SUPPLEMENTARY INFORMATION

Regio- and stereoselective manganese-catalyzed hydrosulfonylation of alkynes: facile access to Z-vinyl sulfones

Jian Han,^{1,3}* Li-Li, Zeng,¹ Rong-Hui Huang,¹ Xiao-Qing Feng¹ and Fen-Er Chen^{1,2}*

¹School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
 ²Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
 ³Shenzhen Research Institute of Nanjing University, Shenzhen 518057, China

Contents

1. General information	3
2. General procedure for the hydrosulfonylation of alkynes	4
3. Characterization data for the products	4
4. Synthetic Application	15
5. Mechanistic Studies	19
6. Supplementary references	23
7. NMR Spectra	24

1. General information

All reactions were conducted in oven- or flame-dried glassware under an atmosphere of nitrogen unless otherwise noted. Unless otherwise noted, all reagents were used as received and handled under air atmosphere. The decacarbonyldimanganese was purchased from HWRK Chem, Energy Chemical and Laajoo reagent suppliers and used after column purification and recrystallization. The commercial ligands were purchased from Energy Chemical, Laajoo, J & K scientific Ltd., TCI (Shanghai) Ltd. and Aladdin for direct use. CDCl3₁ was purchased from J & K Scientific Ltd.

NMR spectra were recorded on a Bruker Ultra-shield 500 MHz spectrometer. ¹H NMR, ¹³C NMR and ¹⁹F NMR are recorded on an NMR spectrometer with CDCl₃ as solvent. Chemical shifts of ¹H, ¹³C, and ¹⁹F NMR spectra are reported in parts per million (ppm). The ¹⁹F NMR spectra is {1H} decoupled and the ¹³C NMR spectra is {1H} decoupled. The residual solvent signals were used as standard, and the chemical shifts were converted to the corresponding scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm). All coupling constants (*J* values) were reported in hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), and multiplet (m). The high-resolution mass spectra (HRMS) were detected with the ESI mode of the Micromass Q-TOF instrument. The IR spectrum was recorded on a Brucker Alpha FT/IR instrument. The 45 W white LEDs light (λ = 400-700 nm, λ_{max} = 464 nm) was purchased from Kessil (A360NE/WE). Schlenk tubes (10 mL and 100 mL) were purchased from synthware. Toppette was purchased from DLAB Scientific Co., Ltd. The compound names were generated by the computer program ChemDraw according to the guidelines specified by the International Union of Pure and Applied Chemistry (IUPAC).

All substrates were used as received from commercial suppliers unless otherwise stated. Bromides and olefins were purchased from commercial suppliers, Aladdin, TCI (Shanghai) Development Co., Ltd, Energy Chemical reagent suppliers, J & K scientific Ltd., Bide Pharmatech Ltd, Alfa-Aesar and Sigma-Aldrich unless otherwise noted.

2. General procedure for the hydrosulfonylation of alkynes

To an oven-dried 10 mL sealed tube, $Mn_2(CO)_{10}$ (5 mol%, 0.01 mmol), Xantphos (10 mol%, 0.02 mmol), (TMS)₃SiH (1.5 equiv, 0.3 mmol), terminal alkyne (0.2 mmol), sulfonyl chloride (0.6 mmol) and DCM (2 mL) were added and the tube was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of two 45 W white LEDs (distance app. 4.0 cm from the bulb) at 40 °C for 18 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was purified by column chromatography (eluent: PE/EA = 1:20 to 1:1) to afford the corresponding product.

3. Characterization data for the products

(Z)-4-tosylbut-3-en-1-yl benzoate (3a)

White solid (54.8 mg, 83%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (dd, J = 8.3, 1.5 Hz, 2H), 7.78 (d, J = 8.3 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.41 – 6.29 (m, 2H), 4.42 (t, J = 6.2 Hz, 2H), 3.24 – 3.17 (m, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 144.6, 141.8, 138.4, 133.2, 132.8, 130.0, 129.9, 129.7, 128.5, 127.4, 63.2, 27.4, 21.7. HRMS (ESI) calcd for C₁₈H₁₉O₄S [M+H]⁺: 331.0999; found: 331.0989.

(Z)-1-(hex-1-en-1-ylsulfonyl)-4-methylbenzene (3b)

Colorless oil (41.5 mg, 87%, Z/E = 19:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.32 – 6.17 (m, 2H), 2.65 (q, J = 7.0 Hz, 2H), 2.43 (s, 3H), 1.41 – 1.29 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.2, 144.3, 139.1, 130.7, 129.9, 127.4, 30.9, 27.6, 22.4, 21.7, 13.9. HRMS (ESI) calcd for C₁₃H₁₉O₂S [M+H]⁺: 239.1100; found: 239.1094.

(Z)-1-methyl-4-((4-phenylbut-1-en-1-yl)sulfonyl)benzene (3c)

Colorless oil (51.5 mg, 90%, Z/E = 11:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.65 (m, 2H), 7.31 – 7.23 (m, 4H), 7.22 – 7.18 (m, 1H), 7.17 – 7.12 (m, 2H), 6.29 – 6.16 (m, 2H), 3.03 – 2.95 (m, 2H), 2.73 (t, J = 7.5 Hz, 2H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 144.4, 140.4, 138.8, 131.2, 129.9, 128.61, 128.57, 127.4, 126.4, 34.9, 29.2,

21.7. HRMS (ESI) calcd for C₁₇H₁₉O₂S [M+H]⁺: 287.1100; found: 287.1089.

(Z)-1-((2-cyclopropylvinyl)sulfonyl)-4-methylbenzene (3d)

Colorless oil (35.6 mg, 80%, Z/E = 17:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.14 (d, J = 11.0 Hz, 1H), 5.45 (t, J = 11.1 Hz, 1H), 2.83 – 2.75 (m, 1H), 2.43 (s, 3H), 1.06 – 1.01 (m, 2H), 0.59 – 0.54 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.7, 144.1, 139.4, 129.9, 127.6, 127.2, 21.7, 10.9, 9.5. HRMS (ESI) calcd for C₁₂H₁₅O₂S [M+H]⁺: 223.0787; found: 223.0784.

(Z)-1-((3-cyclohexylprop-1-en-1-yl)sulfonyl)-4-methylbenzene (3e)

Colorless oil (52.3 mg, 94%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 6.31 – 6.19 (m, 2H), 2.55 (t, J = 6.7 Hz, 2H), 2.43 (s, 3H), 1.71 – 1.64 (m, 4H), 1.62 – 1.59 (m, 1H), 1.40 – 1.31 (m, 1H), 1.21 – 1.10 (m, 3H), 0.98 – 0.88 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.1, 144.3, 139.1, 131.2, 129.9, 127.5, 38.0, 35.2, 33.0, 26.3, 26.3, 21.7. HRMS (ESI) calcd for C₁₆H₂₃O₂S [M+H]⁺: 279.1413; found: 279.1401.

(Z)-1-((2-(cyclohex-1-en-1-yl)vinyl)sulfonyl)-4-methylbenzene (3f)

Yellow oil (28.9 mg, 55%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.74 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 15.1 Hz, 1H), 6.27 (t, J = 4.2 Hz, 1H), 6.18 (d, J = 15.1 Hz, 1H), 2.42 (s, 3H), 2.25 – 2.19 (m, 2H), 2.06 – 2.01 (m, 2H), 1.68 – 1.64 (m, 2H), 1.62 – 1.56 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.5, 144.1, 141.5, 138.6, 133.5, 130.0, 127.6, 124.1, 26.7, 24.3, 22.0, 21.9, 21.7. HRMS (ESI) calcd for C₁₅H₁₉O₂S [M+H]⁺: 263.1100; found: 263.1093.

Boc N Ts

tert-butyl (Z)-4-(2-tosylvinyl)piperidine-1-carboxylate (3g)

Pale yellow solid (51.9 mg, 71%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 7.7 Hz, 2H), 6.22 (d, J = 11.1 Hz, 1H), 5.96 (t, J = 10.7 Hz, 1H), 4.19 – 3.97 (m, 2H), 3.59 – 3.46 (m, 1H), 2.85 – 2.68 (m, 2H), 2.43 (s, 3H), 1.64 – 1.57 (m, 2H), 1.44 (s, 9H), 1.26 – 1.20 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 148.8, 144.6, 138.8, 130.2, 130.1, 127.8, 127.4, 79.7, 34.8, 31.0, 28.6, 21.8. HRMS (ESI) calcd for C₁₉H₂₈NO₄S [M+H]⁺: 366.1734; found: 366.1720.

(Z)-1-((6-chlorohex-1-en-1-yl)sulfonyl)-4-methylbenzene (3h)

Pale yellow oil (44.7 mg, 82%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.32 – 6.28 (m, 1H), 6.23 – 6.16 (m, 1H), 3.53 (t, J = 6.5 Hz, 2H), 2.74 – 2.66 (m, 2H), 2.44 (s, 3H), 1.82 – 1.75 (m, 2H), 1.62 – 1.55 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.8, 144.5, 138.9, 131.4, 130.0, 127.4, 44.7, 32.0, 26.9, 26.0, 21.8. HRMS (ESI) calcd for C₁₃H₁₈ClO₂S [M+H]⁺: 273.0711; found: 273.0705.

tert-butyl (Z)-(3-tosylallyl)carbamate (3i)

S

Yellow solid (39.8 mg, 64%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.29 (d, J = 12.5 Hz, 2H), 4.96 (s, 1H), 4.33 (t, J = 5.6 Hz, 2H), 2.44 (s, 3H), 1.44 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 143.3, 138.1, 131.3, 130.2, 127.6, 37.5, 28.5, 21.8. HRMS (ESI) calcd for C₁₅H₂₂NO₄S [M+H]⁺: 312.1264; found: 312.1253.

(Z)-6-tosylhex-5-enenitrile (3j)

Brown oil (26.9 mg, 54%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 6.39 – 6.34 (m, 1H), 6.22 – 6.15 (m, 1H), 2.86 – 2.78 (m, 2H), 2.45 (s, 3H), 2.40 (t, J = 7.3 Hz, 2H), 1.88 – 1.81 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 143.1, 138.4, 132.9, 130.2, 127.5, 119.2, 26.8, 24.9, 21.8, 16.9. HRMS (ESI) calcd for C₁₃H₁₆NO₂S [M+H]⁺: 250.0896; found: 250.0888.

(Z)-1-methyl-4-((3-phenoxyprop-1-en-1-yl)sulfonyl)benzene (3k)

Pale yellow solid (28.8 mg, 50%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 7.9 Hz, 2H), 6.98 (t, J = 7.4 Hz, 1H), 6.90 (d, J = 8.1 Hz, 2H), 6.51 – 6.45 (m, 1H), 6.37 – 6.31 (m, 1H), 5.24 (dd, J = 4.9, 2.3 Hz, 2H), 2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.9, 145.1, 142.5, 137.7, 130.5, 130.2, 129.8, 127.6, 121.5, 114.8, 64.1, 21.8. HRMS (ESI) calcd for C₁₆H₁₇O₃S [M+H]⁺: 289.0893; found: 289.0885.

(Z)-2-(6-tosylhex-5-en-1-yl)isoindoline-1,3-dione (31)

Colorless oil (64.4 mg, 84%, Z/E = 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 5.4, 3.1 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 7.72 – 7.69 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.30 – 6.25 (m, 1H), 6.20 – 6.14 (m, 1H), 3.66 (t, J = 7.1 Hz, 2H), 2.71 – 2.65 (m, 2H), 2.40 (s, 3H), 1.69 – 1.63 (m, 2H), 1.48 – 1.41 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 168.4, 146.0, 144.4, 138.9, 134.0, 132.2, 131.3, 129.9, 127.4, 123.3, 37.7, 28.2, 27.2, 26.0, 21.7. HRMS (ESI) calcd for C₂₁H₂₂NO₄S [M+H]⁺: 384.1264; found: 384.1252.

(Z)-1-methyl-5-((4-tosylbut-3-en-1-yl)thio)-1H-tetrazole (3m)

Colorless oil (48.7 mg, 75%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.39 – 6.23 (m, 2H), 3.91 (s, 3H), 3.46 (t, J = 7.0 Hz, 2H), 3.19 (q, J = 7.3 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 144.8, 141.9, 138.3, 133.2, 130.1, 127.5, 33.6, 31.9, 27.5, 21.8. HRMS (ESI) calcd for C₁₃H₁₇N₄O₂S₂ [M+H]⁺: 325.0787; found: 325.0777.

(Z)-4-((4-tosylbut-3-en-1-yl)oxy)-2H-chromen-2-one (3n)

White solid (38.5 mg, 52%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 2H), 7.70 (dd, J = 7.9, 1.6 Hz, 1H), 7.57 – 7.51 (m, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.30 (dd, J = 8.3, 1.1 Hz, 1H), 7.25 – 7.20 (m, 1H), 6.50 – 6.42 (m, 1H), 6.41 – 6.32 (m, 1H), 5.66 (s, 1H), 4.24 (t, J = 6.1 Hz, 2H), 3.39 – 3.31 (m, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 162.8, 153.4, 145.0, 140.4, 138.3, 133.6, 132.7, 130.2, 127.5, 124.1, 123.1, 116.9, 115.5, 90.9, 67.6, 27.1, 21.8. HRMS (ESI) calcd for C₂₀H₁₉O₅S [M+H]⁺: 371.0948; found: 371.0935.

(Z)-1-methyl-4-(styrylsulfonyl)benzene (3p)

Pale yellow solid (43.4 mg, 84%, Z/E = 4:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.67 (m, 2H), 7.58 – 7.54 (m, 2H), 7.36 – 7.33 (m, 3H), 7.23 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 12.1 Hz, 1H), 6.50 (d, J = 12.1 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.4, 141.2, 131.4, 130.3, 129.7, 129.2, 128.6, 128.2, 127.8, 127.7, 21.7. HRMS (ESI) calcd for C₁₅H₁₅O₂S [M+H]⁺: 259.0787; found: 259.0782.

(Z)-1-(tert-butyl)-4-(2-tosylvinyl)benzene (3q)

White solid (42.1 mg, 67%, *Z*-isomer, which was isolated by column chromatography). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 15.4 Hz, 1H), 7.44 – 7.38 (m, 4H), 7.33 (d, *J* = 7.8 Hz, 2H), 6.81 (d, *J* = 15.4 Hz, 1H), 2.43 (s, 3H), 1.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 144.4, 142.0, 138.1, 130.0, 129.8, 128.5, 127.8, 126.7, 126.2, 35.1, 31.2, 21.7. HRMS (ESI) calcd for C₁₉H₂₃O₂S [M+H]⁺: 315.1413; found: 315.1405.

(Z)-1-methoxy-4-(2-tosylvinyl)benzene (3r)

White solid (38.6 mg, 67%, Z/E = 15:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 15.3 Hz, 1H), 7.42 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.70 (d, J = 15.3 Hz, 1H), 3.82 (s, 3H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.1, 144.2, 141.8, 138.3, 130.4, 130.0, 127.7, 125.2, 124.9, 114.6, 55.5, 21.7. HRMS (ESI) calcd for C₁₆H₁₇O₃S [M+H]⁺: 289.0893; found: 289.0887.

(Z)-1-fluoro-2-(2-tosylvinyl)benzene (3s)

White solid (35.4 mg, 64%, *Z*-isomer, which was isolated by column chromatography). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (td, *J* = 7.7, 1.7 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.38 – 7.32 (m, 1H), 7.25 (d, *J* = 7.9 Hz, 2H), 7.19 – 7.11 (m, 2H), 7.01 – 6.96 (m, 1H), 6.59 (d, *J* = 12.0 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.1 (d, *J* = 249.5 Hz), 144.6, 137.8, 133.8 (d, *J* = 3.8 Hz), 133.4, 132.4 (d, *J* = 2.5 Hz), 131.7 (d, *J* = 8.8 Hz), 129.8, 127.8, 123.8 (d, *J* = 3.8 Hz), 120.6 (d, *J* = 13.9 Hz), 115.1 (d, *J* = 20.2 Hz), 21.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.0 (s). HRMS (ESI) calcd for C₁₅H₁₄FO₂S [M+H]⁺: 277.0693; found: 277.0685.

(Z)-1-chloro-4-(2-tosylvinyl)benzene (3t)

Pale yellow solid (38.6 mg, 66%, *Z*-isomer, which was isolated by column chromatography). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.6 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 12.1 Hz, 1H), 6.50 (d, *J* = 12.1 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.7, 139.5, 138.0, 136.0, 131.9, 131.6, 130.9, 129.8, 128.4, 127.7, 21.7. HRMS (ESI) calcd for C₁₅H₁₄ClO₂S [M+H]⁺: 293.0398; found: 293.0388.

(Z)-1-bromo-4-(2-tosylvinyl)benzene (3u)

White solid (23.6 mg, 35%, *Z*-isomer, which was isolated by column chromatography). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 12.1 Hz, 1H), 6.51 (d, *J* = 12.1 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.7, 139.6, 138.0, 132.1, 131.8, 131.42, 131.35, 129.9, 127.7, 124.4, 21.8. HRMS (ESI) calcd for C₁₅H₁₄BrO₂S [M+H]⁺: 336.9892; found: 336.9882.

$(Z)-1-methyl-4-((4-(trifluoromethyl)styryl)sulfonyl)benzene~(\mathbf{3v})$

White solid (37.9 mg, 58%, *Z*-isomer, which was isolated by column chromatography). ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.4 Hz, 2H), 7.70 – 7.62 (m, 3H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 15.4 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.0, 140.0, 137.3, 136.0, 132.6 (q, *J* = 32.8 Hz), 130.5, 130.2, 128.8, 128.0, 126.2 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 269.6 Hz), 21.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.0 (s). HRMS (ESI) calcd for C₁₆H₁₄F₃O₂S [M+H]⁺: 327.0661; found: 327.0655.

methyl (Z)-4-(2-tosylvinyl)benzoate (3w)

Yellow solid (37.9 mg, 60%, *Z*-isomer, which was isolated by column chromatography). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 12.1 Hz, 1H), 6.59 (d, *J* = 12.1 Hz, 1H), 3.93 (s, 3H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 144.8, 139.8, 137. 9, 137.0, 133.3, 130.9, 129.94, 129.85, 129.3, 127.8, 52.4, 21.7. HRMS (ESI) calcd for C₁₇H₁₇O₄S [M+H]⁺: 317.0842; found: 317.0836.

(Z)-2-(2-tosylvinyl)naphthalene (3x)

White solid (16.0 mg, 26%, *Z*-isomer, which was isolated by column chromatography). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.88 – 7.79 (m, 6H), 7.56 – 7.50 (m, 3H), 7.35 (d, *J* = 8.1 Hz, 2H), 6.96 (d, *J* = 15.3 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.5, 142.1, 138.0, 134.6, 133.3, 131.0, 130.12, 130.05, 129.1, 128.8, 128.0, 127.9, 127.8, 127.1, 123.6, 21.8. HRMS (ESI) calcd for C₁₉H₁₇O₂S [M+H]⁺: 309.0944; found: 309.0936.

(Z)-2-(2-tosylvinyl)thiophene (3y)

Pale yellow solid (31.7 mg, 60%, *Z*-isomer, which was isolated by column chromatography). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.76 (d, *J* = 15.1 Hz, 1H), 7.42 (d, *J* = 5.1 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 3.5 Hz, 1H), 7.06 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.63 (d, *J* = 15.1 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.5, 138.0, 137.2, 134.7, 132.4, 130.1, 130.0, 128.4, 127.8, 125.9, 21.8. HRMS (ESI) calcd for C₁₃H₁₃O₂S₂ [M+H]⁺: 265.0351; found: 265.0346.

(Z)-1-methyl-4-((1-phenylprop-1-en-2-yl)sulfonyl)benzene (3z)

Colorless oil (40.8 mg, 75%, Z/E = 7:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.4 Hz, 2H), 7.31 – 7.24 (m, 5H), 7.17 (d, J = 8.0 Hz, 2H), 7.05 (s, 1H), 2.39 (s, 3H), 2.21 (d, J = 1.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.0, 138.5, 137.5, 137.1, 134.3, 129.4, 129.0, 128.2, 128.0, 127.7, 21.7, 20.9. HRMS (ESI) calcd for C₁₆H₁₇O₂S [M+H]⁺: 273.0944; found: 273.0936.

(Z)-4-((4-methoxyphenyl)sulfonyl)but-3-en-1-yl benzoate (4a)

Colorless oil (50.6 mg, 73%, Z/E = 14:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.94 (m, 2H), 7.86 – 7.79 (m, 2H), 7.59 – 7.53 (m, 1H), 7.42 (dd, J = 8.4, 7.1 Hz, 2H), 6.99 – 6.91 (m, 2H), 6.44 – 6.26 (m, 2H), 4.43 (t, J = 6.2 Hz, 2H), 3.84 (s, 3H), 3.24 – 3.18 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 163.8, 141.2, 137.3, 133.2, 133.1, 133.0, 129.73, 129.65, 128.5, 114.7, 63.2, 55.8, 27.4. HRMS (ESI) calcd for C₁₈H₁₉O₅S [M+H]⁺: 347.0948; found: 347.0935.

(Z)-4-((4-(trifluoromethoxy)phenyl)sulfonyl)but-3-en-1-yl benzoate (4b)

Colorless oil (40.8 mg, 51%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 8.02 – 7.98 (m, 2H), 7.97 – 7.92 (m, 2H), 7.60 – 7.55 (m, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.47 – 6.34 (m, 2H), 4.47 (t, J = 6.1 Hz, 2H), 3.27 – 3.22 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 153.0, 143.2, 140.0, 133.4, 132.0, 129.9, 129.77, 129.75, 122.3 (q, J = 260.8 Hz), 121.2, 119.3, 63.1, 27.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -57.7 (s). HRMS (ESI) calcd for C₁₈H₁₆F₃O₅S [M+H]⁺: 401.0665; found: 401.0659.

(Z)-4-((4-fluorophenyl)sulfonyl)but-3-en-1-yl benzoate (4c)

Colorless oil (42.8 mg, 64%, Z/E = 10:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 8.00 – 7.96 (m, 2H), 7.94 – 7.89 (m, 2H), 7.60 – 7.55 (m, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.16 (t, J = 8.5 Hz, 2H), 6.43 – 6.36 (m, 2H), 4.45 (t, J = 6.2 Hz, 2H), 3.25 – 3.20 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 165.8 (d, J = 257.0 Hz), 142.6, 137.4 (d, J = 2.5 Hz), 133.3, 132.4, 130.3 (d, J = 10.1 Hz), 129.9, 129.7, 128.6, 116.8 (d, J = 11.1 Hz), 63.1, 27.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -103.6 (s). HRMS (ESI) calcd for C₁₇H₁₆FO₄S [M+H]⁺: 335.0748; found: 335.0729.

(Z)-4-((2-chlorophenyl)sulfonyl)but-3-en-1-yl benzoate (4d)

Colorless oil (43.5 mg, 62%, Z/E = 10:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 7.7, 1.8 Hz, 1H), 7.99 – 7.93 (m, 2H), 7.58 – 7.49 (m, 2H), 7.48 – 7.41 (m, 4H), 6.65 – 6.59 (m, 1H), 6.54 – 6.45 (m, 1H), 4.39 (t, J = 6.2 Hz, 2H), 3.16 – 3.08 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 143.9, 139.0, 134.7, 133.2, 133.0, 132.0, 131.4, 130.5, 129.9, 129.7, 128.5, 127.5, 63.0, 27.8. HRMS (ESI) calcd for C₁₇H₁₆ClO₄S [M+H]⁺: 351.0452; found: 351.0439.

 $\begin{array}{ll} (Z)-4-((3-chlorophenyl)sulfonyl)but-3-en-1-yl & benzoate & (4e) \\ \mbox{Colorless oil (54.7 mg, 78\%, Z/E > 20:1, which was detected by 1H NMR spectroscopy). 1H NMR (500 MHz, CDCl_3) & 8.01 - 7.95 (m, 2H), 7.90 (t, J = 1.9 Hz, 1H), 7.80 - 7.77 (m, 1H), 7.58 - 7.53 (m, 2H), 7.45 - 7.40 (m, 3H), 6.48 - 6.37 (m, 2H), 4.45 (t, J = 6.2 Hz, 2H), 3.25 - 3.20 (m, 2H). $^{13}C NMR (126 MHz, CDCl_3) & 166.4, 143.5, 143.0, 135.7, 133.8, 133.3, 131.9, 130.8, 129.9, 129.7, 128.5, 127.5, 125.5, 63.0, 27.6. HRMS (ESI) calcd for C_{17}H_{16}ClO_4S [M+H]^+: 351.0452; found: 351.0440. \end{array}$

(Z)-4-((4-chlorophenyl)sulfonyl)but-3-en-1-yl benzoate (4f)

White solid (49.1 mg, 70%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.94 (m, 2H), 7.86 – 7.80 (m, 2H), 7.60 – 7.55 (m, 1H), 7.47 – 7.41 (m, 4H), 6.44 – 6.36 (m, 2H), 4.45 (t, J = 6.1 Hz, 2H), 3.22 (q, J = 6.0 Hz, 2H). ¹³C NMR (126 MHz,

CDCl₃) δ 166.4, 143.1, 140.4, 139.8, 133.3, 132.1, 129.9, 129.8, 129.7, 128.9, 128.6, 63.1, 27.6. HRMS (ESI) calcd for C₁₇H₁₆ClO₄S [M+H]⁺: 351.0452; found: 351.0441.

(Z)-4-((4-bromophenyl)sulfonyl)but-3-en-1-yl benzoate (4g)

Colorless oil (64.0 mg, 81%, Z/E = 14:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.78 – 7.72 (m, 2H), 7.62 – 7.55 (m, 3H), 7.46 – 7.40 (m, 2H), 6.47 – 6.34 (m, 2H), 4.45 (t, J = 6.1 Hz, 2H), 3.21 (q, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 142.1, 139.3, 132.3, 131.8, 131.7, 131.1, 128.9, 128.7, 128.6, 128.3, 128.0, 127.5, 62.0, 26.6. HRMS (ESI) calcd for C₁₇H₁₆BrO₄S [M+H]⁺: 394.9947; found: 394.9937.

(Z)-4-((4-(trifluoromethyl)phenyl)sulfonyl)but-3-en-1-yl benzoate (4h)

Colorless oil (50.7 mg, 66%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 8.2 Hz, 2H), 7.98 (d, J = 7.2 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.7 Hz, 2H), 6.53 – 6.45 (m, 1H), 6.43 – 6.33 (m, 1H), 4.47 (t, J = 6.1 Hz, 2H), 3.29 – 3.21 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 144.8, 144.1, 135.3 (q, J = 32.8 Hz), 133.4, 131.6, 129.9, 129.7, 128.6, 128.1, 126.6 (q, J = 3.8 Hz), 123.2 (q, J = 273.4 Hz), 63.0, 27.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.2 (s). HRMS (ESI) calcd for C₁₈H₁₆F₃O₄S [M+H]⁺: 385.0716; found: 385.0711.

(Z)-4-((4-acetylphenyl)sulfonyl)but-3-en-1-yl benzoate (4i)

White solid (49.5 mg, 69%, Z/E = 9:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.93 (m, 6H), 7.58 – 7.54 (m, 1H), 7.44 – 7.38 (m, 2H), 6.50 – 6.38 (m, 2H), 4.47 – 4.44 (m, 2H), 3.28 – 3.19 (m, 2H), 2.62 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.7, 166.4, 145.1, 143.9, 140.8, 133.3, 132.4, 131.9, 129.7, 129.2, 128.6, 127.8, 63.0, 27.7, 27.0. HRMS (ESI) calcd for C₁₉H₁₉O₅S [M+H]⁺: 359.0948; found: 359.0936.

(Z)-4-((4-cyanophenyl)sulfonyl)but-3-en-1-yl benzoate (4j) White solid (56.0 mg, 82%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR

 $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.00 \text{ (d, } J = 8.5 \text{ Hz}, 2\text{H}), 7.98 - 7.93 \text{ (m, 2H)}, 7.76 - 7.70 \text{ (m, 2H)}, 7.62 - 7.57 \text{ (m, 1H)}, 7.44 \text{ (t, } J = 7.8 \text{ Hz}, 2\text{H}), 6.55 - 6.47 \text{ (m, 1H)}, 6.43 - 6.35 \text{ (m, 1H)}, 4.47 \text{ (t, } J = 6.1 \text{ Hz}, 2\text{H}), 3.27 - 3.19 \text{ (m, 2H)}.$ ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 145.4, 144.9, 133.5, 133.2, 131.3, 129.8, 129.7, 128.6, 128.1, 117.4, 117.2, 62.9, 27.9. HRMS (ESI) calcd for C₁₈H₁₆NO₄S [M+H]⁺: 342.0795; found: 342.0789.

(Z)-4-((2,6-difluorophenyl)sulfonyl)but-3-en-1-yl benzoate (4k)

Colorless oil (59.9 mg, 85%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 8.3, 1.4 Hz, 2H), 7.59 – 7.48 (m, 2H), 7.43 (t, J = 7.8 Hz, 2H), 6.99 (t, J = 8.4 Hz, 2H), 6.66 – 6.60 (m, 1H), 6.58 – 6.50 (m, 1H), 4.44 (t, J = 6.1 Hz, 2H), 3.28 – 3.21 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 161.3 (d, J = 3.8 Hz), 158.8 (d, J = 5.0 Hz), 144.6, 135.7 (d, J = 13.8 Hz), 133.3, 132.6, 129.9, 129.7, 128.5, 113.4 (dd, J = 27.7, 3.8 Hz), 63.0, 27.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -106.5 (s). HRMS (ESI) calcd for C₁₇H₁₅F₂O₄S [M+H]⁺: 353.0654; found: 353.0640.

(Z)-4-((3,5-dichlorophenyl)sulfonyl)but-3-en-1-yl benzoate (41)

White solid (63.9 mg, 83%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (dd, J = 8.3, 1.4 Hz, 2H), 7.78 (d, J = 1.8 Hz, 2H), 7.59 – 7.53 (m, 2H), 7.43 (t, J = 7.8 Hz, 2H), 6.53 – 6.46 (m, 1H), 6.42 – 6.35 (m, 1H), 4.46 (t, J = 6.1 Hz, 2H), 3.25 – 3.18 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 144.6, 144.2, 136.5, 133.7, 133.3, 131.3, 130.0, 129.7, 128.5, 125.8, 62.9, 27.8. HRMS (ESI) calcd for C₁₇H₁₅Cl₂O₄S [M+H]⁺: 385.0063; found: 385.0049.

(Z)-4-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)but-3-en-1-yl benzoate (4m)

White solid (71.5 mg, 79%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, J = 1.6 Hz, 2H), 8.10 (s, 1H), 8.00 – 7.95 (m, 2H), 7.58 – 7.54 (m, 1H), 7.42 (t, J = 7.8 Hz, 2H), 6.61 – 6.53 (m, 1H), 6.46 – 6.40 (m, 1H), 4.48 (t, J = 6.2 Hz, 2H), 3.28 – 3.23 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 145.4, 144.0, 133.3 (q, J = 35.3 Hz), 133.2, 130.7, 129.60, 129.55, 129.4, 128.4, 127.7 (q, J = 3.8 Hz), 127.2 – 127.1 (dt, m), 122.3 (q, J = 273.4 Hz), 62.7, 27.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.9 (s). HRMS (ESI) calcd for

 $C_{19}H_{15}F_6O_4S \ [M+H]^+: 453.0590; found: 453.0587.$

(Z)-4-((5-chloro-2-methylphenyl)sulfonyl)but-3-en-1-yl benzoate (4n)

White solid (39.5 mg, 54%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 8.00 – 7.96 (m, 2H), 7.88 (d, J = 1.9 Hz, 1H), 7.68 (dd, J = 8.0, 1.9 Hz, 1H), 7.58 – 7.54 (m, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.34 (d, J = 8.0 Hz, 1H), 6.43 – 6.37 (m, 2H), 4.45 (t, J = 6.2 Hz, 2H), 3.25 – 3.19 (m, 2H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 142.9, 142.7, 140.3, 135.6, 133.3, 132.3, 131.9, 129.9, 129.7, 128.5, 128.0, 125.5, 63.1, 27.6, 20.5. HRMS (ESI) calcd for C₁₈H₁₈ClO₄S [M+H]⁺: 365.0609; found: 365.0594.

(Z)-4-((perfluorophenyl)sulfonyl)but-3-en-1-yl benzoate (40)

White solid (56.8 mg, 70%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 7.7 Hz, 2H), 7.57 (t, J = 7.3 Hz, 1H), 7.43 (t, J = 7.7 Hz, 2H), 6.75 – 6.56 (m, 2H), 4.48 (t, J = 6.1 Hz, 2H), 3.25 (q, J = 6.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 147.1, 144.9 (dm, J = 278.4 Hz), 138.0 (dm, J = 262.1 Hz), 133.4, 132.3, 131.7, 129.7, 129.6, 129.5, 128.6, 62.8, 27.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -135.99 – -1436.09 (m), -143.35 – -143.47 (m), -157.82 – -157.95 (m). HRMS (ESI) calcd for C₁₇H₁₂F₅O₄S [M+H]⁺: 407.0371; found: 407.0370.

(Z)-4-(naphthalen-2-ylsulfonyl)but-3-en-1-yl benzoate (4p)

White solid (38.1 mg, 52%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 8.51 (s, 1H), 7.99 – 7.91 (m, 4H), 7.90 (d, J = 8.1 Hz, 1H), 7.85 (dd, J = 8.7, 1.9 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.64 – 7.59 (m, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.36 (t, J = 7.7 Hz, 2H), 6.51 – 6.45 (m, 1H), 6.43 – 6.36 (m, 1H), 4.46 (t, J = 6.2 Hz, 2H), 3.32 –3.25 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 142.5, 138.2, 135.3, 133.2, 132.5, 132.3, 129.9, 129.8, 129.7, 129.6, 129.4, 129.0, 128.5, 128.1, 127.8, 122.3, 63.2, 27.6. HRMS (ESI) calcd for C₂₁H₁₉O₄S [M+H]⁺: 367.0999; found: 367.0980.

(Z)-4-(thiophen-2-ylsulfonyl)but-3-en-1-yl benzoate (4q)

Brown oil (39.3 mg, 61%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, J = 8.4, 1.3 Hz, 2H), 7.70 – 7.65 (m, 2H), 7.58 – 7.54 (m, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.10 (dd, J = 5.0, 3.8 Hz, 1H), 6.53 – 6.47 (m, 1H), 6.42 – 6.35 (m, 1H), 4.45 (t, J = 6.2 Hz, 2H), 3.26 – 3.21 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 142.8, 142.2, 134.0, 133.4, 133.3, 133.0, 129.9, 129.8, 128.5, 128.1, 63.1, 27.5. HRMS (ESI) calcd for C₁₅H₁₅O₄S₂ [M+H]⁺: 323.0406; found: 323.0396.

(Z)-4-(cyclopropylsulfonyl)but-3-en-1-yl benzoate (4r)

Pale yellow oil (47.1 mg, 84%, Z/E = 2.5:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.95 (m, 2H), 7.51 – 7.47 (m, 1H), 7.38 (d, J = 7.8 Hz, 2H), 6.40 – 6.29 (m, 2H), 4.39 (t, J = 6.3 Hz, 2H), 3.14 – 3.07 (m, 2H), 2.41 – 2.32 (m, 1H), 1.20 – 1.17 (m, 2H), 0.95 – 0.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 142.4, 133.3, 131.0, 130.0, 129.7, 128.5, 63.2, 32.0, 27.6, 5.1. HRMS (ESI) calcd for C₁₄H₁₇O₄S [M+H]⁺: 281.0842; found: 281.0830.

(Z)-4-(butylsulfonyl)but-3-en-1-yl benzoate (4s)

Colorless oil (30.8 mg, 52%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.00 (m, 2H), 7.60 – 7.53 (m, 1H), 7.48 – 7.41 (m, 2H), 6.56 – 6.46 (m, 1H), 6.33 – 6.26 (m, 1H), 4.46 (t, J = 6.2 Hz, 2H), 3.22 – 3.14 (m, 2H), 3.01 – 2.94 (m, 2H), 1.81 – 1.72 (m, 2H), 1.45 – 1.35 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 144.2, 133.3, 130.1, 130.3, 129.7, 128.6, 63.2, 55.5, 27.6, 24.3, 21.7, 13.7. HRMS (ESI) calcd for C₁₅H₂₁O₄S [M+H]⁺: 297.1155; found: 297.1143.

4. Synthetic Application

4.1 Hydrosulfonylation of structurally complex natural products and drugs

To an oven-dried 10 mL sealed tube, $Mn_2(CO)_{10}$ (5 mol%, 0.01 mmol), Xantphos (10 mol%, 0.02 mmol), (TMS)₃SiH (1.5 equiv, 0.3 mmol), complex alkyne (0.2 mmol), TsCl (0.6 mmol) and DCM

(2 mL) were added and the tube was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of two 45 W white LEDs (distance app. 4.0 cm from the bulb) at 40 °C for 18 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was purified by column chromatography (eluent: PE/EA = 1:5 to 1:1) to afford the corresponding product.

(Z)-5-tosylpent-4-en-1-yl 4-(N,N-dipropylsulfamoyl)benzoate (5a)

White solid (51.8 mg, 51%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.6 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.34 – 6.22 (m, 2H), 4.37 (t, J = 6.3 Hz, 2H), 3.11 – 3.06 (m, 4H), 2.88 (q, J = 7.1 Hz, 2H), 2.42 (s, 3H), 1.98 – 1.92 (m, 2H), 1.57 – 1.50 (m, 4H), 0.86 (t, J = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 144.8, 144.6, 144.4, 138.6, 133.5, 131.8, 130.4, 130.0, 127.4, 127.1, 64.8, 50.1, 28.0, 24.6, 22.1, 21.7, 11.3. HRMS (ESI) calcd for C₂₅H₃₄NO₆S₂ [M+H]⁺: 508.1822; found: 508.1811.

(Z)-5-tosylpent-4-en-1-yl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (5b)

Pale yellow oil (69.8 mg, 77%, Z/E = 3:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 8.3 Hz, 2H), 7.70 – 7.67 (m, 3H), 7.40 (dd, J = 8.4, 1.9 Hz, 1H), 7.28 – 7.26 (m, 2H), 7.15 – 7.10 (m, 2H), 6.15 – 6.11 (m, 1H), 6.07 – 6.03 (m, 1H), 4.08 (t, J = 6.3 Hz, 2H), 3.90 (s, 3H), 3.85 (t, J = 7.1 Hz, 1H), 2.69 – 2.64 (m, 2H), 2.40 (s, 3H), 1.72 – 1.67 (m, 2H), 1.57 (d, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 144.8, 144.6, 144.4, 138.6, 133.5, 131.82, 131.76, 130.4, 130.3, 130.0, 127.8, 127.4, 127.2, 127.1, 64.8, 50.1, 28.0, 24.6, 22.1, 21.7, 11.3. HRMS (ESI) calcd for C₂₆H₂₉O₅S [M+H]⁺: 453.1730; found: 453.1716.

(Z)-5-tosylpent-4-en-1-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (5c) Pale yellow oil (62.6 mg, 54%, Z/E = 17:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H),

7.31 (d, J = 7.9 Hz, 2H), 6.97 (d, J = 2.5 Hz, 1H), 6.88 (d, J = 9.0 Hz, 1H), 6.66 (dd, J = 9.0, 2.6 Hz, 1H), 6.26 – 6.20 (m, 1H), 6.15 – 6.08 (m, 1H), 4.12 (t, J = 6.4 Hz, 2H), 3.82 (s, 3H), 3.68 (s, 2H), 2.73 (q, J = 7.0 Hz, 2H), 2.42 (s, 3H), 2.38 (s, 3H), 1.81 – 1.74 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 168.4, 156.2, 144.8, 144.6, 139.4, 138.7, 136.1, 134.0, 131.6, 131.3, 131.0, 130.8, 130.0, 129.2, 127.4, 115.1, 112.7, 111.8, 101.5, 64.2, 55.9, 30.5, 27.9, 24.4, 21.8, 135. HRMS (ESI) calcd for C₃₁H₃₁ClNO₆S [M+H]⁺: 580.1555; found: 580.1539.

(Z)-5-tosylpent-4-en-1-yl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (5d) Colorless oil (57.3 mg, 53%, Z/E = 7:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.71 (m, 4H), 7.70 – 7.67 (m, 2H), 7.42 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 6.88 – 6.85 (m, 2H), 6.27 – 6.22 (m, 1H), 6.11 (d, J = 11.1 Hz, 1H), 4.19 (t, J = 6.4 Hz, 2H), 2.67 (q, J = 7.9 Hz, 2H), 2.42 (s, 3H), 1.79 – 1.72 (m, 2H), 1.68 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 157.7, 145.1, 144.4, 138.7, 135.7, 133.8, 131.3, 130.0, 129.4, 129.0, 127.7, 127.4, 126.3, 126.1, 119.1, 105.7, 64.0, 55.4, 45.6, 27.8, 24.5, 18.5. HRMS (ESI) calcd for C₂₉H₃₀ClO₆S [M+H]⁺: 541.1446; found: 541.1430.

4.2 Gram scale synthesis of 3a

To an oven-dried 100 mL sealed flask, $Mn_2(CO)_{10}$ (5 mol%, 0.3 mmol, 117 mg), Xantphos (10 mol%, 0.6 mmol, 347 mg), (TMS)₃SiH (1.5 equiv, 9 mmol, 2.24 g), but-3-yn-1-yl benzoate (6 mmol, 1.05 g) **1a**, TsCl **2a** (18 mmol, 3.43 g) and DCM (60 mL) were added and the flask was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of two 45 W white LEDs (distance app. 6.0 cm from the bulb) at 50 °C for 48 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was purified by column chromatography on silica gel to afford the corresponding product **3a** in 1.49 g, 75% yield, >20:1 *Z/E* ratio.

4.3 The procedure for the synthesis of 6a

A solution of **3a** (66 mg, 0.2 mmol) in MeOH (4 mL) was added 10% Pd/C, then the mixture was stirred under H_2 (1 atm, balloon) overnight. The catalyst was removed by filtration over celite and the filtrate was concentrated *in vacuo* to provide the residue, which was purified by the column chromatography to give the target product **6a**.

BzO

4-tosylbutyl benzoate (6a)

Colorless oil (63.1 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.94 (m, 2H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.59 – 7.54 (m, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 4.28 (t, *J* = 5.7 Hz, 2H), 3.18 – 3.10 (m, 2H), 2.43 (s, 3H), 1.91 – 1.82 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 144.9, 136.1, 133.2, 130.13, 130.05, 129.7, 128.5, 128.2, 63.9, 55.9, 27.5, 21.8, 19.9. HRMS (ESI) calcd for C₁₈H₂₁O₄S [M+H]⁺: 333.1155; found: 333.1142.

4.4 The procedure for the synthesis of **6b**^[1]

To a mixture of the **3a** (66 mg, 0.20 mmol), CuCl (2.0 mg, 0.020 mmol, 10 mol%), NaOtBu (2.9 mg, 0.030 mmol, 15 mol%), Binap (14.9 mg, 0.024 mmol, 12 mol%) and bis(pinacolato)diboron (55.9 mg, 0.22 mmol, 1.1 equiv) in anhydrous THF (0.4 mL), at room temperature under argon atmosphere, was added MeOH (16 μ L, 0.40 mmol, 2.0 equiv). The mixture was stirred for 12 h and then it was quenched with MeOH (1 mL). After 5 min of further stirring at room temperature, the mixture was filtered through a pad of Celite and the filtrate was concentrated to dryness. The residue was dissolved in a 1:1 mixture of THF/H₂O (2 mL) and sodium perborate tetrahydrate (92.3 mg, 0.60 mmol, 3.0 equiv) was added. The mixture was stirred at room temperature for 2 h before it was extracted with EtOAc (2 x 10 mL). The combined organic phase was dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the desired β -hydroxysulfone **6b**.

3-hydroxy-4-tosylbutyl benzoate (6b)

Colorless oil (51.6 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.91 (m, 2H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.59 – 7.54 (m, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.50 – 4.38 (m, 2H), 4.36 – 4.28 (m, 1H), 3.64 (s, 1H), 3.35 – 3.19 (m, 2H), 2.41 (s, 3H), 1.97 – 1.89 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 145.3, 136.2, 133.2, 130.2, 130.0, 129.7, 128.5, 128.1, 63.4, 62.3, 61.0, 35.6, 21.8. HRMS (ESI) calcd for C₁₈H₂₁O₅S [M+H]⁺: 349.1104; found: 239.1092.

4.5 The procedure for the synthesis of $6c^{[2]}$

A mixture of **3a** (66 mg, 0.20 mmol) tetrahydropyrrole (0.33 mL, 20 equiv) was stirred at 80 °C for 6 h. After the completion of reaction, saturated ammonium chloride solution (10 mL) was added to

the reaction system to quench the reaction. Then EtOAc (20 mL) was poured into the reaction mixture. The organic layers were extracted with water (3×10 mL). The combined organic layers were dried with anhydrous Na₂SO₄ and filtered and solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography on silica gel t to afford the desired product **6c** with 92% yield.

1,1'-(4-tosylbutane-1,3-diyl)dipyrrolidine (6c)

Yellow oil (64.5 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 3.30 – 3.22 (m, 2H), 3.08 (dd, *J* = 15.2, 7.8 Hz, 1H), 2.73 – 2.62 (m, 1H), 2.58 – 2.50 (m, 4H), 2.49 – 2.43 (m, 3H), 2.42 (s, 3H), 2.36 – 2.28 (m, 2H), 1.86 – 1.74 (m, 6H), 1.62 – 1.52 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 137.5, 129.8, 128.0, 56.7, 54.2, 54.0, 53.3, 47.9, 31.5, 23.6, 23.5, 21.7. HRMS (ESI) calcd for C₁₉H₃₁N₂O₂S [M+H]⁺: 351.2101; found: 351.2088.

4.6 The procedure for the synthesis of 6d

A solution of **3a** (66 mg, 0.2 mmol), Si(TMS)₃H (149 mg, 3 equiv) and AIBN (2,2'-Azobis(2methylpropionitrile), 82 mg, 2.5 equiv) in toluene (2 mL) was stirred at 110 °C for 12 h. After the completion of reaction, EtOAc (20 mL) was poured into the reaction mixture. The organic layers were extracted with water (3 × 10 mL). The combined organic layers were dried with anhydrous Na₂SO₄ and filtered and solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography on silica gel using afford **6d** with 87% yield, >20:1 Z/E ratio.

(Z)-4-(1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilan-2-yl)but-3-en-1-yl benzoate (6d)

Colorless oil (73.6 mg, 87%, Z/E > 20:1, which was detected by ¹H NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.00 (m, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.7 Hz, 2H), 6.08 – 5.98 (m, 1H), 5.77 – 5.67 (m, 1H), 4.36 (t, J = 6.6 Hz, 2H), 2.61 – 2.54 (m, 2H), 0.14 (s, 27H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 142.7, 132.0, 129.5, 128.7, 127.4, 124.3, 63.3, 35.9, -0.10. HRMS (ESI) calcd for C₂₀H₃₉O₂Si₄ [M+H]⁺: 423.2022; found: 423.2007.

5. Mechanistic Studies

5.1 Radical trapping experiments

To an oven-dried 10 mL sealed tube, $Mn_2(CO)_{10}$ (5 mol%, 0.01 mmol), Xantphos (10 mol%, 0.02 mmol), (TMS)₃SiH (1.5 equiv, 0.3 mmol), but-3-yn-1-yl benzoate (0.2 mmol), TsCl (0.6 mmol), TEMPO (0.8 mmol) or BHT (0.8 mmol), and DCM (2 mL) were added and the tube was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of two 45 W white LEDs (distance app. 4.0 cm from the bulb) at 40 °C for 18 h. After the reaction finished, the reaction mixture was analyzed by GC and HR-MS. Trace yield of desired product **3** was detected. These results indicated that a radical mechanism might be operative.

Supplementary Figure 1. The HR-MS result for radical trapping with BHT.

5.2 Deuterium-labeling experiment

5.2.1 The preparation of (TMS)₃SiD

To a solution of $(TMS)_3SiH$ (248 mg, 1 mmol) in THF (3 mL) was dropwise added n-BuLi (1.1 equiv) at -78 °C. And the reaction mixture was stirred at the same temperature for 2 hours. Then 20 equiv D₂O was added to the mixture and the mixture was stirred at room temperature for 30 min. After the completion of reaction, EtOAc (10 mL) was poured into the reaction mixture. The organic layers were extracted with water (3 × 10 mL). The combined organic layers were dried with anhydrous Na₂SO₄ and filtered and solvent was removed under reduced pressure. The product could be used directly without purification.

5.2.2 The model reaction with (TMS)₃SiD

To an oven-dried 10 mL sealed tube, $Mn_2(CO)_{10}$ (5 mol%, 0.01 mmol), Xantphos (10 mol%, 0.02 mmol), (TMS)₃SiD (1.5 equiv, 0.3 mmol), but-3-yn-1-yl benzoate (0.2 mmol), TsCl (0.6 mmol), and DCM (2 mL) or DCM (4 mL) were added and the tube was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of two 45 W white LEDs (distance app. 4.0 cm from the bulb) at 40 °C for 18 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was purified by column chromatography on silica gel to afford the corresponding product **[D]-3a** in 53% yield, Z/E > 20:1. The deuterated ratios of the product were determined by 1H NMR. This result confirms that H atom source mainly comes from the (TMS)₃SiH.

Supplementary Figure 3. The ¹H NMR of **[D]-3a** (in 0.05 M CH₂Cl₂).

5.3 Formation and detection of (TMS)₃SiCl

The model reaction was conducted under standard conditions, and the reaction mixture was detected by GC-MS.

Supplementary Figure 4. The GC-MS result of (TMS)₃SiCl

Supplementary Figure 5. Time profile of photocatalytic reaction with and without white light.

To an oven-dried 10 mL sealed tube, $Mn_2(CO)_{10}$ (5 mol%, 0.01 mmol), Xantphos (10 mol%, 0.02 mmol), (TMS)₃SiH (1.5 equiv, 0.3 mmol), but-3-yn-1-yl benzoate (0.2 mmol), TsCl (0.6 mmol), and DCM (2 mL) were added and the tube was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of two 45 W white LEDs (distance app. 4.0 cm from the bulb) at 40 °C. The process of photocatalytic reaction with and without light was monitored by GC, the yields were detected using dodecane as internal standard. It was found that the formation of **3a** needed continuous irradiation of white light.

5.5 HRMS analysis of reaction mixture of Mn₂(CO)₁₀ and L1

The reaction mixture of $Mn_2(CO)_{10}$ (19 mg) and Xantphos (L1) (58 mg) in DCM under the irradiation of two 45 W white LEDs (distance app. 4.0 cm from the bulb) at 40 °C. 1 hour later, the mixture was subjected to HRMS analysis, the mass of [L1Mn(CO)₃]⁺ could be detected, since the L1Mn(CO)₃· readily loses one electron during the HRMS analysis. This result supports the existence of L1Mn(CO)₃· and the manganese center was coordinated with ligand L1.

Supplementary Figure 6. The HR-MS result for [L1Mn(CO)₃]⁺.

6. Supplementary references

[1] A. L. Moure, R. G. Arrayás, J. C. Carretero. *Chem. Commun.* 2011, 47, 6701–6703.
[2] Z. Zhang, Q. Song, C. Feng, Z. Wang, W. Zhao, Y. Ning, Y. Wu. *Chem Asian J.* 2022, 17, e202200299.

[3] J. Han, J. Han, S. Chen, T. Zhong, Y. He, X. Yang, G. Wang, C. Zhu, J. Xie, *Nat. Syn.* 2022, *1*, 475-486

7. NMR Spectra

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectrum of **3a**

¹³C NMR spectrum of **3b**

¹³C NMR spectrum of **3c**

¹³C NMR spectrum of **3d**

60 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 ξ f1 (ppm)

¹³C NMR spectrum of **3e**

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

 13 C NMR spectrum of **3**g

¹³C NMR spectrum of **3h**

¹³C NMR spectrum of **3i**

150 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -{ f1 (ppm)

¹³C NMR spectrum of **3**j

¹³C NMR spectrum of **3**k

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -{ f1 (ppm)

¹³C NMR spectrum of **3**l

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

¹³C NMR spectrum of **3m**

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

¹³C NMR spectrum of **3n**

¹³C NMR spectrum of **3p**

¹³C NMR spectrum of **3q**

¹³C NMR spectrum of **3r**

¹H NMR spectrum of **3s**

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -{ f1 (ppm)

¹³C NMR spectrum of **3s**

¹H NMR spectrum of **3t**

¹H NMR spectrum of 3u

¹H NMR spectrum of 3v

¹⁹F NMR spectrum of 3v

¹³C NMR spectrum of 3w

¹³C NMR spectrum of 3x

 13 C NMR spectrum of **3**y

80 70 fl (ppm) -20 130 120 -10

¹³C NMR spectrum of 3z

¹³C NMR spectrum of **4a**

¹³C NMR spectrum of **4b**

¹H NMR spectrum of 4c

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -18 f1 (ppm)

¹⁹F NMR spectrum of 4c

¹³C NMR spectrum of **4d**

¹³C NMR spectrum of 4e

¹³C NMR spectrum of **4f**

 13 C NMR spectrum of **4g**

 13 C NMR spectrum of **4h**

¹H NMR spectrum of **4i**

¹H NMR spectrum of 4j

¹H NMR spectrum of **4**k

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -18 f1 (ppm)

¹⁹F NMR spectrum of **4**k

¹³C NMR spectrum of **4**l

¹³C NMR spectrum of **4m**

¹H NMR spectrum of 4n

¹H NMR spectrum of **40**

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -18 f1 (ppm)

¹⁹F NMR spectrum of **40**

¹H NMR spectrum of **4p**

¹³C NMR spectrum of **4p**

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -{ f1 (ppm)

 13 C NMR spectrum of **4q**

¹³C NMR spectrum of **4r**

¹³C NMR spectrum of **4s**

¹³C NMR spectrum of **5**a

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -{ f1 (ppm)

¹³C NMR spectrum of **5b**

¹³C NMR spectrum of **5c**

¹³C NMR spectrum of **5d**

¹³C NMR spectrum of **6a**

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

¹³C NMR spectrum of **6b**

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

¹³C NMR spectrum of **6c**

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5(f1 (ppm)

¹³C NMR spectrum of **6d**