| 1 10.137 BB 0.3432 4997.22559 224.04471 50.2172 2 15.251 BB 0.7989 4954.00635 96.02008 49.7828

----|-----| 1 9.461 MM 0.4294 6943.16943 269.47696 50.2346 2 12.132 MM 0.7135 6878.32861 160.67171 49.7654

^{2 16.810} BB 1.1751 2783.14746 34.61430 49.8617

2 11.360 BB 0.5470 9844.69141 273.48209 49.7063

1 8.406 BB 0.3416 4132.44189 183.61232 98.2109

2 11.446 MM 0.6703 75.28205 1.87183 1.7891

----|-----| 1 11.910 VB R 0.6896 2528.25977 55.69974 49.9118 2 15.838 BB 0.9312 2537.19312 41.15700 50.0882

- 1 7.756 MM 0.4831 6504.49805 224.40334 50.4269
- 2 15.934 MM 1.9966 6394.36084 53.37725 49.5731

1 12.651 BB 0.7380 7367.92090 152.95476 49.9532 2 16.967 BB 1.0251 7381.72314 109.26917 50.0468

HPLC chromatogram of chiral 3aq

HPLC chromatogram of racemic 3as

----|-----| 1 10.464 MM 1.1311 4775.21826 70.36512 50.0879 2 18.572 MM 2.9684 4758.46045 26.71745 49.9121

[min] [min] [mAU*s] [mAU] %

----|-----| 1 13.897 BB 1.0416 3801.03491 54.44036 49.7557 2 18.056 BB 1.3131 3838.36328 44.95751 50.2443

[min] [min] [mAU*s] [mAU] %

1 9.343 VB R 0.2975 2589.20361 133.98419 50.3832 2 15.120 BB 0.6341 2549.82227 61.83123 49.6168

HPLC chromatogram of chiral 3av

2 22.107 MM 1.6406 6511.53809 66.15160 49.6965

----|-----| 1 8.169 BB 0.4271 5432.75879 193.74809 49.7084 2 13.309 MM 1.0916 5496.49707 83.92175 50.2916

----|-----| 1 10.788 MM 0.4998 3413.69653 113.83076 50.3019 2 19.942 BB 1.1453 3372.72339 42.66145 49.6981

[min] [min] [mAU*s] [mAU] %

-----|------| 1 11.471 BB 0.4743 5212.81299 167.41412 50.5598 2 22.109 BB 1.2437 5097.38672 59.19217 49.4402

HPLC chromatogram of racemic 3hk

----|-----|-----|-----|------|------| 1 9.220 VB R 0.5262 3210.09717 91.95518 50.3999 2 16.871 MM 1.7513 3159.15942 30.06450 49.6001

1 8.236 BB 0.3913 3364.24756 132.01259 50.9355 2 14.540 BB 1.0858 3240.67554 46.45826 49.0645

HPLC chromatogram of racemic 3jk

[min] [min] [mAU*s] [mAU] %
----|-----|-----|------|------|
1 9.671 BB 0.4800 5010.32422 158.83531 49.8273
2 18.752 MM 1.9420 5045.04932 43.29730 50.1727

-----|------| 1 15.829 BB 0.6240 9713.27148 229.41214 50.0023 2 30.951 MM 2.1948 9712.38281 73.75340 49.9977

HPLC chromatogram of racemic 3mk

[min] [min] [mAU*s] [mAU] %
----|-----|-----|------|------|
1 18.684 BB 0.6280 7809.15723 196.77307 50.0142
2 21.663 BB 0.7140 7804.70850 169.86447 49.9858

1 8.576 MM 0.7162 6166.50586 143.50679 50.1534 2 13.816 MM 1.4190 6128.79102 71.98298 49.8466

X-Ray Crystallographic Data of 3ak

Crystallographic data for **3ak** have been deposited with the Cam-bridge Crystallographic Data Centre as deposition number 2259613. These data can be obtained free of charge via <u>www.ccdc.cam</u>.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Table S1. Crystal data and structure refinement for 3ak.

Identification code	3ak
Empirical formula	C ₃₀ H ₃₀ N ₂ O ₄
Formula weight	482.56
Temperature/K	193.00
Crystal system	monoclinic
Space group	P21
a/Å	10.4627(4)
b/Å	23.0018(10)
c/Å	10.8602(4)
α /°	90
β /°	93.636(2)
γ /°	90
Volume/Å ³	2608.36(18)
Z	4
ρ calcg/cm ³	1.229
μ /mm ⁻¹	0.418
F(000)	1024.0
Crystal size/mm ³	0.13 × 0.12 × 0.1
Radiation	GaKα (λ = 1.34139)
20 range for data collection/°	6.686 to 120.48
Index ranges	-12 \leqslant h \leqslant 13, -29 \leqslant k \leqslant 28, -14 \leqslant I \leqslant 13
Reflections collected	45119
Independent reflections	11509 [R _{int} = 0.0496, R _{sigma} = 0.0444]
Data/restraints/parameters	11509/1/658
Goodness-of-fit on F ²	1.049
Final R indexes [I>=2σ (I)]	R ₁ = 0.0400, wR ₂ = 0.0779
Final R indexes [all data]	R ₁ = 0.0639, wR ₂ = 0.0875
Largest diff. peak/hole / e Å ⁻³	0.14/-0.14
Flack parameter	-0.12(9)

Atom	x	У	z	U(eq)
05	2470.5(19)	3486.1(8)	2848.2(15)	44.3(5)
02	9501.1(17)	6877.1(8)	7845.9(15)	40.1(4)
N1	9009.5(18)	5935.6(9)	7438.1(17)	31.7(4)
03	4771.2(19)	5145.2(9)	7761(2)	61.8(6)
01	9610(2)	6907.8(9)	9914.1(17)	52.8(5)
N3	3114.6(19)	4405.0(9)	2487.3(17)	33.3(5)
04	8323(2)	2815.9(9)	7001(2)	60.7(6)
O6	2517(2)	3453.3(9)	4919.7(18)	61.2(6)
N2	6749(2)	5125.1(10)	7011(2)	42.6(5)
N4	5364(2)	5202.1(9)	2309(2)	41.4(5)
07	7407.8(19)	5201.0(9)	3149(2)	74.5(7)
08	4997(2)	7497.0(9)	674(2)	63.5(6)
C7	9225(2)	6432.7(11)	6999(2)	32.2(5)
C8	9196(2)	6600.1(10)	5702(2)	32.5(5)
C24	7019(2)	4519.7(11)	6972(2)	38.5(6)
C35	3037(2)	4361.7(11)	3837(2)	35.8(6)
C6	9436(3)	6624.3(12)	8995(2)	39.0(6)
C23	5746(3)	5392.8(12)	7470(3)	44.7(7)
C37	2786(2)	3920.1(11)	2027(2)	34.2(6)
C14	7718(2)	5905.2(12)	9258(2)	41.0(6)
C36	2652(3)	3735.1(13)	4011(2)	43.3(6)
C38	2688(2)	3757.3(11)	720(2)	36.0(6)
C15	6764(2)	6249.7(12)	8477(2)	41.0(6)
C46	6263(2)	4309.8(12)	3156(2)	40.8(6)
C5	9085(2)	5988.4(11)	8792(2)	34.1(6)
C45	5379(3)	4112.9(13)	3889(2)	42.4(6)
C54	5275(2)	5791.1(11)	1897(2)	38.0(6)
C44	4379(3)	4458.6(13)	4487(2)	44.2(7)
C53	6402(3)	4947.7(11)	2885(3)	45.1(7)
С9	9093(2)	6166.6(11)	4812(2)	38.2(6)
C32	1976(3)	4787.3(12)	4258(2)	41.0(6)
C16	5914(2)	6039.6(11)	7628(2)	40.2(6)
C57	5049(3)	6922.9(12)	1023(3)	46.2(7)
C55	4623(3)	5908.9(12)	791(3)	45.3(7)

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3ak. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

C13	9227(3)	7180.3(12)	5346(2)	41.7(6)
C39	3147(3)	4132.4(12)	-144(2)	40.8(6)
C2	10127(3)	5567.0(12)	9368(2)	40.7(6)
C56	4489(3)	6473.2(13)	350(2)	44.9(7)
C12	9193(3)	7317.5(13)	4106(3)	48.3(7)
C33	680(3)	4601.0(14)	3668(3)	48.6(7)
C47	7188(3)	3926.1(11)	2572(3)	41.0(6)
C11	9126(3)	6884.8(14)	3231(2)	48.0(7)
C25	8000(3)	4341.4(13)	6262(3)	48.3(7)
C29	6411(3)	4113.0(13)	7662(3)	50.8(7)
C10	9064(3)	6309.7(13)	3583(2)	44.9(7)
C4	9835(3)	4942.2(12)	8941(3)	51.1(7)
C27	7825(3)	3368.3(12)	7018(3)	46.3(7)
C28	6812(3)	3533.9(13)	7679(3)	53.5(8)
C31	2276(3)	5402.9(12)	3841(3)	48.1(7)
C52	7667(3)	4071.6(13)	1452(3)	55.1(8)
C26	8410(3)	3771.5(13)	6294(3)	51.3(7)
C48	7576(3)	3398.5(13)	3105(3)	51.1(7)
C58	5704(3)	6809.0(13)	2144(3)	57.4(8)
C59	5812(3)	6246.5(12)	2583(3)	51.4(7)
C1	11426(3)	5743.1(14)	8924(3)	54.7(8)
C49	8376(3)	3028.9(14)	2517(3)	58.5(8)
C50	8833(3)	3179.1(14)	1408(3)	60.0(9)
C40	3033(3)	3997.8(13)	-1382(2)	46.5(7)
C51	8478(3)	3700.7(14)	872(3)	63.8(9)
C43	2120(3)	3242.2(13)	337(3)	55.8(8)
C34	1920(3)	4777.2(15)	5665(2)	56.7(8)
C22	5576(3)	6905.9(15)	6275(3)	59.1(8)
C17	5071(3)	6421.9(13)	6833(3)	45.6(7)
C18	3772(3)	6309.6(15)	6610(3)	60.2(8)
C41	2454(3)	3487.8(15)	-1756(3)	62.7(9)
C3	10169(3)	5588.1(15)	10779(2)	62.2(9)
C19	3017(4)	6671.7(19)	5862(4)	82.3(13)
C21	4810(4)	7269.9(17)	5529(3)	78.3(11)
C20	3524(5)	7147.9(19)	5323(4)	85.4(13)
C30	7818(4)	2397.9(15)	7809(3)	73.4(10)
C60	4431(4)	7632.2(15)	-520(3)	73.0(10)
C42	2002(4)	3110.5(16)	-904(3)	77.5(12)

uispiacein		onent takes t]•
Atom	U11	U22	U33	U23	U13	U12
05	60.5(13)	39.4(11)	33.2(10)	2.4(8)	5.9(8)	-9.3(9)
02	52.7(11)	33.8(10)	33.9(9)	-3.5(8)	3.4(8)	-8.2(9)
N1	32.3(11)	34.2(12)	28.8(10)	1.5(9)	2.6(8)	-2.1(9)
03	36.3(11)	50.9(13)	99.8(17)	3.3(12)	15.1(11)	-7.3(10)
01	69.3(14)	52.7(12)	36.4(10)	-12.2(9)	2.8(9)	-9.9(11)
N3	34.2(12)	37.1(12)	28.5(10)	0.2(9)	1.0(8)	-2.5(9)
04	64.2(14)	42.9(12)	77.0(15)	3.0(11)	20.7(11)	4.1(10)
06	88.6(17)	56.4(13)	38.6(11)	13.2(10)	5.5(10)	-9.0(12)
N2	40.7(13)	39.9(13)	48.3(13)	-3.4(10)	11.8(10)	-5.7(10)
N4	36.2(12)	35.3(12)	52.2(13)	0.6(10)	-1.5(10)	-3.6(10)
07	38.2(12)	38.0(12)	144(2)	-3.2(13)	-16.7(13)	-1.3(10)
08	66.7(15)	39.0(12)	83.9(16)	9.4(11)	-1.1(12)	6.4(10)
C7	30.2(13)	33.2(14)	33.4(13)	-2.5(11)	3.6(10)	-3.5(11)
C8	32.5(13)	32.9(14)	32.2(13)	1.9(10)	3.3(10)	-0.2(10)
C24	37.5(14)	39.7(16)	38.3(14)	-4.1(12)	2.0(11)	-4.8(12)
C35	41.5(15)	39.7(14)	26.0(12)	0.6(10)	-0.5(10)	-1.0(12)
C6	39.3(15)	43.1(16)	34.7(14)	-2.5(12)	3.6(11)	-3.8(12)
C23	37.5(16)	46.0(17)	50.9(16)	-2.5(13)	4.8(13)	-5.5(13)
C37	33.1(14)	36.5(15)	33.5(13)	2.0(11)	4.4(10)	-3.3(11)
C14	41.3(15)	47.9(16)	34.7(13)	-1.7(12)	9.5(11)	-2.5(12)
C36	49.1(17)	46.7(16)	34.1(15)	3.3(13)	3.2(12)	-3.7(13)
C38	36.3(14)	37.8(15)	34.1(13)	-2.4(11)	4.1(11)	-2.9(11)
C15	37.0(15)	41.1(15)	46.1(15)	-3.5(12)	11.7(12)	-0.7(12)
C46	34.2(15)	36.8(15)	50.4(16)	0.2(12)	-5.6(12)	2.5(11)
C5	35.4(14)	39.5(14)	27.5(12)	-0.5(11)	3.8(10)	-2.7(11)
C45	39.9(15)	43.2(15)	42.9(15)	0.4(12)	-6.3(12)	3.9(13)
C54	30.1(14)	37.0(15)	47.2(15)	-1.2(12)	4.5(11)	-0.7(11)
C44	43.3(16)	53.6(18)	34.9(14)	-1.7(12)	-3.7(11)	3.0(13)
C53	32.9(15)	35.2(15)	66.9(19)	-5.1(13)	0.4(13)	-1.0(12)
С9	44.4(16)	34.7(14)	36.0(14)	0.8(11)	7.7(11)	-1.0(11)
C32	40.0(15)	51.6(17)	31.4(13)	-4.8(12)	2.9(11)	1.7(12)
C16	32.5(14)	42.2(16)	46.7(15)	-2.5(12)	9.7(12)	-1.3(12)
C57	43.0(16)	35.8(15)	60.2(18)	4.7(14)	6.9(14)	7.0(13)
C55	42.4(16)	42.6(17)	50.4(17)	-2.1(13)	-0.9(13)	-6.6(13)
C13	47.4(17)	33.9(15)	43.9(15)	2.4(12)	4.8(12)	-2.9(12)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3ak. The Anisotropic displacement factor exponent takes the form: $-2 \pi^2 [h^2 a^{*2} U_{11} + 2hka^* b^* U_{12} + \cdots]$.

C39	42.2(15)	42.5(15)	37.5(14)	-2.0(12)	1.6(11)	-6.3(12)
C2	43.6(16)	44.8(16)	33.0(14)	4.0(12)	-2.4(12)	0.6(12)
C56	42.9(16)	48.3(17)	43.4(15)	3.4(13)	2.5(12)	1.1(13)
C12	57.4(18)	39.8(16)	48.0(17)	12.9(14)	4.6(14)	-0.6(14)
C33	39.5(16)	62.2(19)	44.2(16)	-0.7(14)	3.1(12)	0.6(14)
C47	33.2(14)	36.4(15)	52.9(16)	0.7(12)	-1.6(12)	-3.3(11)
C11	52.1(18)	56.4(18)	35.5(15)	11.5(14)	3.7(12)	0.7(15)
C25	56.8(18)	44.5(17)	45.3(16)	-3.1(13)	17.2(13)	-7.8(14)
C29	46.7(17)	49.7(18)	57.7(18)	5.4(14)	16.6(14)	-0.6(14)
C10	54.4(18)	47.2(18)	33.5(14)	-0.1(13)	7.0(12)	-4.3(13)
C4	54.1(18)	46.8(18)	52.0(17)	7.7(13)	1.1(14)	3.6(14)
C27	49.9(18)	43.4(17)	45.7(16)	-3.4(13)	3.7(13)	-1.6(14)
C28	50.6(19)	48.8(18)	62.6(19)	10.6(14)	16.2(15)	-0.8(14)
C31	47.4(17)	47.6(17)	49.2(17)	-8.3(13)	1.6(13)	6.2(13)
C52	54.6(19)	38.0(16)	74(2)	12.4(15)	15.6(16)	3.3(14)
C26	55.9(19)	48.6(18)	51.6(17)	-10.2(14)	20.8(14)	-3.2(15)
C48	48.8(18)	48.5(17)	55.8(18)	8.9(14)	2.7(14)	9.2(14)
C58	58(2)	35.3(17)	76(2)	-11.2(15)	-16.1(17)	2.7(14)
C59	56.2(19)	40.2(16)	55.9(18)	-5.1(14)	-11.9(14)	3.5(14)
C1	38.5(16)	63(2)	61.0(19)	6.6(16)	-5.6(14)	-0.8(14)
C49	54(2)	45.5(18)	75(2)	6.9(16)	2.1(17)	14.6(15)
C50	51.5(19)	44.8(19)	85(2)	-6.7(17)	15.0(17)	5.6(15)
C40	52.4(17)	53.7(18)	33.8(14)	1.2(13)	4.7(12)	-7.5(14)
C51	65(2)	51(2)	79(2)	5.1(17)	29.6(18)	4.0(17)
C43	76(2)	50.0(19)	42.7(16)	-8.5(13)	13.8(15)	-24.8(16)
C34	58(2)	78(2)	34.8(15)	-6.9(15)	7.5(13)	6.5(16)
C22	56.1(19)	56.6(19)	65(2)	5.6(17)	6.0(16)	9.8(16)
C17	40.4(16)	47.7(17)	49.2(16)	-9.8(13)	5.7(12)	5.7(13)
C18	44.2(18)	58(2)	77(2)	-19.5(17)	-6.4(15)	7.9(15)
C41	84(2)	68(2)	37.0(16)	-12.1(15)	10.4(15)	-22.4(19)
C3	78(2)	71(2)	35.5(16)	5.5(15)	-8.1(15)	6.2(18)
C19	59(2)	75(3)	109(3)	-38(2)	-29(2)	27(2)
C21	104(3)	58(2)	72(2)	4.6(19)	2(2)	26(2)
C20	102(3)	74(3)	76(3)	-21(2)	-30(2)	43(3)
C30	83(3)	51(2)	89(3)	16.9(19)	22(2)	8.4(18)
C60	90(3)	54(2)	77(2)	21.9(17)	17(2)	20.0(19)
C42	118(3)	64(2)	51(2)	-21.3(17)	15(2)	-45(2)

Table S4. Bond Lengths for 3ak.

Atom	Atom	Length/Å	Aton	n Atom	Length/Å
05	C37	1.392(3)	C5	C2	1.560(4)
05	C36	1.389(3)	C45	C44	1.495(4)
02	C7	1.393(3)	C54	C55	1.371(4)
02	C6	1.383(3)	C54	C59	1.384(4)
N1	C7	1.264(3)	C9	C10	1.374(4)
N1	C5	1.472(3)	C32	C33	1.524(4)
03	C23	1.227(3)	C32	C31	1.525(4)
01	C6	1.196(3)	C32	C34	1.532(4)
N3	C35	1.477(3)	C16	C17	1.483(4)
N3	C37	1.261(3)	C57	C56	1.376(4)
04	C27	1.374(3)	C57	C58	1.383(4)
04	C30	1.426(4)	C55	C56	1.387(4)
06	C36	1.196(3)	C13	C12	1.382(4)
N2	C24	1.422(3)	C39	C40	1.378(4)
N2	C23	1.340(3)	C2	C4	1.535(4)
N4	C54	1.428(3)	C2	C1	1.525(4)
N4	C53	1.351(3)	C2	C3	1.531(4)
07	C53	1.221(3)	C12	C11	1.375(4)
08	C57	1.374(3)	C47	C52	1.385(4)
08	C60	1.426(4)	C47	C48	1.394(4)
C7	C8	1.460(3)	C11	C10	1.380(4)
C8	С9	1.387(3)	C25	C26	1.379(4)
C8	C13	1.390(3)	C29	C28	1.396(4)
C24	C25	1.385(4)	C27	C28	1.372(4)
C24	C29	1.379(4)	C27	C26	1.383(4)
C35	C36	1.512(4)	C52	C51	1.383(4)
C35	C44	1.547(4)	C48	C49	1.378(4)
C35	C32	1.570(4)	C58	C59	1.381(4)
C6	C5	1.521(4)	C49	C50	1.368(4)
C23	C16	1.506(4)	C50	C51	1.374(4)
C37	C38	1.466(3)	C40	C41	1.370(4)
C14	C15	1.496(4)	C43	C42	1.379(4)
C14	C5	1.559(3)	C22	C17	1.388(4)
C38	C39	1.383(4)	C22	C21	1.385(5)
C38	C43	1.378(4)	C17	C18	1.390(4)
C15	C16	1.330(4)	C18	C19	1.377(5)

C46	C45	1.337(4)	C41	C42	1.374(4)
C46	C53	1.505(4)	C19	C20	1.365(6)
C46	C47	1.482(4)	C21	C20	1.379(6)

Table S5. Bond Angles for 3ak.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C36	05	C37	105.22(19)	07	C53	C46	120.7(2)
C6	02	C7	105.50(19)	C10	С9	C8	120.0(2)
C7	N1	C5	107.6(2)	C33	C32	C35	109.2(2)
C37	N3	C35	107.6(2)	C33	C32	C31	109.3(2)
C27	04	C30	117.4(2)	C33	C32	C34	109.0(2)
C23	N2	C24	128.5(2)	C31	C32	C35	109.3(2)
C53	N4	C54	126.1(2)	C31	C32	C34	109.4(2)
C57	08	C60	117.8(3)	C34	C32	C35	110.7(2)
02	C7	C8	115.8(2)	C15	C16	C23	120.4(3)
N1	C7	02	116.7(2)	C15	C16	C17	122.3(3)
N1	C7	C8	127.5(2)	C17	C16	C23	117.3(2)
C9	C8	C7	118.6(2)	08	C57	C56	124.7(3)
C9	C8	C13	119.9(2)	08	C57	C58	115.7(3)
C13	C8	C7	121.5(2)	C56	C57	C58	119.7(3)
C25	C24	N2	117.5(2)	C54	C55	C56	121.4(3)
C29	C24	N2	123.3(2)	C12	C13	C8	119.4(3)
C29	C24	C25	119.1(3)	C40	C39	C38	120.7(3)
N3	C35	C36	102.72(19)	C4	C2	C5	109.9(2)
N3	C35	C44	109.7(2)	C1	C2	C5	108.8(2)
N3	C35	C32	109.34(19)	C1	C2	C4	108.5(2)
C36	C35	C44	108.8(2)	C1	C2	C3	109.8(2)
C36	C35	C32	111.1(2)	C3	C2	C5	110.9(2)
C44	C35	C32	114.5(2)	C3	C2	C4	108.9(2)
02	C6	C5	107.4(2)	C57	C56	C55	119.3(3)
01	C6	02	120.7(2)	C11	C12	C13	120.4(3)
01	C6	C5	131.9(2)	C52	C47	C46	121.0(2)
03	C23	N2	124.5(3)	C52	C47	C48	117.6(3)
03	C23	C16	121.5(3)	C48	C47	C46	121.4(3)
N2	C23	C16	114.0(2)	C12	C11	C10	120.2(2)
05	C37	C38	115.6(2)	 C26	C25	C24	120.5(3)
N3	C37	05	116.8(2)	 C24	C29	C28	120.4(3)
N3	C37	C38	127.6(2)	 C9	C10	C11	120.0(3)

C15	C14	C5	110.1(2)	04	C27	C26	115.5(3)
05	C36	C35	107.6(2)	C28	C27	04	124.7(3)
06	C36	05	120.7(3)	C28	C27	C26	119.7(3)
O6	C36	C35	131.8(3)	C27	C28	C29	120.0(3)
C39	C38	C37	119.5(2)	C51	C52	C47	121.2(3)
C43	C38	C37	121.0(2)	C25	C26	C27	120.2(3)
C43	C38	C39	119.5(2)	C49	C48	C47	120.9(3)
C16	C15	C14	126.4(3)	C59	C58	C57	120.4(3)
C45	C46	C53	121.7(2)	C58	C59	C54	120.1(3)
C45	C46	C47	123.2(2)	C50	C49	C48	120.6(3)
C47	C46	C53	115.1(2)	C49	C50	C51	119.6(3)
N1	C5	C6	102.8(2)	C41	C40	C39	119.4(3)
N1	C5	C14	108.80(19)	C50	C51	C52	120.2(3)
N1	C5	C2	109.9(2)	C38	C43	C42	119.6(3)
C6	C5	C14	106.8(2)	C21	C22	C17	121.2(3)
C6	C5	C2	112.5(2)	C22	C17	C16	120.1(3)
C14	C5	C2	115.2(2)	C22	C17	C18	117.9(3)
C46	C45	C44	127.5(3)	C18	C17	C16	122.0(3)
C55	C54	N4	118.7(2)	C19	C18	C17	120.5(4)
C55	C54	C59	119.0(3)	C40	C41	C42	120.4(3)
C59	C54	N4	122.3(2)	C20	C19	C18	121.0(4)
C45	C44	C35	111.4(2)	C20	C21	C22	119.6(4)
N4	C53	C46	115.4(2)	C19	C20	C21	119.7(4)
07	C53	N4	123.9(3)	C41	C42	C43	120.4(3)

Table S6. Torsion Angles for 3ak.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
05	C37	C38	C39	-171.2(2)	C36	C35	C32	C33	-49.6(3)
05	C37	C38	C43	10.2(4)	C36	C35	C32	C31	-169.1(2)
02	C7	C8	C9	171.7(2)	C36	C35	C32	C34	70.4(3)
02	C7	C8	C13	-10.4(3)	C38	C39	C40	C41	0.3(4)
02	C6	C5	N1	1.4(3)	C38	C43	C42	C41	0.4(6)
02	C6	C5	C14	-113.0(2)	C15	C14	C5	N1	-45.3(3)
02	C6	C5	C2	119.6(2)	C15	C14	C5	C6	65.0(3)
N1	C7	C8	C9	-9.6(4)	C15	C14	C5	C2	-169.3(2)
N1	C7	C8	C13	168.4(3)	C15	C16	C17	C22	45.4(4)
N1	C5	C2	C4	-56.2(3)	C15	C16	C17	C18	-135.2(3)

N1	C5	C2	C1	62.5(3)	C46	C45	C44	C35	105.5(3)
N1	C5	C2	C3	-176.7(2)	C46	C47	C52	C51	-176.6(3)
03	C23	C16	C15	110.4(3)	C46	C47	C48	C49	176.1(3)
03	C23	C16	C17	-67.8(4)	C5	N1	C7	02	1.8(3)
01	C6	C5	N1	179.3(3)	C5	N1	C7	C8	-177.0(2)
01	C6	C5	C14	64.8(4)	C5	C14	C15	C16	105.5(3)
01	C6	C5	C2	-62.5(4)	C45	C46	C53	N4	-61.3(4)
N3	C35	C36	05	-3.3(3)	C45	C46	C53	07	120.5(3)
N3	C35	C36	06	175.5(3)	C45	C46	C47	C52	150.6(3)
N3	C35	C44	C45	-46.5(3)	C45	C46	C47	C48	-27.3(4)
N3	C35	C32	C33	63.0(3)	C54	N4	C53	07	1.5(5)
N3	C35	C32	C31	-56.5(3)	C54	N4	C53	C46	-176.6(2)
N3	C35	C32	C34	-177.0(2)	C54	C55	C56	C57	1.6(4)
N3	C37	C38	C39	9.1(4)	C44	C35	C36	05	-119.5(2)
N3	C37	C38	C43	-169.5(3)	C44	C35	C36	06	59.3(4)
04	C27	C28	C29	177.8(3)	C44	C35	C32	C33	-173.3(2)
04	C27	C26	C25	-178.8(3)	C44	C35	C32	C31	67.2(3)
N2	C24	C25	C26	172.5(3)	C44	C35	C32	C34	-53.3(3)
N2	C24	C29	C28	-173.3(3)	C53	N4	C54	C55	140.8(3)
N2	C23	C16	C15	-68.7(3)	C53	N4	C54	C59	-40.0(4)
N2	C23	C16	C17	113.2(3)	C53	C46	C45	C44	3.3(4)
N4	C54	C55	C56	179.1(2)	C53	C46	C47	C52	-30.5(4)
N4	C54	C59	C58	179.9(3)	C53	C46	C47	C48	151.6(3)
08	C57	C56	C55	179.1(3)	C9	C8	C13	C12	-1.9(4)
08	C57	C58	C59	179.9(3)	C32	C35	C36	05	113.5(2)
C7	02	C6	01	-178.7(2)	C32	C35	C36	O6	-67.7(4)
C7	02	C6	C5	-0.5(3)	C32	C35	C44	C45	-170.0(2)
C7	N1	C5	C6	-1.9(3)	C16	C17	C18	C19	-179.7(3)
C7	N1	C5	C14	111.1(2)	C57	C58	C59	C54	0.6(5)
C7	N1	C5	C2	-121.9(2)	C55	C54	C59	C58	-0.9(4)
C7	C8	C9	C10	-180.0(2)	C13	C8	C9	C10	2.1(4)
C7	C8	C13	C12	-179.8(2)	C13	C12	C11	C10	1.4(4)
C8	С9	C10	C11	-0.5(4)	C39	C38	C43	C42	-0.8(5)

C8	C13	C12	C11	0.1(4)	C39	C40	C41	C42	-0.7(5)
C24	N2	C23	03	-12.6(5)	C56	C57	C58	C59	0.9(5)
C24	N2	C23	C16	166.4(2)	C12	C11	C10	C9	-1.3(4)
C24	C25	C26	C27	1.4(4)	C47	C46	C45	C44	-177.8(2)
C24	C29	C28	C27	0.8(4)	C47	C46	C53	N4	119.7(3)
C35	N3	C37	05	-1.0(3)	C47	C46	C53	07	-58.4(4)
C35	N3	C37	C38	178.7(2)	C47	C52	C51	C50	-0.5(5)
C6	02	C7	N1	-0.8(3)	C47	C48	C49	C50	1.6(5)
C6	02	C7	C8	178.1(2)	C25	C24	C29	C28	2.3(4)
C6	C5	C2	C4	-170.1(2)	C29	C24	C25	C26	-3.4(4)
C6	C5	C2	C1	-51.4(3)	C28	C27	C26	C25	1.8(4)
C6	C5	C2	C3	69.4(3)	C52	C47	C48	C49	-1.9(4)
C23	N2	C24	C25	169.1(3)	C26	C27	C28	C29	-2.8(4)
C23	N2	C24	C29	-15.1(4)	C48	C47	C52	C51	1.4(4)
C23	C16	C17	C22	-136.5(3)	C48	C49	C50	C51	-0.7(5)
C23	C16	C17	C18	42.9(4)	C58	C57	C56	C55	-1.9(4)
C37	05	C36	06	-176.2(3)	C59	C54	C55	C56	-0.1(4)
C37	05	C36	C35	2.8(3)	C49	C50	C51	C52	0.1(5)
C37	N3	C35	C36	2.6(3)	C40	C41	C42	C43	0.4(6)
C37	N3	C35	C44	118.1(2)	C43	C38	C39	C40	0.5(4)
C37	N3	C35	C32	-115.4(2)	C22	C17	C18	C19	-0.3(4)
C37	C38	C39	C40	-178.1(3)	C22	C21	C20	C19	0.3(6)
C37	C38	C43	C42	177.7(3)	C17	C22	C21	C20	-0.7(5)
C14	C15	C16	C23	6.7(4)	C17	C18	C19	C20	0.0(5)
C14	C15	C16	C17	-175.3(2)	C18	C19	C20	C21	0.0(6)
C14	C5	C2	C4	67.1(3)	C21	C22	C17	C16	-179.9(3)
C14	C5	C2	C1	-174.2(2)	C21	C22	C17	C18	0.6(5)
C14	C5	C2	C3	-53.3(3)	C30	04	C27	C28	-5.5(4)
C36	05	C37	N3	-1.2(3)	C30	04	C27	C26	175.1(3)
C36	05	C37	C38	179.1(2)	C60	08	C57	C56	-6.3(4)
C36	C35	C44	C45	65.1(3)	C60	08	C57	C58	174.7(3)
Atom	х	у	z	U(eq)					
------	----------	---------	----------	-------					
H2	7314.89	5354.02	6691.64	51					
H4	4677.66	4984.21	2175.41	50					
H14A	7483.37	5488.29	9222.17	49					
H14B	7709.8	6034.51	10127.06	49					
H15	6764.59	6658.7	8598.27	49					
H45	5387.45	3706.72	4047.22	51					
H44A	4599.77	4876.73	4456.83	53					
H44B	4364.35	4344.01	5364.85	53					
Н9	9043.68	5770.74	5053.94	46					
H55	4254.49	5597.59	315.65	54					
H13	9270.71	7479.57	5950.11	50					
H39	3544.41	4486.35	119.09	49					
H56	4015.62	6548.27	-408.63	54					
H12	9215.5	7713.08	3856.48	58					
H33A	23.66	4879.97	3885.96	73					
H33B	463.76	4214.08	3970.23	73					
H33C	720.59	4589.16	2769.63	73					
H11	9123.03	6982.18	2380.26	58					
H25	8394.31	4613.81	5749.25	58					
H29	5714.94	4227.45	8128.94	61					
H10	9000.96	6012.43	2974.69	54					
H4A	8986.22	4828.64	9189.86	77					
H4B	10482.27	4678.66	9320.76	77					
H4C	9850.27	4920.46	8041.21	77					
H28	6382.85	3254.6	8148.26	64					
H31A	2311.67	5410.03	2941.56	72					
H31B	3103.55	5525.91	4227.49	72					
H31C	1604.21	5668.22	4085.66	72					
H52	7434.91	4432.51	1076.08	66					

Table S7. Hydrogen Atom Coordinates (Å $\times 10^4$) and Isotropic Displacement Parameters (Å $^2\times 10^3$) for 3ak.

H26	9096.79	3655.37	5817.7	62
H48	7284.15	3292.19	3884.41	61
H58	6080.6	7119.77	2614.6	69
Н59	6256.24	6172.18	3357.22	62
H1A	11380.65	5750.97	8020.25	82
H1B	12076.58	5461.26	9223.47	82
H1C	11656.83	6130.05	9243.9	82
H49	8612.22	2666.71	2884.51	70
H50	9391.07	2924.5	1010.56	72
H40	3353.82	4256.27	-1971.76	56
H51	8791.04	3806.74	100.98	77
H43	1812.2	2979.22	923.75	67
H34A	1227.75	5031.82	5905.98	85
H34B	2737.35	4914.14	6050.22	85
H34C	1758.95	4379.2	5937.09	85
H22	6463.1	6989.01	6407.15	71
H18	3401.67	5980.23	6977.1	72
H41	2364.03	3394.42	-2609.04	75
НЗА	10330.92	5987.87	11058.67	93
НЗВ	10854.87	5334.2	11120.36	93
НЗС	9346.11	5455.58	11060.73	93
H19	2130.56	6588.78	5718.46	99
H21	5168.26	7601.8	5160.83	94
H20	2992.46	7394.34	4809.07	102
H30A	6899.93	2346.8	7598.21	110
H30B	7946.65	2533.67	8663.15	110
H30C	8259.12	2025.83	7720.84	110
H60A	4888.44	7425.61	-1147.51	110
H60B	4483.87	8051.99	-662.2	110
H60C	3530.4	7511.78	-572.25	110
H42	1606.6	2756.84	-1171.86	93

Density functional calculations (DFT)

G = -18.0 kcal/mol

Calculation method

Density functional calculations (DFT) are implemented using the Gaussian 09 package.⁴ Geometry optimizations are performed using the Minnesota M06 functional as it has been successful in describing a plethora of transition metal-catalyzed reactions.⁵ The LANL2DZ effective core potential method with an extra *f*-polarization function ($\zeta f = 1.472$) is used as the basis set for Pd, and the 6-31G(d) basis set is used for all other atoms.⁶

⁴ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2009.

⁵ (a) Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* **2007**, *120*, 215–241. (b) Mandal, N.; Datta, A. J. Org. *Chem.* **2020**, *85*, 13228–13238.

⁶ (a) Hariharan, P. C.; Pople, J. A. *Theor. Chim. Acta* **1973**, *28*, 213–222. (b) Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* **1985**, *82*, 284–298. (c) Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* **1985**, *82*, 299–310.